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Abstract We review recent results on the convergence and sample complexity of
the random search method for the infinite-horizon linear quadratic regulator (LQR)
problem with unknown model parameters. This method directly searches over the
space of stabilizing feedback gain matrices and, in spite of the lack of convexity,
it converges to the globally optimal LQR solution at a linear rate. These results
demonstrate that for a model-free method that utilizes two-point gradient estimates,
the required simulation time and the total number of function evaluations required
for achieving ε-accuracy are both O(log (1/ε)).

1 Introduction to a model-free LQR problem
The infinite-horizon LQR problem for continuous-time systems is given by

minimize
x, u

E

[ ∫ ∞

0
(xT (t)Qx(t) + uT (t)Ru(t)) dt

]
(1a)

subject to Ûx = Ax + Bu, x(0) ∼ D . (1b)

Here, x(t) ∈ Rn is the state, u(t) ∈ Rm is the control input, A and B are constant
matrices of appropriate dimensions that determine parameters of the model, Q and
R are positive definite matrices, and the expectation is taken over the zero-mean
random initial condition x(0) with distribution D. For any controllable pair (A,B),
the globally optimal solution to (1) takes the state-feedback form u(t) = −K?x(t)
and the optimal feedback gain K? ∈ Rm×n can be obtained by solving the algebraic
Riccati equation. However, this approach is not viable for large-scale systems, when
prior knowledge of system matrices A and B is not available. In this scenario, an
alternative approach is to exploit the linearity of the optimal controller and formulate
the LQR problem as a direct search over the set of feedback gain matrices K , namely
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minimize
K

f (K) (2)

where f (K) is the objective function in (1) associated with the feedback law u = −K x.
However, since f is a nonconvex function ofK , the analysis of local search optimization
algorithms is non-trivial. Furthermore, when the model parameters A and B are not
known, the gradient of the objective function f is not accessible and only zeroth-order
methods that estimate the gradient can be used.

In this chapter, we review recent results on the convergence and sample complexity
of the random search method for optimization problem (2). This problem was recently
examined for both discrete-time [1–3] and continuous-time [4] systems. A common
theme is that approximations of the gradient ∇ f (K) can be obtained via stochastic
simulations of system (1b) [5, 6]. This naturally leads to a zeroth-order optimization
approach that attempts to emulate the behavior of gradient descent. To implement
this approach, it is essential to have access to approximate function values of the form

fx0 ,τ(K) :=
∫ τ

0

(
xT (t)Qx(t) + uT (t)Ru(t)

)
dt (3)

where x(0) = x0 is a random initial condition and [0, τ] is the finite time horizon.
Empirical evidence suggests that the random search method can solve benchmark
control problems with state-of-the-art sample efficiency [5]. The fundamental the-
oretical question is how many function evaluations and what simulation time this
method requires to solve problem (2) up to the desired level of accuracy ε .

In [4], the above question was answered for the two-point setting in which, for any
pair of points K and K ′, the simulation engine returns the random values fx0 ,τ(K)
and fx0 ,τ(K

′) for some random initial condition x0. This is in contrast to the one-pint
setting in which, at each query, the simulation engine can receive only one specified
point K and return the random value fx0 ,τ(K). For convex problems, the gradient
estimates obtained in the two-point setting are known to yield faster convergence rates
than the one-point setting [7]. However, the two-point setting requires simulations of
the system for two different feedback gain matrices under the same initial condition.

For the random search method with one-point gradient estimates to achieve an
accuracy level ε in solving the LQR problem, reference [8] derived an upper bound on
the required number of function evaluations that is proportional to 1/ε2. In this chapter,
we review the results in [4] which demonstrated that the random search method with
two-point gradient estimates converges at a linear rate with high probability. More
specifically, the simulation time and the total number of function evaluations that
the random search method requires to achieve an accuracy level ε are proportional
to log (1/ε). These findings suggest that the use of two-point gradient estimates
significantly improves the sample complexity relative to the one-point setting. Finally,
while we only focus on continuous-time systems, we note that the proof strategy and
results presented here readily extend to discrete-time systems as well [3].



