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Abstract— Many emerging applications involve control of
systems with unknown dynamics. As a result, model-free
random search techniques that directly search over the space
of parameters have become popular. These algorithms often
exhibit a competitive sample complexity compared to state-of-
the-art techniques. However, due to the nonconvex nature of
the underlying optimization problems, the convergence behavior
and statistical properties of these approaches are poorly under-
stood. In this paper, we examine the standard linear quadratic
regulator problem for continuous-time systems with unknown
state-space parameters. We establish theoretical bounds on the
sample complexity and prove the linear convergence rate of the
random search method.

Index Terms— Linear quadratic regulator, model-free control,
nonconvex optimization, Polyak-Lojasiewicz inequality, random
search method, reinforcement learning, sample complexity.

I. INTRODUCTION

Reinforcement Learning (RL) approaches often perform
well in applications with no control-oriented models [1], [2].
Without even requiring system identification, the class of
model-free RL methods prescribe control action only based
on estimated values of a cost function [3]–[5]. In spite of
empirical success of these techniques, many fundamental
questions surrounding convergence and sample complexity
remain unanswered even for classical control problems,
including the linear quadratic regulator (LQR). In this paper,
we make progress in addressing such challenges with a focus
on the infinite-horizon LQR problem for continuous-time LTI
systems.

The globally optimal solution to the LQR problem can
be obtained by solving the Riccati equation and efficient
numerical schemes with provable convergence guarantees
have been developed [6]. However, computing the optimal
solution becomes challenging when model is not available.
This motivates the use of direct search methods for controller
synthesis. In addition to nonconvexity [7], a major challenge
in model-free settings is that the gradient of the objective
function is unknown so that only zero-order methods can be
used to estimate the gradient.

Despite nonconvexity, for discrete-time LQR, global con-
vergence guarantees for both gradient descent and random
search on the state-feedback gains were provided in [5]. This
result exploited observation that the cost function satisfies
the Polyak-Lojasiewicz (PL) condition. Recent reference [8]
extended this observation to the continuous-time LQR prob-
lem and established linear convergence for gradient descent.
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Extensions to the H∞-regularized LQR [9] and Markovian
jump systems [10] have also been studied.

In this paper, we show that the random search method
can solve the continuous-time LQR problem with unknown
dynamics up to any desired accuracy with high probability
(w.h.p.) in polynomial time. Our results provide upper bounds
on the sample complexity and quantify how the final accuracy
depends on the number of samples and simulation time.

While Reference [5] motivates our work, we study the
continuous-time LQR problem and, compared to [5], we
provide a significant improvement in computational efficiency
by reducing the required simulation time for achieving ε-
accuracy from O(poly(1/ε)) to O(log(1/ε)). We also refer
to our more recent works where we established an overall
sample complexity of O(log(1/ε)) in the case of two-point
gradient estimates for both continuous-time [11] and discrete-
time [12] systems.

The paper is structured as follows. In Section II, we revisit
the LQR problem and present the random search method.
In Section III, we highlight the main result of the paper. In
Section IV, we discuss the convergence of gradient descent. In
Section V, we quantify the accuracy of the gradient estimate
used in random search method. In Section VI, we prove
the main convergence result and, in Section VII, we offer
concluding remarks and discuss future directions.

II. PROBLEM FORMULATION

Consider the LTI system

ẋ = Ax + Bu, x(0) ∼ D (1a)

where x(t) ∈ Rn is the state, u(t) ∈ Rm is the control input,
A and B are constant matrices of appropriate dimensions,
and x(0) is a random initial condition with distribution D.
The LQR problem associated with system (1a) is given by

minimize
x, u

E
[∫ ∞

0

(xT (t)Qx(t) + uT (t)Ru(t)) dt

]
(1b)

where Q and R are positive definite matrices. For a control-
lable pair (A,B), the solution to (1) is the linear feedback

u = −K?x = −R−1BTP ?x

where P ? is the unique positive definite solution to the
Algebraic Riccati Equation (ARE)

ATP ? + P ?A + Q − P ?BR−1BTP ? = 0. (2)

When the model parameters A and B are known, the ARE
can be solved efficiently via a variety of techniques [13]–[16].
However, these techniques are not directly applicable when
the parameters are unknown. One approach to dealing with
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this situation is to use the linearity of the optimal controller
and reformulate the LQR problem as an optimization over
feedback gains,

minimize
K

f(K) (3)

f(K) :=

{
trace

(
(Q+KTRK)X(K)

)
, K ∈ S

∞, otherwise.

