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Abstract— We study the performance of noisy gradient de-
scent and Nesterov’s accelerated methods for strongly convex
objective functions with Lipschitz continuous gradients. The
steady-state second-order moment of the error in the iterates
is analyzed when the gradient is perturbed by an additive white
noise with zero mean and identity covariance. For any given
condition number κ, we derive explicit upper bounds on noise
amplification that only depend on κ and the problem size. We
use quadratic objective functions to derive lower bounds and to
demonstrate that the upper bounds are tight up to a constant
factor. The established upper bound for Nesterov’s accelerated
method is larger than the upper bound for gradient descent
by a factor of

√
κ. This gap identifies a fundamental tradeoff

that comes with acceleration in the presence of stochastic
uncertainties in the gradient evaluation.

Index Terms— Accelerated first-order algorithms, control
for optimization, convex optimization, integral quadratic con-
straints, linear matrix inequalities, Nesterov’s method, noise am-
plification, second-order moments, semidefinite programming.

I. INTRODUCTION

First-order methods are frequently used in solving modern
large-scale optimization problems [1]–[3]. Gradient descent
as well as its accelerated counterparts are popular due to their
simplicity and scalability. These algorithms have been exten-
sively studied under different stepsize selection rules [4]–[9].

In many applications, the exact values of the objective func-
tion and/or its gradient are not fully available. This happens
when the objective function is obtained via costly simulations
(e.g., tuning of hyper-parameters in supervised/unsupervised
learning [10]–[12]), when the objective function is evaluated
through noisy measurements (e.g., real-time and embedded
applications), and when the computations are done over
network [13]. Another application arises in (batch) stochastic
gradient settings where at each iteration the gradient of the
objective function is computed from a small batch of data
points. Such a batch gradient is known to be a noisy unbiased
estimator for the gradient of the training loss. Moreover,
deliberately adding noise to the algorithm iterates may help
escaping saddle points [14], [15].

In all of the above scenarios, the iterative algorithms
only have access to noisy estimates of the gradient. This
motivates the study of gradient descent and its accelerated
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variant in the presence of noisy/inexact gradient oracles [16]–
[19]. These studies propose different strategies for dealing
with the additive gradient noise. For example, while early
stochastic approximation results suggest to use a stepsize that
is inversely proportional to the iteration number [17], a more
robust behavior can be obtained by combining larger stepsizes
with averaging [18], [20]. Utility of these averaging schemes
and their modifications for solving quadratic optimization
and manifold problems has been examined in [21]–[23]. In
addition, the convergence of (accelerated) gradient descent
has been studied under the presence of noise. For example,
an upper bound on the error in iterates for accelerated
proximal gradient methods was established in [24] when the
gradient is perturbed by a deterministic noise. Using this upper
bound, it has been shown that both proximal gradient and
accelerated proximal gradient can maintain their convergence
rates provided that the error vanishes fast enough [24]. It has
been also observed that accelerated first-order algorithms
are more susceptible to noise than their non-accelerated
variants [19], [24]–[27].

In this paper, we utilize techniques from control theory to
study the effect of additive white noise on the performance
of gradient descent and Nesterov’s accelerated method. We
confine our analysis to conventional algorithmic parameters
for strongly convex objective functions with Lipschitz gra-
dients. For quadratic problems, the linearity of the gradient
allows for the steady-state second-order moment of the error
to be explicitly computed as a function of eigenvalues of the
Hessian of the objective function [28]. This characterization
reveals that for quadratic problems with a condition number
smaller than κ, acceleration may increase the steady-state
second-order moment by a factor of

√
κ.

We extend this result from quadratic to general strongly
convex problems. While exact characterization of the steady-
state second-order moments for general problems is challeng-
ing because of the nonlinear dynamics, we show how upper
bounds on this quantity can be obtained using a framework
that utilizes concepts from robust control theory. This frame-
work was first developed for the analysis of optimization
algorithms in [29] and it has also been employed and further
improved [30]–[33] to study convergence and robustness of
the first-order methods to deterministic perturbations in the
gradient. However, to the best of our knowledge, the analysis
of second-order moments for algorithms with additive white
stochastic disturbances has not been done before.

Amongst the class of smooth and strongly convex problems
with condition number κ, we demonstrate that there exists
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a quadratic function for which the steady-state second-order
moment of the error is most amplified (up to constant factors).
For functions with the condition number smaller than κ, this
shows that acceleration may increase noise amplification by
up to a factor of

√
κ.

