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Abstract— We study momentum-based first-order optimiza-
tion algorithms in which the iterations utilize information
from the two previous steps and are subject to additive white
noise. For strongly convex quadratic problems, we utilize Jury
stability criterion to provide a novel geometric characterization
of linear convergence and exploit this insight to derive alternative
proofs of standard convergence results and identify fundamental
performance tradeoffs. We use the steady-state variance of the
error in the optimization variable to quantify noise amplification
and establish analytical lower bounds on the product between
the settling time and the smallest/largest achievable noise
amplification that scale quadratically with the condition number.
This extends the prior work [1], where only the special cases
of Polyak’s heavy-ball and Nesterov’s accelerated algorithms
were studied. We also use this geometric characterization to
introduce a parameterized family of algorithms that strikes
a balance between noise amplification and settling time while
preserving order-wise Pareto optimality.

Index Terms— First-order methods, convergence rate, convex
optimization, heavy-ball method, noise amplification, Nesterov’s
accelerated algorithm, performance tradeoffs, settling time.

I. INTRODUCTION

Accelerated first-order algorithms [2]–[4] are often used for
solving large-scale optimization problems [5]–[7] because of
their fast convergence, low per-iteration complexity, and favor-
able scalability. Convergence properties of these algorithms
have been carefully studied [8]–[14], but their performance
in the presence of noise has received less attention [15]–[18].
Prior studies indicate that inaccuracies in gradient values
can have larger negative impact on the convergence rate of
accelerated methods compared to gradient descent [19]–[23].

Analyzing performance of accelerated algorithms with
additive white noise that arises from uncertainty in gradient
evaluation goes back to [24]; in this reference, Polyak estab-
lished the optimal linear convergence rate for strongly convex
quadratic problems and introduced time-varying parameters to
achieve convergence in the error variance at a sub-linear rate
but with an improved constant factor compared to gradient
descent. With proper diminishing stepsize, acceleration in a
sub-linear regime can also be achieved for general smooth
convex problems [25]. For popular accelerated methods with
constant parameters, control-theoretic tools were utilized
in [1] to study the steady-state variance of the error in
optimization variable for smooth strongly convex problems.
For the parameters that optimize convergence rates for
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quadratic problems, tight upper and lower bounds on the
noise amplification of gradient descent, heavy-ball method,
and Nesterov’s accelerated algorithms were developed [1].
These bounds are expressed in terms of the condition number
κ and the problem dimension n, and they demonstrate
opposite trends relative to the settling time: for a fixed
problem dimension n, accelerated algorithms increase noise
amplification by a factor of Θ(

√
κ) relative to gradient

descent. Furthermore, for strongly convex problems, tight and
attainable upper bounds for noise amplification of gradient
descent and Nesterov’s accelerated method were provided [1].

In this paper, we extend the results of [1] to the class
of first-order algorithms with three constant parameters
in which the iterations involve information from the two
previous steps. This class of algorithms includes heavy-ball
and Nesterov’s accelerated schemes as special cases and
we examine its stochastic performance for strongly convex
quadratic problems. Our results are complementary to [26],
which evaluates stochastic performance in the objective error,
and to recent work [27], which combines theoretical develop-
ments with computational experiments to demonstrate that a
parameterized family of heavy-ball-like methods with reduced
stepsize provides Pareto-optimal algorithms for simultaneous
optimization of noise amplification and convergence rate. In
contrast to [27], we establish an analytical lower bound on
the product of the settling time and the noise amplification of
two-step momentum method for any stabilizing algorithmic
parameters. This lower bound scales with the square of the
condition number and it reveals a fundamental limitation of
this class of algorithms with constant stabilizing parameters.

Our results build upon a simple, yet powerful geometric
viewpoint, which clarifies the relation between condition
number, convergence rate, and algorithmic parameters for
strongly convex quadratic problems. This allows us to present
novel alternative proofs for (i) the optimal convergence
rate of the two-step momentum algorithm, which recovers
Nesterov’s fundamental lower bound on the convergence
rate [10]; and (ii) the optimal rates achieved by the special
cases of standard gradient descent, heavy-ball method, and
Nesterov’s accelerated algorithms [11]. In addition, this
viewpoint enables a novel geometric characterization of noise
amplification in terms of stability margins and allows us to
precisely quantify convergence/robustness tradeoffs.

