
On the stability of gradient flow dynamics
for a rank-one matrix approximation problem

Hesameddin Mohammadi, Meisam Razaviyayn, and Mihailo R. Jovanović

Abstract— In this paper, we examine the global stability
of gradient flow dynamics associated with the problem of
finding the best rank-one approximation of a given matrix.
We partition the state-space into an infinite family of invariant
manifolds over which the dynamics reduce to the special case of
approximating a symmetric matrix. This allows us to employ a
Lyapunov-based argument to explicitly characterize the region
of attraction for the stable equilibrium points. This charac-
terization proves an almost everywhere convergence for the
gradient flow dynamics to the minimizers of the corresponding
rank-one approximation problem.

I. INTRODUCTION

Many modern inference problems, such as matrix com-
pletion [1], training of neural networks [2], and phase
retrieval [3] require solving large-scale non-convex opti-
mization problems. Although many of these optimization
problems are known to be NP-hard in general [2], [4],
typical problem instances can be solved in a polynomial
time [1], [3]. For example, despite NP-hardness of the neural
networks training problem [2], it was recently numerically
observed that the gradient descent algorithm converges to
the set of global optima for most initializations [5]. To some
extent, these observations have been justified theoretically
under various simplifying assumptions by showing either the
existence of no spurious local optima or the exponentially
vanishing number of spurious local optima [6], [7]. More
specifically, in the matrix completion and the training of
linear neural networks problems, it was recently established
that all local optima are globally optimal [1], [6], [8];
consequently, the gradient descent method converges to the
global optima despite non-convexity of the optimization
problems [9]. Furthermore, for nonlinear neural networks,
the recent work [7] shows that most of the local optima are
globally optimal.

For non-convex learning problems, not all global optima
result in the same statistical performance [10]. Hence, the
choice of optimization algorithm and the initialization play
a crucial role in biasing toward a specific global optima. This
bias, which is also known as implicit regularization, is central
to the understanding of various algorithms in non-convex
problems with multiple global/local optima [5], [10]–[13].

As a first step toward better understanding of implicit reg-
ularization on learning problems, we consider the rank-one
approximation problem of a given matrix under the gradient
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flow dynamics. Although this problem may appear much less
involved than the aforementioned optimization problems, its
complete understanding is crucial because it is the major
building block for many non-convex learning problems (in-
cluding matrix completion and training of neural networks).
This problem is equivalent to the matrix completion under
the full observation and rank-one restriction [1], and so to
the problem of training linear neural networks with one
hidden unit [6]. For this low rank approximation problem, all
local optima are known to be globally optimal despite non-
convexity of the optimization problem [14]. However, the
behavior of the gradient descent algorithm, which is central
to many learning tasks, is not yet fully understood. In this
work, we examine the behavior of the gradient flow dynamics
associated with this non-convex optimization problem.

The solution to the rank-one approximation problem under
`2 distance is closely related to the principal eigenspace
problem; see [15, Chapter 1] for a brief survey on the
existing algorithms. Among various procedures for finding
the principal eigenspace, the power method, Rayleigh quo-
tient procedure, and the Oja’s method attracted significant
attention because of their simplicity and scalability [15]–
[17]. In particular, the Oja’s flow [15], [18], [19], which is
based on the non-normalized version of the Rayleigh quotient
flow, has gained popularity in recent years for online (i.e.,
streaming) principal component analysis [17]. It is also worth
noting that both Rayleigh quotient and the Oja’s flows can
be modified by regularizing the `2 distance of the estimated
rank-one matrix with a certain scaled version of the identity
mapping [20]–[22]. This simple, yet insightful, modification
allows for tracking of both the major and minor compo-
nents of a given symmetric matrix [22], [23]. Although this
modified gradient flow dynamics enjoy a globally stable
set of equilibrium points, the modification requires a priori
knowledge of the eigenvalues of the matrix, which is not
always available.

In this paper, we consider the gradient flow dynamics
for the rank-one approximation of a given matrix. By
partitioning the state-space via the introduction of novel
invariant manifolds, we reduce the problem to the simpler
problem of rank-one approximation of a symmetric matrix.
Building upon this connection and through the introduction
of maximal Lyapunov functions, we completely characterize
the regions of attraction of the stable equilibrium points.