Here, the function f(K) determines the LQR cost in (1b)
associated with the linear feedback law u = −Kx,

S := {K ∈ Rm×n | A − BK is Hurwitz} (4)

is the set of stabilizing feedback gains, and for any K ∈ S

X(K) :=

∫ ∞
0

e(A−BK)t Ω e(A−BK)T t dt (5)

where Ω := E[x(0)xT (0)] � 0 is the correlation matrix
associated with the initial condition x(0) ∼ D, which we
assume to be positive definite. Moreover, since the optimal
feedback gain K? = R−1BTP ? does not depend on the
initial condition, without loss of generality, we assume that
the random initial condition x(0) is uniformly bounded, i.e.,
‖x(0)‖2 ≤M with probability one. In problem (3), K is the
optimization variable, and (A, B, Q � 0, R � 0, Ω � 0,
M > 0) are the problem parameters.

The formulation of the LQR problem given by (3) has been
studied for both continuous-time [6], [8] and discrete-time
systems [5], [17]. It also represents a building block for several
important control problems including imposing structural
constraints (e.g., sparsity) on the feedback gain matrix [18]–
[20] and optimal sensor/actuator selection [21]–[23].

In this paper, we analyze the convergence properties of
the random search method for solving problem (3) with
unknown model parameters [24], [25]. At each iteration, this
method forms an empirical approximation ∇f(K) to the
gradient of the objective function f(K) via simulations of
system (1a) for several randomly perturbed feedback gains
K + Ui, i = 1, . . . , N ; see Algorithm 1. The random search
method then follows the update rule

Kk+1 := Kk − α∇f(Kk), K0 ∈ S (RS)

for some stepsize α > 0.

III. MAIN RESULT

Even though the optimization problem (3) is nonconvex [7],
we demonstrate that, for any desired accuracy, the iterates
of (RS) with a suitably selected set of parameters in Algo-
rithm 1 and a constant stepsize α converge to the optimal
solution w.h.p. in polynomial time.

Theorem 1: There are positive rational functions r0(a),
. . ., r5(a), and γ(a) < 1 such that for any

ε ≤ min{(a − f?) (1− γ(a)), r0(a)}

if we choose the simulation time τ and smoothing parameter

Algorithm 1 Gradient estimation
Input: Feedback gain K ∈ Rm×n, weight matrices Q, R,

distribution D, smoothing constant r, simulation time τ ,
number of random samples N .
for i = 1 to N do

– Sample a perturbed feedback gain Ki := K + Ui,
where Ui is uniformly distributed on the sphere Sr(0)
of radius r centered at 0.
– Sample an initial condition xi(0) with distribution D.

– Simulate system (1a) with the feedback gain Ki and
the initial condition xi(0) up to time τ and construct

f̂i :=

∫ τ

0

(xT (t)Qx(t) + uT (t)Ru(t)) dt.

end for

Output: The gradient estimate ∇f(K) :=
mn

r2N

N∑
i= 1

f̂i Ui.

r in Algorithm 1 to satisfy

τ ≥ 1

r1(a)
log

(
mnr2(a)

rε

)
, r ≤ min{ ε

r3(a)
, r4(a)}

then the iterates of (RS) starting from the initial condition
K0 ∈ S ⊂ Rm×n with f(K0) = a satisfy the error bound

f(Kk) − f? ≤ (a − f?) (γ(a))k + (1− γ(a))−1ε

with probability at least 1−k(mn+1) exp

(
−Nε2

(3d/2)2 + dε

)
.

Here, d := mnr5(a)/r, f? = f(K?), and N is the number of
simulations in Algorithm 1 that is performed at each iteration.

