
Journal of Non-Newtonian Fluid Mechanics 302 (2022) 104742

A
0

U
H
V
a

b

c

d

e

f

g

A

K
O
P
E
E
N
N

1

p
b
t
i
o
n
t
d
t
n
i

A

G

h
R

Contents lists available at ScienceDirect

Journal of Non-Newtonian Fluid Mechanics

journal homepage: www.elsevier.com/locate/jnnfm

nderstanding viscoelastic flow instabilities: Oldroyd-B and beyond✩

ugo A. Castillo Sánchez a,1, Mihailo R. Jovanović b, Satish Kumar c, Alexander Morozov d,
. Shankar e, Ganesh Subramanian f, Helen J. Wilson g

Department of Applied Mathematics and Statistics, Institute of Mathematics and Computational Sciences, University of Sao Paulo, Brazil
Ming Hsieh Department of Electrical and Computer Engineering, University of Southern California, Los Angeles, CA 90089, USA
Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN 55455, USA
SUPA, School of Physics and Astronomy, The University of Edinburgh, Edinburgh EH9 3FD, UK
Department of Chemical Engineering, Indian Institute of Technology, Kanpur 208016, India
Engineering Mechanics Unit, Jawaharlal Nehru Center for Advanced Scientific Research, Bangalore 560064, India
Mathematics Department, University College London, Gower Street, London WC1E 6BT, UK

R T I C L E I N F O

eywords:
ldroyd-B fluid
urely elastic instability
lastic turbulence
lasto-inertial turbulence
onmodal stability
onlinear stability

A B S T R A C T

The Oldroyd-B model has been used extensively to predict a host of instabilities in shearing flows of viscoelastic
fluids, often realized experimentally using polymer solutions. The present review, written on the occasion of
the birth centenary of James Oldroyd, provides an overview of instabilities found across major classes of
shearing flows. These comprise (i) the canonical rectilinear shearing flows including plane Couette, plane and
pipe Poiseuille flows; (ii) viscometric shearing flows with curved streamlines such as those in the Taylor–
Couette, cone-and-plate and parallel-plate geometries; (iii) non-viscometric shearing flows with an underlying
extensional flow topology such as the flow in a cross-slot device; and (iv) multilayer shearing flows. While
the underlying focus in all these cases is on results obtained using the Oldroyd-B model, we also discuss their
relation to the actual instability, and as to how the shortcomings of the Oldroyd-B model may be overcome by
the use of more realistic constitutive models. All the three commonly used tools of stability analysis, viz., modal
linear stability, nonmodal stability, and weakly nonlinear stability analyses are discussed, with supporting
evidence from experiments and numerical simulations as appropriate. Despite only accounting for a shear-
rate-independent viscosity and first normal stress coefficient, the Oldroyd-B model is able to qualitatively
predict the majority of instabilities in the aforementioned shearing flows. The review also highlights, where
appropriate, open questions in the area of viscoelastic stability.
. Introduction

Compelling differences between Newtonian and viscoelastic flow
henomena in the same geometry have been well highlighted in text-
ooks [1], and this contrast also applies to instabilities occurring in
he same base-flow configuration. Viscoelastic flows are prone to novel
nstabilities that arise due to elasticity alone, or due to a combination
f elastic and inertial effects, and such instabilities evidently have
o Newtonian counterparts. Initial interest in the understanding of
hese instabilities was driven by the need to prevent their occurrence
uring polymer processing operations [2,3], and thereby circumvent
he associated restrictions on processing rates; fluid inertia is usually
egligible in these processes, and the focus is therefore on purely elastic
nstabilities. For instance, during extrusion of highly viscous entangled
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polymer melts, the extrudate often exhibits a spiral or wavy distortion,
a phenomenon referred to as ‘melt fracture’ [4], and thought to occur
via a hydrodynamic instability; although, physicochemical effects such
as wall slip likely play a role [5]. A second, more recent, motivation
for studying viscoelastic flow instabilities arose from their discovery in
the standard rheometric geometries (e.g. the Couette, cone-and-plate
and parallel-plate set ups); for instance, see [6,7]. The occurrence of
purely elastic instabilities, in dilute polymer solutions subject to simple
curvilinear shearing flows in rheometric devices, hampered their use
for purposes of rheological characterization; an understanding of these
instabilities is clearly essential for defining the operating range of these
devices. The elastic instabilities above have their origins in normal
stress differences present in viscoelastic shear flows. For the curvilinear
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shearing flows in particular, the first normal stress difference leads
to a hoop stress, on account of streamline curvature, which drives an
instability.

Viscoelastic flow instabilities can also be beneficial depending on
the scenario. For instance, with regard to the rheometric example
above, increasing the shear rate causes the initial elastic instability
to eventually saturate in a complex disorderly nonlinear flow state
termed ‘elastic turbulence’ (ET) [8–10]. There have been reports of
similar ET-like states in rectilinear flows of dilute polymer solutions
through micro-channels, especially when the flow is perturbed by
finite-amplitude obstacles at the channel inlet [11–14]. The inacces-
sibility of Newtonian turbulence on microfluidic scales (owing to the
modest Reynolds numbers) implies that the ET state, in either of the
two cases above, can instead be exploited towards increasing mixing
efficiencies, as has indeed been demonstrated in earlier efforts [9].

While the above instances probed the low Reynolds number (𝑅𝑒)
regime where fluid inertial effects are negligible, there have also been
many reports of ‘early turbulence’ in pipe flow of polymer solutions at
higher 𝑅𝑒, albeit still lower than the oft-quoted Newtonian threshold
of 𝑅𝑒 ∼ 2000 [15–21]; these early studies were, however, not systemat-
ically corroborated in the subsequent literature. In contrast, the recent
experiments of Hof and coworkers [22,23], involving pipe flow of
polymer solutions at concentrations below or close to the overlap value,
have unambiguously demonstrated transition from the laminar state
at 𝑅𝑒 ∼ 1000, thereby confirming the aforementioned observations.
The ensuing flow was found to be neither laminar, nor to bear a
resemblance to Newtonian turbulence, and was therefore christened
‘elasto-inertial turbulence’ (EIT) to emphasize the importance of both
fluid elasticity and inertia, in contrast to the ET states discussed above.
This EIT state was further shown to be linked [24] to the asymptotic
maximum drag reduction (MDR) regime, a universal state that arises
with the progressive addition of polymers to turbulent Newtonian pipe
flow [25]. This link is an important one. The phenomenon of turbu-
lent drag reduction [26] is undoubtedly one of the most spectacular
manifestations of viscoelasticity, and while there exists a vast body of
literature in this regard [27–29], the prevailing viewpoint regards the
aforementioned MDR regime as a drag-reduced state accessible only
from the Newtonian turbulent state; even relatively recent dynamical-
systems-based interpretations have attempted to understand MDR in
terms of the existence of essentially Newtonian coherent structures,
modified by elasticity [30,31]. As a consequence, advances in viscoelas-
tic stability and drag reduction have occurred largely independently
with very little cross-pollination of theoretical viewpoints. However, as
we discuss later in this review, the aforementioned pipe flow experi-
ments, together with recent theoretical work [32], show that the MDR
regime, at least for moderate 𝑅𝑒, can be viewed as a ‘drag-enhanced’
state arising from an elastoinertial instability of the laminar base flow.
The above efforts for pipe flow, and other recent efforts that include
theoretical [33], computational [34] and experimental [7] investiga-
tions of other rectilinear and curvilinear shearing flow configurations,
reflect an increasing interest in the origin and dynamics of elastoinertial
instabilities.

The present review article, written on the occasion of the birth
centenary of James Oldroyd who proposed the now-eponymous con-
stitutive equation [35], attempts to provide a state-of-the-art summary
of the understanding of flow instabilities using the Oldroyd-B model.
That said, however, where appropriate, we also discuss the use of
more refined constitutive models, with physics outside of the Oldroyd-B
framework, that are often crucial to obtaining better agreement with
experimental observations. Indeed, from a fundamental standpoint,
an accurate prediction of viscoelastic flow instabilities may also be
regarded a rigorous test that aids in the eventual development of
physically sensible constitutive equations [7,36]. While there have been
many earlier review articles on the subject of viscoelastic flow instabili-
ties [2,3,6,7], the present review focuses on the developments over the
2

last two decades. Further, in contrast to some of the review articles t
above, which have focused almost exclusively on hoop-stress-driven
elastic instabilities that arise in the curvilinear rheometric geometries,
this review covers instabilities in both the canonical rectilinear and
curvilinear shearing flows, with the latter encompassing both viscomet-
ric and non-viscometric flow configurations. In fact, the experimental
observations mentioned in the preceding paragraph, pertaining to the
moderate-to-high 𝑅𝑒 regimes in flow through pipes and channels, have
spawned renewed interest in viscoelastic instabilities that occur in recti-
linear shearing flows, and the present review lays a greater emphasis on
these more recent findings. The review by Renardy and Thomases [37]
in this special issue presents a different perspective, by focusing on
open mathematical challenges related to the Oldroyd-B model, and
the write-up of Hinch and Harlen [38] provides a conceptual account
of Oldroyd’s formulation of upper- and lower-convected derivatives.
While the review by Shaqfeh and Khomami [39], also a part of this
special issue, addresses instabilities in curvilinear viscoelastic flows
based on the Oldroyd-B model, as already mentioned, we also place
an emphasis (in Section 4 below) on how the use of genuinely non-
linear constitutive equations that account for shear-thinning effects
plays an important role in more accurate predictions of experimental
observations. Another recent multi-author review article [40], based
on the virtual workshop on viscoelastic flow instabilities and elastic
turbulence organized by the Princeton Center for Theoretical Sciences,
also provides a state-of-the-art summary of the various challenges in
this broad area.