Our presentation is organized as follows. In Section II, we
formulate the problem in the general form and also discuss
the important special case of symmetric matrices. In Sec-
tion III, we use maximal Lyapunov functions to characterize
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the regions of attraction of the stable equilibrium points
for the symmetric problem. In Section IV, we introduce
a set of invariant manifolds that partition the state-space
of the general problem. Over each of these manifolds, we
further demonstrate that the general problem reduces to
the special case of symmetric matrix approximation. This
reduction leads to a complete characterization for the region
of attraction of the stable equilibrium points.

II. PROBLEM FORMULATION

In this section, we formulate the problem of finding the
best rank-one approximation of a given matrix. Even though
the solution is well known and determined by the singular
value decomposition, the properties of the gradient flow
dynamics associated with this nonconvex optimization prob-
lem are not well-understood. We first discuss the problem
of approximating an m × n matrix and then introduce a
special case (i.e., the best rank-one approximation of a given
symmetric matrix) which plays a central role in the analysis
of the general problem.
A. Rank-one matrix approximation problem

Consider the rank-one approximation problem

minimize
x, y

1

2
‖xyT − M‖2F (P1)

where M ∈ Rm×n is a given matrix, x ∈ Rm and y ∈ Rn
are the optimization variables, and ‖ · ‖F is the Frobenius
norm. The solution to this nonconvex optimization problem
is determined by the principal singular vectors of the matrix
M . In this paper, we examine the gradient flow dynamics
associated with (P1),[

ẋ
ẏ

]
=

[
My − (yT y)x

MTx − (xTx) y

]
(1)

and analyze the stability properties of the equilibrium points.
Let M = UΣV T be a singular value decomposition of M ,

where U := [u1 · · ·um ] and V := [ v1 · · · vn ] are unitary
matrices, and Σ ∈ Rm×n is the matrix of singular values. In
what follows, we restrict our analysis to the case where the
principal singular value σ1 is strictly larger than the other
singular values.

Assumption 1: The singular values of the rank r matrix
M satisfy σ1 > σ2 ≥ · · · ≥ σr.

If Assumption 1 holds, the minimizers of (P1) are

(x?, y?) = (
σ1
c
u1, cv1)

where c is a nonzero number. However, the minimizers
of (P1) are not the only equilibrium points of (1). In fact,
any pair

(x̄, ȳ) :=


(
σi
c
ui, c vi), i ∈ {1, . . . , r}

(0, v), v ∈ N (M)

(u, 0), u ∈ N (MT )

is an equilibrium point of (1), where N (·) denotes the null
space of a given matrix.

The change of variables x := Uξ, y := V η brings
gradient flow dynamics (1) into the following form[

ξ̇
η̇

]
=

[
Ση − (ηT η) ξ

ΣT ξ − (ξT ξ) η

]
. (GD)

Let ei and êj denote the unit vectors in the canonical basis
of Rm and Rn, respectively. Under this change of variable,
the minimizers of (P1) are given by

(ξ?, η?) = (
σ1
c

e1, c ê1) (2)

and any pair

(ξ̄, η̄) :=


(
σ1
c

ei, c êi), i ∈ {1, . . . , r}
(0, ê), ê ∈ N (Σ)

(e, 0), e ∈ N (ΣT )

(3)

is an equilibrium point of (GD).
B. Symmetric case

A special instance of problem (P1) is given by

minimize
z

1

4
||zzT − W ||2F (P2)

where W ∈ Rn×n is a symmetric matrix and z ∈ Rn is
the optimization variable. The corresponding gradient flow
dynamics simplifies to

ż =
(
W − (zT z) In

)
z (4)

where In is the n×n identity matrix. As we demonstrate in
Section IV, the analysis of (4) allows us to characterize the
trajectories of general gradient flow dynamics (GD).

Let W = UΛUT be an eigenvalue decomposition of W
where Λ is the diagonal matrix of eigenvalues and U :=
[u1 · · ·un ] is a unitary matrix of eigenvectors. If the largest
eigenvalue λ1 of W is not positive, the only equilibrium
point of (4) is z̄0 = 0. To avoid this trivial case, we assume
λ1 > 0. We also further restrict our analysis to the situation
where λ1 is strictly larger than the other eigenvalues.

