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Abstract— We study the problem of performance enhance-
ment in stochastically-forced directed consensus networks by
adding edges to an existing topology. We formulate the problem
as a feedback control design, and represent the links as
the elements of the controller graph Laplacian matrix. The
topology design of the controller network can be cast as an
`1 regularized version of the H2 optimal control problem. The
goal is to optimize the performance of the network by selecting
a controller graph with low communication requirements. To
deal with the structural constraints that arise from the absence
of absolute measurements, we introduce a coordinate transfor-
mation to eliminate the average mode and assure convergence
of all states to the average of the initial node values. By
exploiting structure of the optimization problem, we develop
a customized algorithm based on the alternating direction
method of multipliers to design a sparse controller network
that improves the performance of the closed-loop system.

Index Terms— Alternating direction method of multipli-
ers, consensus, directed networks, non-convex optimization,
sparsity-promoting optimal control.

I. INTRODUCTION

Distributed computing over networks is of fundamental
importance in network science [1]. Consensus problem has
received significant attention because of a broad range of
applications including animal group behavior [2], [3], social
networks [4], [5], power systems [6]–[8], spreading processes
on complex networks [9], [10], and cooperative control of
vehicular formations [11]–[13]. An inherent challenge in
these problems is that it is desired for all nodes to reach an
agreement or to achieve synchronization by only exchanging
relative information with limited number of nodes. The
restriction on the absence of the absolute measurements
imposes structural constraints for the analysis and design.

Reaching agreement using relative information exchange
in a decentralized fashion has attracted lots of interest. In
large networks, centralized implementation of control poli-
cies imposes heavy communication and computation burden
on individual nodes. This motivates the development of
distributed control strategies that require limited information
exchange between the nodes in order to reach consensus or
achieve synchronization [14]–[18].

Significant amount of research has been devoted to the
study of the consensus problem in networks, where both the
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plant and the controller graphs are undirected. For undirected
consensus network, the `1-regularized minimum variance
optimal control problem is convex [19]–[23]. On the other
hand, convexity is lost for directed networks.

In the absence of disturbances, a strongly connected bal-
anced network converges to the average of the initial node
values [1]. However, in the presence of additive stochastic
disturbances, the network average experiences a random
walk. Thus, the control objective is to minimize mean square
deviation from average. To cope with structural constraints
that arise from the absence of absolute information exchange,
we introduce a coordinate transformation to eliminate the
average mode. While it is desired to promote sparsity of
controller graph in the physical domain, the H2 optimal con-
trol problem is solved in the transformed set of coordinates
where the average mode is eliminated.

In this paper, we consider the problem of adding edges
to a weakly connected directed consensus network in order
to improve performance. In particular, we are interested in
designing sparse communication graphs that strike a balance
between the variance amplification of the closed-loop system
and the number of communication links. In general, this
is a combinatorial search problem and is non-convex. In
undirected networks, convex relaxations or greedy algorithms
have been introduced in order to optimize algebraic connec-
tivity of the network [24], [25] or network coherence [21],
[26], [27] by adding edges from a given set of edges.

We formulate the edge addition problem for directed
networks with an objective of optimizing the closed-loop
coherence. We consider the scenario in which the plant graph
is unbalanced. Structural requirements that the closed-loop
graph Laplacian is weakly connected and balanced make
the optimal control problem challenging. We approach this
problem using sparsity-promoting optimal control frame-
work [19], [28], [29]. In our formulation, performance is
captured by the H2 norm of the closed-loop network and `1
regularization is introduced as a proxy for inducing sparsity
in the controller graph [21], [26]. By exploiting the structure
of the problem, we develop a customized algorithm based on
alternating direction method of multipliers (ADMM) [30].

The rest of the paper is structured as follows. In Section
II, we provide necessary background on graph theory for
directed networks, define consensus problems on graphs, and
introduce an appropriate change of coordinates. In Section
III, we formulate the optimal control problem. In Section
IV, we develop a customized algorithm based on ADMM.
In Section V, we use our algorithm for sparse edge addition
to directed consensus networks. Finally, in Section VI, we
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provide concluding remarks and highlight future directions.

II. MOTIVATION AND BACKGROUND

In this section, after providing the necessary background,
we describe the dynamics of consensus networks, inherent
structural constraints, and the challenges in the related design
problems. We then introduce a change of coordinates that
enables us to overcome these restrictions.

A. Directed graphs

Herein, we provide a brief overview of the background
material; for additional information, see [1].