II. PRELIMINARIES AND BACKGROUND

For unconstrained optimization problems

minimize
x

f(x) (1)

where f : Rn → R is a strongly convex function with
a Lipschitz continuous gradient ∇f , we consider noisy
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momentum-based first-order algorithms in which iterations
involve information from the two previous steps [18, Sec. 3],

xt+2 = xt+1 + β(xt+1 − xt) −
α∇f

(
xt+1 + γ(xt+1 − xt)

)
+ σwt.

(2-SM)
Here, t is the iteration index, xt is the optimization variable,
α is the stepsize, β and γ are momentum parameters used for
acceleration, σ is the noise magnitude, and wt is an additive
white noise with zero mean and identity covariance matrix,

E
[
wt

]
= 0, E

[
wt(wτ )T

]
= I δ(t− τ)

where δ is the Kronecker delta and E is the expected value.
If the only source of uncertainty is a noisy gradient, we set
σ = ασa in (2-SM) to account for the effect of stepsize on the
noise magnitude; otherwise we set σ = σa, where σa denotes
the actual noise magnitude. Special cases of (2-SM) include
noisy gradient descent (β = γ = 0), Polyak’s heavy-ball
(γ = 0), and Nesterov’s accelerated algorithm (γ = β).

In the absence of noise (i.e., for σ = 0), the parameters
(α, β, γ) can be selected such that the iterates converge
linearly to the globally optimal solution x⋆ [10]. For the
family of smooth strongly convex problems, the parameters
that yield the fastest known linear convergence rate were
provided in [13].
A. Linear dynamics for quadratic problems

Let QL
m denote the class of m-strongly convex L-smooth

quadratic functions

f(x) = 1
2 x

TQx − qTx (2)

with the condition number κ := L/m, where q is a vector
and Q = QT ≻ 0 is the Hessian matrix with eigenvalues

L = λ1 ≥ λ2 ≥ . . . ≥ λn = m > 0.

For f ∈ QL
m, the linear time-invariant (LTI) state-space model

ψt+1 = Aψt + Bwt, zt = C ψt (3a)

with the state ψt := [(xt − x⋆)T (xt+1 − x⋆)T ]T and

A =

[
0 I

−βI + γαQ (1 + β)I − (1 + γ)αQ

]
BT =

[
0 σI

]
, C =

[
I 0

]
.

(3b)

describes the two-step momentum algorithm (2-SM) with
constant parameters (α, β, γ). Here, zt := xt − x⋆ is the
performance output, and wt is the white stochastic input.

B. Convergence rates

We call an algorithm stable if in the absence of noise (i.e.,
σ = 0), the state converges linearly with some rate ρ < 1,

∥ψt∥ ≤ c ρt ∥ψ0∥ for all t ≥ 1 (4)

for all functions f ∈ QL
m, where c > 0 is a constant. For

LTI system (3a), the spectral radius ρ(A) of the matrix A
determines the best achievable convergence rate.

For the class QL
m of infinite dimensional functions (i.e., for

n = ∞), Nesterov established the fundamental lower bound

on the convergence rate of any first-order algorithm [10],

1/(1 − ρ) ≥ (
√
κ + 1)/2. (5)

The quantity 1/(1 − ρ) determines the settling time, i.e.,
the number of iterations required to reach a given desired
accuracy [28, Appendix A]. This lower bound is sharp and
it is achieved by the heavy-ball method (see Table I).
C. Noise amplification

For LTI system (3a) driven by an additive white noise
wt, E

(
ψt+1

)
= AE (ψt) . Thus, E (ψt) = At E

(
ψ0

)
and,

for any stabilizing parameters (α, β, γ), the iterates reach
a statistical steady-state with limt→∞ E (ψt) = 0 and a
variance that can be computed from the solution of the
algebraic Lyapunov equation [1], [29]. We call the steady-
state variance of the error noise (or variance) amplification,

J := lim
t→∞

1

t

t∑
k=0

E
(
∥xk − x⋆∥2

)
. (6)

Remark 1: An alternative performance metric that exam-
ines the steady-state variance of yt − x⋆ was considered
in [27], where yt := xt + γ(xt − xt−1) is the point at which
the gradient is evaluated in (2-SM). Since for all γ ≥ 0, we
have Jx ≤ Jy ≤ (1+2|γ|)2Jx, where the subscripts x and y
denote the noise amplification in terms of the error in xt and
yt, these performance metrics are within a constant factor of
each other for bounded values of γ.
D. Parameters that optimize convergence rate

For special instances of (2-SM), namely gradient descent
(gd), heavy-ball method (hb), and Nesterov’s accelerated
algorithm (na), the parameters that optimize the convergence
rates are given in [11, Proposition 1]. These parameters along
with the corresponding rates and the noise amplification
bounds are provided in Table I. The convergence rates are
determined by the spectral radius of the corresponding A-
matrices and the noise amplification bounds are computed by
examining the solution to the algebraic Lyapunov equation
and determining the functions f ∈ QL

m for which the steady-
state variance is maximized/minimized [1].

