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Abstract—Optimization algorithms are increasingly being used
in applications with limited time budgets. In many real-time and
embedded scenarios, only a few iterations can be performed and
traditional convergence metrics cannot be used to evaluate perfor-
mance in these nonasymptotic regimes. In this article, we exam-
ine the transient behavior of accelerated first-order optimization
algorithms. For convex quadratic problems, we employ tools from
linear systems theory to show that transient growth arises from
the presence of nonnormal dynamics. We identify the existence of
modes that yield an algebraic growth in early iterations and quan-
tify the transient excursion from the optimal solution caused by
these modes. For strongly convex smooth optimization problems,
we utilize the theory of integral quadratic constraints to establish
an upper bound on the magnitude of the transient response of
Nesterov’s accelerated algorithm. We show that both the Euclidean
distance between the optimization variable and the global mini-
mizer and the rise time to the transient peak are proportional to
the square root of the condition number of the problem. Finally, for
problems with large condition numbers, we demonstrate tightness
of the bounds that we derive up to constant factors.

Index Terms—Convex optimization, first-order optimization al-
gorithms, heavy-ball method, integral quadratic constraints (IQCs),
Nesterov’s accelerated method, nonasymptotic behavior, nonnor-
mal matrices, transient growth.

I. INTRODUCTION

First-order optimization algorithms are widely used in a variety of
fields including statistics, signal and image processing, control, and
machine learning [1]–[8]. Acceleration is often utilized as a means
to achieve a faster rate of convergence relative to gradient descent
while maintaining low per-iteration complexity. There is a vast literature
focusing on the convergence properties of accelerated algorithms for
different stepsize rules and acceleration parameters, including [9]–[12].
There is also a growing body of work which investigates robustness
of accelerated algorithms to various types of uncertainty [13]–[19].
These studies demonstrate that acceleration increases sensitivity to
uncertainty in gradient evaluation.

In addition to deterioration of robustness in the face of uncertainty,
asymptotically stable accelerated algorithms may also exhibit undesir-
able transient behavior [20]. This is in contrast to gradient descent
which is a contraction for strongly convex problems with suitable
stepsize [21]. In real-time optimization and in applications with limited
time budgets, the transient growth can limit the appeal of accelerated
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Fig. 1. Error in the optimization variable for Polyak’s heavy-ball (black)
and Nesterov’s (red) algorithms with the parameters that optimize the
convergence rate for a strongly convex quadratic problem with the con-
dition number 103 and a unit norm initial condition with x0 != x!.

methods. In addition, first-order algorithms are often used as a building
block in multistage optimization including ADMM [22] and distributed
optimization methods [23]. In these settings, at each stage we can
perform only a few iterations of first-order updates on primal or dual
variables and transient growth can have a detrimental impact on the
performance of the entire algorithm. This motivates an in-depth study
of the behavior of accelerated first-order methods in nonasymptotic
regimes.

It is widely recognized that large transients may arise from the
presence of resonant modal interactions and nonnormality of linear
dynamical generators [24]. Even in the absence of unstable modes, these
can induce large transient responses, significantly amplify exogenous
disturbances, and trigger departure from nominal operating conditions.
For example, in fluid dynamics, such mechanisms can initiate departure
from stable laminar flows and trigger transition to turbulence [25], [26].

In this article, we consider the optimization problem

minimize
x

f(x) (1)

where f : Rn → R is a convex and smooth function, and we focus on a
class of accelerated first-order algorithms

xt+2 = xt+1 + β(xt+1 − xt)− α∇f(xt+1 + γ(xt+1 − xt)) (2)

where t is the iteration index, α is the stepsize, and β is the momentum
parameter. In particular, we are interested in Nesterov’s accelerated
and Polyak’s heavy-ball methods that correspond to γ = β and γ =
0, respectively. While these algorithms have faster convergence rates
compared to the standard gradient descent (γ = β = 0), they may suffer
from large transient responses; see Fig. 1 for an illustration. To quantify
the transient behavior, we examine the ratio of the largest error in the
optimization variable to the initial error.

For convex quadratic problems, (2) can be cast as a linear time-
invariant (LTI) system for which modal analysis of the state-transition
matrix can be performed. For both accelerated algorithms, we identify
nonnormal modes that create large transient growth, derive analytical
expressions for the state-transition matrices, and establish bounds on
the transient response in terms of the convergence rate and the iteration
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number. We show that both the peak value of the transient response
and the rise time to this value increase with the square root of the con-
dition number of the problem. Moreover, for general strongly convex
problems, we combine a Lyapunov-based approach with the theory of
integral quadratic constraints (IQCs) to establish an upper bound on the
transient response of Nesterov’s accelerated algorithm. As for quadratic
problems, we demonstrate that this bound scales with the square root
of the condition number.