It is worth recalling that Oldroyd, in his seminal 1950 paper [35],
proposed a constitutive model for viscoelastic flows purely from a
continuum viewpoint, by requiring the model to satisfy the principle
of material frame indifference. As discussed by Hinch and Harlen [38],
Oldroyd argued that the frame indifference implied that the time
derivative of the stress tensor be computed in a reference frame that un-
dergoes local translation, rotation, and deformation with the material.
The usual material derivative in fluid mechanics denotes the instanta-
neous rate of change of a fluid property (e.g. velocity, temperature)
in a reference frame that translates with a given fluid element, and is
thereby appropriate only for a point microstructure. In contrast, the
upper convected derivative introduced by Oldroyd denotes the rate
of change in a reference frame that, in addition, deforms (affinely)
with the fluid motion, thereby accounting (implicitly) for an underlying
orientable microstructure.

Interestingly, the Oldroyd-B constitutive equation can also be de-
rived from a coarse-grained, mesoscopic model wherein a dilute so-
lution of polymer molecules is modeled as a dilute suspension of
non-interacting Hookean ‘dumbbells’ in a Newtonian solvent, each
polymer molecule being idealized as a dumbbell comprising an in-
finitely extensible Hookean spring connecting two beads which account
for the drag experienced by the polymer molecule [1,41]. Any addi-
tional physical effects entering this mesoscopic picture, for instance,
a nonlinear spring force, a configuration-dependent bead drag, or hy-
drodynamic interaction between the beads, invariably lead to a closure
problem, and derivation of the equation governing the polymeric stress,
to be used in the continuum mechanical formulation, requires appro-
priate pre-averaging approximations. The stress tensor in the Oldroyd-B
constitutive equation is conveniently divided into two parts that cor-
respond to the polymeric and Newtonian solvent contributions. Thus,
the stress is written as 𝝉 = 𝝉𝑝 + 𝝉𝑠, where the solvent contribution 𝝉𝑠 =
𝜂𝑠(∇𝒗 + ∇𝒗𝑇 ), 𝜂𝑠 being the solvent viscosity, and the polymeric contri-
bution 𝝉𝑝 is given by the ‘upper-convected Maxwell’ (UCM) constitutive
equation:

𝜆
( 𝜕𝝉𝑝
𝜕𝑡

+ 𝒗 ⋅ ∇𝝉𝑝 − (∇𝒗)𝑇 ⋅ 𝝉𝑝 − 𝝉𝑝 ⋅ (∇𝒗)
)

+ 𝝉𝑝 = 𝜂𝑝
(

∇𝒗 + ∇𝒗𝑇
)

. (1)

he terms within parentheses on the left-side of the above equation
epresent the upper-convected derivative of 𝝉𝑝 described above, 𝜆 is the
elaxation time of the dumbbell, being related to the longest relaxation
ime of the polymer molecule, and 𝜂 is the polymeric contribution to
𝑝
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the steady-shear viscosity. The nonlinear coupling between the velocity
and the stress in the upper-convected derivative suggests that, even
in the absence of fluid inertia, one may anticipate bifurcations from
a given base flow, leading to qualitatively new instabilities — such
bifurcations are indeed the basis of the purely elastic instabilities
mentioned earlier. In the limit of zero solvent viscosity, 𝜂𝑠 = 0, the
Oldroyd-B model reduces to the UCM model.

For steady simple shear flow, the Oldroyd-B model predicts a shear-
rate-independent viscosity and first normal stress coefficient 𝛹1 =
𝑁1∕ ̇𝛾2 (where 𝑁1 is the first normal stress difference and 𝛾̇ is the
shear rate), and yields a zero second-normal stress difference (𝑁2 =
0). The shear-rate-independence is due to the infinite extensibility
of the Hookean dumbbells in the mesoscopic picture underlying the
Oldroyd-B model. The Hookean response is valid only for small de-
formations from the equilibrium conformation of a polymer molecule.
Consequently, the Oldroyd-B model is not applicable for strongly shear-
thinning systems such as polymer melts or water-based dilute polymer
solutions. The Oldroyd-B model also cannot describe phenomena as-
cribable exclusively to an 𝑁2 which, in the present context, include
spanwise instabilities in a rectilinear shearing flow [42,43]. While the
model correctly predicts a thickening behavior in extensional flows, it
also predicts an unbounded growth of the extensional viscosity beyond
a threshold extension rate, this growth again arising from the infinite
extensibility of the Hookean dumbbells. Thus, the Oldroyd-B model is
expected to be more relevant to shear-dominated flows.

One way to rectify the aforementioned shortcomings of the Oldroyd-
B model is to go beyond the Hookean dumbbell assumption, by in-
corporating a nonlinear spring with the spring force diverging at a
finite maximum extension; the most commonly used form of the force
law leads to the so-called finitely extensible nonlinear elastic (‘FENE’)
springs [44]. The nonlinearity of FENE springs does not allow for an
analytical solution of the Smoluchowski equation in the underlying
kinetic theory framework [45]. Consequently, preaveraging approxima-
tions are needed to obtain a closed-form relation between the stress
and the strain rate, and the constitutive equation thus obtained is
referred to as the ‘FENE-P’ model (‘P’ being Peterlin, who proposed
this approximation). The FENE-P model is characterized by an ad-
ditional dimensionless parameter, 𝐿, which is the ratio of the fully
stretched length to the equilibrium coil dimension; 𝐿 → ∞ recovers
the Oldroyd-B model. The nonlinear stiffening of the spring, and the
resulting decrease in the relaxation time implies that the FENE-P model
predicts shear thinning of both the viscosity and the first normal
stress coefficient at high shear rates. The inclusion of a nonlinear
spring force also removes the divergence of the extensional viscosity,
causing it to saturate at a large but finite value, in accord with ex-
perimental observations [41]. A closely related nonlinear constitutive
equation that also incorporates a finitely extensible spring is the FENE-
CR model (proposed by Chilcot and Rallison [46]), which predicts a
constant shear viscosity, while allowing a for a shear-rate dependence
of the first normal stress coefficient, and is thereby especially suited for
the so-called Boger fluids; see footnote 5 in Section 4.2.

A second way of addressing the deficiencies of the Oldroyd-B model,
one appropriate for concentrated polymer solutions, is to recognize the
anisotropy of a given dumbbell’s environment, this anisotropy arising
from the stretched dumbbells in its neighborhood; this may be incor-
porated via an anisotropic tensorial correction to the relaxation term.
Giesekus [47] postulated that the tensor characterizing the anisotropy
is proportional to the (deviatoric) stress itself, leading to the Giesekus
constitutive equation. The proportionality constant, 𝛼, measures the
amplitude of anisotropy, with 𝛼 = 1 denoting maximum anisotropy, and
𝛼 = 0 denoting the original isotropic relaxation in the UCM model [41].
For any non-zero 𝛼, the Giesekus model includes an additional term
quadratic in the stress tensor which becomes important in the nonlinear
regime. Similar to the FENE-P model, the Giesekus model predicts shear
thinning of both the viscosity and first normal stress coefficient, and
3

does not exhibit any singularity in the extensional viscosity. a
Even for the simplest shearing flows driven by the motion of rigid
boundaries, and that are characterized by a single length (𝐻) and
velocity (𝑉 ) scale, the stability of an Oldroyd-B fluid is governed by
three dimensionless parameters: the Reynolds number 𝑅𝑒 = 𝐻𝑉 𝜌∕𝜂,
the Weissenberg number 𝑊𝑖 = 𝜆𝑉 ∕𝐻 which is the product of the
polymer relaxation time and a typical shear rate, and the ratio of
solvent to solution viscosity 𝛽 = 𝜂𝑠∕(𝜂𝑠 + 𝜂𝑝); here, 𝜌 and 𝜂 = 𝜂𝑝 + 𝜂𝑠
re, respectively, the density and total viscosity of the polymer solution.
or purely elastic instabilities, 𝑊𝑖 and 𝛽 are the relevant parameters;
he elasticity number 𝐸 = 𝑊𝑖∕𝑅𝑒 = 𝜆𝜂∕(𝜌𝐻2), that is independent of
he flow, being the ratio of the polymer relaxation and the momentum
iffusion timescales, may also be used (instead of either 𝑅𝑒 or 𝑊𝑖)
hen describing elastoinertial instabilities. We note in passing that

he capillary number, denoting the ratio of viscous to surface tension
orces, will become relevant for shearing flows with a free surface. For
iscoelastic flows in particular, the ‘elastocapillary’ number, which is
he ratio of Weissenberg and capillary numbers, may be used [48].
n flow configurations involving multiple length scales and/or in the
resence of an unsteady shear, the Deborah number (𝐷𝑒), defined as
he ratio of the relaxation time to a characteristic flow time 𝑇 , is also
sed; here, 𝑇 can be either the residence time of a fluid element in the
egion of interest or the time period of an oscillatory shear flow. The
eborah and Weissenberg numbers are often interchangeably used for

teady shearing flows. For the curvilinear viscometric flows examined
n Section 4, 𝐷𝑒 and 𝑊𝑖 will be seen to be related to each other by the
spect ratio of the particular flow configuration [49].