The rest of the paper is structured as follows. In Section II,
we formulate the problem and provide background material
used in the paper. We also outline our method for quantifying
the steady-state second-order moment of the optimization
variable. In Section III, we restrict our attention to the class of
strongly convex quadratic problems and obtain lower bounds
on the noise amplification. The LMI-based framework that
provides upper bounds is presented in Section IV and the
paper is concluded in Section V.

Notation: We write f = Ω(g) (or, equivalently, g = O(f))
to denote the existence of positive constants ci such that,
for any x > c2, the functions f and g: R → R satisfy
f(x) ≥ c1g(x). We write f = Θ(g) if both f = Ω(g) and
f = O(g). The smallest and largest eigenvalues of a matrix
are denoted by λmin and λmax.

II. PROBLEM FORMULATION AND BACKGROUND

Consider the unconstrained optimization problem

minimize
x

f(x) (1)

where f : Rn → R is a smooth strongly convex function. We
study two commonly used first-order methods for solving
problem (1), gradient descent

xt+1 = xt − α∇f(xt)

and Nesterov’s accelerated method

xt+2 = xt+1 + β(xt+1 − xt) −
α∇f

(
xt+1 + β(xt+1 − xt)

)
.

Here, xt is the optimization variable, α is the stepsize, and
β is the extrapolation parameter. Clearly, gradient decent can
be obtained by setting β = 0 in Nesterov’s formulation.

We denote by FLm the set of functions f that are m-strongly
convex and L-smooth; f ∈ FLm means that f(x)− m

2 ‖x‖
2 is

convex and that the gradient ∇f is L-Lipschitz continuous.
We associate with FLm the condition number κ := L/m. In
particular, for a twice continuously differentiable function f
with the Hessian ∇2f , we have

f ∈ FLm ⇔ mI � ∇2f(x) � LI, ∀x ∈ Rn.

For f ∈ FLm, the parameters α and β can be selected such
that both gradient descent and Nesterov’s accelerated method
converge to the global minimum x? of (1) at a linear rate ρ.
Table I provides the conventional values of these parameters
and the corresponding guaranteed convergence rates [9].

We study the effect of stochastic uncertainties in gradient
evaluation on the performance of gradient descent and
Nesterov’s accelerated method. In particular, we add a white
stochastic process wt with zero mean and identity covariance
matrix (i.e., E(wt) = 0 and E(wt(wτ )T ) = I δ(t−τ), where

Method Parameters Rate bound

Gradient α = 1
L

, β = 0 ρ ≤ 1 − 1
2κ

Nesterov α = 1
L

, β =
√
κ− 1√
κ+1

ρ ≤ 1 − 1
2
√
κ

TABLE I: Conventional values of parameters and the corre-
sponding rate bounds for f ∈ FLm where κ := L/m.

δ is the Kronecker delta and E is the expectation operator)
to the iterates of Nesterov’s accelerated algorithm,

xt+2 = xt+1 + β(xt+1 − xt) −
α∇f

(
xt+1 + β(xt+1 − xt)

)
+ wt

(2)
and note that gradient descent can be identified as a special
case of (2) with β = 0. For this noisy algorithm, we examine
the steady-state second-order moment of the error xt − x?,

J := lim
t→∞

E
(
‖xt − x?‖2

)
as a metric to assess sensitivity of (2) to noise. We focus
on algorithm (2) with parameters provided in Table I and
demonstrate that although gradient descent does not have an
optimal convergence rate, it outperforms Nesterov’s method
when it comes to the second-order moment analysis. In what
follows, we use subscripts gd and na (e.g., Jgd and Jna)
to denote quantities that correspond to gradient descent and
Nesterov’s method with the conventional values of parameters
provided in Table I. Furthermore, without loss of generality
we assume that x? = 0 is the unique minimizer of (1).

The second-order moment analysis of dynamical systems
has been well studied in the controls literature. For stable
linear time-invariant systems, the steady-state variance of
the output can be directly computed from the solution of the
algebraic Lyapunov equation. For nonlinear systems, although
there is no explicit characterization for the noise amplification
in general, methods from control theory can be utilized to
find upper bounds.