This work builds on our recent conference papers [27], [28]. In
contrast to these preliminary results, we provide a comprehensive
analysis of transient growth of accelerated algorithms for convex
quadratic problems and address the important issue of eliminating
transient growth of Nesterov’s accelerated algorithm with the proper
choice of initial conditions. Adaptive restarting, which was introduced
in [20] to address the oscillatory behavior of Nesterov’s accelerated
method, provides heuristics for improving transient responses. In [29],
the transient growth of second-order systems was studied and a frame-
work for establishing upper bounds was introduced, with a focus on
real eigenvalues. The result was applied to the heavy-ball method
but was not applicable to quadratic problems in which the dynamical
generator may have complex eigenvalues. We account for complex
eigenvalues and conduct a thorough analysis for Nesterov’s accelerated
algorithm as well. Furthermore, for convex quadratic problems, we
provide tight upper and lower bounds on transient responses in terms
of the condition number and identify the initial condition that induces
the largest transient response. Similar results with extensions to the
Wasserstein distance have been recently reported in [30]. Previous
work on nonasymptotic bounds for Nesterov’s accelerated algorithm
includes [31], where bounds on the objective error in terms of the condi-
tion number were provided. However, in contrast to our work, this result
introduces a restriction on the initial conditions. Finally, while [32]
presents computational bounds, we develop analytical bounds on the
nonasymptotic value of the estimated optimizer.

II. CONVEX QUADRATIC PROBLEMS

In this section, we examine transient responses of accelerated algo-
rithms for convex quadratic objective functions

f(x) =
1

2
xTQx (3a)

where Q = QT % 0 is a positive semidefinite matrix. In what follows,
we first bring (2) into a standard LTI state-space form and then utilize
appropriate coordinate transformation to decompose the dynamics into
decoupled subsystems. Using this decomposition, we provide analytical
expressions for the state-transition matrix and establish sharp bounds on
the transient growth and the location of the transient peak for accelerated
algorithms. We also examine the influence of initial conditions on
transient responses and relegate the proofs to Appendix A.

A. LTI Formulation

The matrix Q admits an eigenvalue decomposition, Q = V ΛV T ,
where Λ is the diagonal matrix of eigenvalues with

L := λ1 ≥ · · · ≥ λr =: m > 0

λi = 0 for i = r + 1, . . . , n
(3b)

andV is the unitary matrix of the corresponding eigenvectors. We define
the condition number κ := L/m as the ratio of the largest and smallest
nonzero eigenvalues of the matrix Q. For f in (3a), we have ∇f(x) =
Qx, and the change of variables x̂t := V Txt brings dynamics (2) to

x̂t+2 = (I − αΛ) x̂t+1 + (βI − γαΛ)(x̂t+1 − x̂t). (4)

TABLE I
PARAMETERS THAT PROVIDE OPTIMAL CONVERGENCE RATES FOR A

CONVEX QUADRATIC OBJECTIVE FUNCTION (3) WITH κ := L/m

This system can be represented via n decoupled second-order subsys-
tems of the form

ψ̂t+1
i = Aiψ̂

t
i , x̂t

i = Ciψ̂
t
i (5a)

where x̂t
i is the ith element of the vector x̂t ∈ Rn, ψ̂t

i := [ x̂t
i x̂

t+1
i ]T ,

Ci := [ 1 0 ], and

Ai =

[
0 1

−(β − γαλi) 1− αλi + (β − γαλi)

]
. (5b)

B. Linear Convergence of Accelerated Algorithms

The minimizers of (3a) are determined by the null space of the matrix
Q, x! ∈ N (Q). The constant parameters α and β can be selected to
provide stability of subsystems in (5) for all λi ∈ [m,L], and guarantee
convergence of x̂t

i to x̂!i := 0 with a linear rate determined by the
spectral radius ρ(Ai) < 1. On the other hand, for i = r + 1, . . . , n
the eigenvalues of Ai are β and 1. In this case, the solution to (5) is
given by

x̂t
i =

1 − βt

1 − β
(x̂1

i − x̂0
0) + x̂0

i (6a)

and the steady-state limit of x̂t
i

x̂!i :=
1

1 − β
(x̂1

i − x̂0
i ) + x̂0

i (6b)

is achieved with a linear rate β < 1. Thus, the iterates of (2) converge to
the optimal solution x! = V x̂! ∈ N (Q) with a linear rate ρ < 1 and
Table I provides the parameters α and β that optimize the convergence
rate [33, Prop. 1].

C. Transient Growth of Accelerated Algorithms

In spite of a significant improvement in the rate of convergence,
acceleration may deteriorate performance on finite time intervals and
lead to large transient responses. This is in contrast to gradient descent
which is a contraction [21]. At any t, we are interested in the worst-case
ratio of the norm of the error of the optimization variable zt := xt − x!

to the norm of the initial condition ψ0 − ψ! = [(z0)T (z1)T ]T

J2(t) := sup
ψ0 !=ψ!

‖xt − x!‖22
‖ψ0 − ψ!‖22

. (7)

Proposition 1: For accelerated algorithms applied to convex
quadratic problems, J(t) in (7) is determined by

J2(t) = max

{
max
i≤r

‖CiA
t
i‖22, β2t/(1 + β2)

}
. (8)

Proof: SinceV is unitary and dynamics (5) that govern the evolution
of each x̂t

i are decoupled, J(t) is determined by

J2(t) = max
i

sup
ψ̂0
i
!= ψ̂!

i

(x̂t
i − x̂!i )

2

‖ψ̂0
i − ψ̂!i ‖22

(9)
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where ψ̂!i := [ x̂!i x̂!i ]
T . Furthermore, the mapping from ψ̂0

i − ψ̂!i to
x̂t
i − x̂!i is given by Φi(t) := CiAt

i where the state-transition matrix
At

i is determined by the tth power of Ai

x̂t
i − x̂!i = CiA

t
i(ψ̂

0
i − ψ̂!i ) =: Φi(t)(ψ̂

0
i − ψ̂!i ). (10)