In light of the above, the subject of transition in viscoelastic shearing
lows, unlike their Newtonian counterparts, is not a ‘single problem’.
or a given viscoelastic shearing flow, one could be in an inertially
ominant regime with weak elasticity (𝑊𝑖 ≪ 1, 𝑅𝑒 ≫ 1), a strongly
lastic near-Stokesian regime (𝑊𝑖 ∼ 𝑂(1), 𝑅𝑒 ≪ 1), or an elasto-
nertial regime with inertia and elasticity being of comparable impor-
ance (𝑊𝑖,𝑅𝑒 > 1, 𝐸 ∼ 𝑂(1)); the nature of transition would depend
ensitively on the particular asymptotic regime. In addition, the solvent
iscosity ratio 𝛽, which is a proxy for polymer concentration, allowing
ne to span the regimes from ultra-dilute polymer solutions (𝛽 → 1)
o polymer melts (𝛽 → 0), is also expected to influence the transition.
hus, transition from the steady laminar state, to states with nontrivial
patiotemporal dynamics, can occur via multiple pathways in 𝑅𝑒−𝑊 𝑖−
space; we return to the aspect of multiple transition scenarios, in the

ontext of rectilinear flows, in Section 2.3.
The first step in analyzing the stability of a laminar flow is to

onsider its response to infinitesimal disturbances, which allows for
he linearization of the governing equations about the laminar base
tate. Within this linear stability framework, there are two different
pproaches. The classical approach is modal stability, and involves
xpressing the perturbation fields in the normal mode form with an
xponential dependence in time, in turn leading to an eigenvalue
roblem for the growth rate as a function of the wavenumber and other
elevant dimensionless parameters. According to the convention usually
ollowed, a change in sign of the imaginary part of the eigenvalue (the
rowth rate), from negative to positive, corresponds to the onset of
nstability. For sheared base states in particular, the non-normality
f the differential operator governing linear stability implies that the
forementioned modal stability analysis only pertains to the asymptotic
ehavior for long times; when unstable, this long-time evolution is
ominated by exponentially growing modes [50]. Even in the absence
f such unstable modes, however, small amplitude disturbances can
row algebraically for shorter times. The machinery for a detailed
nalysis of this so-called transient growth is now well developed, and
as been extensively applied in the Newtonian context [51].

Going beyond linear stability, finite amplitude disturbances are
ften considered within the framework of an amplitude expansion, an
pproach that originated in the efforts of Stuart [52] and Watson [53]
n the Newtonian context. In fact, the nonmodal and nonlinear stability

pproaches have acquired prominence owing to the failure of the
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classical modal approach to explain transitions in any of the canonical
Newtonian shearing flows (plane Couette, plane Poiseuille and pipe
flows). All the three approaches above are covered in this review within
the context of the Oldroyd-B model and its refinements. It is important
to note that, in recent times, direct numerical simulations of viscoelastic
flows complement the aforementioned approaches, providing detailed
structural information in the nonlinear regime [54–60]. The computa-
tional expense, however, implies that the parameter space explored by
such simulations is necessarily restricted, a limitation that is amplified
by the high-dimensional parameter space characterizing viscoelastic
shearing flows.

The remainder of this review is organized as follows. We begin
with instabilities in simple rectilinear flows in Section 2. After a brief
summary of the principal features of the Newtonian spectrum in Sec-
tion 2.1, we discuss the nature of the viscoelastic spectrum in the
inertialess limit in Section 2.2. Herein, we point out that rectilinear
shearing flows are generally linearly stable in the 𝑊𝑖 − 𝛽 space; al-
though, plane Poiseuille flow has recently emerged as an exception in
this regard, becoming unstable for 𝑊𝑖 ≫ 1 and 𝛽 → 1. In Section 2.3,
he elasto-inertial spectrum for the canonical rectilinear shearing flows
s discussed, and it is shown that while plane Couette flow is always
table in the 𝑅𝑒–𝑊𝑖–𝛽 space, both plane- and pipe-Poiseuille flows are
nstable in significant domains of this space. The nature of instabilities
n these flows is discussed briefly, and based on our current knowledge,
e provide an overview of various possible transition scenarios in the
𝑒−𝑊 𝑖−𝛽 space. In Section 3, we discuss instabilities in two-layer flows
f viscoelastic fluids wherein a jump in the first normal stress difference
eads to a novel instability absent for Newtonian two-layer flows. This
ection also includes a brief summary of instabilities in shear-banded
lows; while shear banding itself is outside the purview of the Oldroyd-

model, owing to the absence of nonmonotonicity in the constitutive
urve, the instabilities in the banded state can nevertheless be usefully
nterpreted using the Oldroyd-B model.

Instabilities in curvilinear viscometric shearing flows are surveyed
n Section 4. Here, we first discuss (Section 4.1) the role of elasticity
n the Newtonian (centrifugal) instability in the Taylor–Couette geom-
try, before moving on to a discussion of the purely elastic instability
n the same geometry (Section 4.2). The effects of finite-gap widths
relative to the radius of the inner cylinder) and nonaxisymmetric
isturbances are summarized in Section 4.3. The role of inertia in
eading to additional instabilities, and the nature of the resulting dom-
nant mode in the 𝑊𝑖 − 𝑅𝑒 plane, is discussed in Section 4.4. Elastic
nstabilities in other curvilinear viscometric flows, including the those
n the cone-and-plate and parallel-plate geometries are discussed in
ection 4.5. The issues that bedevil the comparison of experimental
bservations and theoretical predictions of purely elastic instabilities
re then discussed in Section 4.6. The role of rheological features
eyond the scope of the Oldroyd-B model (such as a nonzero second
ormal-stress difference) is analyzed in Section 4.8; for the rectilinear
hearing flows surveyed in Section 2, the relatively nascent state of
nderstanding, of instabilities that drive transition, has meant that
he consequences of refinements to the Oldroyd-B model are only
eginning to be explored. We end Section 4 with a discussion of
he Pakdel–McKinley criterion for instabilities in shearing flows with
urved streamlines, and in particular, its use in understanding the role
f shear thinning in limiting the elastically unstable domain in the rel-
vant parameter plane (Section 4.9). Section 5 examines instabilities in
on-viscometric settings such as the cross-slot geometry (Section 5.1),
ontraction–expansion flows (Section 5.2), and flow past a circular
ylinder (Section 5.3). While the approach used in the sections above
s the classical modal one, Section 6 provides an account of recent
fforts, within the nonmodal transient growth framework, applied to
iscoelastic flows. The role of finite-amplitude disturbances, within a
onlinear stability framework, is discussed in Section 7, the emphasis
eing on the purely elastic scenario. Finally, in Section 8 we end with
4

brief discussion on some of the outstanding issues in this field. s
Fig. 1. The eigenspectrum for Newtonian plane Poiseuille flow at 𝑅𝑒 = 104, 𝑘 = 1
illustrating the A, P, and S branches characteristic of the Newtonian spectrum. One
of the modes belonging to the A branch is unstable for the chosen parameters. The
spectrum is obtained for two different values of 𝑁 (the number of collocation points
in the spectral collocation method), and the convergence of the eigenvalues with 𝑁
demonstrates that the eigenvalues are physically genuine.