For the parameters provided in Table I, there is a Θ(
√
κ)

improvement in settling times of the heavy-ball and Nesterov’s
accelerated algorithms relative to gradient descent,

1/(1 − ρgd) = Θ(κ), 1/(1 − ρhb,na) = Θ(
√
κ) (7)

where a = Θ(b) means that a lies within constant factors of
b as b→ ∞. In contrast to the convergence rate, the entire
spectrum of Q influences noise amplification and its smallest
and largest values

Jmin := min
f ∈QL

m

J, Jmax := max
f ∈QL

m

J (8)

over QL
m depend on the noise magnitude σ, the algorithmic

parameters (α, β, γ), the problem dimension n, and the
extreme eigenvalues m and L of Q. For the parameters that
optimize convergence rates, tight upper and lower bounds on
the noise amplification were developed in [1, Theorem 4].
These bounds are expressed in terms of the condition number
κ and the problem dimension n, and they demonstrate
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method optimal parameters 1/(1− ρ) Jmin/σ
2 Jmax/σ

2

Gradient α = 2/(L+m), β = γ = 0 (κ+ 1)/2 Θ(κ) + n nΘ(κ)

Heavy-ball α = 4/(
√
L+

√
m)2, β = (1− 2/(

√
κ+ 1))2, γ = 0 (

√
κ+ 1)/2 Θ(κ

√
κ) + nΘ(

√
κ) nΘ(κ

√
κ)

Nesterov α = 4/(3L+m), β = γ = 1− 4/(
√
3κ+ 1 + 2)

√
3κ+ 1/2 Θ(κ

√
κ) + n nΘ(κ

√
κ)

TABLE I
SETTLING TIMES 1/(1− ρ) [11, PROPOSITION 1] ALONG WITH THE CORRESPONDING NOISE AMPLIFICATION (8) [1, THEOREM 4] FOR THE

PARAMETERS THAT OPTIMIZE THE LINEAR CONVERGENCE RATE ρ FOR STRONGLY CONVEX QUADRATIC FUNCTION f ∈ QL
m WITH THE CONDITION

NUMBER κ := L/m. HERE, n IS THE PROBLEM DIMENSION (x ∈ Rn) AND σ2 IS THE VARIANCE OF THE WHITE NOISE.

opposite trends relative to the settling time. In particular,
for gradient descent,

Jmin = σ2(Θ(κ) + n), Jmax = σ2nΘ(κ) (9a)

and for accelerated algorithms,

Jmin =

{
σ2(Θ(κ

√
κ) + nΘ(

√
κ)) hb

σ2(Θ(κ
√
κ) + n) na

Jmax = σ2nΘ(κ
√
κ).

(9b)

Thus, for fixed problem size n, accelerated algorithms
increase noise amplification by a factor of Θ(

√
κ) relative to

gradient descent for the parameters that optimize convergence
rates. While similar result also holds for heavy-ball and
Nesterov’s algorithms with arbitrary values of parameters
α and β that provide convergence rate ρ ≤ 1− c/

√
κ with

c > 0 [1, Theorem 8], in this paper we establish the existence
of a fundamental tradeoff between noise amplification and
settling time for the two-step momentum method (2-SM) with
arbitrary stabilizing values of constant parameters (α, β, γ).

III. MAIN RESULTS

In this section, we summarize our key contributions
regarding robustness/convergence tradeoff for noisy (2-SM).
A novel geometric characterization of conditions for stability
and linear convergence allows us to provide alternative proofs
of standard convergence results and quantify fundamental
performance tradeoffs. We first provide an upper bound on
noise amplification J in terms of the stability margin 1−ρ and
then derive upper and lower bounds on the best achievable
values of Jmin/(1− ρ) and Jmax/(1− ρ) given by (8).
A. Bounded noise amplification for stabilizing parameters

For a discrete-time LTI system with a convergence rate
ρ, the distance of the eigenvalues to the unit circle is larger
than 1− ρ. We use this stability margin to establish an upper
bound on the noise amplification J of the two-step momentum
method (2-SM) for any stabilizing parameters (α, β, γ).