The proof of Theorem 1 along with a discussion on the
values of parameters r0, . . ., r5, the rate of convergence γ,
and the stepsize α are presented in Section VI.

IV. SYNTHESIS WITH A KNOWN MODEL

The random search method in (RS) at each iteration calls
Algorithm 1 to estimate the gradient of the objective function

∇f(K) = 2
(
RK −BTP (K)

)
X(K). (6)

Here, P (K) is the unique positive definite solution to

(A − BK)TP + P (A − BK) = −Q − KTRK (7)

and X is given by (5) [26]. Note that the existence and
uniqueness of P (K) � 0 is equivalent to the closed-loop
stability, i.e., K ∈ S . Replacing the estimate ∇f(Kk) in (RS)
with ∇f(Kk) yields the gradient descent method

Kk+1 := Kk − α∇f(Kk), K0 ∈ S. (GD)

Although nonconvex, the function f has two main properties
that can be used to prove linear convergence of (GD).

A. Smoothness and gradient dominance over sublevel sets

The gradient descent method converges linearly O(γk) for
some positive γ < 1 if the objective function is smooth and
satisfies the Polyak-Lojasiewicz (PL) condition [27]. These
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properties do not hold for the LQR objective function f
uniformly over its domain S. However, restricted to any
nonempty sublevel set S(a) := {K ∈ S|f(K) ≤ a}, the
function f is indeed L-smooth, i.e.,

f(K
′
) − f(K) ≤ 〈∇f(K),K ′ − K〉 +

L

2
‖K − K ′‖2F

for all K, K ′ ∈ S(a) and it satisfies the PL condition, i.e.,

2µ (f(K) − f(K?)) ≤ ‖∇f(K)‖2F
for all K ∈ S(a) [8]. The explicit dependence of the scalars
L > µ > 0 on a was established in [8] where it was shown
that L and µ are positive rational functions of a. The PL
condition was recently used to show convergence of gradient
descent for LQR problem for discrete-time systems [5].

B. Linear convergence

Our convergence analysis for the random search
method (RS) relies on the convergence of gradient descent.
Although nonuniform, the PL condition along with smooth-
ness of the objective function were used in [8, Theorem 2] to
show linear convergence of the gradient descent method (GD).

Theorem 2: Let L > µ > 0 be the smoothness and PL
parameters of the function f over the sublevel set S(a). For
any initial feedback gain K0 ∈ S(a), the iterates of gradient
descent (GD) with stepsize α ∈ (0, 1/L] satisfy

f(Kk+1) − f(K?) ≤ (1 − αµ)
(
f(Kk) − f(K?)

)
. (8)

V. GRADIENT ESTIMATION

In this section, we analyze the accuracy of the gradient
estimate ∇f(K) resulting from Algorithm 1. The problem
of estimating the gradient using function values obtained
via random sampling has received significant attention for
gradient-free optimization [28]. Let Ub and Us be random
variables centered at 0 that are uniformly distributed on the
ball Br(0) of radius r > 0 and its boundary Sr(0), respec-
tively. For the bounded continuous function f : Rm×n → R,

∇f̄(K) =
mn

r2
EUs

[f(K + Us)Us] (9)

where

f̄(K) := EUb
[f(K + Ub)] (10)

is the r-averaged version of the function f(K) [29, Lemma
2.1]. We use the gradient ∇f̄(K) as a tool to upper bound the
gap between the estimate ∇f(K) produced by Algorithm 1
and the gradient ∇f(K) via the triangle inequality

‖∇f(K) − ∇f(K)‖F ≤ ‖∇f(K) − ∇f̄(K)‖F +

‖∇f̄(K) − ∇f(K)‖F . (11)

The function f(K), however, is not uniformly bounded over
the domain S . In what follows, we first establish a sufficient
condition for the boundedness of the function f(K + U)
for all U ∈ Br(0) to ensure that f̄(K) is well defined and
satisfies (9). Then, we derive upper bounds on the terms
that appear on the right-hand side of (11) and analyze the
accuracy of the gradient estimate.