Assumption 2: The eigenvalues of the matrix W satisfy

λ1 > λ2 ≥ · · · ≥ λn and λ1 > 0.

Under Assumption 2, the minimizers of (P2) are given by
z? = ±

√
λ1 u1. Finally, in addition to the origin, for any

positive eigenvalue λi > 0,

z̄i := ±
√
λi ui, (5)

is an equilibrium point of (4). Note that (4) may have
infinitely many equilibrium points because any u ∈ Θi such
that uTu =

√
λi, is an equilibrium point of (4), where Θi

is the eigenspace corresponding to the eigenvalue λi > 0.
However, since the choice of U is arbitrary, our stability
analysis of equilibrium points (5) covers all the equilibrium
points of (4).

III. GRADIENT FLOW DYNAMICS: SYMMETRIC CASE

In this section, we examine the symmetric rank-one ap-
proximation problem (P2) and employ a Lyapunov-based
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approach to studying the behavior of gradient flow dynam-
ics (4). We first consider the linearized version of (4) and
demonstrate that the global minimizers of (P2) are the only
locally stable equilibrium points of (4). We then continue our
analysis by explicitly characterizing the region of attraction
for each of the locally stable equilibrium points.

A. Linearization around the equilibrium points

The linearization of (4) around the equilibrium point z̄i is
given by

ż =
(
W − (z̄Ti z̄i) In − 2z̄iz̄

T
i

)
z =: Ai z.

The eigenvalues of Ai are determined by the eigenvalues of
the matrix W ,

eig(Ai) = {−2λi; λk − λi, k ∈ {1, . . . , n}\{i}}. (6)

Under Assumption 2, all eigenvalues of the matrix A1 are
negative, thereby implying local asymptotic stability of z̄1 =
±
√
λ1u1. In contrast, for any other positive eigenvalue λi 6=

λ1 of W , the matrix Ai has a positive eigenvalue and z̄i
is unstable. Finally, it is easy to show that z̄0 = 0 is also
unstable if Assumption 2 holds.

Next, we establish a global convergence result by showing
that the regions of attraction of the locally stable equilibrium
points (

√
λ1u1 and −

√
λ1u1) are the two open half spaces

corresponding to an invariant hyperplane.

B. Regions of attraction of stable equilibrium points

We first establish the existence of an invariant hyperplane
H with respect to gradient flow dynamics (4) which separates
the two locally stable equilibrium points z̄1 = ±

√
λ1u1.

We then use a Lyapunov-based argument to show that the
two open half spaces corresponding to H are the regions of
attraction for

√
λ1u1 and −

√
λ1u1, respectively.

Definition 1: For any f : Rn → Rn, S ⊂ Rn is an
invariant set with respect to

ż = f(z) (7)

if, for any initial condition z(0) ∈ S, z(t) ∈ S for all t ≥ 0.
Moreover, the region of attraction of an equilibrium point z̄
is the set of all initial conditions for which limt→∞ z(t) = z̄.

In Lemma 1, we characterize a family of hyperplanes that
are invariant sets with respect to (4).

Lemma 1: For any eigenvector u of a symmetric matrix
W , the hyperplane H := {z| zTu = 0} is an invariant set
with respect to (4).

Proof: The inner product of the eigenvector u with the
the vector field in (4) is given by

uT f(z) = uT
(
W −

(
zT z

)
In
)
z = uT z

(
λ − zT z

)
where λ is the corresponding eigenvalue of W . Thus, if
uT z = 0, then uT f(z) = 0. This proves that H is an
invariant hyperplane with respect to (4).

To characterize the regions of attraction of (4) around the
stable equilibrium points, we employ the notion of maximal
Lyapunov functions introduced in [24].

Definition 2: Let X ⊂ Rn be an open set that contains an
equilibrium point z̄ of (7) and let ∂X denote the boundary
of X . A differentiable function V : X → R is a maximal
Lyapunov function for (7) if it satisfies

1) V (z̄) = 0, V (z) > 0, ∀ z ∈ X\{z̄};
2) V (z)→∞ as z →∞ and/or z → ∂X ;
3) V̇ (z̄) = 0, V̇ (z) < 0, ∀ z ∈ X\{z̄}.
The following theorem states that if there exists a maximal

Lyapunov function for (7), then X is the region of attraction
for the equilibrium point z̄.