For λi != 0, ψ̂0
i − ψ̂!i = ψ̂0

i is an arbitrary vector in R2. Thus

sup
ψ̂0
i
!= ψ̂!

i

(x̂t
i − x̂!i )

2

‖ψ̂0
i − ψ̂!i ‖22

= ‖CiA
t
i‖22, i = 1, . . . , r. (11)

This expression, however, does not hold when λi = 0 in (5) because
ψ0

i − ψ!i is restricted to a line in R2. Namely, from (6)

x̂t
i − x̂!i =

−βt

1 − β
(x̂1

i − x̂0
0)

ψ0
i − ψ!i =

[
x̂0
i − x̂!i

x̂1
i − x̂!i

]
=

−(x̂1
i − x̂0

i )

1 − β

[
1
β

] (12)

which, for any initial condition with x̂0
i != x̂1

i , leads to

(x̂t
i − x̂!i )

2

‖ψ0
i − ψ!i ‖22

=
β2t

1 + β2
, i = r + 1, . . . , n. (13)

Finally, substitution of (11) and (13) to (9) yields (8). !

D. Analytical Expressions for Transient Response

We next derive analytical expressions for the state-transition matrix
At

i and the response matrix Φi(t) = CiAt
i in (5).

Lemma 1: Let µ1 and µ2 be the eigenvalues of the matrix

M =

[
0 1
a b

]

and let t be a positive integer. For µ1 != µ2

M t =
1

µ2 − µ1

[
µ1µ2(µ

t−1
1 − µt−1

2 ) µt
2 − µt

1

µ1µ2(µt
1 − µt

2) µt+1
2 − µt+1

1

]
.

Moreover, for µ := µ1 = µ2, the matrix M t is determined by

M t =

[
(1− t)µt t µt−1

−t µt+1 (t+ 1)µt

]
. (14)

Lemma 1 with M = Ai determines explicit expressions for At
i .

These expressions allow us to establish a bound on the norm of the
response for each decoupled subsystem (5). In Lemma 2, we provide a
tight upper bound on ‖CiAt

i‖22 for each t in terms of the spectral radius
of the matrix Ai.

Lemma 2: The matrix M in Lemma 1 satisfies

‖
[
1 0

]
M t‖22 ≤ (t− 1)2ρ2t + t2ρ2t−2 (15)

where ρ is the spectral radius of M . Moreover, (15) becomes equality
if M has repeated eigenvalues.

Remark 1: For Nesterov’s accelerated algorithm with the parameters
that optimize the convergence rate (cf., Table I), the matrix Âr , which
corresponds to the smallest nonzero eigenvalue of Q, λr = m, has an
eigenvalue 1− 2/

√
3κ+ 1 with algebraic multiplicity two and incom-

plete sets of eigenvectors. Similarly, for both λ1 = L and λr = m,
Â1 and Âr for the heavy-ball method with the parameters provided
in Table I have repeated eigenvalues which are, respectively, given by
(1−

√
κ)/(1 +

√
κ) and −(1−

√
κ)/(1 +

√
κ).

We next use Lemma 2 with M = Ai to establish an analytical
expression for J(t).

Theorem 1: For accelerated algorithms applied to convex quadratic
problems, J(t) in (7) satisfies

J2(t) ≤ max
{
(t− 1)2ρ2t + t2ρ2(t−1), β2t/(1 + β2)

}

where ρ := maxi≤r ρ(Ai). Moreover, for the parameters provided in
Table I

J2(t) = (t− 1)2ρ2t + t2ρ2(t−1). (16)

Theorem 1 highlights the source of disparity between the long and
short term behavior of the response. While the geometric decay of ρt

drives xt to x! as t → ∞, early stages are dominated by the algebraic
term which induces a transient growth. We next provide tight bounds
on the time tmax at which the largest transient response takes place
and the corresponding peak value J(tmax). Even though we derive the
explicit expressions for these two quantities, our tight upper and lower
bounds are more informative and easier to interpret.

Theorem 2: For accelerated algorithms with the parameters pro-
vided in Table I, let ρ ∈ [1/e, 1). Then the rise time tmax :=
argmaxtJ(t) and the peak value J(tmax) satisfy

−1/log(ρ) ≤ tmax ≤ 1 − 1/log(ρ)

−
√
2ρ

e log(ρ)
≤ J(tmax) ≤ −

√
2

e ρ log(ρ)
.

For accelerated algorithms with the parameters provided in Table I,
Theorem 2 can be used to determine the rise time to the peak in terms
of condition number κ. We next establish that both tmax and J(tmax)
scale as

√
κ.

Proposition 2: For accelerated algorithms with the parameters pro-
vided in Table I, the rise time tmax := argmaxtJ(t) and the peak value
J(tmax) satisfy
1) Polyak’s heavy-ball method with κ ≥ 4.69

(
√
κ− 1)/2 ≤ tmax ≤ (

√
κ+ 3)/2

(
√
κ− 1)2√

2 e(
√
κ+ 1)

≤ J(tmax) ≤
(
√
κ+ 1)2√

2 e(
√
κ− 1)

.

2) Nesterov’s accelerated method with κ ≥ 3.01

(
√
3κ+ 1− 2)/2 ≤ tmax ≤ (

√
3κ+ 1 + 2)/2

(
√
3κ+ 1− 2)2√
2 e

√
3κ+ 1

≤ J(tmax) ≤ 3κ+ 1√
2 e(

√
3κ+ 1− 2)

.