Theorem 1: Let (α, β, γ) be such that (2-SM) converges
linearly with the rate ρ < 1 for all f ∈ QL

m. Then,

J ≤ σ2n(1 + ρ2)/
(
(1 + ρ)3(1 − ρ)3

)
(10a)

where n is the problem dimension. Furthermore, if σ = ασa,
i.e., when the only source of uncertainty is a noisy gradient,

J ≤ σ2
an(1 + ρ)(1 + ρ2)/

(
L2(1 − ρ)3

)
. (10b)

For ρ < 1, the bounds in (10) are increasing in ρ and
become unbounded as ρ→ 1. In addition, both bounds are
exact and they can be achieved by the heavy-ball method
with the parameters that optimize the convergence rate (see
Table I). We note that bounds in (10) are not tight for all
stabilizing parameters. For example, applying (10a) to gradient
descent with the optimal stepsize α = 2/(L + m) yields
J ≤ σ2nΘ(κ3); this bound is off by a factor of κ2; cf. Table I.

B. Tradeoff between settling time and noise amplification

For a fixed condition number κ and a problem size
n, we are interested in designing parameters (α, β, γ) to
simultaneously minimize settling time 1/(1− ρ) and noise
amplification J . As noted in Section II, such a design may
involve a tradeoff between these quantities. Since J depends
on the entire spectrum of the Hessian matrix Q, we study this
tradeoff by examining the smallest and largest values of J
over the function class QL

m (i.e., Jmin and Jmax defined in (8)).
We prove that the Pareto front for minimizing either Jmin

or Jmax vs the settling time 1/(1− ρ) can be characterized
by explicit upper and lower bounds on Jmin/(1 − ρ) and
Jmax/(1− ρ). These bounds scale quadratically with κ.

Theorem 2: Let (α, β, γ) be such that (2-SM) converges
linearly with the rate ρ < 1 for all f ∈ QL

m. Then,

Jmin/(1− ρ) ≥ σ2
(
κ2/64 + (n − 1)(

√
κ+ 1)/2

)
Jmax/(1− ρ) ≥ σ2

(
(n − 1)κ2/64 + (

√
κ+ 1)/2

)
.

where Jmin, Jmax are given by (8). Furthermore, for σ = ασa,
i.e., when the only source of uncertainty is a noisy gradient,

Jmin/(1 − ρ) ≥ σ2
a(κ

2 + (n − 1))/(2L)2

Jmax/(1 − ρ) ≥ σ2
a((n − 1)κ2 + 1)/(2L)2.

Since the above lower bounds hold for any stabilizing
parameters, they also hold for the Pareto fronts that are
obtained by minimizing Jmin and Jmax over (α, β, γ). These
bounds scale as Θ(κ2) when the problem dimension n is fixed.
Theorem 3 establishes Θ(κ2) upper bounds and demonstrates
the tightness of this scaling.

Theorem 3: For the class of functions QL
m with condition

number κ = L/m, let the scalar ρ be such that

1/(1− ρ) ∈ [(
√
κ+ 1)/2, (κ+ 1)/2].

Then, the two-step momentum algorithm (2-SM) with

α = (1 + ρ)(1 + cρ)/L, β = cρ2, γ = 0 (11)
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achieves the settling time 1/(1− ρ) and satisfies

Jmin/(1 − ρ) ≤ σ2κ (2κ + n) (12a)

Jmax/(1 − ρ) ≤ σ2nκ(κ + 1) (12b)

where Jmin, Jmax are given by (8) and c ∈ [0, 1] satisfies

c = ((1− ρ)κ− (1 + ρ)) / (ρ ((1− ρ)κ+ (1 + ρ))) .

Theorem 3 establishes Θ(κ2) upper bounds on Jmin/(1− ρ)
and Jmax/(1− ρ) for a parameterized family of heavy-ball-
like algorithms with γ = 0. In these upper bounds, the
problem dimension n appears in an additive fashion in (12a)
and in a multiplicative fashion in (12b). In addition, the
boundaries of the interval for 1/(1− ρ) are determined by
the settling times of the heavy-ball method and gradient
descent with parameters given in Table I. The lower and
upper bounds in Theorems 2 and 3 scale as Θ(κ2) and they
are order-wise tight.