A. Local boundedness of the function f(K)

An important requirement for the gradient estimation
scheme in Algorithm 1 is the stability of the perturbed closed-
loop systems, i.e., K+Ui ∈ S . Violating such condition leads
to an exponential growth of the state and control signals and
invalidates our proof technique which relies on the premise of
dealing with bounded values of the objective function f(K)
and stable closed-loop systems. In Proposition 1, we establish
a radius within which any perturbation of the feedback gain
K ∈ S remains stabilizing.

Proposition 1: For any feedback gain K ∈ S, we have

{K̂ ∈ Rm×n | ‖K̂ −K‖2 < ζ} ⊂ S

where ζ :=
1

2
λmin(Ω) (‖B‖2‖X(K)‖2)

−1
.

The proof of Proposition 1 relies on KYP lemma [30, Lemma
7.4] and the small-gain test [30, Theorem 8.2]. These are
standard control-theoretic tools that facilitate stability analysis
of linear systems with uncertain parameters. We omit the
proof due to page limitations.

The sample feedback gains K +Ui are stabilizing as long
as the parameter r in Algorithm 1 is smaller that ζ given by
Proposition 1. Moreover, the r-averaged function f̄(K) is
well defined and it satisfies (9).

B. Bounding the distance between ∇f(K) and ∇f̄(K)

From the definition of the function f̄(K) in (10) we have

∇f(K) − ∇f̄(K) = EUb
[∇f(K)−∇f(K + Ub)] (12)

where the random variable Ub is uniformly distributed over
the ball Br(0). Lemma 1 quantifies a Lipschitz continuity
parameter for the gradient ∇f(K) that allows us to bound the
distance ‖∇f(K) − ∇f̄(K)‖F . We also provide Lipschitz
continuity parameters for the objective function and the ma-
trices X(K) and P (K) that are used in the next subsections.

Lemma 1: For any K ∈ S and K̂ ∈ Rm×n such that
‖K̂ −K‖2 < δ, with

δ :=
1

4 ‖B‖F
min

{
λmin(Ω)

trace (X(K))
,

λmin(Q)

trace (P (K))

}
the feedback gain matrix K̂ ∈ S, and

‖X(K̂) −X(K)‖F ≤ ε1‖K̂ −K‖2 (13a)

|f(K̂) − f(K)| ≤ ε2‖K̂ −K‖2 (13b)

‖P (K̂) − P (K)‖F ≤ ε3‖K̂ −K‖2 (13c)

‖∇f(K̂) −∇f(K)‖F ≤ ε4‖K̂ −K‖2 (13d)

where X(K) and P (K) are given by (5) and (7), respectively.
Furthermore, the parameters εi which only depend on K
and problem data are given by ε1 := ‖X(K)‖2/δ, ε3 :=
2 trace(P )(2 ‖P‖2‖B‖F + (δ + 2‖K‖2)‖R‖F )/λmin(Q),
ε2 := ε3‖Ω‖F , ε4 := 2(ε1‖K‖2 + 2‖X(K)‖2)‖R‖F +
2ε1(‖P (K)‖2 + 2ε3‖X(K)‖2)‖B‖F .

Lemma 1 combines the stability margin established in
Proposition 1 with bounds on the norm of inverse Lyapunov
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operator. We omit the proof due to page limitations.

Using Lemma 1, we can bound the right-hand side of
equation (12). This leads to the next proposition.

Proposition 2: For any K ∈ S and r < δ, we have
‖∇f(K)−∇f̄(K)‖F ≤ ε4r, where f̄(K) is the r-averaged
version of f(K) and the parameters δ and ε4 provided in
Lemma 1 only depend on K and problem data.

Proof: Since ‖Ub‖2 ≤ ‖Ub‖F ≤ r, Lemma 1 implies
that, for r < δ, inequality (13d) holds with K̂ := K + Ub.
This yields ‖∇f(K) − ∇f(K + Ub)‖F ≤ ε4‖Ub‖2 ≤ ε4 r.
Taking expectation and using the triangle inequality on (12)
completes the proof.

C. Bounding the distance between ∇f̄(K) and ∇f(K)

The output ∇f(K) of Algorithm 1 is a biased estimator
of ∇f̄(K). We next address the resulting bias and variance.