2. Rectilinear shearing flows: Results from modal analyses in the
𝑹𝒆−𝑾 𝒊− 𝜷 space

In this section, we examine the stability of canonical rectilinear
shearing flows, comprising plane Couette, plane Poiseuille and pipe
Poiseuille flows, from the modal perspective. Further results from the
nonmodal viewpoint are presented later in Section 6. A prerequisite to
understanding the non-trivial structure of the full elastoinertial spec-
trum, and associated instabilities, is an understanding of the spectra
arising from inertial and elastic forces acting separately. Thus, we
begin with a discussion of the Newtonian spectrum below, and follow
it up with a discussion of the inertialess elastic spectrum associated
with an Oldroyd-B fluid. This discussion also highlights the recent, and
unexpected, discovery of a purely elastic instability in plane Poiseuille
flow.

2.1. The Newtonian spectrum

It is useful to first recall features of the 𝑅𝑒-dependent Newtonian
igenspectrum for the canonical rectilinear shearing flows [51]. By
ay of illustration, consider plane Poiseuille flow in the 𝑥-direction
ith velocity profile 𝑈 (𝑦) ∝ [1 − (𝑦∕𝐻)2]; here, 2𝐻 is the separation
etween the walls with the spanwise base-state vorticity pointing along
he 𝑧-direction. In the linear stability analysis, and within the modal
ramework, the perturbed velocity field is assumed to be of the form
𝑈 (𝑦) + 𝑣′𝑥(𝑥, 𝑦, 𝑧, 𝑡), 𝑣

′
𝑦(𝑥, 𝑦, 𝑧, 𝑡), 𝑣

′
𝑧(𝑥, 𝑦, 𝑧, 𝑡)], where the primes denote

he perturbation components which are taken to be Fourier modes
′
𝑥,𝑦,𝑧(𝑥, 𝑦, 𝑧, 𝑡) = 𝑣̃𝑥,𝑦,𝑧(𝑦) exp[𝑖𝑘𝑥 + 𝑖𝑙𝑧 − 𝑖𝑘𝑐𝑡]; here, 𝑘 and 𝑙 are the
avenumbers in the 𝑥 and 𝑧-directions, 𝑣̃𝑥,𝑦,𝑧(𝑦) are the shapes (eigen-

unctions) of the perturbations in the 𝑦 direction, and the complex
avespeed 𝑐 = 𝑐𝑟+ 𝑖𝑐𝑖 is the (unknown) eigenvalue. If 𝑐𝑖 > 0, the flow is

emporally unstable, and if 𝑐𝑖 < 0, the flow is asymptotically stable
n that perturbations decay away exponentially for sufficiently long
imes. On account of Squire’s theorem, which remains valid for both
ewtonian [50] and Oldroyd-B [34] fluids, it is sufficient to restrict
ttention to two-dimensional perturbations (𝑙 = 0). Note, however, that
he theorem is applicable only within the normal-mode ansatz, and
t is possible to have a larger nonmodal growth of three-dimensional
erturbations, as will indeed be seen in Section 6.

Fig. 1 shows the Newtonian spectrum at 𝑅𝑒 = 104 and 𝑘 = 1,
which has a characteristic ‘Y-shape’ structure in the 𝑐𝑟 − 𝑐𝑖 plane. It
onsists of (i) the A branch, corresponding to ‘wall modes’ with phase

peeds approaching zero with decreasing decay rates, (ii) the P branch
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corresponding to ‘center modes’ with phase speeds approaching the
base-state maximum, again with decreasing decay rates, and (iii) the
vertical S branch corresponding to modes having a common phase
speed intermediate between the wall velocity and the base-state maxi-
mum, and with decay rates extending to infinity. The aforementioned
Y-shaped structure only emerges above a threshold 𝑅𝑒. Below this
threshold, whose value is dependent on the particular base-state profile,
the Newtonian spectrum comprises only of the S-modes. For sufficiently
large 𝑅𝑒, the Y-locus itself becomes invariant, with the density of modes
along each of the three (invariant) branches increasing with increasing
𝑅𝑒. As evident from Fig. 1, the first mode belonging to the A branch
is unstable for the chosen parameters, and corresponds to the well
known Tollmien–Schlichting (TS) instability. The Newtonian pipe flow
spectrum is qualitatively similar to that of plane Poiseuille flow, with
the characteristic A, P, and S branches, albeit being stable at all 𝑅𝑒 [61].
Newtonian plane Couette flow has also been found to be linearly stable
for all 𝑅𝑒. However, unlike plane and pipe Poiseuille flow, on account
of an exact antisymmetry about the centerline, plane Couette flow does
not possess a P branch; instead, both arms of the Y correspond to A
branches with the corresponding eigenfunctions exhibiting a mirror
symmetry about the centerline.

2.2. The purely elastic spectrum and the elastic centermode instability (𝑅𝑒 =
0,𝑊𝑖 ≠ 0)

In the absence of inertia, the governing equations in the Newtonian
case reduce to the Stokes equations. For Stokes flows driven by the
motion of rigid boundaries, the quasi-steady nature of the governing
equations and boundary conditions implies there can be no associated
spectrum. With reference to the preceding subsection, the 𝑆-modes in
the finite-𝑅𝑒 Newtonian spectrum recede down to negative infinity in
the Stokes limit. In contrast, the stress relaxation term in the Oldroyd-B
equation provides for an intrinsic time scale, and as discussed below,
gives rise to a non-trivial spectrum even in the absence of inertia. We
discuss below the nature of this inertialess spectrum whose structure is
a function of 𝑊𝑖 and 𝛽. Unstable modes in this spectrum correspond to
purely elastic instabilities.

The simplest flow is, of course, plane Couette flow. The elastic
plane Couette eigenspectrum was first examined in the UCM limit
by Gorodtsov & Leonov [62], who showed, analytically, that there
is a continuous spectrum (abbreviated as ‘CS’ henceforth) along with
two discrete modes, all of which are stable. We refer to the two
stable discrete modes as the zero-Reynolds number Gorodtsov–Leonov
(‘ZRGL’) modes. The elastic continuous spectrum is a generic presence,
and owes its origin to the spatially local evolution of the polymeric
stress (in accordance with the simple fluid paradigm, which stipulates
a local relation between stress and deformation in a fluid [41]); the
CS eigenfunctions decay exponentially on the scale of the polymer
relaxation time. The above picture was generalized to the Oldroyd-
B fluid by Wilson, Renardy & Renardy in 1999 [63]. While the flow
continues to remain stable, the spectrum becomes considerably more
complicated, with new discrete modes appearing for any non-zero 𝛽,
thereby pointing to the singular nature of the UCM elastic spectrum.
The continuous spectrum associated with the UCM fluid is qualitatively
unchanged, as are the two ZRGL modes. But, there is an additional
stable continuous spectrum which moves in from 𝑐𝑖 = −∞ as 𝛽 increases
from zero. Further, unlike the UCM-continuous spectrum, this new so-
called viscous continuous spectrum is associated with a branch cut, and
discrete eigenvalues can emerge from, or disappear into, the viscous
continuous spectrum with varying 𝛽. The number of discrete modes
increases with decreasing 𝛽, with there existing an infinite sequence of
discrete modes in the limit 𝛽 → 0; for moderate 𝛽, all of these discrete
modes are all more stable than the viscous continuous spectrum modes.

In the aforementioned effort, the authors also analyzed the spectrum
of plane Poiseuille flow. In the UCM limit, the authors showed that the
5

equivalent of the Gorodtsov–Leonov spectrum has six discrete modes f
Fig. 2. The inertialess plane-Poiseuille spectrum of an Oldroyd-B fluid shows five
discrete modes for 𝛽 = 0.997, 𝑘 = 0.75, 𝑊𝑖 = 2500, with three in the main figure and
the remaining two visible in inset A; 𝑁 is the number of Chebyshev polynomials in
the spectral expansion. Inset A shows an enlarged view of the region near the unstable
center mode (‘unstable CM’). Inset B shows the variation of 𝑐𝑟 and 𝑐𝑖 with 𝑊𝑖.
Source: Figure reproduced with permission from Khalid et al. [64].

(instead of the two for plane Couette flow above); numerical computa-
tions showed that the discrete modes continued to remain stable. The
addition of a solvent viscosity, leading to the Oldroyd-B model, again
resulted in a spectrum similar to plane Couette flow; thus, a second
viscous continuous spectrum arose for any non-zero 𝛽, along with a
large family of stable discrete modes that disappear into this spectrum
with increasing 𝛽.