Among all functions f ∈ FLm, we define J? to be the
steady-state second-order moment of the optimization variable
x in algorithm (2) with respect to the worst objective function,

J? := sup
f ∈FL

m

J. (3)

The goal of this paper is to evaluate this quantity for both gra-
dient descent J?gd and Nesterov’s accelerated method J?na with
parameters provided in Table I. However, since algorithm (2)
is a nonlinear dynamical system, direct computation of J?

for general f ∈ FLm is challenging. In order to overcome this
challenge, we take a two-step approach:

1) We exploit a result from [28] to establish a lower bound
for J? by restricting f to be a quadratic function.

2) We employ the theory of Integral Quadratic Constraints
(IQCs) to determine upper bounds on J? by solving
certain Linear Matrix Inequalities (LMIs).

In the first step, we define q to be the largest steady-state
second-order moment of the optimization variable x in
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algorithm (2) when the objective function is quadratic, i.e.,

q := sup
f ∈FL

m

J

subject to f is quadratic.
(4)

Clearly, J? ≥ q and therefore q can be used as a lower
bound for J?. In the second step, small sizes of the resulting
LMIs (2× 2 for gradient descent and 3× 3 for Nesterov’s
accelerated method) allow us to obtain explicit upper bounds.
Comparing these upper bounds with the explicit lower bound
q obtained using quadratic functions, we demonstrate that
both upper and lower bounds are tight up to constant factors,
thereby providing accurate approximations for J?.

III. QUADRATIC OPTIMIZATION PROBLEMS

Let the objective function in optimization problem (1) be
a strongly convex quadratic function,

f(x) = 1
2 x

TQx

where Q is a symmetric positive definite matrix. In this case,
the linearity of the gradient mapping ∇f(x) = Qx allows us
to cast algorithm (2) as a linear dynamical system

ψt+1 = Aψt + Bwt

zt = C ψt
(5)

with the state ψt := [ (xt)T (xt+1)T ]T , the performance
output zt, the input wt, and

A =

[
0 I

−β(I − αQ) (1 + β)(I − αQ)

]
B =

[
0
I

]
, C =

[
I 0

]
.

For a white stochastic input wt with zero mean and identity
covariance matrix, the steady-state second-order moment J
of the output zt in (5) can be computed from the solution of
the algebraic Lyapunov equation,

P = APAT + BBT

as
J = trace (C P CT )

where P := limt→∞ E (ψt(ψt)T ) is the steady-state covari-
ance matrix of the state vector ψt. Recently, this approach
was utilized in [28] to obtain the following result.

Theorem 1: Let f(x) := 1
2 x

TQx with Q = QT � 0.
The steady-state second-order moment J of the optimization
variable xt ∈ Rn for algorithm (2) with any constant
stabilizing parameters α and β is given by J =

∑n
i=1 Ĵ(λi),

where λi are the eigenvalues of Q and

Ĵ(λi) :=
1 + β(1− αλi)

αλi (1− β(1− αλi)) (2(1 + β)− (2β + 1)αλi)
.

Theorem 1 provides an explicit characterization of the
steady-state second-order moment J for strongly convex
quadratic objective functions. This characterization reveals
that J is influenced by the entire spectrum of the Hessian

Q. This is in contrast to the convergence rate which only
depends on the extreme eigenvalues of the Hessian.

Next, we use Theorem 1 to determine the maximum of
J among all quadratic functions f ∈ FLm, which yields q
defined in (4).

Proposition 1: Among all quadratic functions f ∈ FLm,
the largest steady-state second-order moment of xt ∈ Rn
for gradient descent and Nesterov’s accelerated method with
parameters provided in Table I is given by

qgd =
nκ2

2κ− 1
= nΘ(κ)

qna =
nκ2 (2κ− 2

√
κ+ 1)

(2
√
κ− 1)

3 = nΘ(κ
√
κ)

where κ = L/m is the condition number associated with FLm.

Proof: For both gradient descent and Nesterov’s accel-
erated algorithm with parameters provided in Table I, it is
easy to show that the function Ĵ(λ) attains its maximum at
λ = m. This implies that, among all quadratic functions in
FLm, the steady-state second-order moment J is maximized
when all n eigenvalues of the matrix Q are equal to m. The
result follows by substituting m for each λi in Theorem 1
and using the parameters defined in Table I.