IV. GEOMETRIC CHARACTERIZATION

In this section, we examine the relation between the
convergence rate and noise amplification of (2-SM) for QL

m.
In particular, we use the eigenvalue decomposition of the
Hessian matrix Q to bring the dynamics into n decoupled
second-order systems. We utilize Jury stability criterion to
provide novel geometric characterization of stability and ρ-
linear convergence and derive alternative proofs of standard
convergence results and quantify fundamental performance
tradeoffs.
A. Modal decomposition

We utilize the eigenvalue decomposition of the Hessian
matrix Q = V ΛV T , where Λ is the diagonal matrix of
the eigenvalues and V is the orthogonal matrix of the
corresponding eigenvectors. The change of variables x̂t :=
V T (xt − x⋆) and ŵt := V Twt allows us to bring system (3)
into n subsystems,

ψ̂t+1
i = Âiψ̂

t
i + B̂iŵ

t
i , ẑti = Ĉiψ̂

t
i (13a)

where ψ̂t
i =

[
x̂ti x̂t+1

i

]T
is the state and

Âi = Â(λi) :=

[
0 1

−a(λi) −b(λi)

]
B̂i =

[
0 σ

]T
, Ĉi =

[
1 0

] (13b)

a(λ) := β − γαλ, b(λ) := (1 + γ)αλ− (1 + β). (13c)

B. Conditions for linear convergence

The convergence rate ρ for QL
m is determined by

ρ = max
λ∈ [m,L]

ρ(Â(λ)). (14)

For the heavy-ball and Nesterov’s accelerated methods,
analytical expressions for the spectral radius ρ(Â(λ)) were
developed and algorithmic parameters that optimize con-
vergences rate were obtained in [11]. Unfortunately, these
expressions do not provide insight into the relation between
convergence rates and noise amplification.

In this paper, we ask the dual question:

• For a fixed convergence rate ρ, what is the largest
condition number κ that can be handled by (2-SM)
with constant parameters (α, β, γ)?

We note that the matrices Â(λ) share the same structure as

M =

[
0 1
−a −b

]
(15a)

with the real scalars a and b and that the characteristic
polynomial associated with the matrix M is given by

F (z) := det (zI − M) = z2 + b z + a. (15b)

We next utilize the Jury stability criterion [30, Chap. 4-3]
to provide conditions for stability of the matrix M given
by (15a).

Lemma 1: For the matrix M ∈ R2×2 in (15a), we have
ρ(M) < 1 if and only if (b, a) ∈ ∆, where the stability set

∆ := {(b, a) | |b| − 1 < a < 1} (16a)

is an open triangle in the (b, a)-plane with vertices

X = (−2, 1), Y = (2, 1), Z = (0,−1). (16b)

For any ρ > 0, the spectral radius ρ(M) of the matrix M
is smaller than ρ if and only if ρ(M/ρ) is smaller than 1.
This observation in conjunction with Lemma 1 allow us to
obtain necessary and sufficient conditions for stability with
the linear convergence rate ρ of (2-SM).

Lemma 2: For any positive scalar ρ < 1 and the matrix
M ∈ R2×2 in (15a), we have ρ(M) ≤ ρ if and only if
(b, a) ∈ ∆ρ, where the ρ-linear convergence set

∆ρ :=
{
(b, a) | ρ (|b| − ρ) ≤ a ≤ ρ2

}
(17a)

is a closed triangle in the (b, a)-plane with vertices

Xρ = (−2ρ, ρ2), Yρ = (2ρ, ρ2), Zρ = (0,−ρ2). (17b)

• •

•

X = (−2, 1) Y = (2, 1)

Z = (0,−1)

• •

•

Xρ = (−2ρ, ρ2) Yρ = (2ρ, ρ2)

Zρ= (0,−ρ2)

h

d l• b

a

Fig. 1. The stability set ∆ (the open, cyan triangle) in (16a) and the ρ-linear
convergence set ∆ρ (the closed, yellow triangle) in (17a). For the point
(b, a) (black bullet) associated with the matrix M in (15a), the corresponding
distances (d, h, l) in (22) are marked by black lines.

Figure 1 shows the stability and the ρ-linear convergence
sets ∆ and ∆ρ. We use Lemmas 1, 2 along with the fact that
a(λ) and b(λ) in (13c) satisfy the affine relation

(1 + γ)a(λ) + γb(λ) = β − γ (18)

to characterize the convergence rate of (2-SM).

Lemma 3: The two-step momentum algorithm (2-SM) with
constant parameters (α, β, γ) is stable for all functions f ∈
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• •

•

• •

Xρ Yρ

Zρ
Polyak’s methodGradient descent

b

a

• •

•
•

Xρ Yρ

Zρ

X ′
ρNesterov’s method

• b

a

Fig. 2. For a fixed ρ-linear convergence triangle ∆ρ (yellow), dashed blue
lines mark the line segments (b(λ), a(λ)) with λ ∈ [m,L] for gradient
descent, Polyak’s heavy-ball, and Nesterov’s accelerated methods. The solid
blue line segments correspond to the parameters for which the algorithm
achieves rate ρ for the largest possible condition number.