The preceding two paragraphs had, until very recently, represented
our understanding of the elastic stability characteristics of rectilinear
shearing flows. Thus, although never proven, such shearing flow con-
figurations have nonetheless been thought to be linearly stable (this
is the scenario even for Newtonian pipe flow, although in this case
observations clearly point to nonlinear mechanisms). As a consequence,
purely elastic linear instabilities are synonymous with curvilinear flow
configurations [6], with the analog of such instabilities in rectilinear
flows thought to have a nonlinear character (see Section 7.1); in either
case, streamline curvature is regarded as a necessary prerequisite for
instability [65]. However, recent work by Khalid, Shankar, and Sub-
ramanian [66] has demonstrated that inertialess plane Poiseuille flow
of an Oldroyd-B fluid is, in fact, linearly unstable at sufficiently high
𝑊𝑖 (of 𝑂(1000)), and for 𝛽 > 0.99. Fig. 2 shows the structure of the
lastic spectrum at such high 𝑊𝑖’s, and Fig. 3 shows neutral curves,
hich are in the form of the unstable tongues in the 𝑊𝑖 − 𝑘 plane; the

nstability appears to arise due to a critical-layer mechanism2 [66], in
ontrast to the hoop-stress-based mechanism that is operative in curvi-
inear shearing flows. The work of Buza, Page, and Kerswell [67], using

2 The term ‘critical-layer’ refers to the location where the base-flow velocity
quals the phase speed of the eigenmode. The instability arises due to stretched
olymers being rotated away from flow-alignment by the perturbation shear,
s they are swept past by the base-state parabolic flow. The differential
ate of convection becomes small near the critical layer, owing to the phase
peed of the eigenmode approaching the base-flow velocity. As a result, the
ime available for the perturbation-shear-induced rotation (of the stretched
olymers) increases, and the resulting accumulation of perturbation elastic
hear stress drives a reinforcing flow, leading to exponential growth. Close to
eutrality, this mechanism leads to stress eigenfunctions that exhibit singular
eatures in the neighborhood of the critical layer.
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Fig. 3. Neutral curves in the 𝑊𝑖–𝑘 plane for different 𝛽’s in the creeping-flow limit;
nset A shows the collapse for 𝛽 → 1 when plotted as 𝑊𝑖𝑘(1 − 𝛽) vs 𝑘, and the results
btained from the reduced equations in that limit. Inset B shows the variation of the
ritical Weissenberg number 𝑊𝑖𝑐 and wavenumber 𝑘𝑐 with (1 − 𝛽).
ource: Figure reproduced with permission from Khalid et al. [64].

he FENE-P model, has confirmed that the aforementioned instability
ontinues to exist with the incorporation of finite extensibility. The
aid authors have also carried out a weakly nonlinear stability analysis
o show that the instability in the creeping-flow limit is subcritical,
ointing to a potentially larger unstable region in the 𝑊𝑖− 𝛽 plane. At
resent, it is not yet clear whether this instability is directly relevant to
ecent experimental observations from the Paulo Arratia [12,13] and
ictor Steinberg groups [14] which clearly indicate an ET-like state for
𝑒 ≪ 1 even in rectilinear shearing flows, albeit for smaller 𝛽 ∼ 0.5–0.7.

.3. The elasto-inertial spectrum (𝑅𝑒,𝑊𝑖 ≠ 0): the wall- and center-mode
nstabilities at finite 𝑅𝑒

The work of Gorodtsov and Leonov [62], referred to in the section
bove in the context of the inertialess elastic spectrum, also analyzed
lane Couette flow of a UCM fluid for small but finite 𝑅𝑒. In addition to
he aforementioned pair of stable ZRGL modes, the authors found a new
lass of modes, corresponding to damped shear waves in a viscoelastic
luid with phase speeds of 𝑂(

√

𝐺∕𝜌), 𝐺 = 𝜂∕𝜆 being the shear modulus.
We refer to this family of modes as the high-frequency-Gorodtsov–
Leonov (‘HFGL’) modes since, in units of the base-state velocity scale,
the phase speed (frequency) of the HFGL modes is 𝑂(𝑊 𝑖𝑅𝑒)−

1
2 , and

therefore these modes recede to infinity (parallel to the 𝑐𝑟-axis) in the
inertialess limit. Although Gorodtsov and Leonov [62] predicted an
instability due to the HFGL modes in the limit 𝑘𝑊𝑖 ≫ 1, this was later
shown to be incorrect [68]; the HFGL modes remain damped for any
finite 𝑊𝑖, with 𝑐𝑖 → −1∕2𝑘𝑊 𝑖 for 𝑅𝑒→ 0. Note that the original elastic
continuous spectrum continues to be present at finite 𝑅𝑒, with the CS-
modes having phase speeds in the base-state range of velocities, with
decay rates of 𝑐𝑖 = −1∕𝑘𝑊 𝑖 (this corresponds to the dimensional decay
rate equaling the inverse relaxation time, as mentioned in Section 2.2).
Thus, the elastoinertial spectrum of plane Couette flow of a UCM fluid
has been shown [68,69] to consist of the finite-𝑅𝑒 continuation of the
ZRGL modes, the elastic continuous spectrum, and the HFGL modes.
Although a rigorous proof does not exist, plane Couette flow does
appear to be stable in the 𝑅𝑒–𝑊𝑖 plane for 𝛽 = 0; the conclusion remains
unchanged on consideration of an Oldroyd-B fluid. [68,70–72]. The
stability of viscoelastic plane Couette flow therefore mirrors that of its
6

Newtonian counterpart [50], although there exists a rigorous proof in o
Fig. 4. Eigenspectra for (a) plane Couette and (b) plane Poiseuille flows of a UCM
fluid (𝛽 = 0) for 𝐸 = 0.001, 𝑘 = 1.0, 𝑅𝑒 = 104 with 𝑁 = 500 and 600. The distinctive
eatures are labeled within the spectra.
ource: Reproduced with permission from Ref. [72].

he latter case [73]. In summary, there appears no evidence of a linear
nstability of plane Couette flow in the 𝑅𝑒–𝑊𝑖–𝛽 space.

In contrast, plane Poiseuille flow of a Newtonian fluid (𝑊𝑖 = 0)
ecomes susceptible to the TS instability [50] at 𝑅𝑒𝑐 ≈ 5772. As already
hown in Section 2.1, the unstable TS eigenvalue belongs to the A-
ranch, and is therefore a wall mode. A continuation of this instability
s expected for small 𝑊𝑖 regardless of 𝛽, including for the case of a
CM fluid. The key question is whether there are new unstable modes

n plane Poiseuille flow of a UCM fluid that have an essentially elastic
rigin, and are therefore absent in the Newtonian limit. This question
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m

Fig. 5. Eigenspectrum for plane Poiseuille flow of a UCM fluid showing three unstable

odes for 𝐸 = 0.005, 𝑘 = 1.3, 𝑅𝑒 = 8000. Only the converged eigenvalues are shown,
and thus the CS balloons are absent in this filtered spectrum.
Source: Reproduced with permission from Ref. [72].

was first addressed by Porteus and Denn [74], who found three unstable
modes for sufficiently high 𝑅𝑒 (> 2000), only one of which was a
continuation of the TS mode; the other two unstable modes are absent
in the Newtonian limit. The authors showed that, for the TS mode,
increasing elasticity in the range 0 < 𝐸 < 10−2 resulted in a decrease in
𝑅𝑒𝑐 from its Newtonian value to 𝑅𝑒𝑐 ∼ 2000. Elasticity was also shown
to have a destabilizing effect on one of the other two unstable modes,
albeit with limited data. On the other hand, plane Poiseuille flow of a
UCM fluid was found to be stable at low 𝑅𝑒 [70,75]. Sureshkumar and
Beris [76] found two different unstable families, of which one was a
continuation of the Newtonian TS mode. The critical Reynolds number
𝑅𝑒𝑐 showed a nonmonotonic behavior, showing an initial decrease for
very small 𝐸’s and an eventual increase at higher 𝐸. Both the modes
analyzed in Ref. [76], and the initial decrease found in 𝑅𝑒𝑐 with 𝐸,
were consistent with the earlier results of Porteus and Denn [74].

The recent study of Chaudhary et al. [72] presented a more com-
prehensive picture of the elasto-inertial spectrum of a UCM fluid,
emphasizing features common to both plane Couette and Poiseuille
flows. As shown in Fig. 4, for 𝑅𝑒 ∼ 1000 and higher, the elastoinertial
spectrum for both flows contains: (i) a ballooned manifestation of
the horizontal line (𝑐𝑖 = −1∕𝑘𝑊 𝑖; 𝑐𝑟 𝜖 [−1, 1] for plane Couette, and
𝑐𝑟 𝜖 [0, 1] for plane Poiseuille) corresponding to the elastic continuous
spectrum, (ii) a horizontal string of eigenvalues corresponding to the
aforementioned HFGL modes, and (iii) a roughly ‘hourglass’ shaped
structure that extends above and below the HFGL line; note that the
length of the HFGL sequence obtained is a function of the numerical
resolution of the spectral method, and is smaller for plane Poiseuille
flow due to the lower 𝑁 . Despite both spectra conforming to a common
template, all modes remain stable for plane Couette flow, as mentioned
above, while some of the eigenvalues belonging to the small-𝑐𝑟 ‘arm’ of
the hourglass become unstable at sufficiently high 𝑅𝑒 and 𝐸, for plane
Poiseuille flow; see Fig. 5.