Model-free linear quadratic regulator 3

2 A gradient-based random search method
Herein, we present the gradient descent and the random search method for

problem (2). The LQR objective function in (1) associated with the feedback law
u = −K x is determined by

f (K) :=
{

trace
(
(Q + KT R K)X(K)

)
, K ∈ S

∞, otherwise (4a)

where S := {K ∈ Rm×n | A − BK is Hurwitz} is the set of stabilizing feedback gains
K ,

X(K) :=
∫ ∞

0
e(A−BK)t

Ω e(A−BK)T t dt � 0 (4b)

and Ω := E[x(0)xT (0)] � 0 is the covariance matrix of the initial condition x(0).
Controllability of the pair (A,B) guarantees S , ∅ and, for any K ∈ S [9],

∇ f (K) = 2
(
R K − BT P(K)

)
X(K) (4c)

where
P(K) :=

∫ ∞

0
e(A−BK)T t (Q + KT R K) e(A−BK)t dt � 0. (4d)

With the explicit expression for ∇ f (K) in (4c), the gradient descent method for
problem (2) with the stepsize α > 0 is given by

Kk+1 := Kk − α ∇ f (Kk), K0 ∈ S. (GD)

Algorithm 1 Gradient estimation
Input: Feedback gain K ∈ Rm×n, state and control weight matrices Q and R,
distribution D, smoothing constant r, simulation time τ, number of random
samples N .
for i = 1 to N do
– Define two perturbed feedback gains Ki,1 := K + rUi and Ki,2 := K − rUi ,
where vec(Ui) is a random vector uniformly distributed on the sphere

√
mn Smn−1.

– Sample an initial condition xi from the distribution D.
– For j ∈ {1,2}, simulate system (1b) up to time τ with the feedback gain Ki, j

and initial condition xi to form f̂i, j =
∫ τ

0
(xT (t)Qx(t) + uT (t)Ru(t)) dt.

end for

Output: The gradient estimate ∇ f (K) :=
1

2rN

N∑
i = 1

(
f̂i,1 − f̂i,2

)
Ui .
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In the model-free setting, the gradient descent method is not directly implementable
because computing the gradient ∇ f (K) requires knowledge of system parameters
A and B. To address this challenge, we consider the random search method and
study its convergence properties. At each iteration, this method calls Algorithm 1
to form an empirical approximation ∇ f (Kk) to the gradient ∇ f (Kk) via simulation
of system (1b) for randomly perturbed feedback gains Kk ± Ui , i = 1, . . . ,N , that
belong to the sphere of dimension mn − 1 with radius

√
mn and updates Kk via

Kk+1 := Kk − α ∇ f (Kk), K0 ∈ S. (RS)

Note that the gradient estimation scheme in Algorithm 1 does not require knowledge
of system matrices A and B in (1b) but only access to a simulation engine.

3 Main results
We recently analyzed the sample complexity and convergence of the random search
method (RS) for the model-free setting in [4]. Our main convergence result exploits
two key properties of the LQRobjective function f , namely smoothness and the Polyak-
Łojasiewicz (PL) condition over its sublevel sets S(a) := {K ∈ S | f (K) ≤ a},
where a is a positive scalar. In particular, it can be shown that, restricted to any
sublevel set S(a), the function f satisfies

Smoothness: f (K
′

) − f (K) ≤ 〈∇ f (K),K ′ − K〉 +
L f (a)

2
‖K − K ′‖2F

PL condition: f (K) − f (K?) ≤
1

2µ f (a)
‖∇ f (K)‖2F

for all K and K ′ whose line segment is in S(a), where the smoothness and PL
parameters L f (a) and µ f (a) are positive rational functions of a [10]. We also make
the following assumption on the statistical properties of the initial condition.

Assumption 1 (Initial distribution) Let the distribution D of the initial condition
of system (1b) have i.i.d. zero-mean unit-variance entries with bounded sub-Gaussian
norm. This implies that any random vector v ∼ D satisfies ‖vi ‖ψ2 ≤ κ, for some
constant κ and i = 1, . . . ,n, where ‖ · ‖ψ2 is the sub-Gaussian norm.

We note that the zero-mean Gaussian distribution with identity covariance matrix
obeys Assumption 1. For Gaussian distributions, the above covariance condition is
without loss of generality as we can use a change of variables to make the covariance
matrix identity. With these definitions and assumptions in place we are now ready to
state the main theoretical result.