Theorem 1 (Theorem 1 in [24]): Let z̄ ∈ X be an equi-
librium point of (7) and let X ⊂ Rn be an open set. If
there exists a maximal Lyapunov function V : X → R as in
Definition 2, then X is the region of attraction of z̄.

In Theorem 2, we show that there exists a hyperplane H
for which the corresponding half spaces are the regions of
attraction for the equilibrium points z̄1 = ±

√
λ1u1 of (4).

Theorem 2: Let Assumption 2 hold. Then, the two open
half spaces H± := {z| ± zTu1 > 0} are the regions of
attraction for the equilibrium points ±

√
λ1u1 of (4).

Proof: We find a maximal Lyapunov function to prove
the result for

√
λ1u1. The proof for −

√
λ1u1 follows from

similar arguments and is omitted for brevity.
Let UΛUT be an eigenvalue decomposition of W where

Λ := diag ([λ1 · · ·λn ]) and U = [u1 · · ·un ] is the unitary
matrix of eigenvectors. To simplify the presentation, we use
the change of variable z := Uζ to rewrite (4) as

ζ̇ =
(
Λ −

(
ζT ζ

)
In
)
ζ. (8)

This change of variable brings equilibrium point z̄1 =√
λ1u1 to ζ̄1 =

√
λ1 e1, where ei is the ith unit vector in the

canonical basis of Rn. Similarly, the half-space H+ becomes
Ĥ+ = {ζ| eT1 ζ > 0}.

Now, we employ Theorem 1 to establish that Ĥ+ is the
region of attraction for the equilibrium point ζ̄1 of (8).
In particular, we propose the maximal Lyapunov function
candidate V : Ĥ+ → R,

V (ζ) :=
‖ζ − ζ̄1‖2

eT1 ζ
. (9)

Clearly, V (ζ) satisfies conditions 1) and 2) in Definition 2.
The remaining task is to show that 3) is also satisfied.

The derivate of V along the solutions of (4) is given by

V̇ (ζ) =
2ζ̇T

(
ζ − ζ̄1

)
eT1 ζ

− eT1 ζ̇
‖ζ − ζ̄1‖2(

eT1 ζ
)2

=
2ζT

(
Λ−

(
ζT ζ

)
In
) (
ζ − ζ̄1

)
eT1 ζ

−(
λ1 − ζT ζ

) ‖ζ − ζ̄1‖2

eT1 ζ
.
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Substitution of
√
λ1 e1 for ζ̄1 into V̇ yields

V̇ (ζ) = −
(
ζT ζ

)2 − 2 ζTΛ ζ + λ21
eT1 ζ

which implies V̇ (ζ̄1) = 0. Note that eT1 ζ > 0 for any ζ ∈
Ĥ+. Moreover, ζTΛζ ≤ λ1ζT ζ and the equality holds only
when eTi ζ = 0 for all i > 1. Therefore,

V̇ (ζ) ≤ −
(
ζT ζ

)2 − 2λ1ζ
T ζ + λ21

eT1 ζ
≤ 0

where at least one of the above inequalities is strict when ζ 6=
ζ̄1. Thus, V̇ (ζ) < 0 for every ζ ∈ Ĥ+\{ζ̄1}, and Theorem 1
implies that Ĥ+ is the region of attraction for the equilibrium
point ζ̄1 of (8) or, equivalently, that H+ is the region of
attraction for the equilibrium point z̄1 of (4).

Figure 1 illustrates the convergence of trajectories of (4)
to the global minimizers of (P2), for

W =

[
1.36 0.48
0.48 1.64

]
. (10)

The thick red line marks the boundary of the half spaces H±
(Theorem 2); the black dash-dotted curves mark the level sets
of V in (9), and the filled and hollow circles mark the global
minimizers z̄1 and the unstable eq. points z̄2, respectively.

z1

z 2

Fig. 1: Trajectories of (4) for the matrix W given by (10)
and the level-sets of a maximal Lyapunov function.