Chaudhary et al. [72] further showed that plane Poiseuille flow
of a UCM fluid is susceptible to an apparently infinite hierarchy of
elasto-inertial wall mode instabilities. In contrast to the antisymmetric
Newtonian TS mode, these unstable elastoinertial modes can have
either symmetry (symmetry, here, is based on the variation of the
7

Fig. 6. Neutral stability curves in the 𝑅𝑒–𝑘 plane corresponding to the different wall
modes for 𝐸 = 0.005. The modes labeled A1(b), A2, A3, and A4 are antisymmetric,
while S1, S2 and S3 are symmetric.
Source: Reproduced with permission from Ref. [72].

streamwise velocity eigenfunction, about the centerline, in the wall-
normal direction). The multiple unstable tongues in the 𝑅𝑒 − 𝑘 plane,
for both the antisymmetric and symmetric wall-mode instabilities, are
shown in Fig. 6 for 𝐸 = 3.5 × 10−3. The lowest critical Reynolds
number was found to be 𝑅𝑒𝑐 ≈ 1210.9 for 𝐸 = 0.0066; 𝑅𝑒𝑐 was
found to diverge in the limit 𝐸 ≪ 1, although the scalings differed
for the symmetric (𝑅𝑒𝑐 ∝ 𝐸−1) and antisymmetric (𝑅𝑒𝑐 ∝ 𝐸− 5

4 ) modes.
Both the unstable wall modes above, that are part of the hour-glass
structure, and the HFGL modes, are found to be strongly stabilized
on introduction of a solvent viscosity component (non-zero 𝛽) [64,77].
Thus, although relevant to the UCM limit, the wall-mode instabilities
are not relevant to the dilute solutions on which most experiments have
been performed.

In contrast to the many studies that have focused on the stability of
plane Poiseuille flow of an Oldroyd-B fluid, rather surprisingly, there
had not been a single study, until recently (see [32,78]), analyzing the
stability of pipe flow of an Oldroyd-B fluid. The only stability analysis in
the literature by Hansen [17,79] had neglected the crucial convected
nonlinearities in the Oldroyd-B model. The lack of emphasis on pipe
flow could perhaps be attributed to the linear stability of Newtonian
pipe flow for all 𝑅𝑒 [61], in turn leading to the assumption of viscoelas-
tic pipe flow also being linearly stable in 𝑅𝑒–𝑊𝑖–𝛽 space; an assumption
that has often found an explicit mention in the literature [11,80–82].
This is despite the absence of a systematic exploration of the larger
(three-dimensional) parameter space, and in spite of the recent pipe
flow experiments of Samanta et al. [22] showing the existence of a
perturbation-amplitude-independent threshold 𝑅𝑒 for transition from
the laminar state in sufficiently elastic polyacrylamide solutions, the
amplitude independence being a clear signature of an underlying linear
instability.

It is worth pointing out here that two protocols were adopted by
Samanta et al. [22] in the experiments above: in the first protocol,
the flow was forced by radial fluid injection near the inlet, resulting
in the oft-quoted threshold 𝑅𝑒 ≈ 2000 for the Newtonian case. The
second protocol did not involve any external forcing, corresponding
therefore to a ‘natural’ transition, and occurred at 𝑅𝑒 ≈ 8000 in the
Newtonian limit. With increase in the polyacrylamide concentration,

the threshold 𝑅𝑒 for the natural transition decreased, while that for
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Fig. 7. Eigenspectrum for pipe flow of an Oldroyd-B fluid for 𝐸 = 0.1, 𝛽 = 0.8, 𝑅𝑒 = 600,
nd 𝑘 = 3, and 𝑁 = 200 (red filled circles). The inset shows the unstable center mode.
he modes labeled 2′, 3′ and 4′ are discrete center modes that emerge out of the CS
s 𝐸 is increased. The vertical locations of the CS lines and the pipe-flow Newtonian
pectrum (open blue circles) at the same 𝑅𝑒 and 𝑘 are shown for reference.
ource: Reproduced with permission from Ref. [78].

he forced transition is increased, and for concentrations greater than
00ppm, the threshold 𝑅𝑒 became independent of the protocol. For the
00ppm solution in particular, the threshold 𝑅𝑒 was found to be as low
s 800, and the transition was bereft of signatures such as turbulent
uffs that accompany the onset of Newtonian turbulence. As mentioned
n the Introduction, the flow state that resulted after the non-hysteretic
ransition was referred to as elasto-inertial turbulence, to distinguish it
rom both purely-elastic turbulence and inertial Newtonian turbulence;
his reduction in the transition 𝑅𝑒 has been corroborated by later
xperiments in pipes of much smaller radii [83,84]. The subsequent
xperimental study of Choueiri et al. [24] showed that, at a fixed
𝑒 < 3600, as the polymer concentration is increased, the frictional
rag decreased and approached the maximum-drag-reduction asymp-
ote, in accordance with the well-established paradigm of turbulent
rag reduction. However, in a significant departure from this scenario,
urther increase in polymer concentration resulted in the drag reduction
xceeding the MDR asymptote, with the flow relaminarizing completely
or a range of polymer concentrations. This laminar state becomes
nstable when polymer concentration is increased further, eventually
gain approaching the MDR asymptote. As alluded to in Ref. [32], the
DR regime could thus be viewed as a ‘drag-enhanced’ state directly

ccessible via an instability of the laminar state, rather than as a
rag-reduced state only accessible from Newtonian turbulence.

Motivated by the above experiments, and in a significant departure
rom the Newtonian scenario (see end of Section 2.1), the recent studies
f Garg et al. [32] and Chaudhary et al. [78] have shown that
ipe Poiseuille flow of an Oldroyd-B fluid is indeed linearly unstable
o an axisymmetric center-mode, consistent with the aforementioned
xperimental observations. An analogous 2D center-mode instability
s predicted for plane Poiseuille flow [32,64]. Fig. 7 highlights the
xistence of an unstable center-mode in the pipe elastoinertial spectrum
or 𝑅𝑒 = 600, 𝐸 = 0.1 and 𝛽 = 0.8. The relevance of exponen-
8

ially growing axisymmetric/2D disturbances is consistent with the s
Fig. 8. Variation of the critical Reynolds number 𝑅𝑒𝑐 with 𝐸(1 − 𝛽) for different 𝛽 for
both pipe and plane-Poiseuille flows.
Source: Figures from Ref. [78] and Ref. [64] reproduced with permission.

signatures seen in recent3 DNS studies [82,87] of viscoelastic pipe
and channel flows. In both cases, the characteristic structures in the
elastoinertial turbulent regime are found to be spanwise oriented rolls,
in contrast to the streamwise oriented spanwise varying streaks and
counter-rotating vortices which are known to underlie the sub-critical
Newtonian transition [88].

Unlike the wall-mode instabilities described above, the center-mode
instability is not restricted to small 𝛽 for either pipe or plane Poiseuille
flow. In fact, for both flows, the instability appears to require a com-
bination of fluid inertia, elasticity and solvent viscous effects. This

3 It is worth pointing out that these recent DNS studies differ from the
arlier ones on drag reduction [for instance, Refs. 85,86] in not using an
rtificially high stress diffusivity that might have led to the absence of
panwise-oriented EIT structures in those earlier efforts.
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Fig. 9. Comparison of experimental flow structures with the eigenfunction for the
center mode. Top and Middle show streamwise velocity fluctuations obtained from
PIV measurements in a longitudinal cross-section. Top shows flow structures at 𝑅𝑒 = 5
and corresponds to an experiment with 𝛽 = 0.57, 𝐸 = 20.8,𝑊𝑖 = 104, whereas Middle
corresponds to 𝑅𝑒 = 100 with 𝛽 = 0.5, 𝐸 = 3.4,𝑊𝑖 = 304. Lower shows the most unstable
mode in the linear stability analysis; the solution plotted is intended for qualitative
comparison only and was computed for different flow parameters: 𝑅𝑒 = 100, 𝐸 =
0.6,𝑊𝑖 = 60, 𝛽 = 0.9, 𝑛 = 0, and 𝑘 = 1; here, 𝑛 and 𝑘 are the azimuthal and axial
wave numbers, respectively. Flow direction is from right to left.
Source: Reproduced with permission from Fig. 1b of Choueiri et al. [23].

may be seen in the limit 𝑅𝑒 ≫ 1 when the threshold Reynolds
number 𝑅𝑒𝑐 ∝ 𝐸−3∕2 for both these flows, a scaling that can only be
obtained by balancing fluid inertia, elasticity and solvent viscous effects
in a thin layer near the pipe centerline/channel midplane [78]; see
Figs. 8(a) and 8(b). Thus, in sharp contrast to the known irrelevance
of linear (modal) stability theory vis-a-vis the Newtonian transition in
the canonical shearing flows, a common modal mechanism is predicted
to underlie the transition to EIT, in plane- and pipe-Poiseuille flows
of an Oldroyd-B fluid, over a significant domain of the 𝑅𝑒 − 𝑊 𝑖 − 𝛽
space, with supporting evidence from both simulations [82,87] and
experiments [23].