Theorem 1 ([4]) Consider the random search method (RS) that uses the gradient
estimates of Algorithm 1 for finding the optimal solution K? of problem (2). Let the
initial condition x0 obey Assumption 1 and let the simulation time τ, the smoothing
constant r , and the number of samples N satisfy

τ ≥ θ ′(a) log
1
rε
, r < min{r(a), θ ′′(a)

√
ε}, N ≥ c(1 + β4κ4 θ(a) log6n) n (5)
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for some β > 0 and a desired accuracy ε > 0. Then, starting from any K0 ∈
S(a), the method in (RS) with the constant stepsize α ≤ 1/(32ω(a)L f (a)) achieves
f (Kk) − f (K?) ≤ ε with probability not smaller than 1 − kp − 2kNe−n in at most

k ≤
(
log

f (K0) − f (K?)

ε

)/ (
log

1
1 − µ f (a)α/8

)
iterations. Here, µ f (a) and L f (a) are the PL and smoothness parameters of the
function f over the sublevel set S(a), p := c′(n−β + N−β + Ne− n

8 + e−c′N ), ω(a) :=
c′′

(√
m + βκ2θ(a)

√
mn log n

)2, c, c′, and c′′ are positive absolute constants, and
θ(a), θ ′(a), θ ′′(a) and r(a) are problem-dependent positive parameters.

For a desired accuracy level ε > 0, Theorem 1 shows that the random search
iterates (RS) with constant stepsize (that does not depend on ε) reach an accuracy
level ε at a linear rate (i.e., in at most O(log (1/ε)) iterations) with high probability.
Furthermore, the total number of function evaluations and the simulation time required
to achieve an accuracy level ε are proportional to log (1/ε). This significantly improves
existing results for model-free LQR that require O(1/ε) function evaluations [8].

4 Proof sketch
The smoothness of the objective function along with the PL condition are sufficient
for the gradient descent method to achieve linear convergence even for nonconvex
problems [11]. These properties were recently used to show convergence of gradient
descent for both discrete-time [1] and continuous-time [10] LQR problems.
Theorem 2 ([10]) Consider the gradient descent method (GD) for finding the optimal
solution K? of problem (2). For any initialization K0 ∈ S(a), with the constant
stepsize α = 1/L f (a), we have

f (Kk) − f (K?) ≤ γk
(
f (K0) − f (K?)

)
‖Kk − K?‖2F ≤ b γk ‖K0 − K?‖2F

where γ = 1 − µ f (a)/L f (a) is the linear rate of convergence and b > 0 depends only
on the scalar a and the parameters of the LQR objective function f .

The random search method (RS), however, does not have access to the true value of
the gradient ∇ f (K) as Algorithm 1 produces only a biased estimate ∇ f (K) of ∇ f (K).
Unlike existing techniques that directly work with the gradient estimation error [1, 8],
the proof of Theorem 1 is based on showing a high correlation between the gradient
estimate and the true gradient. In particular, the proof exploits Proposition 1 that
establishes a geometric decrease in the objective value by using an update direction
G which is not necessarily close to ∇ f (K) but is well correlated with it.
Proposition 1 (Approximate GD [4]) If the matrix G ∈ Rm×n and the feedback gain
K ∈ S(a) are such that

〈G,∇ f (K)〉 ≥ µ1‖∇ f (K)‖2F , ‖G‖
2
F ≤ µ2‖∇ f (K)‖2F (6)
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for some scalars µ1, µ2 > 0, then K − αG ∈ S(a) for all α ∈ [0, µ1/(µ2L f (a))], and

f (K − αG) − f (K?) ≤
(
1 − µ f (a)µ1α

) (
f (K) − f (K?)

)
where L f (a) and µ f (a) are the smoothness and PL parameters of the LQR objective
function f over S(a).

To better understand the implications of Proposition 1, let us consider the trivial
example G = ∇ f (K). In this case, the inequalities in (6) hold with µ1 = µ2 = 1.
Thus, for the stepsize α = 1/L f (a), we recover the linear convergence rate of
1 − µ f (a)/L f (a) that was established for the gradient descent method in Theorem 2.