In Proposition 2, the lower-bounds on κ are only required to ensure
that the convergence rate ρ satisfies ρ ≥ 1/e, which allows us to apply
Theorem 2. We also note that the upper and lower bounds on tmax and
J(tmax) are tight in the sense that their ratio converges to 1 as κ→ ∞.

E. Role of Initial Conditions

The accelerated algorithms need to be initialized with x0 and
x1 ∈ Rn. This provides a degree of freedom that can be used to
potentially improve their transient performance. To provide insight,
let us consider the quadratic problem with Q = diag (κ, 1). Fig. 2
shows the error in the optimization variable for Polyak’s and Nesterov’s
algorithms as well as the peak magnitudes obtained in Proposition 2 for
two different types of initial conditions with x1 = x0 and x1 = −x0,
respectively. For x1 = −x0, both algorithms recover their worst-case
transient responses. However, for x1 = x0, Nesterov’s method shows
no transient growth.

Our analysis shows that large transient responses arise from the
existence of nonnormal modes in the matricesAi. However, such modes
do not move the entries of the state transition matrix At

i in arbitrary
directions. For example, using Lemma 1, it is easy to verify that Ar

in (5b), associated with the smallest nonzero eigenvalue λr = m of Q
in Nesterov’s algorithm with the parameters provided by Table I has the
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Fig. 2. Dependence of the error in the optimization variable on the
iteration number for the heavy-ball (black) and Nesterov’s methods (red),
as well as the peak magnitudes (dashed lines) obtained in Proposition 2
for two different initial conditions with ‖x1‖2 = ‖x0‖2 = 1. (a) x1 = x0

(b) x1 = −x0.

repeated eigenvalueµ = 1− 2/
√
3κ+ 1 andAt

r is determined by (14)
with M = Ar . Even though each entry of At

r experiences a transient
growth, its row sum is determined by

At
r

[
1
1

]
=

[
1 + 2t/(

√
3κ+ 1− 2)

1 + 2t/
√
3κ+ 1

]
(1 − 2/

√
3κ+ 1)t

and entries of this vector are monotonically decaying functions of t.
Furthermore, for i < r, it can be shown that the entries of At

i [ 1 1 ]
T

remain smaller than 1 for all i and t. In Theorem 3, we provide a bound
on the transient response of Nesterov’s method for balanced initial
conditions with x1 = x0.

Theorem 3: For convex quadratic optimization problems, the
iterates of Nesterov’s accelerated method with a balanced ini-
tial condition x1 = x0 and parameters provided in Table I satisfy
‖xt − x!‖2 ≤ ‖x0 − x!‖2.

Proof: See Appendix B. !
It is worth mentioning that the transient growth of the heavy-ball

method cannot be eliminated with the use of balanced initial conditions.
To see this, we note that the matrices At

r and At
1 for the heavy-ball

method with parameters provided in Table I also take the form in (14)
with µ = (1−

√
κ)/(1 +

√
κ) and µ = −(1−

√
κ)/(1 +

√
κ), re-

spectively. In contrast to At
r[ 1 1 ]T , which decays monotonically,

At
1

[
1
1

]
=

[
1 + 2t

√
κ/(1−

√
κ)

1 + 2t
√
κ/(1 +

√
κ)

]
(1−

√
κ)t

(1 +
√
κ)t

experiences transient growth. It was recently shown that an averaged
version of the heavy-ball method experiences smaller peak deviation
than the heavy-ball method [34]. We also note that adaptive restart-
ing provides effective heuristics for reducing oscillatory behavior of
accelerated algorithms [20].

Remark 2: For accelerated algorithms with the parameters provided
in Table I, the initial condition that leads to the largest transient growth
at any time τ is determined by

ψ̂0
r = c

[
(1− τ) ρτ τρτ−1

]T
, ψ̂0

i = 0 for i != r

where c != 0 and ψ̂0
r is the principal right singular vector of CrAτr .

Thus, the largest peak J(tmax) occurs for {ψ̂0
i = 0, i != r} and ψ̂0

r =
c[ (1− tmax) ρtmax tmax ρtmax−1 ]T , where tight bounds on tmax are
established in Proposition 2.

Remark 3: For λi = 0 in (5), |x̂t
i − x̂!i | decays monotonically with

a linear rate β and only nonzero eigenvalues of Q contribute to the
transient growth. Furthermore, for the parameters provided in Table I,
our analysis shows that J2(t) = maxi≤r ‖CiAt

i‖22. In what follows,

we provide bounds on the largest deviation from the optimal solution
for Nesterov’s algorithm for general strongly convex problems.

III. GENERAL STRONGLY CONVEX PROBLEMS

In this section, we combine a Lyapunov-based approach with the
theory of IQCs to provide bounds on the transient growth of Nesterov’s
accelerated algorithm for the class FL

m of m-strongly convex and L-
smooth functions. When f is not quadratic, first-order algorithms are
no longer LTI systems and eigenvalue decomposition cannot be utilized
to simplify analysis. Instead, to handle nonlinearity and obtain upper
bounds on J in (7), we augment standard quadratic Lyapunov functions
with the objective error.