Weighted digraph: a weighted directed graph is denoted
by D = (V,E,w) where V and E are the sets of nodes and
edges and w is the vector of edge weights. The edges are
directed and a value wij is the edge weight between nodes
vi and vj . If the ordered pair (vi, vj) ∈ E then vi is the tail
of the edge and vj is its head.

Strongly connected digraph: a digraph is strongly con-
nected if there is a directed path between every pair of nodes.

Weakly connected digraph: a digraph is weakly connected
if it is a connected graph when the directions are omitted.

Adjacency matrix: the ijth element is given by

Aij =

{
wij , (vj , vi) ∈ E

0, otherwise.

Degree matrix is a diagonal matrix with Dii = din(vi)
where din(vi) is the weighted in-degree of node vi,

din(vi) =
∑
j

wij .

We sum over j’s for (vj , vi) ∈ E.
Laplacian matrix is a matrix L = D −A, where L1 = 0

by definition.
Balanced digraph: a digraph is balanced if the

weighted in-degree and the weighted out-degree for each
node are equal.

B. Feedback design in consensus networks

We consider a consensus dynamics

ẋ = −Lp x + u + d

where d and u are the disturbance and control inputs, x is the
vector of the states, and Lp ∈ Rn×n is the graph Laplacian
of the plant network. We assume that the plant network is
weakly connected and formulate the edge addition problem
as a feedback design problem with

u = −Lk x

where Lk ∈ Rn×n is the weighted directed Laplacian
matrix of the controller. This matrix represents the locations,
directions, and edge weights. Note that each nonzero element
in Lk can either indicate addition of an edge or re-tuning of
an existing edge gain.

The closed-loop system is given by

ẋ = − (Lp + Lk)x + d. (1a)

Our goal is to optimally design the feedback gain matrix
Lk in order to achieve the desired tradeoff between the con-
troller sparsity and network performance. The performance
is quantified by the steady-state variance amplification of the
stochastically-forced network, from the white-in-time input
d to the performance output z that quantifies deviation from
consensus and control effort,

z =

[
Q1/2

−R1/2Lk

]
x. (1b)

Here, the matrices Q = QT � 0 and R � 0 are the state and
control weights, respectively, and � (�) signifies positive
definiteness (semi-definiteness) of a matrix.

In consensus networks, each node updates its state using
the relative information exchange with its neighbors. In the
presence of white noise, the average mode x̄ = (1/n)xT1
experiences a random walk and variance increased linearly
with time. A key property of the Laplacian matrix of the
controller is Lk1 = 0. Since our primary control objective is
to achieve consensus, only differences between node values
are penalized in the performance output. Therefore, the state
weight matrix Q has a zero eigenvalue with the correspond-
ing eigenvector of all ones, i.e., Q1 = 0. Furthermore,
we choose Q to be positive definite on the orthogonal
complement of the subspace span (1),

Q + (1/n)11T � 0.

The following lemma summarizes the well-known condi-
tions for achieving consensus in the absence of disturbances
in directed networks [1].

Lemma 1: The agreement protocol over a digraph reaches
the average consensus, (1/n)11Tx(0), for every initial con-
dition if and only if it is weakly connected and balanced.

Thus, for a weekly connected Lp which is not necessarily
balanced, it is required that the closed-loop graph Laplacian,
Lp + Lk be balanced, which amounts to

1T (Lp + Lk) = 0. (2)

The problem of designing a controller graph that provides a
desired tradeoff between performance index J of the network
and the sparsity of the controller Lk can be formulated as

minimize
Lk

J(Lk) + γ ‖W ◦ Lk‖1

subject to 1T (Lk + Lp) = 0

Lk 1 = 0.

(3)

The positive scalar γ is the sparsity-promoting parameter
that characterizes a trade-off between network performance
and sparsity of the controller and ◦ denotes elementwise
multiplication. The first condition guarantees asymptotic
consensus to the initial network average value in the absence
of disturbances and the second condition secures the row
stochastic property of the controller graph Laplacian. We gu-
rantee that the closed-loop graph Laplacian remains weakly
connected via proper step-size selection in the algorithm.