Remark 1: The condition number κ = L/m in Proposi-
tion 1 is defined with respect to the set FLm and not with
respect to the elements of this set. In particular, for quadratic
functions in FLm, this quantity should not be confused with
the condition number of the Hessian. For example, while the
function f(x) = 1

2 x
Tx belongs to FLm for any L ≥ 1 and

m ≤ 1, its Hessian is ∇2f = I and its condition number is 1.
In general, for any quadratic function f ∈ FLm the condition
number of the Hessian matrix ∇2f is smaller than or equal
to the condition number of the set FLm.

Remark 2: If we were to impose the additional requirement
that the condition number of the Hessian is equal to κ for
quadratic f ∈ FLm, then J would be maximized by letting
λmax(∇2f) = L and the rest of the eigenvalues equal to m.
This yields

qgd =
(n− 1)κ2

2κ− 1
+ 1

qna =
(n− 1)

(
κ2 (2κ− 2

√
κ+ 1)

)
(2
√
κ− 1)

3 + 1

and all trends obtained in Proposition 1 are preserved.

IV. UPPER BOUNDS ON THE SECOND-ORDER MOMENTS

We now utilize results from control theory to derive
meaningful upper bounds on the steady-state second-order
moment J of noisy algorithm (2). For strongly convex smooth
objective functions, the gradient mapping satisfies certain
quadratic inequality constraints. We first present a result
based on quadratic Lyapunov functions that exploits this
property of the gradient and formulates upper bounds on
J as solutions to a semidefinite programing problem. As
we demonstrate, this approach yields tight upper bounds
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for gradient descent. However, for large condition numbers
(κ > 100) this method does not provide any upper-bounds
on J for Nesterov’s method. Inspired by [30], we modify
this semidefinite program to search over an enlarged set of
Lyapunov functions obtained by adding the objective function
to standard quadratic terms. We then employ this modified
semidefinite program to derive tight upper bounds on J for
Nesterov’s accelerated method as well.

For any function f ∈ FLm, the mapping ∆: Rn → Rn

∆(yt) := ∇f(yt) − myt

satisfies the quadratic inequality [29, Lemma 6][
y − y0

∆(y) − ∆(y0)

]T
Π

[
y − y0

∆(y) − ∆(y0)

]
≥ 0 (6)

for all y, y0 ∈ Rn, where the matrix Π is given by

Π :=

[
0 (L − m)I

(L − m)I −2I

]
. (7)

Consider a state-space model

ψt+1 = Aψt + Bww
t + Buu

t[
zt

yt

]
=

[
Cz
Cy

]
ψt, ut = ∆(yt)

(8a)

that contains a feedback interconnection of linear and non-
linear components. Algorithm (2) can be brought into the
state-space form (8a) by selecting

ψt :=

[
xt

xt+1

]
, zt := xt, yt := −βxt + (1 + β)xt+1

and defining the corresponding matrices as

A =

[
0 I

−β(1− αm)I (1 + β)(1− αm)I

]
Bw =

[
0
I

]
, Bu =

[
0
−α I

]
Cz =

[
I 0

]
, Cy =

[
−β I (1 + β)I

]
.

(8b)

Since gradient descent can be obtained from (2) by setting
β = 0, in the absence of acceleration we can alternatively
use ψt = zt = yt := xt with the corresponding matrices

A = (1 − αm)I, Bw = Cz = Cy = I, Bu = −αI. (8c)

In what follows, we demonstrate how property (6) of the
mapping ∆ allows us to exploit results from control theory to
obtain upper bounds on J when system (8a) is driven by the
white noise input wt with zero mean and identity covariance.

Lemma 1 employs a quadratic Lyapunov function V (ψ) =
ψTXψ and provides an upper bound on the steady-state
second-order moment of zt in system (8a) that is characterized
by a solution to an LMI. In Section IV-A, we show that this
characterization provides a tight upper bound for the gradient
descent method with the stepsize α = 1/L.

Lemma 1: Let the nonlinear function u = ∆(y) satisfy
the quadratic inequality[

y
u

]T
Π

[
y
u

]
≥ 0 (9)

for some matrix Π, let X be a positive semidefinite matrix,
and let λ be a positive scalar such that system (8a) satisfies[

ATX A−X + CTz Cz ATX Bu
BTu X A BTu X Bu

]
+

λ

[
CTy 0
0 I

]
Π

[
Cy 0
0 I

]
� 0.