QL
m if and only if the following equivalent conditions hold:
1) (b(λ), a(λ)) ∈ ∆ for all λ ∈ [m,L];
2) (b(λ), a(λ)) ∈ ∆ for λ = {m,L}.

Furthermore, the linear convergence rate ρ < 1 is achieved for
all functions f ∈ QL

m if and only if the following equivalent
conditions hold:

1) (b(λ), a(λ)) ∈ ∆ρ for all λ ∈ [m,L],
2) (b(λ), a(λ)) ∈ ∆ρ for λ = {m,L}.

Here, (b(λ), a(λ)) is given by (13c), and the sets ∆ and ∆ρ

are given by (16a) and (17a), respectively.

Lemma 3 exploits the affine relation (18) between a(λ)
and b(λ) and the convexity of the sets ∆ and ∆ρ to establish
necessary and sufficient conditions for stability and ρ-linear
convergence: the inclusion of the end points of the line
segment (b(λ), a(λ)) associated with the extreme eigenvalues
m and L of the matrix Q in the corresponding triangle. A
similar approach was taken in [27, Appendix A.1], where the
affine nature of the conditions resulting from the Jury stability
criterion with respect to λ was used to conclude that ρ(Â(λ))
is a quasi-convex function of λ and show that the extreme
points m and L determine ρ(A). In contrast, we exploit the
triangular shapes of the stability and ρ-linear convergence sets
and utilize this geometric insight to identify the parameters
that optimize the convergence rate and to establish tradeoffs
between noise amplification and convergence rate.

For the two-step momentum algorithm (2-SM) with con-
stant parameters, Lemma 3 provides a simple alternative
proof for the fundamental lower bound (5) on the settling
time established by Nesterov. Our proof utilizes the fact
that for any point (b(λ), a(λ)) ∈ ∆ρ, the horizontal signed
distance to the edge XZ of the stability triangle ∆ (see
Figure 1) satisfies

d(λ) := a(λ) + b(λ) + 1 = αλ. (19)

Proposition 1: Let (2-SM) achieve the linear convergence
rate ρ < 1 for all functions f ∈ QL

m. Then, lower bound (5)
on the settling time holds and it is achieved by the heavy-ball
method with the parameters provided in Table I.

Proof: Let d(m) = αm and d(L) = αL de-
note the values of the function d(λ) associated with the
points (b(m), a(m)) and (b(L), a(L)), where (b, a) and d are
given by (13c) and (19), respectively. Lemma 3 implies that
(b(L), a(L)) and (b(m), a(m)) lie in the ρ-linear convergence
triangle ∆ρ. Thus, dmax/dmin ≥ d(L)/d(m) = κ, where
dmax and dmin denote the largest and smallest values that

d can take among all points (b, a) ∈ ∆ρ. From the shape
of ∆ρ, we conclude that dmax and dmin correspond to the
vertices Yρ and Xρ of ∆ρ given by (17b); see Figure 1. Thus,

dmax = dYρ = 1 + ρ2 + 2 ρ = (1 + ρ)2 (20a)

dmin = dXρ
= 1 + ρ2 − 2 ρ = (1 − ρ)2. (20b)

This in conjunction with the previous inequality yields

κ = d(L)/d(m) ≤ dmax/dmin = (1 + ρ)2/(1− ρ)2.
(21)

Rearranging terms above gives lower bound (5).

To provide insight, we next examine the implications of
Lemma 3 for gradient descent, Polyak’s heavy-ball, and
Nesterov’s accelerated algorithms. In all three cases, our dual
approach recovers the optimal convergence rates provided in
Table I. From the definition of a and b in (13c), it follows
that the line segment (b(λ), a(λ)) with λ ∈ [m,L] satisfies:

• gradient descent (β = γ = 0): (b, a) is the horizontal
line segment parameterized by a = 0;

• heavy-ball method (γ = 0): (b, a) is the horizontal line
segment parameterized by a = β; and

• Nesterov’s accelerated method (β = γ): (b, a) is the line
segment parameterized by a = −βb/(1 + β).

These observations are illustrated in Figure 2. To obtain the
largest possible condition number for which the convergence
rate ρ is feasible for each algorithm, one needs to find the
largest ratio d(L)/d(m) = κ among possible orientations for
the line segment (b(λ), a(λ)) with λ ∈ [m,L] to lie in ∆ρ.