For f ∈ FL
m, algorithm (2) is invariant under translation. Thus,

without loss of generality, we assume that x! = 0 is the unique mini-
mizer of (1) with f(0) = 0. In what follows, we present a framework
based on linear matrix inequalities (LMIs) that allows us to obtain
time-independent bounds on the error in the optimization variable. This
framework combines certain IQCs [35] with Lyapunov functions of the
form

V (ψ) = ψTXψ + θf(Cψ) (17)

which consist of the objective function evaluated at Cψ and a quadratic
function of ψ, where X is a positive definite matrix.

The theory of IQCs provides a convex control-theoretic approach to
analyzing optimization algorithms [33] and it was recently employed to
study convergence and robustness of the first-order methods [14], [17],
[32], [36]–[38]. The type of Lyapunov functions in (17) was introduced
in [32] and [39], to study convergence for convex problems. For
Nesterov’s accelerated algorithm, we demonstrate that this approach
provides orderwise-tight analytical upper bounds on J(t).

Nesterov’s accelerated algorithm can be viewed as a feedback inter-
connection of linear and nonlinear components

ψt+1 = Aψt + B ut

yt = Cy ψ
t, ut = ∆(yt) (18a)

where the LTI part of the system is determined by

A =

[
0 I

−βI (1 + β)I

]

B =

[
0

−αI

]
, Cy =

[
−βI (1 + β)I

] (18b)

and the nonlinear mapping ∆ : Rn → Rn is ∆(y) := ∇f(y). More-
over, the state vector ψt and the input yt to ∆ are determined by

ψt :=

[
xt

xt+1

]
, yt := (1 + β)xt+1 − βxt. (18c)

For smooth and strongly convex functions f ∈ FL
m, ∆ satisfies the

quadratic inequality [33, Lem. 6]
[

y − y0
∆(y) − ∆(y0)

]T

Π

[
y − y0

∆(y) − ∆(y0)

]
≥ 0 (19a)

for all y, y0 ∈ Rn, where the matrix Π is given by

Π :=

[
−2mLI (L+m)I
(L+m)I −2I

]
. (19b)

Using ut := ∆(yt) and yt := Cyψt and evaluating (19a) at y = yt

and y0 = 0 leads to
[
ψt

ut

]T

M1

[
ψt

ut

]
≥ 0 (19c)
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where

M1 :=

[
CT

y 0
0 I

]
Π

[
Cy 0
0 I

]

=

[
−2mLCT

y Cy (L+m)CT
y

(L+m)Cy −2I

]
.

(19d)

In Lemma 3, we provide an upper bound on the difference between
the objective function at two consecutive iterations of Nesterov’s algo-
rithm. In combination with (19), this result allows us to utilize Lyapunov
function of the form (17) to establish an upper bound on transient
growth. We note that variations of this lemma have been presented
in [32, Lem. 5.2] and in [17, Lem. 3].

Lemma 3: Along the solution of Nesterov’s accelerated algo-
rithm (18), the function f ∈ FL

m with κ := L/m satisfies

f(xt+2) − f(xt+1) ≤ 1

2

[
ψt

ut

]T

M2

[
ψt

ut

]
(20a)

where the matrix M2 is given by

M2 :=

[
−mCT

2 C2 CT
2

C2 −α(2− αL)I

]

C2 :=
[
−βI βI

]
.

(20b)

Using Lemma 3, we next demonstrate how a Lyapunov function
of the form (17) with θ := 2θ2 and C := [ 0 I ] in conjunction with
property (19) of the nonlinear mapping ∆ can be utilized to obtain an
upper bound on ‖xt‖22.

Lemma 4: Let M1 be given by (19d) and let M2 be defined in
Lemma 3. Then, for any positive semidefinite matrixX and nonnegative
scalars θ1 and θ2 that satisfy

W :=

[
ATX A−X ATX B
BT X A BT X B

]
+ θ1M1 + θ2M2 , 0 (21)

the transient growth of Nesterov’s accelerated algorithm (18) for all
t ≥ 1 is upper bounded by

‖xt‖22 ≤ λmax(X)‖x0‖22 + (λmax(X) + Lθ2)‖x1‖22
λmin(X) +mθ2

. (22)

In Lemma 4, the Lyapunov function candidate V (ψ) := ψTXψ +
2θ2f([ 0 I ]ψ) is used to show that the state vectorψt is confined within
the sublevel set {ψ ∈ R2n |V (ψ) ≤ V (ψ0)} associated with V (ψ0).
We next establish an order-wise tight upper bound on ‖xt‖2 that scales
linearly with

√
κ by finding a feasible point to LMI (21) in Lemma 4.

Theorem 4: For f ∈ FL
m with the condition number κ := L/m, the

iterates of Nesterov’s accelerated algorithm (18) for any stabilizing
parameters α ≤ 1/L and β < 1 satisfy

‖xt‖22 ≤ κ

(
1 + β2

αβL
‖x0‖22 +

(
1 +

1 + β2

αβL

)
‖x1‖22

)
. (23a)

Furthermore, for the conventional values of parameters

α = 1/L, β = (
√
κ− 1)/(

√
κ+ 1) (23b)

the largest transient error, defined in (7), satisfies
√
2 (

√
κ− 1)2

e
√
κ

≤ sup
{t∈N, f ∈FL

m}
J(t) ≤

√
3κ+

4κ

κ− 1
. (23c)

For balanced initial conditions, i.e., x1 = x0, Nesterov established
the upper bound

√
κ+ 1 on J in [12]. Theorem 4 shows that similar

trends hold without restriction on initial conditions. Linear scaling of
the upper and lower bounds with

√
κ illustrates a potential drawback of

using Nesterov’s accelerated algorithm in applications with limited time

budgets. As κ→ ∞, the ratio of these bounds converges to e
√

3/2 ≈
3.33, thereby demonstrating that the largest transient response for all
f ∈ FL

m is within the factor of 3.33 relative to the bounds established
in Theorem 4.