In our convergence analysis, we do not show that ∇ f (K) obeys the approximate
GD condition in Proposition 2 directly. Instead, we introduce an unbiased estimate
∇̂ f (K) of the gradient ∇ f (K) in Eq. (8) and establish the approximate GD condition
for this estimate. We then show that the approximate gradient ∇ f (K) that is utilized
in our algorithm remains close to this unbiased estimate. More specifically, we
establish the following two key properties: first, for any ε > 0, using a simulation
time τ = O(log (1/ε)) and an appropriate smoothing parameter r in Algorithm 1,
the estimation bias ‖∇̂ f (K) − ∇ f (K)‖F can be made smaller than ε ; and, second,
with N = Õ(n) samples, the unbiased estimate ∇̂ f (K) becomes well correlated with
∇ f (K) with high probability. In particular, the events

M1 :=
{〈
∇̂ f (K),∇ f (K)

〉
≥ µ1‖∇ f (K)‖2F

}
,

M2 :=
{
‖∇̂ f (K)‖2F ≤ µ2‖∇ f (K)‖2F

} (7)

occur with high probability for some positive scalars µ1 and µ2.
These two properties combined with Proposition 1 are the key ingredients that

were used to analyze convergence of the random search method (RS) and prove
Theorem 1. We next present main ideas that were used to establish these properties.

4.1 Controlling the bias

Herein, we define the unbiased estimate ∇̂ f (K) of the gradient and quantify an upper
bound on its distance to the output∇ f (K) of Algorithm 1.To simplify our presentation,
for any K ∈ Rm×n, we define the closed-loop Lyapunov operator AK : Sn → Sn,

AK (X) := (A − BK)X + X(A − BK)T

where Sn is the set of symmetric matrices. For K ∈ S, both AK and its adjoint

A∗K (P) = (A − BK)T P + P(A − BK)

are invertible. Moreover, we can represent the matrices X(K) and P(K) in (4) as

X(K) = A−1
K (−Ω), P(K) = (A∗K )

−1(−KT RK − Q).
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For any τ ≥ 0 and x0 ∈ R
n, let fx0 ,τ(K) denote the τ-truncated version of the LQR

objective function associated with system (1b) with the initial condition x(0) = x0
and the feedback law u = −K x as defined in (3). For any K ∈ S and x0 ∈ R

n, the
infinite horizon cost fx0 (K) := fx0 ,∞(K) exists and it satisfies f (K) = Ex0 [ fx0 (K)].
Furthermore, the gradient of fx0 (K) is given by (cf. (4c))

∇ fx0 (K) = 2(R K − BT P(K))Xx0 (K), Xx0 (K) := A−1
K (−x0xT0 ).

Since the gradients ∇ f (K) and ∇ fx0 (K) are linear in X(K) and Xx0 (K), respectively,
for the random initial condition x(0) = x0 with E[x0xT0 ] = Ω, if follows that

Ex0 [Xx0 (K)] = X(K), Ex0 [∇ fx0 (K)] = ∇ f (K).

Next, we define the following three estimates of the gradient

∇ f (K) :=
1

2rN

N∑
i = 1

(
fxi ,τ(K + rUi) − fxi ,τ(K − rUi)

)
Ui

∇̃ f (K) :=
1

2rN

N∑
i = 1

(
fxi (K + rUi) − fxi (K − rUi)

)
Ui

∇̂ f (K) :=
1
N

N∑
i = 1

〈
∇ fxi (K),Ui

〉
Ui

(8)

Here, Ui ∈ R
m×n are i.i.d. random matrices with vec(Ui) uniformly distributed

on the sphere
√

mn Smn−1 and xi ∈ Rn are i.i.d. random initial conditions sam-
pled from distribution D. Note that ∇̃ f (K) is the infinite horizon version of
∇ f (K) produced by Algorithm 1 and ∇̂ f (K) is an unbiased estimate of ∇ f (K).
The fact that E[∇̂ f (K)] = ∇ f (K) follows from EU1 [vec(U1)vec(U1)

T ] = I and
Exi ,Ui

[
vec(∇̂ f (K))

]
= EU1 [〈∇ f (K),U1〉 vec(U1)] = vec(∇ f (K)).