IV. GRADIENT FLOW DYNAMICS: GENERAL CASE

In this section, we study gradient flow dynamics (GD)
associated with the rank-one approximation of a matrix
M ∈ Rm×n. We first identify unstable equilibrium points
of (GD) by analyzing stability properties of the correspond-
ing linearized systems. Next, we partition the state-space
into invariant manifolds Sb := {(ξ, η)| ξT ξ − ηT η = b}
parameterized by a real number b. This partitioning allows
us to make a connection between (GD) and (4). In particular,
we demonstrate that for any b ∈ R, there exists a symmetric
W ∈ R(m+n)×(m+n) such that for any initial conditions
(ξ0, η0) ∈ Sb and z0 := [ ξT0 ηT0 ]T , the trajectories of (GD)
and (4) are two different parameterizations of the same
curve. We then utilize this relation to establish that, under
Assumption 1, the trajectory of (GD) converges to a global

minimizer of (P1) for any initial condition apart from a set
of measure zero.

A. Linearization around the equilibrium points

In this subsection, we use linearization to establish that
if the conditions in Assumption 1 hold then, except for the
global minimizers of (P1), all other equilibrium points of
gradient flow dynamics (GD) are unstable.

Let ej ∈ Rm and êj ∈ Rn be the unit vectors in the
canonical bases and let Γi := Σ − 2σieiê

T
i . Linearization

of (GD) around equilibrium points (3) is given by[
ξ̇
η̇

]
= A

[
ξ
η

]
(11)

where, depending on the type of (ξ̄, η̄) in (3), the linearized
dynamical generators are respectively given by

Ai :=

[
−c2Im Γi

ΓTi −σ
2
i

c2 In

]
(12)

A∞ :=

[
−(η̄T η̄) Im Σ

ΣT 0

]
(13)

A0 :=

[
0 Σ

ΣT −(ξ̄T ξ̄) In

]
. (14)

Under Assumption 1, it is straightforward to show that the
matrices A∞, A0, as well as Ai for i 6= 1, have at least
one positive eigenvalue. Moreover, all eigenvalues of A1 are
negative apart from a single eigenvalue at zero, for all c 6= 0.
Thus, (ξ̄, η̄) := (σ1

c e1, c ê1) are the only candidates for stable
equilibrium points of (GD). The presence of the zero eigen-
value makes the use of linearization inconclusive; stability
of these equilibrium points is established in Subsection IV-
D using a Lyapunov-based argument.

Note that these equilibrium points are exactly the global
minimizers of (P1). However, since (P1) has infinitely many
global minimizers, the stability analysis of (GD) is more
subtle than that of the special case (4). In the next subsection,
we characterize a family of invariant sets with respect
to (GD) which allows us to carry out the analysis.

B. Invariant manifolds and partitioning of the state-space

Herein, we partition the state-space of (GD) into a family
of invariant manifolds. For any b ∈ R, let us define

Sb := {(ξ, η)| ξT ξ − ηT η = b, ξ ∈ Rm, η ∈ Rn}. (15)

Lemma 2 shows an invariance property of (GD) over Sb.
Lemma 2: For any b ∈ R, Sb is an invariant set with

respect to (GD).

Proof: Follows from the fact that ξ̇ and η̇ given by (GD)
satisfy d/dt

(
ξT ξ − ηT η

)
= 0.

Lemma 2 implies that given an initial condition (ξ0, η0),
the trajectory of (GD) stays in Sb0 , where b0 := ξT0 ξ0−ηT0 η0.
Moreover, since the collection of sets {Sb}b∈R partitions
the state-space of (GD), we can restrict the stability analysis
of (GD) to Sb for arbitrary b ∈ R. In the next subsection, we
demonstrate that for any trajectory z̃ := [ξT ηT ]T of (GD),
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there exists a symmetric matrix W for which (4) has a
trajectory z that traverses the same curve as z̃.

C. Reducing the asymmetric problem to the symmetric form

The following theorem establishes a connection between
gradient flow dynamics (GD) and (4). In particular, we show
that for any initialization of (GD), there exists a symmetric
matrix W ∈ R(m+n)×(m+n) such that (4) has a trajectory
that traverses the same curve as that of (GD). Even though
the symmetric reformulation of (P1) has been proposed in the
literature [13], to the best of our knowledge the connection
between the two gradient flow dynamics is novel.

Theorem 3: Let z̃T (t) :=
[
ξT (t) ηT (t)

]
where (ξ, η)

is the trajectory of (GD) with initial condition (ξ0, η0). Define

W :=

[
(ξT0 ξ0 − ηT0 η0)Im 2Σ

2ΣT (ηT0 η0 − ξT0 ξ0)In

]
. (16)

The trajectory of (4) with initial condition z(0) = z̃(0)
satisfies z(t) = z̃(2t) for all t ≥ 0.