IV. CONCLUSION

We have examined the impact of acceleration on transient responses
of first-order optimization algorithms. Without imposing restrictions
on initial conditions, we establish bounds on the largest value of the
Euclidean distance between the optimization variable and the global
minimizer. For convex quadratic problems, we utilize the tools from
linear systems theory to fully capture transient responses and for general
strongly convex problems, we employ the theory of IQCs to establish
an upper bound on transient growth. This upper bound is proportional
to the square root of the condition number and we identify quadratic
problem instances for which accelerated algorithms generate transient
responses which are within a constant factor of this upper bound. Future
directions include extending our analysis to nonsmooth optimization
problems and devising algorithms that balance acceleration with quality
of transient responses.

APPENDIX

A. Proofs of Section II

We first present a technical lemma that we use in our proofs.
Lemma 5: For any ρ ∈ [1/e, 1), a(t) := tρt satisfies

argmax
t≥1

a(t) = −1/log(ρ), max
t≥1

a(t) = −1/(e log(ρ)).

Proof: Follows from the fact that da/dt = ρt(1 + t log(ρ)) van-
ishes at t = −1/ log(ρ). !

1) Proof of Lemma 1: For µ1 != µ2, the eigenvalue decomposition
of M is determined by

M =
1

µ2 − µ1

[
1 1
µ1 µ2

] [
µ1 0
0 µ2

] [
µ2 −1

−µ1 1

]
.

Computing the tth power of the diagonal matrix and multiplying
throughout completes the proof for µ1 != µ2. For µ1 = µ2 =: µ, M
admits the Jordan canonical form

M =

[
1 0
µ 1

] [
µ 1
0 µ

] [
1 0

−µ 1

]

and the proof follows from:
[
µ 1
0 µ

]t

=

[
µt t µt−1

0 µt

]
.

2) Proof of Lemma 2: From Lemma 1, it follows:

[
1 0

]
M t =

[

−
t−2∑

i=0

µi+1
1 µt−1−i

2

t−1∑

i=0

µi
1µ

t−1−i
2

]

where µ1 and µ2 are the eigenvalues of M . Moreover

|
t−2∑

i=0

µi+1
1 µt−1−i

2 | ≤
t−2∑

i=0

|µi+1
1 µt−1−i

2 | ≤
t−2∑

i=0

ρt ≤(t− 1)ρt

|
t−1∑

i=0

µi
1µ

t−1−i
2 | ≤

t−1∑

i=0

|µi
1µ

t−1−i
2 | ≤

t−1∑

i=0

ρt−1 ≤ tρt−1

by triangle inequality. Finally, for µ1 = µ2 ∈ R, we have ρ = |µ1| =
|µ2| and these inequalities become equalities.
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3) Proof of Theorem 1: Let µ1i and µ2i be the eigenvalues and
let ρi = max {|µ1i|, |µ2i|} be the spectral radius of Ai. We can use
Lemma 2 with M := Ai to obtain

max
i≤r

‖CiA
t
i‖22 ≤ max

i≤r

(
(t− 1)2ρ2ti + t2ρ2t−2

i

)

≤ (t− 1)2ρ2t + t2ρ2t−2 (24)

where ρ := maxi≤r ρi. For the parameters provided in Table I, the
matricesA1 andAr , that correspond to the largest and smallest nonzero
eigenvalues of Q, i.e., λ1 = L and λr = m, respectively, have the
largest spectral radius [17, eq. (64)],

ρ = ρ1 = ρr ≥ ρi, i = 2, . . . , r − 1 (25)

and Ar has repeated eigenvalues. Thus, we can write

max
i≤r

‖CiA
t
i‖22 ≥ ‖

[
1 0

]
At

r‖22 = (t− 1)2ρ2tr + t2ρ2t−2
r

= (t− 1)2ρ2t + t2ρ2t−2 (26)

where the first equality follows from Lemma 2 applied toM := Ar and
the second equality follows from (25). Finally, combining (24) and (26)
with β < ρ and Proposition 1 completes the proof.

4) Proof of Theorem 2: Let a(t) := tρt. Theorem 1 implies
J2(t) = ρ2a2(t− 1) + ρ−2a2(t) and, for t ≥ 1,J(t)has only one crit-
ical point, which is a maximizer. Moreover, since dJ2(t)/dt is positive
at t = −1/ log(ρ) and negative at t = 1− 1/ log(ρ), we conclude that
the maximizer lies between −1/ log(ρ) and 1− 1/ log(ρ). Regarding
maxt J(t), we note that

√
2ρa(t− 1) ≤ J(t) ≤

√
2a(t)/ρ and the

proof follows from maxt≥1 a(t) = −1/(e log(ρ)) (cf., Lemma 5).
5) Proof of Proposition 2: Since for all a ≤ 1, we have [40]

a ≤ − log (1− a) ≤ a/(1− a)

ρhb = 1− 2/(
√
κ+ 1) and ρna = 1− 2/(

√
3κ+ 1) satisfy

2/(
√
κ+ 1) ≤ − log(ρhb) ≤ 2/(

√
κ− 1)

2/
√
3κ+ 1 ≤ − log(ρna) ≤ 2/(

√
3κ+ 1− 2).