• For gradient descent, the largest ratio d(L)/d(m) cor-
responds to the intersections of the horizontal axis and
the edges YρZρ and XρZρ of the triangle ∆ρ, which
are given by (ρ, 0) and (−ρ, 0), respectively. Thus,

κ = d(L)/d(m) ≤ (1 + ρ)/(1 − ρ).

Rearranging terms above yields a lower bound on the
settling time 1/(1−ρ) ≥ (κ+1)/2. This lower bound is
tight as it can be achieved by choosing the parameters in
Table I, which place (b(λ), a(λ)) to (ρ, 0) and (−ρ, 0)
for λ = L and λ = m, respectively.

• For the heavy-ball method, the optimal rate is recovered
by designing the parameters (α, β) such that the vertices
Xρ and Yρ belong to the line segment (b(λ), a(λ)),

κ = d(L)/d(m) ≤ (1 + ρ)2/(1 − ρ)2.

By choosing d(L) = dYρ and d(m) = dXρ , we recover
the optimal parameters provided in Table I and achieve
the lower bound (5) on the convergence rate.

• For Nesterov’s accelerated method, we can verify that
the largest ratio d(L)/d(m) corresponds to the line
segment XρX

′
ρ that passes through the origin, where

X ′
ρ = (2ρ/3,−ρ2/3) lies on the edge YρZρ This yields

κ = d(L)/d(m) ≤ (1 + 2ρ/3 − ρ2/3)/(1 − ρ)2.

Rearranging terms in this inequality provides a lower
bound on the settling time 1/(1−ρ) ≥

√
3κ+ 1/2. This
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lower bound is tight and it can be achieved with the
parameters provided in Table I, which place (b(L), a(L))
to X ′

ρ and (b(m), a(m)) to Xρ; see Figure 2.

C. Noise amplification

To quantify the noise amplification of the two-step momen-
tum algorithm (2-SM), we utilize an alternative characteriza-
tion of the stability and ρ-linear convergence triangles ∆ and
∆ρ. Let d and l denote the horizontal signed distances of the
point (a, b) to the edges XZ and Y Z of ∆ (see Figure 1),

d(λ) := a(λ) + b(λ) + 1

l(λ) := a(λ) − b(λ) + 1.
(22a)

and let h denote its vertical signed distance to the edge XY ,

h(λ) := 1 − a(λ). (22b)

Then, from the definition of the set ∆, we have (b, a) ∈ ∆ if
and only if h, d, l > 0. In Theorem 4, we quantify the steady-
state variance of the error in the optimization variable in terms
of the spectrum of the Hessian matrix and the algorithmic
parameters for noisy two-step momentum algorithm (2-SM).

Theorem 4: For f ∈ QL
m with the Hessian matrix Q, the

steady-state variance of xt−x⋆ for (2-SM) with any stabilizing
parameters (α, β, γ) is determined by

J =

n∑
i=1

σ2(d(λi) + l(λi))

2 d(λi)h(λi) l(λi)
=:

n∑
i=1

Ĵ(λi)

Here, Ĵ(λi) denotes the modal contribution of the ith
eigenvalue λi of Q to the steady-state variance, (d, h, l) are
defined in (22), and (a, b) are given by (13c).

V. CONCLUDING REMARKS

We studied two-step momentum algorithms subject to
additive white noise and established lower bounds on the
product of the settling time and the smallest/largest noise
amplification. These bounds scale as κ2 for all stabilizing
parameters and they reveal a fundamental limitation imposed
by the condition number in designing algorithms that tradeoff
noise amplification and convergence rate. Our analysis uses a
novel geometric viewpoint on the relation between noise am-
plification, convergence rate, and algorithmic parameters, and
provides an alternative proof for optimal convergence rates
of the heavy-ball and Nesterov’s accelerated methods. Our
ongoing work includes extending these results to algorithms
with more complex structures that involve information from
more than the last two iterates and time varying parameters.
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of accelerated first-order algorithms for strongly convex optimization
problems,” IEEE Trans. Automat. Control, vol. 66, no. 6, pp. 2480–
2495, June 2021.

[2] B. T. Polyak, “Some methods of speeding up the convergence of
iteration methods,” USSR Comput. Math. & Math. Phys., vol. 4, no. 5,
pp. 1–17, 1964.

[3] Y. Nesterov, “A method for solving the convex programming problem
with convergence rate O(1/k2),” in Dokl. Akad. Nauk SSSR, vol. 27,
1983, pp. 543–547.

[4] Y. Nesterov, “Gradient methods for minimizing composite objective
functions,” Math. Program., vol. 140, no. 1, pp. 125–161, 2013.