(10)

Then the steady-state second-order moment J of the output
zt is bounded by

J ≤ trace (BTw X Bw).

The proof of Lemma 1 is omitted due to space limitations.
For Nesterov’s accelerated method with parameters provided
in Table I, computational experiments show that Lemma 1
does not yield sensible upper bounds for J?na as LMI (10)
becomes infeasible for large values of κ. This observation
is consistent with the results of [29] where it was suggested
that, apart from (6), additional quadratic inequalities should
be used to further tighten the constraints on the gradient ∇f
and reduce conservativeness.

In Lemma 2, we build on the results of [30] and present an
alternative LMI that is obtained using a Lyapunov function of
the form V (ψ)= ψTXψ+f(x)−f(x?) where X is a positive
semidefinite matrix and f is the objective function in (1).
The resulting approach allows us to establish an analytical
upper bound on J?na for Nesterov’s accelerated method in
Section IV-B. The proof of Lemma 2 is omitted due to space
limitations and it will be reported elsewhere.

Lemma 2: Let the matrix M(m,L, α, β) be defined as

M := NT
1

[
LI I
I 0

]
N1 + NT

2

[
−mI I
I 0

]
N2

where

N1 :=

[
αmβ I −αm(1 + β) I −α I
−mβ I m(1 + β) I I

]
N2 :=

[
−β I β I 0
−mβ I m(1 + β) I I

]
.

Consider state-space model (8a)-(8b) of noisy algorithm (2)
and let Π be given by (7). Then, for any positive semidefinite
matrix X and scalars λ1 ≥ 0 and λ2 ≥ 0 such that[

ATX A−X + CTz Cz ATX Bu
BTu X A BTu X Bu

]
+

λ1

[
CTy 0
0 I

]
Π

[
Cy 0
0 I

]
+ λ2M � 0

(11)

the steady-state second-order moment J of the output zt is
bounded by

J ≤ nLλ2 + trace (BTw X Bw). (12)
Remark 3: Since LMI (11) simplifies to LMI (10) by

setting λ2 = 0, Lemma 2 is a relaxed version of Lemma 1.
This modification is the key which allows us to obtain a tight
upper bound on J?na in Section IV-B.

Lemma 1 and Lemma 2 are used in Sections IV-A and IV-B
to establish upper bounds on J?gd and J?na, respectively. These
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can be combined with the lower bounds of Proposition 1 to
prove the main result of the paper.

Theorem 2: For gradient descent and Nesterov’s accel-
erated method with parameters provided in Table I, the
supremum of the steady-state second-order moment of the
error xk − x? ∈ Rn over all functions f ∈ FLm satisfies

J?gd = qgd

qna ≤ J?na ≤ 4.08 qna

where

qgd =
nκ2

2κ− 1
= nΘ(κ)

qna =
nκ2 (2κ− 2

√
κ+ 1)

(2
√
κ− 1)

3 = nΘ(κ
√
κ)

and κ = L/m is the condition number associated with FLm.

Proof: The lower bounds on J?gd and J?na are established
in Proposition 1 and the upper bounds are established in
Propositions 2 and 3, respectively. �

Theorem 2 shows that for the class of strongly convex
functions with condition number κ, gradient descent outper-
forms Nesterov’s accelerated method in terms of the largest
noise amplification by a factor of

√
κ. This uncovers the

fundamental performance limitation of Nesterov’s accelerated
method when the gradient evaluation is subject to additive
stochastic uncertainties.

A. Gradient descent

If y0 = 0 in (6) is the minimizer of the objective function
f ∈ FLm, then condition (9) in Lemma 1 holds for noisy
algorithm (2) with Π defined in (7). Thus, we can use
Lemma 1 to obtain an upper bound on J? by solving LMI (10).
This leads to the following upper bound for gradient descent.

Proposition 2: For gradient descent with α = 1/L, the
steady-state second-order moment of xt is bounded by

Jgd ≤
nκ2

2κ − 1

for all f ∈ FLm where κ := L/m is the condition number
associated with the set FLm.

Proof: Let f ∈ FLm. To obtain the best upper bound on
J using Lemma 1, we minimize trace (BTwXBw) subject to
LMI (10), X � 0, and λ ≥ 0. For gradient descent, if we
use representation (8c), then the negative definiteness of the
(1, 1)-block of LMI (10) implies that

X � 1

αm(2 − αm)
I =

κ2

2κ− 1
I. (13)

It is straightforward to show that the pair

X =
κ2

2κ− 1
I, λ =

1− αm
m(2− αm)(L−m)

(14)

is feasible as the left-hand-side of LMI (10) becomes[
0 0
0 −1

m2(2κ− 1) I

]
� 0.