The conditions on κ ensure that ρhb and ρna are not smaller than 1/e and
we combine the above bounds with Theorem 2 to complete the proof.

B. Proof of Theorem 3

The condition x0 = x1 is equivalent to x̂0
i = x̂1

i in (5). Thus, for
λi = 0, equation (12) yields x̂t

i = x̂0
i = x̂!i . For λi != 0, we have ψ̂0

i −
ψ̂!i = [ x̂0

i x̂0
i ]

T and, hence

‖xt − x!‖2
‖x0 − x!‖2

≤ max
i≤r

|x̂t
i − x̂!i |

|x̂t
0 − x̂!i |

= max
i≤r

∣∣∣∣CiA
t
i

[
1
1

]∣∣∣∣ (27a)

where the equality follows from (10). To bound the right-hand side, we
use Lemma 1 with M = Ai to obtain

CiA
t
i

[
1
1

]
=

[
1 0

]
At

i

[
1
1

]
= ωt(µ1i, µ2i) (27b)

where µ1i and µ2i are the eigenvalues of Ai and

ωt(z1, z2) :=
t−1∑

i=0

zi1z
t−1−i
2 −

t−1∑

i=1

zi1z
t−i
2 (28)

for any t ∈ N and z1, z2 ∈ C.
For Nesterov’s accelerated method, the characteristic poly-

nomial det(zI −Ai) = z2 − (1 + β)hiz + βhi yields µ1i, µ2i =
((1 + β)hi ±

√
(1 + β)2h2

i − 4βhi)/2, where λi is the ith the eigen-
value of Q and hi := 1− αλi. For the parameters provided in Table I,
it is easy to show the following.

1) For λi ∈ [m, 1/α], we havehi ∈ [0, 4β/(1 + β)2] andµ1i andµ2i

are complex conjugates of each other and lie on a circle of radius
β/(1 + β) centered at z = β/(1 + β).

2) For λi ∈ (1/α, L], µ1i and µ2i are real with opposite signs and
can be sorted to satisfy |µ2i| < |µ1i| with −1 ≤ µ1i ≤ 0 ≤ µ2i ≤
1/3.

The next lemma provides a unit bound on |ωt(µ1i, µ2i)| for both of
the above cases.

Lemma 6: For any z = l cos(θ)eiθ ∈ C with |θ| ≤ π/2 and 0 ≤
l ≤ 1, and for any real scalars (z1, z2) such that −1 ≤ z1 ≤ 0 ≤ z2 ≤
1/3, and z2 < −z1, the function ωt in (28) satisfies |ωt(z, z̄ )| ≤ 1 and
|ωt(z1, z2)| ≤ 1 for all t ∈ N, where z̄ is the complex conjugate of z.

Proof: Since ω1(z1, z2) = 1, we assume t ≥ 2. We first address
θ = 0, i.e., z = l ∈ R and ωt(z, z̄ ) = tlt−1 − (t− 1)lt. We note that
dωt/dl = t(t− 1)(lt−2 − lt−1) = 0 only if l ∈ {0, 1}. This in com-
bination with l ∈ [0, 1] yield |ωt(l, l)| ≤ max{|ωt(1, 1)|, |ωt(0, 0)|}
≤ 1.

To address θ != 0, we note that b(t) := sin(tθ)/t satisfies

|b(t)| ≤ | sin(θ)| (29)

which follows from:

| sin(tθ)| = | sin((t− 1)θ) cos(θ) + cos((t− 1)θ) sin(θ)|

≤ | sin((t− 1)θ)| + | sin(θ)|.

For z = l cos(θ)eiθ , we have

ωt(z, z̄ ) = (zt − z̄ t − zz̄ (zt−1 − z̄ t−1))/(z − z̄ ) =

(l cos(θ))t−1(sin(tθ)− l cos(θ) sin((t− 1)θ))/sin(θ).

Thus, dωt/dl = 0 only if l = 0, 1, or l! := b(t)/(b(t− 1) cos(θ)).
Moreover, it is easy to show that ωt(z, z̄ ) is equal to 0 for l = 0; to
(cos(θ))t−1 cos((t− 1)θ) for l = 1; and to (l! cos(θ))t−1b(t)/ sin(θ)
for l = l!. Combining this with (29) completes the proof for
complex z.

To address the case of z1, z2 ∈ R, we note that ωt(z1, z2) =
(zt1(1− z2)− zt2(1− z1))/(z1 − z2). Thus, differentiating with re-
spect to z1 yields

dωt

dz1
= (1− z2)

(t− 1)zt−1
1 − z2

∑t−2
i=0 z

t−2−i
1 zi2

z1 − z2
.

Moreover, from |z2| < |z1|, it follows that:

(t− 1)|zt−1
1 | > |z2|

t−2∑

i=0

|zt−2−i
1 zi2| > |z2

t−2∑

i=0

zt−2−i
1 zi2|.

Therefore, dωt/dz1 != 0 over our range of interest for z1, z2. Thus,
ωt(z1, z2) may take its extremum only at the boundary z1 ∈
{0,−1}, i.e., |ωt(z1, z2)| ≤ max{|ωt(0, z2)|, |ωt(1, z2)|}. Finally, it
is easy to show that |ωt(0, z2)| = |zt−1

2 | < 1, and |ωt(−1, z2)| =
|(−1)t(z2 − 1) + 2zt2|/(1 + z2) ≤ 1. !