Proof: Let b0 := ξT0 ξ0 − ηT0 η0. Lemma 2 implies that
ξT ξ − ηT η = b0 for all t ≥ 0. Furthemore, since z̃T z̃ =
ξT ξ + ηT η, we have

ξT (t)ξ(t) = 1
2 (z̃T (t)z̃(t) + b0), (17a)

ηT (t)η(t) = 1
2 (z̃T (t)z̃(t) − b0). (17b)

If we substitute (17) into (GD), we obtain

ξ̇ = Σ η − 1
2

(
z̃T z̃ − b0

)
ξ

η̇ = ΣT ξ − 1
2

(
z̃T z̃ + b0

)
η

or, equivalently, ˙̃z = 1
2

(
W − (z̃T z̃) Im+n

)
z̃.

The relation between the trajectories of (GD) and (4) is
important because it allows us to explicitly characterize the
regions of attraction of (GD).

D. Regions of attraction and global convergence

In this subsection, we use the relationship between (GD)
and (4) to completely characterize the regions of attraction
of (GD) for the minimizers of (P1). In the following Lemma,
we demonstrate that for any b ∈ R, the invariant set Sb
contains exactly two of the global minimizers of (P1).

Lemma 3: Under Assumption 1, for any b ∈ R, the
invariant set Sb contains exactly two of the global minimizers
of (P1). Moreover, these points are centrally symmetric.

Proof: The minimizers of (P1) are given by (2),
(ξ?, η?) =

(σ1
c

e1, c ê1

)
. Now, for any b ∈ R, the condition

ξ?T ξ? − η?T η? = b yields a quadratic equation in c2 which
has two real solutions for c with opposite signs.

Let (ξ?b , η
?
b ) ∈ Sb be the global minimizer of (P1)

corresponding to the positive c introduced in the proof of
Lemma 3. The next lemma introduces an invariant set Hb ⊂
Sb for which (ξ?b , η

?
b ) /∈ Hb and −(ξ?b , η

?
b ) /∈ Hb.

Lemma 4: Under Assumption 1, for any b ∈ R, the set

Hb := Sb ∩ {(ξ, η)| ξT ξ?b + ηT η?b = 0} (19)

is an invariant set with respect to (GD). Moreover, neither
(ξ?b , η

?
b ) nor −(ξ?b , η

?
b ) belongs to Hb.

Proof: Since ±(ξ?b , η
?
b ) 6= 0, it is clear that ±(ξ?b , η

?
b ) /∈

Hb. Now, since Sb is an invariant set, it suffices to show that
for any (ξ, η) ∈ Hb, d/dt

(
ξT ξ?b + ηT η?b

)
= 0. Defining

z̃?b := [ ξ?Tb η?Tb ]T and z̃(t) := [ ξT (t) ηT (t) ]T , we have

d

dt

(
ξT ξ?b + ηT η?b

)
=

d

dt

(
z̃T z̃?b

)
.

Now, from Theorem 3 it follows that

d

dt

(
z̃T z̃?b

)
=

1

2
z̃T (W − (z̃T z̃) Im+n) z̃?b

where W :=

[
b Im 2Σ
2ΣT −b In

]
. Therefore, it suffices to

show that for any z̃ = [ ξT ηT ]T with z̃T z̃?b = 0 and ξT ξ −
ηT η = b, we have

z̃T (W − (z̃T z̃) Im+n) z̃?b = 0. (20)

Let α and β be the first entries of ξ?b and η?b , respectively.
Since αβ = σ1 and α2 − β2 = b, we have

WT z̃?b = Wz̃?b = W [αeT1 βêT1 ]T =
(
z̃?Tb z̃?b

)
z̃?b

and (20) follows from the fact that z̃T z̃?b = 0.

In Theorem 4, we combine Theorem 2, Theorem 3, and
Lemma 4 to establish a global convergence result for (GD).

Theorem 4: Under Assumption 1, for any b ∈ R, the sets

H+
b := Sb ∩ {(ξ, η)| ξT ξ?b + ηT η?b > 0}
H−b := Sb ∩ {(ξ, η)| ξT ξ?b + ηT η?b < 0}

are the respective regions of attraction for the equilibrium
points (ξ?b , η

?
b ) and −(ξ?b , η

?
b ) of (GD).