1) Bias: The bias arises from finite-time approximation
in the simulation step of Algorithm 1. To illustrate this, let
us define the τ -truncated versions of the objective function
f(K) and the matrix X(K) in (5) as

fτ (K) := trace
(
(Q + KTRK)Xτ (K)

)
(14a)

Xτ (K) :=

∫ τ

0

e(A−BK)t Ω e(A−BK)T t dt. (14b)

Using the solution x(t) = e(A−BK)tx(0) of the closed-loop
system, it is straightforward to verify that

fτ (K) = Ex(0)

[∫ τ

0

(xT (t)Qx(t) + uT (t)Ru(t)) dt

]
.

Thus, based on sampling distribution of the random gains
Ui and the initial conditions xi(0) in Algorithm 1, it follows
that the mean value of the gradient estimate ∇f(K) satisfies

E
[
∇f(K)

]
=

mn

r2N

N∑
i= 1

E
[
f̂i Ui

]
=

mn

r2
EUs [fτ (K + Us)Us].

(15)

Here, f̂i is the cost associated with the ith simulation in
Algorithm 1 with the sample feedback gain K + Ui and
Us is uniformly distributed on Sr(0). Now, subtracting (15)
from (9), we can represent the bias term as

∇f̄(K) − E[∇f(K)] =

mn

r2
EUs [(fτ (K + Us)− f(K + Us))Us]. (16)

In Proposition 3, we use this equation to establish an
exponentially vanishing upper bound on the bias.

Proposition 3: For any sublevel set S(a), there are positive
parameters κ̄2, κ̄3, and θ such that the output ∇f(K) of
Algorithm 1 with K ∈ S(a) and r < θ satisfies

‖∇f̄(K) − E [∇f(K)]‖F ≤ (mnκ̄3/r) e−κ̄2τ (17)

where f̄(K) is the r-averaged version of the function f(K).
The parameters κ̄2, κ̄3, and θ are rational functions of a. These

parameters are discussed in the proof; see Appendix A.

2) Variance: We use concentration results to establish a
probabilistic bound on the norm of the random matrix

G := ∇f(K) − E [∇f(K)]

where ∇f(K) = (mn/(r2N))
∑N
i= 1 f̂i Ui is the output of

Algorithm 1. In particular, we can express G as the sum of
N zero-mean i.i.d. random matrices, G =

∑
i Vi,

Vi :=
1

N
(
mn

r2
f̂iUi − E [∇f(K)]).

This allows us to employ the Bernstein inequality [31,
Theorem 1.6.2] to show that ‖G‖F can be made arbitrary
small by choosing a large number of samples N .

Proposition 4: There exists a positive rational function
θ(a) such that, for any sublevel set S(a) of the objective
function f(K), the output of Algorithm 1 with r < θ(a),
K ∈ S(a) ⊂ Rm×n, and N samples satisfies ‖G‖F ≤ ε with

probability at least 1 − (mn + 1) exp

(
−Nε2

(mnl2r )2 + mnlε
3r

)
,

where l := 4aM2/λmin(Ω) and M upper bounds ‖x0‖2.

Proof: See Appendix B.

D. Total error

Herein, we bound the accuracy of the gradient estimate
∇f(K) as a function of the parameters in Algorithm 1. From
inequality (11) and the triangle inequality we have

‖∇f(K) − ∇f(K)‖F ≤ ‖∇f(K) − ∇f̄(K)‖F +

‖∇f̄(K) − E[∇f(K)]‖F + ‖∇f(K) − E[∇f(K)]‖F .
(18)

Theorem 3 combines Propositions 2, 3 and 4 to bound the
terms on the right-hand side of the above inequality. We omit
the proof due to page limitations.