While the center-mode instabilities for pipe- and plane-Poiseuille
flows share many similarities, there are crucial differences. The insta-
bility ceases to exist for 𝛽 < 0.5 in channel flow [64], while continuing
down to 𝛽 ∼ 10−3 for pipe flow [32]. Recent work by Wan et al. [89]
has found that the center-mode instability is present even in the UCM
limit (𝛽 = 0) for some isolated regions in the 𝑅𝑒−𝑊 𝑖 plane. The more
interesting limit is that corresponding to dilute solutions with 𝛽 → 1.
As shown in Fig. 8(a), for pipe flow, in the aforesaid limit, 𝑅𝑒𝑐 ≈ 63
for 𝐸 → ∞, this being the minimum Reynolds number for instability
onset. In contrast, as shown in Fig. 8(b), 𝑅𝑒𝑐 for plane Poiseuille flow
behaves in a similar manner only for 𝛽 < 𝛽𝑐 ≈ 0.990552; for 𝛽 > 𝛽𝑐 ,
the center-mode instability continues to down arbitrarily low 𝑅𝑒, with
𝑅𝑒𝑐 ∝ 𝐸−1 (corresponding to a threshold 𝑊𝑖) for 𝐸 → ∞; in the process,
the elastoinertial center-mode morphs into the purely elastic center-
mode instability described in Section 2.2 [66]. While the predictions
for 𝑅𝑒𝑐 in Figs. 8(a) and 8(b) correspond to an Oldroyd-B fluid, the
use of a nonlinear constitutive equation, such as the FENE-P model, is
expected to lead to neutral curves that remain similar in the vicinity
of the minimum Reynolds number, but that close up beyond a second
larger critical 𝑅𝑒, owing to shear-thinning-induced stabilization; this
feature will again be seen, in the context of the curvilinear instabilities,
in Section 4.9.

Finally, getting down to actual numbers, linear stability theory [32,
78] predicts a threshold 𝑅𝑒 ≈ 800 for transition, similar to the observa-
tions of Samanta et al. [22], albeit at much higher 𝐸’s. The theoretical
predictions are in better agreement with the pipe flow experiments
of Chandra et al. [83], an aspect that might have to do with the
differing methods used to determine the polymer relaxation times in
the two efforts. The recent pipe-flow experiments of Choueiri et al.
[23], however, show excellent agreement between their observations,
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and theoretical predictions [32,78] for the threshold 𝑅𝑒, for 𝐸 ≤
0.1. Further, the experiments demonstrate a remarkable match (see
Fig. 9) between the structures seen immediately after transition and the
linear center-mode eigenfunction, while also pointing to a secondary
transition to a wall mode. For 𝐸 > 0.1, the experiments reveal a
monotonic decrease of the threshold 𝑅𝑒 with 𝐸, while the theoreti-
cal predictions [32,78] predict a sharp upturn in 𝑅𝑒𝑐 (see Fig. 8(a)).
The experimental threshold appears to indicate a transition from an
elastoinertial instability to an elastic one, similar to plane Poiseuille
flow, although the elastic branch (corresponding to the higher values
of 𝐸) must then correspond to a subcritical (nonlinear) transition. For
viscoelastic plane Poiseuille flow, the predictions [64] are in good
agreement with the limited experimental data of Srinivas and Ku-
maran [90] for channels with a cross-sectional aspect ratio of 10:
1.

2.4. Transition scenarios in rectilinear viscoelastic shearing flows

Figs. 10 and 11 illustrate the various possible transition scenarios
in the 𝑊𝑖−𝑅𝑒 plane, for different fixed 𝛽, for pipe and plane Poiseuille
flows. In these schematic illustrations, we bring together ideas based on
the section above, on the centermode instability, and other hypotheses
based on earlier nonmodal and nonlinear analyses (see Sections 6 and
7 respectively for a detailed discussion); we also comment briefly on
a recent independent line of work by Graham and coworkers that
proposes a new subcritical route to EIT based on elastoinertial TS-wave
analogs [57,58,91]. In the aforementioned figures, the linearly unstable
regions in the interior of the 𝑊𝑖−𝑅𝑒 plane correspond to the domain of
the elastoinertial centermode instability, and are depicted using colored
lines for different 𝛽. Regions adjacent to the 𝑅𝑒 and 𝑊𝑖 axes corre-
spond to the onset of predominantly inertial and elastic instabilities,
respectively, with the former underlying the sub-critical Newtonian
transition. Recall from Section 2.1 that Newtonian pipe flow is believed
to be linearly stable at all 𝑅𝑒 in sharp contrast to the observed transition
at 𝑅𝑒 ≈ 2000. Likewise, the presence of the classical TS instability
in Newtonian channel flow, at 𝑅𝑒 ≈ 5772 (see Section 2.1), is now
known to be irrelevant to the observed transition at 𝑅𝑒 ≈ 1000. Thus,
the inertial Newtonian transition for either flow configuration has a
nonlinear subcritical character. Indeed, transition in these flows is now
understood to be a complex process triggered by the emergence, via
saddle–node bifurcations, of novel three-dimensional solutions called
‘exact coherent states’ (ECS) [92–94], with a sufficiently large number
of such unstable solutions forming the scaffold of the turbulent attractor
in an appropriate phase space.

We begin with a brief discussion of the features common to the
center-mode instability in both pipe and channel flows, before going on
to describe those unique to channel flow in Figs. 11(a) and 11(b). It has
been shown that elasticity suppresses the 3D ECS solutions [30,31,95–
97], making the nonlinear Newtonian-ECS-based mechanism irrelevant
for weakly elastic flows. Although this suppression has been demon-
strated specifically for plane Poiseuille flow, the prediction should be
valid for pipe flow as well, on account of the similarity of the Newto-
nian ECSs across the different rectilinear shearing flows [92,93,98].
The elasticity-induced suppression of the ECS has been proposed to
underlie delayed transition and eventual disappearance of the Newto-
nian turbulent state in the flow of polymer solutions. As a result, in
the said figures, the Newtonian turbulent-like state is confined to a
region between the 𝑅𝑒-axis and a curve that corresponds to a critical
𝑅𝑒-dependent 𝑊𝑖.

For smaller 𝛽, as shown in Fig. 10, the aforementioned Newtonian
turbulent state likely gives way to a laminar one with increasing
elasticity. Indeed, the vertical arrow shown on the extreme right in
Fig. 10 corresponds to the experimental path of Choueiri et al. [24]
who, starting from Newtonian turbulence, first accessed an interme-
diate laminar state, and then the MDR regime, with increasing 𝑊𝑖,
as discussed above in Section 2.3. On the other hand, for very dilute
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Fig. 10. Schematic representation of various transition scenarios in viscoelastic pipe flow in the 𝑊𝑖–𝑅𝑒 plane.
solutions, as shown in Fig. 11(b), the intervening laminar state gives
way to overlapping Newtonian and elastoinertial turbulent regions at
higher 𝑅𝑒. The vertical arrow shown in the figure, again on the extreme
right, now corresponds to a ‘reverse’ transition where the Newtonian
turbulent state exhibits an increasing degree of spatiotemporal intermit-
tency with increasing 𝑊𝑖, before giving way to EIT; this was observed
to be the pathway, at higher 𝑅𝑒, in Ref. [24].

For sufficiently high elasticities, the linear center-mode instability,
discussed in Section 2.3 above, becomes relevant. Although the extent
of the linearly unstable region depends sensitively on flow-type and 𝛽,
the unstable regions for both pipe and channel flows exhibit qualitative
similarities for 0.5 < 𝛽 < 0.98, with 𝑊𝑖 ∝ 𝑅𝑒1∕3 along the lower branch
of the unstable region (this scaling corresponds to the 𝑅𝑒 ∝ 𝐸−3∕2

regime in Figs. 8(a) and 8(b)), and 𝑊𝑖 ∝ 𝑅𝑒 along the upper one (this
corresponds to the near-vertical divergence of 𝑅𝑒𝑐 in Figs. 8(a) and
8(b)). Note that 𝑊𝑖 ∝ 𝑅𝑒, in corresponding to a constant 𝐸, also
represents an experimental path of increasing flow rate for a given
flow geometry and polymer solution. Thus, as shown in Figs. 10, 11(a)
and 11(b), for both the plane and pipe Poiseuille geometries, the
centermode eigenfunction is likely to lead to supercritical nonlinear
structures that, either directly, or through secondary instabilities, might
underlie the dynamics of the EIT state. The centermode instability, for
both pipe and channel flows, therefore provides a continuous pathway
from the laminar state to the EIT/MDR regime, a prediction that now
has been confirmed in experiments [23].