Local boundedness of the function f (K):An important requirement for the gradient
estimation scheme in Algorithm 1 is the stability of the perturbed closed-loop systems,
i.e., K ± rUi ∈ S; violating this condition leads to an exponential growth of the
state and control signals. Moreover, this condition is necessary and sufficient for
∇̃ f (K) and ∇̂ f (K) to be well defined. It can be shown that for any sublevel set
S(a), there exists a positive radius r such that K + rU ∈ S for all K ∈ S(a) and
U ∈ Rm×n with ‖U‖F ≤

√
mn. Herein, we further require that r is small enough

so that K ± rUi ∈ S(2a) for all K ∈ S(a). Such upper bound on r is provided in
Lemma 1.

Lemma 1 ([4]) For any K ∈ S(a) and U ∈ Rm×n with ‖U‖F ≤
√

mn, K + r(a)U ∈
S(2a), where r(a) := c̃/a for some constant c̃ > 0 that depends on the problem data.

Note that for any K ∈ S(a) and r ≤ r(a) in Lemma 1, ∇̃ f (K) and ∇̂ f (K) are well
defined since the feedback gains K + rUi are all stabilizing. We next present an upper
bound on the difference between the output ∇ f (K) of Algorithm 1 and the unbiased
estimate ∇̂ f (K) of the gradient ∇ f (K). This can be accomplished by bounding the
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difference between these two quantities and ∇̃ f (K) through the use of the triangle
inequality

‖∇̂ f (K) − ∇ f (K)‖F ≤ ‖∇̃ f (K) − ∇ f (K)‖F + ‖∇̂ f (K) − ∇̃ f (K)‖F . (9)

Proposition 2 provides an upper bound on each term on the right-hand side of (9).

Proposition 2 ([4]) For any K ∈ S(a) and r ≤ r(a), where r(a) is given by Lemma 1,

‖∇̃ f (K) − ∇ f (K)‖F ≤
√

mn maxi ‖xi ‖2

r
κ1(2a) e−τ/κ2(2a)

‖∇̂ f (K) − ∇̃ f (K)‖F ≤
(rmn)2

2
`(2a)max

i
‖xi ‖2

where `(a) > 0, κ1(a) > 0, and κ2(a) > 0 are polynomials of degree less than 5.

The first term on the right-hand side of (9) corresponds to a bias arising from the
finite-time simulation. Proposition 2 shows that although small values of r may yield
large ‖∇̃ f (K) −∇ f (K)‖F , because of the exponential dependence of the upper bound
on the simulation time τ, this error can be controlled by increasing τ. In addition, since
∇̂ f (K) is independent of the parameter r , this result provides a quadratic bound on
the estimation error in terms of r . It is also worth mentioning that the third-derivative
of the function fx0 (K) is utilized in obtaining the second inequality.

4.2 Correlation of ̂∇ f (K) and ∇ f (K)
In this section, we show that the events Mi in (7) hold with high probability. The
key enabler of the proof is that the random inner product

〈
∇ f (K), ∇̂ f (K)

〉
is very

well concentrated around its mean ‖∇ f (K)‖2F . We next describe this phenomena
in more detail. The proof exploits the problem structure to confine the dependence
of ∇̂ f (K) on the random initial conditions xi into a zero-mean random vector. In
particular, for any given feedback gain K ∈ S and initial condition x0 ∈ R

n, we have
∇ f (K) = E X , and ∇ fx0 (K) = E Xx0 , where E := 2(RK − BT P(K)) ∈ Rm×n is a fixed
matrix, X = −A−1

K (Ω), and Xx0 = −A
−1
K (x0xT0 ). Thus, we can represent the gradient

estimate ∇̂ f (K) as

∇̂ f (K) =
1
N

N∑
i = 1

〈
E Xxi ,Ui

〉
Ui = ∇̂1 + ∇̂2

where ∇̂1 :=
1
N

N∑
i = 1

〈
E(Xxi − X),Ui

〉
Ui and ∇̂2 :=

1
N

N∑
i = 1
〈∇ f (K),Ui〉Ui . Note that

∇̂2 does not depend on the initial conditions xi . Moreover, from E[Xxi ] = X and the
independence of Xxi and Ui , we have E[∇̂1] = 0 and E[∇̂2] = ∇ f (K).