In what follows, we quantify the network performance
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using the H2 norm. The weighted `1 norm [31] of Lk
is a convex approximation of the cardinality function. In
each iteration, each element of the weight matrix W (i, j)
is chosen to be inversely proportional to the magnitude of
Lk(i, j) in the previous iteration and can be determined as

W (i, j) = 1/(|Lk(i, j)| + ε). (4)

This puts larger emphasis on smaller optimization variables,
where a small positive parameter ε ensures that W (i, j) is
well-defined.
C. Elimination of the average mode

Since both Q and Lk have a zero eigenvalue associated
with the vector of all ones, the average mode x̄ is not ob-
servable from the output z. In order to eliminate the average
mode, we introduce the following change of coordinates[

ψ
x̄

]
=

[
UT

1T /n

]
x

where U ∈ Rn×(n−1) is a full-rank matrix and its columns
span the orthogonal complement of 1. Using the properties
of the matrix U ,

UT U = I, U UT = I − (1/n)11T , UT 1 = 0,

we have[
ψ̇
˙̄x

]
=

[
−UT (Lp + Lk)U 0

0 0

] [
ψ
x̄

]
+[

UT

(1/n)1T

]
d.

In the new coordinates, the performance output is given by

z =

[
Q1/2 U 0
−R1/2Lk U 0

] [
ψ
x̄

]
.

The network average x̄ = (1/n)1T d experiences a random
walk and the vector ψ quantifies the deviation from average
of the states. Since our control objective is to minimize the
deviation from average in the nodes, the average mode is
not of interest. Therefore, the minimal representation of the
system containing only the state ψ is given by

ψ̇ = −UT (Lp + Lk)U ψ + UT d

z =

[
Q1/2 U
−R1/2Lk U

]
ψ.

(5)

In order to guarantee that the closed-loop graph Laplacian
(Lp + Lk) is balanced, we introduce the following change
of variables

Lk = U F UT − (1/n)11TLp ⇔ F = UTLk U.
(6)

Note that the main contribution that differentiates this work
from previous results [26] is that we are considering a
weakly-connected directed unbalanced network, and we re-
quire the closed-loop network to be balanced. The problem
of adding edges to a directed network has not been addressed
in [26]. Moreover, the presented framework cannot be used
to solve the current constrained problem due to an additional

bias term. In our framework, a new change of variables is
introduced to accommodate structural constraints.

Using the properties of the matrix U , the constraints (2)
and Lk 1 = 0 are automatically satisfied. The equation (6)
demonstrates how we can move back and forth between two
variables F and Lk.

Substituting Lk given by (6) into (5), we can write the
state-space representation of the closed-loop system as

ψ̇ = − (UT Lp U + F )ψ + UT d

z =

[
Q1/2 U

−R1/2(U F − (1/n)11TLp U)

]
ψ.

(7)

Next, we formulate the optimal control problem and
propose a framework to design sparse controller Lk.

III. TOPOLOGY DESIGN FOR DIRECTED NETWORKS

In this section, we approach the problem of topology
design as a regularized optimal control problem.

A. Sparsity-promoting optimal control problem

The H2 norm of the transfer function from d to z,

‖H‖22 = J(F ) = trace (P (F ))

quantifies the variance amplification of the closed-loop
network (7). Here, P (F ) is the closed-loop observability
Gramian which is the solution of the Lyapunov equation,

(UT Lp U + F )T P + P (UT Lp U + F ) = CTC (8)

where

C =

[
Q1/2 U

−R1/2(U F − (1/n)11TLp U)

]
.

The control design problem (3) takes the following form

minimize
F,Lk

J(F ) + γ ‖W ◦ Lk‖1

subject to U F UT − Lk − (1/n)11TLp = 0.
(9)

In (9), the Laplacian matrix Lk and the matrix F are the
optimization variables; the problem data is given by plant
graph Laplacian Lp, state and control weights Q and R,
and positive regularization parameter γ. The matrix W is
the weight matrix that imposes a penalty on the magnitude
of the elements in Lk. With the problem formulation (9),
we are able to minimize the H2 norm of the network J(F )
in the transformed coordinates where the average mode is
eliminated, while promoting sparsity of Lk in the physical
domain. For γ = 0, the solution to (9) is typically given
by a matrix Lk with all non-zero components. As the
regularization parameter increases, the number of non-zero
elements in the controller graph decreases.

B. Structured optimal control problem

After the structure of the controller graph Laplacian Lk
has been designed, we fix the sparsity pattern S and then
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solve the following problem

minimize
F

J(F )

subject to U F UT − (1/n)11TLp ∈ S
(10)

whose solution provides the optimal controller graph Lapla-
cian with the desired structure. This optimization problem
is obtained by setting γ = 0 in (9) and adding the sparsity
pattern S. This “polishing” or “debiasing” step is used to
improve the performance relative to the solution of the
sparsity-promoting optimal control problem (9).