Theorem 3: There exist positive rational functions κ̄(a),
κ̄′(a), θ̄(a), and θ̄′(a) such that for any K ∈ S(a), the output
of Algorithm 1 with

τ ≥ 1

κ̄(a)
log

(
3mnκ̄′(a)

rε

)
, r < min{ ε

θ̄(a)
, θ̄′(a)}

satisfies ‖∇f(K) − ∇f(K)‖F ≤ ε with probability at least

1 − (mn+ 1) exp

(
−Nε2

( 3mnl
2r )2 + mnlε

r

)
where l := 4aM2/λmin(Ω), M is an upper bound on ‖x0‖2,
and mn is the number of entries in K.

VI. CONTROL SYNTHESIS WITH AN UNKNOWN MODEL

In this section, we analyze the random search algorithm
in (RS). Theorem 3 proves that the parameters in Algorithm 1
can be selected to achieve any desired accuracy for the
gradient estimate with high probability. This allows us to
relate the iterates of (RS) to those of gradient descent (GD)
to deduce convergence of (RS) from the linear convergence

4801



of (GD) established in Theorem 2. We use the notation
introduced in Section V to present our main convergence
result. Theorem 4 is a more formal restatement of Theorem 1.

Theorem 4: Let κ̄(a), κ̄′(a), θ̄(a), and θ̄′(a) be positive
rational functions as in Theorem 3. Let stepsize α ∈ (0, 1/L]
and let γ = 1− αµ, where L and µ are the smoothness and
PL parameters of the function f over its sublevel set S(a).
There are positive rational functions δ̄(a) and ε̄2(a) such that
for any K0 ∈ S(a) and ε ≤ min{(a− f?) (1− γ), δ̄ε̄2}, if
we choose the simulation time τ and smoothing parameter r
in Algorithm 1 to satisfy

τ ≥ 1

κ̄
log

(
3mnκ̄′ε̄2α

r ε

)
, r < min{ ε

θ̄ ε̄2α
, θ̄′}

then the iterates of (RS) satisfy

f(Kk) − f? ≤ (a − f?) γk + (1− γ)−1ε

with probability at least

1 − k (mn+ 1) exp

(
−Nε2

( 3mnlε̄2α
2r )2 + mnlε̄2αε

r

)
.

Here, f? := f(K?), N is the number of samples per iteration,
and l := 4aM2/λmin(Ω), where M upper bounds ‖x0‖2.

Proof: For any α ∈ (0, 1/L], by Theorem 2

f(K ′) − f? ≤
(
f(K0) − f?

)
γ (19)

where K ′ = K0 − α∇f(K) is the first iteration of gradient
descent method (GD). As we discuss in the proof of
Proposition 3, the constants δ and ε2 in Lemma 1 can be
uniformly lower and upper bounded over the sublevel set S(a)
by positive rational functions δ̄(a) and ε̄2(a). By Theorem 3,
we can choose parameters in Algorithm 1 such that

‖∇f(K0)−∇f(K0)‖F ≤ ε/(ε̄2α)

w.h.p. Thus, noting that K ′ ∈ S(a), for any ε ≤ δ̄ ε̄2,

‖K1 −K ′‖2 = α‖∇f(K0)−∇f(K0)‖2 ≤ ε/ε̄2 ≤ δ̄

w.h.p. By Lemma 1, it follows that |f(K1) − f(K ′)| ≤ ε
w.h.p. and, thus, from (19) and the triangle inequality, for
any ε ≤ (a− f?)(1− γ), we obtain

f(K1)− f? ≤ ε +
(
f(K0) − f?

)
γ ≤ (a − f?) . (20)

This implies K1 remains in S(a) and we can use induction
on the first inequality in (20) to show that w.h.p.

f(Kk)− f? ≤
(
f(K0) − f?

)
γk + ε

k−1∑
i= 0

γi.

Finally, the probability bound is obtained by applying the
union bound on Theorem 3 for the first k iterations.

VII. CONCLUDING REMARKS

We establish a bound on the sample complexity of a random
search method for solving the continuous-time LQR problem
that directly searches for the controller over the nonconvex
set of stabilizing feedback gains. Our results demonstrate that

with a simulation time of O(log (1/ε)), the random search
method achieves an accuracy level ε at a linear rate provided
that we have enough samples, N = poly (1/ε). In our more
recent work [11], we have improved this result by eliminating
the dependence of N on ε.