We next present the key technical results that were used to study the probability
of the events Mi in (7) for suitable values of µ1 and µ2. These results are obtained
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using standard tools from non-asymptotic statistical analysis of the concentration of
random variables around their average; see a recent book [12] for a comprehensive
discussion. Herein, we use c, c′, c′′, etc. to denote positive absolute constants.

Proposition 3 can be used to show that with enough samples N = Õ(n), the inner
product of the zero-mean term ∇̂1 and the gradient ∇ f (K) can be controlled with
high probability. This result is the key for analyzing the probability of the event M1.

Proposition 3 ( [4]) Let X1, . . . ,XN ∈ R
n×n be i.i.d. random matrices distributed

according toM(xxT ), where x ∈ Rn is a random vector whose distribution obeys
Assumption 1 andM is a linear operator, and let X := E[X1] = M(I). Also, let
U1, . . . ,UN ∈ R

m×n be i.i.d. random matrices with vec(Ui) uniformly distributed on
the sphere

√
mn Smn−1. For any E ∈ Rm×n and positive scalars δ and β,

P

{����� 1
N

N∑
i=1
〈E (Xi − X) ,Ui〉 〈E X,Ui〉

����� ≤ δ‖E X ‖F ‖E ‖F

}
≥ 1 − C ′N−β − 4Ne−

n
8

if N ≥ C(β2κ2/δ)2 (‖M∗‖2 + ‖M
∗‖S)

2 n log6n, where ‖ · ‖S denotes the spectral
induced norm.

The proof of Proposition 3 exploits the Hanson-Wright inequality along with a well-
known upper bound on the norm of random matrices [13, Theorems 1.1 and 3.2]. In
Proposition 4, we present a technical result that can be used to show that

〈
∇̂2,∇ f (K)

〉
concentrates with high probability around its average ‖∇ f (K)‖2F .

Proposition 4 ( [4]) Let U1, . . . ,UN ∈ R
m×n be i.i.d. random matrices with each

vec(Ui) uniformly distributed on the sphere
√

mn Smn−1. Then, for any W ∈ Rm×n

and scalar t ∈ (0,1], we have

P

{
1
N

N∑
i = 1
〈W,Ui〉

2 < (1 − t)‖W ‖2F

}
≤ 2 e−cNt2

.

The proof of Proposition 3 relies on the Bernstein inequality [12, Corollary 2.8.3].
Using Propositions 3 and 4, it is straightforward to show that the event M1 occurs
with high probability.

Next, we turn our attention to quantifying the probability of the event M2 in (7).
Proposition 5 presents a technical result that can be used to quantify a high probability
upper bound on ‖∇̂1‖F/‖∇ f (K)‖. This result is analogous to Proposition 3 and it
can be used to study the event M2.

Proposition 5 ([4]) Let Xi and Ui with i = 1, . . . ,N be random matrices defined in
Lemma 3, X := E[X1], and let N ≥ c0n. For any E ∈ Rm×n and β > 0, we have

1
N
‖

N∑
i = 1
〈E (Xi − X) ,Ui〉Ui ‖F ≤ c1β κ

2(‖M∗‖2 + ‖M
∗‖S)‖E ‖F

√
mn log n

with probability not smaller than 1 − c2(n−β + Ne− n
8 ).
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In Proposition 6,we present a technical result that can be used to study ‖∇̂2‖F/‖∇ f (K)‖.

Proposition 6 ([4]) Let U1, . . . ,UN ∈ R
m×n be i.i.d. random matrices with vec(Ui)

uniformly distributed on the sphere
√

mn Smn−1 and let N ≥ Cn. Then, for any
W ∈ Rm×n,

P

{
1
N
‖

N∑
j = 1

〈
W,Uj

〉
Uj ‖F > C ′

√
m‖W ‖F

}
≤ 2Ne−

mn
8 + 2e−ĉN .

Using Propositions 5 and 6, it is straightforward to show that the event M2 occurs
with high probability.

5 An example
We consider a mass-spring-damper system with s = 10 masses, where we set all
mass, spring, and damping constants to unity. In state-space representation (1b), the
state x = [ pT vT ]T contains the position and velocity vectors and the dynamic and
input matrices are given by

A =
[

0 I
−T −T

]
, B =

[
0
I

]
where 0 and I are s × s zero and identity matrices, and T is a Toeplitz matrix with 2
on the main diagonal, −1 on the first super and sub-diagonals, and zero elsewhere.
In this example, the A-matrix is Hurwitz and the objective of control is to optimize
the LQR cost with Q and R equal to identity. We also let the initial conditions xi in
Algorithm 1 be standard normal and use N = n = 2s samples.