[5] L. Bottou and Y. Le Cun, “On-line learning for very large data sets,”
Appl. Stoch. Models Bus. Ind., vol. 21, no. 2, pp. 137–151, 2005.

[6] A. Beck and M. Teboulle, “A fast iterative shrinkage-thresholding
algorithm for linear inverse problems,” SIAM J. Imaging Sci., vol. 2,
no. 1, pp. 183–202, 2009.

[7] M. Hong, M. Razaviyayn, Z.-Q. Luo, and J.-S. Pang, “A unified
algorithmic framework for block-structured optimization involving big
data: With applications in machine learning and signal processing,”
IEEE Signal Process. Mag., vol. 33, no. 1, pp. 57–77, 2016.

[8] A. Badithela and P. Seiler, “Analysis of the heavy-ball algorithm using
integral quadratic constraints,” in Proceedings of the 2019 American
Control Conference. IEEE, 2019, pp. 4081–4085.

[9] I. Sutskever, J. Martens, G. Dahl, and G. Hinton, “On the importance
of initialization and momentum in deep learning,” in Proc. ICML, 2013,
pp. 1139–1147.

[10] Y. Nesterov, Lectures on convex optimization. Springer Optimization
and Its Applications, 2018, vol. 137.

[11] L. Lessard, B. Recht, and A. Packard, “Analysis and design of
optimization algorithms via integral quadratic constraints,” SIAM J.
Optim., vol. 26, no. 1, pp. 57–95, 2016.

[12] S. Cyrus, B. Hu, B. Van Scoy, and L. Lessard, “A robust accelerated
optimization algorithm for strongly convex functions,” in Proceedings
of the 2018 American Control Conference, 2018, pp. 1376–1381.

[13] B. V. Scoy, R. A. Freeman, and K. M. Lynch, “The fastest known
globally convergent first-order method for minimizing strongly convex
functions,” IEEE Control Syst. Lett., vol. 2, no. 1, pp. 49–54, 2018.

[14] M. Fazlyab, A. Ribeiro, M. Morari, and V. M. Preciado, “Analysis of
optimization algorithms via integral quadratic constraints: Nonstrongly
convex problems,” SIAM J. Optim., vol. 28, no. 3, pp. 2654–2689,
2018.

[15] D. Maclaurin, D. Duvenaud, and R. Adams, “Gradient-based hyper-
parameter optimization through reversible learning,” in Proc. ICML,
2015, pp. 2113–2122.

[16] Y. Bengio, “Gradient-based optimization of hyperparameters,” Neural
Comput., vol. 12, no. 8, pp. 1889–1900, 2000.

[17] A. Beirami, M. Razaviyayn, S. Shahrampour, and V. Tarokh, “On
optimal generalizability in parametric learning,” in Proc. Neural
Information Processing (NIPS), 2017, pp. 3458–3468.

[18] K. Yuan, B. Ying, and A. H. Sayed, “On the influence of momentum
acceleration on online learning,” J. Mach. Learn. Res., vol. 17, no. 1,
pp. 6602–6667, 2016.

[19] Z.-Q. Luo and P. Tseng, “Error bounds and convergence analysis of
feasible descent methods: a general approach,” Ann. Oper. Res., vol. 46,
no. 1, pp. 157–178, 1993.

[20] H. Robbins and S. Monro, “A stochastic approximation method,” Ann.
Math. Statist., pp. 400–407, 1951.

[21] A. Nemirovski, A. Juditsky, G. Lan, and A. Shapiro, “Robust stochastic
approximation approach to stochastic programming,” SIAM J. Optim.,
vol. 19, no. 4, pp. 1574–1609, 2009.

[22] O. Devolder, “Exactness, inexactness and stochasticity in first-order
methods for large-scale convex optimization,” Ph.D. dissertation,
Louvain-la-Neuve, 2013.

[23] P. Dvurechensky and A. Gasnikov, “Stochastic intermediate gradient
method for convex problems with stochastic inexact oracle,” J. Optimiz.
Theory App., vol. 171, no. 1, pp. 121–145, 2016.

[24] B. T. Polyak, “Comparison of the convergence rates for single-step
and multi-step optimization algorithms in the presence of noise,”
Engrg.Cybern., vol. 15, no. 1, pp. 6–10, 1977.

[25] O. Devolder, “Stochastic first order methods in smooth convex
optimization,” Catholic Univ. Louvain, Louvain-la-Neuve, Tech. Rep.,
2011.

[26] N. S. Aybat, A. Fallah, M. M. Gürbüzbalaban, and A. Ozdaglar, “Robust
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