APPENDIX

A. Bounding the bias: proof of Proposition 3

We first present a technical lemma whose proof is omitted
due to page limitations.

Lemma 2: For any K ∈ S and τ > 0, the τ -truncated
matrix Xτ (K) and objective function fτ (K) in (14) satisfy

‖X(K)−Xτ (K)‖F ≤ κ1 e−κ2τ (21a)
f(K)− fτ (K) ≤ κ3 e−κ2τ (21b)

where X(K) is given by (5) and the constants are given by

κ1 :=
‖Ω‖F ‖X(K)‖22

λmin(Ω)λmin(X(K))
, κ2 :=

λmin(Ω)

‖X(K)‖2
κ3 := κ1(‖Q‖2 + ‖R‖2‖K‖22).

It has been shown that over the sublevel set S(a), the
values of ‖K‖F , trace(X(K)) and 1/λmin(X(K)) are upper
bounded by linear functions of a [8]. Using these bounds,
it is straightforward to verify that the parameters δ and ε2
in Lemma 1 can be uniformly lower and upper bounded by
rational functions of a for all K ∈ S(a). Let δ̄ and ε̄2 be two
of such bounds, i.e., for any δ ≤ δ̄ and ε2 ≥ ε̄2, Lemma 1
holds for all K ∈ S(a). Similarly, the parameters κ2 and κ3

in Lemma 2 can also be lower and upper bounded uniformly
over the sublevel set S(2a) by polynomial functions of a.
We also let κ̄2 and κ̄3 be two of such bounds, i.e., for any
κ2 ≤ κ̄2 and κ3 ≥ κ̄3, Lemma 2 holds for all K ∈ S(2a).

If we restrict the smoothing parameter r to satisfy the
inequality r < min{δ̄, a/ε̄2}, then from (13b) in Lemma 1
with δ := δ̄ and ε2 := ε̄2, it follows that

f(K + Us)− f(K) ≤ ε̄2 ‖Us‖2 ≤ ε̄2 r ≤ a (22)

for all K ∈ S(a). Thus, from the triangle inequality we obtain
that K+Us ∈ S(2a) for all Us ∈ Sr(0) and K ∈ S(a). This
allows us to use Lemma 2 for all feedback gains K + Us
and κ2 := κ̄2 and κ3 := κ̄3 to obtain that

‖∇f̄(K) − E[∇f(K)]‖F ≤
mn

r2
E[(fτ (K + Us)− f(K + Us)) ‖Us‖F ] ≤ mnκ̄3

r
e−κ̄2τ .

Here, the first inequality follows from applying the triangle
inequality on (16), and the second follows from Lemma 2.

B. Proof of Proposition 4

Since Vi are i.i.d., the Bernstein’s inequality [31, Theorem
1.6.2] implies ‖G‖F ≤ ε with probability not smaller than

1 − (mn+ 1) exp
(
−
(m2n2v′

Nε2r4
+

mnl′ε

3Nε2r2

)−1)
(23)
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where l′ and v′ are the bounds ‖f̂iUi − E[f̂i Ui]‖F ≤ l′,
E[‖f̂i Ui − E[f̂i Ui]‖2F ] ≤ v′. To quantify v′ and l′, we can
restrict r to be smaller than a rational function θ(a) to ensure
K + Ui ∈ S(2a); cf. (22). This allows us to write

‖f̂i Ui − E[f̂i Ui]‖F ≤ 2 r max(f̂i) ≤

2 r max
(
(xi(0))TP (K + Ui)xi(0)

)
≤ 4 r aM2

λmin(Ω)
= r l

where l := 4 aM2/λmin(Ω). Similarly, for the second term,

E
[
‖f̂i Ui − E[f̂i Ui]‖2F

]
= E

[
‖f̂i Ui‖2F

]
−‖E[f̂i Ui]‖2F

≤ r2 max f̂2
i ≤ r2 max

(
(xi(0))TP (K + Ui)xi(0)

)2
≤ 4a2r2M4/λ2

min(Ω) = (r l/2)2.

These bounds in conjunction with (23) complete the proof.
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