For two values of the smoothing parameter r = 10−4 (blue) and r = 10−5 (red),
and for K = 0, we illustrate in Figure 1(a) the dependence of the relative error
‖∇̂ f (K) − ∇ f (K)‖F/‖∇̂ f (K)‖F , and in Figure 1(b), that of the total relative error
‖∇ f (K) − ∇ f (K)‖F/‖∇ f (K)‖F on the simulation time τ. In Figure 1(a), we observe
an exponential decrease in error for small values of τ. In addition, the error does not
pass a saturation level which is determined by r. We also see that, as r decreases,
this saturation level becomes smaller. These observations are in harmony with the
theoretical developments presented in this chapter; in particular, Proposition 2 coupled
with the triangle inequality yield

‖∇̂ f (K) − ∇ f (K)‖F ≤
(√

mn
r

κ1(2a) e−κ2(2a)τ +
r2m2n2

2
`(2a)

)
max
i
‖xi ‖2.

This upper bound clearly captures the exponential dependence of the bias on the
simulation time τ as well as the saturation level that depends quadratically on the
smoothing parameter r .

On the other hand, in Figure 1(b), we observe that the distance between the
approximate gradient ∇ f (K) and the true gradient is rather large. In contrast to the
existing results which rely on the use of the estimation error shown in Figure 1(b),
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Proposition 2 shows that the simulated gradient ∇ f (K) is close to the gradient
estimate ∇̂ f (K), which although is not close to the true gradient ∇ f (K), is highly
correlated with it. This is sufficient for establishing convergence guarantees and
reducing both sample complexity and simulation time to O(log (1/ε)).

(a) (b)

‖
∇̂

f(
K
)
−
∇

f(
K
)‖

F

‖
∇̂

f(
K
)‖

F

τ

‖
∇

f(
K
)
−
∇

f(
K
)‖

F

‖
∇

f(
K
)‖

F

τ

Fig. 1 (a) Bias in gradient estimation and (b) total error in gradient estimation as functions of the
simulation time τ. The blue and red curves correspond to two values of the smoothing parameter
r = 10−4 and r = 10−5, respectively.

Finally, Figure 2 demonstrates linear convergence of the randomsearchmethod (RS)
with stepsize α = 10−4, and (r = 10−5, τ = 200) in Algorithm 1, as established in
Theorem 1.

f(
K

k
)
−

f(
K
?
)

f(
K

0 )
−

f(
K
?
)

k
Fig. 2 Convergence curve of the random search method (RS).
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6 Thoughts and outlook
For the discrete-time LQR problem, global convergence guarantees were provided
in [1] for gradient decent and the random search methods with one-point gradient
estimates. Furthermore, a bound on the sample complexity for reaching the error
tolerance ε that requires a number of function evaluations that is at-least proportional
to (1/ε4) log(1/ε)was established. If one has access to the infinite horizon cost values,
i.e., if τ = ∞, the number of function evaluations for the random search method with
one-point estimates was improved to 1/ε2 in [8]. Moreover, this work showed that
the use of two-point estimates reduces the number of function evaluations to 1/ε .

In this chapter, we focus on the continuous-time LQR problem and summarize
the results presented in [4, 10,14,15]. These recent references demonstrate that the
random search method with two-point gradient estimates converges to the optimal
solution at a linear rate with high probability. Relative to the existing literature, a
significant improvement is offered both in terms of the required function evaluations
and simulation time. Specifically, the total number of function evaluations required
to achieve an accuracy level ε is proportional to log (1/ε) compared to at least
(1/ε4) log (1/ε) in [1] and 1/ε in [8]. Similarly, the simulation time required to
achieve an accuracy level ε is proportional to log (1/ε); this is in contrast to [1] which
requires poly(1/ε) simulation time and [8] which assumes an infinite simulation time.
We refer the reader to [4] for a comprehensive discussion along with all technical
details that are omitted here for brevity.
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