We complete the proof of Theorem 3 by noting that the eigenvalues
of Ai for Nesterov’s algorithm with parameters provided in Table I
satisfy the conditions in Lemma 6.

C. Proofs of Section III

1) Proof of Lemma 3: For any f ∈ FL
m, the L-Lipschitz continuity

of the gradient ∇f

f(xt+2)− f(yt) ≤ (∇f(yt))T (xt+2 − yt) +
L

2
‖xt+2 − yt‖22

(30a)

Authorized licensed use limited to: University of Southern California. Downloaded on May 22,2023 at 19:28:46 UTC from IEEE Xplore.  Restrictions apply. 



IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 68, NO. 3, MARCH 2023 1829

and the m-strong convexity of f

f(yt)− f(xt+1) ≤ (∇f(yt))T (yt − xt+1)− m

2
‖yt − xt+1‖22

(30b)
can be used to show that (20) holds along the solution of Nesterov’s ac-
celerated algorithm (18). In particular, for (18) we have ut := ∇f(yt)
and

xt+2 − yt = −αut

yt − xt+1 = β(xt+1 − xt) = [−βI βI]ψt. (31)

Substituting (31) into (30a) and (30b) and adding the resulting inequal-
ities completes the proof.

2) Proof of Lemma 4: Premultiplication and postmultiplication of
LMI (21) by (ηt)T and ηt := [ (ψt)T (ut)T ]T yields

0 ≥ (ηt)T
[
ATX A−X ATX B
BT X A BT X B

]
ηt + θ1(η

t)TM1η
t

+ θ2(η
t)TM2η

t

≥ (ηt)T
[
ATX A−X ATX B
BT X A BT X B

]
ηt + θ2(η

t)TM2η
t

where the second inequality follows from (19c). This yields

0 ≤ V̂ (ψt) − V̂ (ψt+1) − θ2(η
t)TM2η

t (32)

where V̂ (ψ) := ψTXψ. Also, since Lemma 3 implies

−(ηt)TM2η
t ≤ 2

(
f(xt+1) − f(xt+2)

)
(33)

combining (32) and (33) yields

V̂ (ψt+1) + 2θ2f(x
t+2) ≤ V̂ (ψt) + 2θ2f(x

t+1).

Thus, using induction, we obtain the uniform upper bound

V̂ (ψt) + 2θ2f(x
t+1) ≤ V̂ (ψ0) + 2θ2f(x

1). (34)

This allows us to bound V̂ by writing

λmin(X)‖ψ‖22 ≤ V̂ (ψ) ≤ λmax(X)‖ψ‖22. (35a)

We can also upper and lower bound f ∈ FL
m as

m‖x‖22 ≤ 2f(x) ≤ L‖x‖22. (35b)

Finally, combining (34) and (35) yields

λmin(X)‖ψt‖22 + m θ2‖xt+1‖22 ≤
λmax(X)‖ψ0‖22 + L θ2‖x1‖22.

We complete the proof by noting that ‖xt+1‖2 ≤ ‖ψt‖2.
3) Proof of Theorem 4: To prove (23a), we need to find a feasible

solution for θ1, θ2 and X in terms of the condition number κ. Let us
define

X :=

[
x1I x0I
x0I x2I

]
= x2

[
β2I −βI
−βI I

]

θ2 := θ1(L+m)β/(1− β)

x2 := ((L+m)θ1 + θ2)/α = θ2/(αβ). (36)

If (36) holds, it is easy to verify that X % 0 with λmin(X) = 0,
λmax(X) = (1 + β2)x2 = θ2(1 + β2)/(αβ), and ATXA−X = 0.
Moreover, the matrixW on the left-hand-side of (21) is block-diagonal,

W := diag (W1,W2), and negative semidefinite for all α ≤ 1/L,
where

W1 = −m(2θ1LCT
y Cy + θ2 C

T
2 C2) , 0

W2 = − ((2− α(L+m)) θ1 + α(1− αL) θ2) I , 0.

Thus, the choice of (θ1, θ2,X) in (36) satisfies the conditions of
Lemma 4. Using the expressions for the largest and smallest eigenvalues
of the matrix X in equation (22) in Lemma 4 leads to the upper bound
for ‖xt‖22 in (23a). Furthermore, from (23a) we have

‖xt‖22 ≤ κ
(
1 + (1 + β2)/(αβL)

)
‖ψ0‖22

and the upper bound in (23c) follows from the fact that, for α and β
in (23b), 1 + (1 + β2)/(αβL) = 3 + 4/(κ− 1).

To obtain the lower bound in (23c), we employ our framework for
quadratic objective functions in Section II. In particular, for the param-
eters α and β in (23b), the largest spectral radius ρ(Ai) corresponds
to An, which is associated with the smallest eigenvalue λn = m of Q.
Since An has repeated real eigenvalues ρ = 1− 1/

√
κ, using similar

arguments as in Theorem 1 for quadratic problems we obtain

J(tmax) =
√

(tmax − 1)2ρ2tmax + t2maxρ
2(tmax−1)

≥
√
2 (tmax − 1) ρtmax ≥

√
2(
√
κ− 1)2/(e

√
κ)

which completes the proof.
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[25] M. R. Jovanović and B. Bamieh, “Componentwise energy amplification
in channel flows,” J. Fluid Mech., vol. 534, pp. 145–183, Jul. 2005.
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