IV. AN ADMM-BASED ALGORITHM

We next exploit the structure of the constrained optimiza-
tion problem (9) and develop a customized algorithm based
on ADMM. The augmented Lagrangian associated with (9)
is given by

Lρ(F, Lk; Λ) = J(F ) + γ ‖W ◦ Lk‖1 +〈
Λ, U F UT − Lk − (1/n)11TLp

〉
+

ρ

2
‖U F UT − Lk − (1/n)11TLp‖2F

(11)
where the matrix Λ is the Lagrange multiplier, ρ is a positive
scalar, and ‖ · ‖F is the Frobenius norm. The ADMM
algorithm consists of the following steps at each iteration

F k+1 = argmin
F

Lρ(F, Lkk; Λk)

Lk+1
k = argmin

Lk

Lρ(F k+1, Lk; Λk)

Λk+1 = Λk + ρ
(
U F k+1 UT − Lk+1

k − (1/n)11TLp
)
.

The algorithm terminates when ‖Lk+1
k − Lkk‖F ≤ ε1 and

‖U F k+1 UT − Lk+1
k − (1/n)11TLp)‖ ≤ ε2, where ε1 and

ε2 are desired tolerances.
Note that, the smooth part J(F ) and the non-smooth

part ‖W ◦ Lk‖1 are now operating in different coordinates;
therefore, descent algorithms can be utilized in the F -
minimization step. Moreover, the `1 norm is a separable
function with respect to each element of Lk. Thus, we can
determine the solution to the Lk-minimization step analyti-
cally. In the Lagrange multiplier update step, we use the step-
size equal to ρ in order to guarantee the dual feasibility [30].

A. F -minimization step

We bring the F -minimization step to the following form
by using the properties of the matrices Lp and U ,

F k+1 = argmin
F

J(F ) +
ρ

2
‖F − Sk‖2F

where

Sk = UT
(
Lkk + (1/n)11TLp − (1/ρ) Λk

)
U

= UT
(
Lkk − (1/ρ) Λk

)
U.

We employ the Anderson-Moore method to solve this prob-
lem [32]. This algorithm converges faster compared to the
gradient method and its implementation is simpler compared
to Newton method [28].

We next summarize the first- and second-order derivatives
of the objective function J . The second order approximation
of the smooth part of objective function J around F̄ is given
by

J(F̄+ F̃ ) ≈ J(F̄ )+
〈
∇FJ(F̄ ), F̃

〉
+

1

2

〈
∇2
FJ(F̄ , F̃ ), F̃

〉
.

For related developments we refer the reader to [32].
Proposition 2: The gradient and the Hessian of J at F̄

are determined by

∇J(F̄ ) = 2 (R̄ F − (1/n)UTR11T Lp U − P )L

∇2J(F̄ , F̃ ) = 2
(

(R̄ F̃ − P̃ )L

+ (R̄ F − (1/n)UTR11T Lp U − P ) L̃
)

(12)
where R̄ = UTRU and the matrix P is given by (8) and is
the observability Gramian. The matrix L is the controllability
Gramian and is determined by

(UT Lp U + F )L + L (UT Lp U + F )T = UT U (13)

where UTU = I is identity. The matrices P̃ and L̃ are the
solutions to the following Lyapunov equations

(UT Lp U + F ) L̃+ L̃ (UT Lp U + F ) = − F̃ L − L F̃

(UT Lp U + F )T P̃ + P̃ (UT Lp U + F ) =

F̃T (R̄ F − P − (1/n)UTR11TLpU) +

(FT R̄ − P − (1/n)UTLTp 11
TRU) F̃ .

By setting ∇FLρ = ∇FJ + ρ (F − Sk) = 0, we obtain

2
(
R̄ F − (1/n)UTR11T Lp U − P

)
L+ ρ (F−Sk) = 0.

(14)
The necessary conditions for the optimality of Lρ(F, Lk; Λ)
are given by (8), (13) and (14).

The Anderson-Moore method solves the F -minimization
step iteratively. In each iteration, the algorithm starts with
a stabilizing F and solves two Lyapunov equations and
one Sylvester equation. It first solves the Lyapunov equa-
tions (8), (13) with a fixed F to obtain controllability and
observability Gramians L and P , respectively. Then it solves
the Sylvester equation (14) for F with fixed L and P .
Then we use Newton’s method to find the descent direction
between two consecutive steps by utilizing (12). We next
employ a line search strategy to determine an appropriate
step-size in order to guarantee convergence to a stationary
point and the closed-loop stability.

B. Lk-minimization step

Using the expression for the augmented Lagrangian (11),
we can write the Lk-minimization step as

Lk+1
k = argmin

Lk

γ ‖Lk‖1 +
ρ

2
‖Lk − T k‖2F

where

T k = U F k+1 UT − (1/n)11TLp + (1/ρ) Λk.