Proof: Let R+
b and R−b be the regions of attraction

of (ξ?b , η
?
b ) and −(ξ?b , η

?
b ), respectively. The collection of

invariant manifolds {Sa}a∈R partitions the state-space and
hence, for any given b ∈ R, Sb and Rm+n\Sb are both
invariant with respect to (GD). Thus, R±b ⊆ Sb. Moreover,
R±b ∩Hb = ∅ because of Lemma 4. Since, the sets Hb, H+

b ,
and H−b partition Sb, it suffices to show that H+

b ⊆ R
+
b and

H−b ⊆ R
−
b . We prove H+

b ⊆ R
+
b . The proof for H−b ⊆ R

+
b

follows from similar arguments and is omitted for brevity.
In order to show that H+

b is a subset of S+b , we use
the relation between the trajectories of (GD) and (4). In
particular, let z̃?b := [ξ?Tb η?Tb ]T . Let z̃ := [ξT ηT ]T and W
be defined as in Theorem 3, where (ξ, η) is the trajectory
of (GD) with some initial condition (ξ0, η0) ∈ H+

b . Let λ1
be the largest eigenvalue of W with the corresponding unit
eigenvector u1. It is not hard to show that λ1 =

√
b2 + 4σ2

1 is
the strict largest eigenvalue of W and therefore Assumption 2
holds. If uT1 z̃(0) > 0, Theorem 3 in conjunction with
Theorem 2 imply that z̃ converges to

√
λ1u1.

Hence, in order to establish the convergence of z̃ to z̃?b , it
suffices to show that z̃?b =

√
λ1u1 and uT1 z̃(0) > 0.

Based on the proof of Lemma 4, z̃?b is an eigenvector of W
with the corresponding eigenvalue ‖z̃?b ‖2 = α2 + β2, where
α and β satisfy αβ = σ1 and α2 − β2 = b. Hence, we
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can write

λ1 =
√
b2 + 4σ2

1 = α2 + β2 = ‖z̃?b ‖2.

Therefore, z̃?b =
√
λ1u1 holds. Moreover, since (ξ0, η0) ∈

H+
b , it follows that (z̃?b )T z̃(0) > 0 or equivalently uT1 z̃(0) >

0, which completes the proof.

Figure 2 illustrates the relationship between the trajectories
of (1) and (4), over the invariant set Sb=2. We consider

M = 1 in (1) and W =

[
2 2
2 −2

]
in (4). Notice that

W is the corresponding symmetric matrix of M as defined
in Theorem 3. The red thin dashed curves in this figure
represent the set of non-zero equilibrium points of (1) given
by {(x, y)|xy = 1}. The trajectories of (4) and (1) are
marked by the blue dash-dotted and black curves, respec-
tively, and the set Sb is marked by the blue curves. The red
thick line represents the invariant set H with respect to (4)
as established in Theorem 2. The red bullet points are the
global minimizers ±(ξ?b , η

?
b ). We observe that the trajectories

of (4) and (1) traverse the same curve for any initial condition
z0 = [xT0 yT0 ]T with (x0, y0) ∈ Sb.

x, z1

y
,
z 2

Fig. 2: An illustration of the trajectories of (1) (black curves)
and (4) (blue dash-dotted curves) for a scalar M and the
corresponding matrix W as established in Theorem 3.

V. CONCLUDING REMARKS

The gradient flow dynamics associated with the prob-
lem of finding the best rank-one approximation of a given
matrix has infinitely many stable and unstable equilibrium
points. We partition the state-space into a family of invariant
manifolds that each contains two stable equilibrium points.
We show that, over each of these manifolds, the gradient
flow simplifies to the gradient flow for the symmetric rank-
one approximation problem. For each stable equilibrium
point, this allows us to explicitly characterize the region of
attraction as the domain of a radially unbounded Lyapunov
function that also goes to infinity at the boundary. Our result
establishes the almost everywhere convergence of gradient
flow dynamics to the minimizers of the corresponding rank-
one approximation problem. Our ongoing work focuses on
extending the analysis to higher rank matrix approximation
problems and problems with incomplete data.
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