Thus, X and λ given by (14) provide a solution to LMI (10).
This demonstrates that inequality (13) is tight and that it
provides the best achievable upper bound

J?gd ≤ trace (BTw X Bw) = nκ2/(2κ − 1)

which completes the proof.
Remark 4: Since the upper bound established in Proposi-

tion 2 holds for any f ∈ FLm, it serves as an upper bound
for the supremum J? as well. This upper bound is equal to
the lower bound obtained using the restriction to quadratic
objective functions established in Propositions 1, i.e.,

qgd =
nκ2

2κ − 1
.

Therefore, we obtain the exact expression

J?gd = qgd =
nκ2

2κ− 1

which implies that there exists a quadratic objective function
for which the steady-state second-order moment of xt − x?
for gradient descent with α = 1/L is the largest in FLm.

B. Nesterov’s accelerated method

The best upper bound on J?na that can be obtained using
Lemma 2 is given by the optimal objective value pna of the
semidefinite program

pna := inf
X,λ1, λ2

nLλ2 + trace (BTw X Bw)

subject to LMI (11) with parameters of Table I

subject to X � 0, λ1 ≥ 0, λ2 ≥ 0.
(15)

We can evaluate this upper bound by numerically solving
problem (15) for any values of m and L. We recall that
qna is obtained by restricting optimization over quadratic
strongly convex functions. Our computational experiments
suggest that the ratio between pna and qna is bounded by a
constant, i.e., pna/qna ≤ 4.07. Motivated by this observation,
Proposition 3 establishes that Jna is bounded from above by
a scaled version of the lower bound qna. The proof relies on
finding a sub-optimal feasible point for problem (15) which
we omit due to space limitations.

Proposition 3: For Nesterov’s accelerated method with
parameters provided in Table (I), the steady-state second-
order moment of the optimization variable xt ∈ Rn is upper
bounded by

Jna ≤ 4.08 qna

for all functions f ∈ FLm, where qna is given in Proposition 1.

Remark 5: Since the upper bound established in Proposi-
tion 2 holds for any f ∈ FLm, it also serves as an upper bound
for the supremum J?na. Now, if we compare the lower bound
qna on J?na established in Proposition 1 (that is obtained by
restricting to the set of quadratic objective functions) and the
above upper bound we obtain,

qna ≤ J?na ≤ 4.08 qna.
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Thus, both bounds are tight up to the constant factor. This
implies that there is a quadratic objective function for
which the steady-state second-order moment of xt − x? for
Nesterov’s algorithm is not smaller than 4.08 times the largest
steady-state second-order moment J?na among all f ∈ FLm.

Remark 6: For xt ∈ Rn and matrices (8b), LMI (11) is of
size 3n×3n. However, if we impose the additional constraint
that the matrix X has the same block structure as A,

X =

[
x1I x0I
x0I x2I

]
for some scalars x1, x2, and x0, then using appropriate
permutation matrices, we can simplify LMI (10) into an LMI
of size 3× 3. It can be shown that this additional constraint
comes without loss of generality. In particular, the optimal
objective value pna of problem (15) does not change if we
require X to have this structure; see [29, Section 4.2] for a
discussion of this lossless dimensionality reduction for LMI
constraints with similar structure.

V. CONCLUDING REMARKS

We analyze the steady-state properties of gradient descent
and Nesterov’s accelerated methods perturbed by an additive
white noise with zero mean and identity covariance. In
particular, we consider the standard parameters for smooth
strongly convex optimization problems with condition number
κ and employ an LMI-based approach to establish explicit
upper bounds on noise amplification that only depend on
κ and the problem size n. For both algorithms, restriction
to quadratic objective functions provides lower bounds
and demonstrates that the upper bounds are tight up to a
constant factor. We show that the upper bound for Nesterov’s
accelerated method is larger than the upper bound for the
standard gradient descent by a factor of

√
κ. This uncovers the

fundamental performance limitation of Nesterov’s accelerated
method when the gradient evaluation is subject to additive
stochastic uncertainties.
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