5595



The solution is given by soft-thresholding

Lk(i, j)k+1 =

{
(1− υ

|T k(i, j)|
)T k(i, j), |T k(i, j)| > υ

0, otherwise

where υ = (γ/ρ)W (i, j).

Convergence analysis of ADMM for convex problems can
be found in [30]. For non-convex problems, the quadratic
term in the augmented Lagrangian locally convexify the
problem for a large ρ. A recent result on convergence
analysis of ADMM for a family of non-convex problems
can be found in [33]. Computational results also show that
ADMM works well when ρ is sufficiently large [34], [35].

V. COMPUTATIONAL EXPERIMENTS

A. Synthetic example

In this section, we employ our customized algorithm based
on ADMM to add certain number of edges to a given directed
network. The plant network is a randomly generated graph
with n nodes and with edge weight li ∈ (0, 1) for the ith
edge which is obtained randomly.

We set R = I and choose the state weight that penalizes
the mean-square deviation from the network average,

Q = I − (1/n)11T .

We solve the sparsity-promoting optimal control problem (9)
for controller graph for 100 logarithmically-spaced values of
γ ∈ [0.001, 3] using the path-following iterative reweighted
algorithm as a proxy for inducing sparsity [31]. We set the
weights to be inversely proportional to the magnitude of the
solution Lk to (9) at the previous value of γ. We choose
ε = 10−3 in (4) and initialize weights for γ = 0.01 using
the solution to (9) with LQR state-feedback matrix. Topology
design is followed by a polishing step that computes the
optimal weights of identified edges; see Section I-A.

B. Performance improvement

The randomly generated plant graph in Fig. 1a is a directed
graph with n = 20 nodes. The plant graph is weakly
connected but unbalanced. Thus, it will not converge to
the initial nodes average value. In order to reach consensus
and improve the performance, adding edges to the plant
network is required. Figure 1 illustrates that by increasing
γ, the controller graph becomes sparser. The number of
added edges to the network is equal to the number of
nonzero off-diagonal elements in the controller. Specifically,
for γ = 0.001, the number of nonzero elements in the
controller graph is 84, among which 74 edges are added
to the original network, and the other 10 nonzero elements
represent the diagonal elements. By increasing γ to 0.0788,
there are 33 nonzero elements are in the controller graph, and
only 25 edges are added to the plant network. It is noteworthy
that the Laplacian matrix of the controller graph can not be a
zero matrix, because the plant network is an unbalance graph
and a nonzero Laplacian matrix of the controller is needed
to make the closed-loop graph Laplacian balanced.

(a) plant graph (b) γ = 0.001

(c) γ = 0.0788 (d) γ = 3

Fig. 1: Topologies of the plant (blue lines) and controller
graphs (red lines) for a randomly generated weighted

network.

Figure 2 shows that the closed-loop performance deterio-
rates and the number of nonzero elements in the controller
graph Laplacian Lk decreases as γ increases. As shown in
Fig. 2b, relative to the optimal LQR controller, Lc, the H2

performance loss decreases as the sparsity of the controller
graph Laplacian matrix Lk increases. In particular, for γ =
3, there are only 24 nonzero elements in the controller
graph. This is equivalent to have only 16 added edges. The
identified sparse controller in this case uses only 0.057%
of the edges, relative to the optimal LQR controller, i.e.,
card(Lk)/card(Lc) = 29.629% and achieves a perfor-
mance loss of 15.118%, i.e., (J − Jc)/Jc = 15.118%.

VI. CONCLUDING REMARKS

We consider the `1 regularized version of optimal control
problem for adding edges to directed consensus networks
in order to reach consensus and optimally enhance perfor-
mance. Although the given plant network is not necessarily
balanced, in order to reach agreement, we restrict the closed-
loop graph Laplacian to be balanced. The performance is
measured by the H2 norm from the disturbance to the output
of the closed-loop network. In general, this problem is a com-
binatorial search problem. We use sparsity promoting optimal
control framework and introduce weighted `1 regularization
as a proxy for promoting sparsity of the controller. By
exploiting structure of the problem, we develop an algorithm
based on ADMM. An example is provided to demonstrate
the utility of the developed algorithm. In the future work,
we would like to extend the existing framework to the case
where the directed network is arbitrarily unbalanced, and the
corresponding performance index operates in the subspace
that spans the null space of the left eigenvector of the closed-
loop Laplacian matrix.
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