Beyond the aforementioned range of 𝛽, as mentioned above in
Section 2.3, there exist significant differences between the pipe and
plane Poiseuille cases. Specifically, in the limit 𝛽 → 1, while the
center-mode instability appears to be restricted to 𝑅𝑒 > 63 for pipe
flow (Figs. 10 and 8(a)), it morphs into a purely elastic instability for
channel flow, continuing to arbitrarily small 𝑅𝑒 for 𝛽 > 𝛽𝑐 ≈ 0.990552
(Fig. 8(b)). Correspondingly, in Fig. 11(b), the lower boundary of the
linearly unstable envelope (with 𝑊𝑖 ∝ 𝑅𝑒

1
3 ) opens out into a plateau

with decreasing 𝑅𝑒, approaching a threshold 𝑊𝑖 for 𝑅𝑒 → 0. This purely
elastic instability might in turn lead to an ET state, and the implied
continuous (modal) pathway between the EIT and ET states is shown
schematically in Fig. 11(b). Note that the blue curve in Figs. 11(a) and
11(b) corresponds to the neutral boundary for 𝛽 = 𝛽𝑐 that demarcates,
within a linearized framework, the pure-EIT regime, and the one that
exhibits the EIT-ET connection.

In regions of the 𝑅𝑒−𝑊 𝑖−𝛽 space where the centermode is linearly
stable, and the originally Newtonian ECS are stabilized by elasticity,
novel subcritical mechanisms are expected to dominate the transition
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process. For plane Poiseuille flow, at moderate 𝑅𝑒, recent work [57,
58,91] has identified a nonlinear mechanism based on elastoinertial
wall modes closely related to the stable Newtonian TS mode (although
still disconnected from it in phase space until a 𝑅𝑒 of 104). Such a
pathway could be especially relevant in a direct transition between
the Newtonian and elastoinertial turbulent states (as in Fig. 11(b)),
with the near-wall coherent structures in the former state acting as
possible seeds for the aforementioned TS-wave analogs4. However, the
fact that there is no analog (linear or nonlinear) of the TS-mode in
the Newtonian pipe-flow spectrum, and that the centermode remains
the least stable one even in the weakly elastic regime [78], suggests
that the TS-analog-based subcritical mechanism may not be obviously
applicable to pipe Poiseuille flow; more work is clearly required in this
regard.

The recent subcritical continuation of the unstable center mode,
in viscoelastic channel flow, to a nonlinear EIT structure [56] implies
that subcritical mechanisms based on the centermode might also be
operative in certain regions of 𝑅𝑒−𝑊 𝑖−𝛽 space, and thus the relevance
of the centermode might extend outside of the linearly unstable regions
indicated; see the dashed line in Figs. 11(a) and 11(b). The very recent
weakly nonlinear analyses of Buza et al. [67] for channel flow and Wan
et al. [89] for pipe flow further confirm that the center-mode instability
is likely subcritical in large parts of the parameter space. Despite these
developments, it is relevant to point out that there still remain vast
tracts of the viscoelastic parameter space where the mechanism of
transition is not understood. As an example, Khalid et al. [64] have
shown that for 𝛽 = 0.97, and for 0.02 < 𝐸 < 0.5, neither the center mode
nor the wall mode is the least stable. Instead, it is the singular modes
belonging to the continuous spectrum that are the least stable for these

4 Given that recent experimental evidence points to EIT and MDR states
being one and the same, for low to moderate 𝑅𝑒 values, it is worth mentioning
here that the 2D TS-wave-analogs recently proposed to underlie EIT [57,58,91]
stand in sharp contrast to an earlier interpretation that regarded the MDR
regime as corresponding to a hibernating state of turbulence [86,99] compris-
ing 3D so-called edge-state solutions (lying on the basin boundary between
the laminar fixed point and the turbulent attractor in an appropriate phase
space). Such states already exist in Newtonian turbulence, and their frequency
of occurrence is thought to be progressively enhanced with increasing polymer
concentration (although, the hibernating periods have been found to be
strongly box-size dependent [29]). The relation between this earlier edge-
state-based hypothesis, and the more recent TS-analog-based hypothesis, needs
further investigation.
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Fig. 11. Schematic representation of various transition scenarios in viscoelastic channel flow in the 𝑊𝑖–𝑅𝑒 plane.
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𝐸 values, and that might therefore dictate the nature of the transition.
While some work has been done on the role of continuous spectra
in pattern formulation, in Hamiltonian systems [100], more work is
therefore required to clarify continuous-spectra-dominated transition
mechanisms in viscoelastic shearing flows.

The above discussion of transition scenarios has been restricted to
either new elastoinertial modal pathways, or the elastic modification
of essentially Newtonian nonmodal nonlinear pathways (implicit in
the examination of the effects of finite 𝑊𝑖 on the Newtonian ECS’s,
mentioned earlier). In the opposite limit of 𝑅𝑒 ≪ 1, pipe and plane
Poiseuille flows, as indeed all rectilinear shearing flows, are linearly
stable for 𝑊𝑖 ∼ 𝑂(1) [63,78], since a linear instability at such 𝑊𝑖’s
requires a hoop-stress-based mechanism (see Section 4). The absence
of a linear instability at moderate 𝑊𝑖’s has led to the exploration of
ovel nonmodal pathways due to elasticity alone [101,102], or due
o a non-trivial interplay of elasticity and inertia [103,104]. While
uch efforts are discussed in detail in Section 6 below, it is worth
ummarizing a few salient points that appear in Figs. 10, 11(a) and
1(b). The nonmodal pathways, in the inertialess limit in particular,
oint to the importance of spanwise varying disturbances (much like
he Newtonian case) that are amplified by an elastic analog of the lift-
p effect [105,106], and by an amount that increases with increasing
𝑖. Page and Zaki [107] have examined an elastoinertial nonmodal

athway for streamwise varying (2D) disturbances, termed the reverse-
rr mechanism, on account of the dominant algebraic growth occurring
uring the phase where the disturbance aligns with the ambient shear
low (in contrast to the Orr-mechanism-driven growth dynamics in the
ewtonian case [106]).

An alternate transition scenario, again relevant to the elasticity-
ominant limit, is that of a subcritical 2D nonlinear instability [108,
09] based on the classical Stuart–Landau amplitude expansion, an ap-
roach originally developed to describe the Newtonian transition [52,
3]. This approach, described in more detail in Section 7 below, has
een demonstrated only for 𝑊𝑖 ∼ 𝑂(1) and 𝛽 → 0. Both the elastic non-
odal and nonlinear (modal) pathways above are shown in Figs. 10,
1(a) and 11(b), in the vicinity of the 𝑊𝑖-axis, and are believed to
rigger transition to an ET state (‘ET1’ in the Figs. 11(a) and 11(b)).
he existence of an additional linear instability for 𝑊𝑖 ∼ 𝑂(1000) and
→ 1[66], discussed in Section 2.2, implies a possible bifurcation to
distinct elastic turbulent state. It is therefore possible to envisage (at

east) two different ET states (ET1 and ET2 in Fig. 11(b)), in inertialess
lane Poiseuille flow, depending on 𝑊𝑖. There, however, remains a
ide intermediate range of 𝛽 (0 < 𝛽 < 𝛽𝑐) for which the nature of

he subcritical transition is not fully understood.

. Interfacial instabilities in multilayer and shear-banded flows

Next, we focus on interfacial instabilities which are a major concern
n applications (coating, coextrusion and others) that involve multi-
ayer configurations, i.e. the flow of immiscible liquids as distinct
ayers in contact with one another. The objective in the said applica-
ions is to obtain composite materials with properties that are a desired
ombination of those of the individual layers. In order for these layered
omposites to have the desired properties, uniformity of the individual
ayers is crucial, in turn implying that instabilities must be avoided
uring processing; the formation of interfacial waves, for instance,
an result in a significant deterioration of the product. Interfacial
aves in such configurations are often driven by a stratification (i.e., a

ufficiently rapid variation across the layers) of either material (static
r dynamic) or flow properties. For viscoelastic liquids, there arises the
pecific scenario of a stratification in the elastic characteristics.

Interfacial instabilities are well known to occur even in Newtonian
luids, where stratification can be due to the (rapid) variation of den-
ity, viscosity, and/or velocity across layers. A stratification in fluid
ensity, with the heavier fluid lying above the lighter one, leads to the
ell-known Rayleigh–Taylor instability; for brevity, we will not discuss
12

i

he role of density differences here. A difference in the velocities of two
o-flowing fluid streams leads to the classic Kelvin–Helmholtz (‘shear
ayer’) instability, which has an essentially inviscid origin. Azaiez and
omsy [110] used the Oldroyd-B model (in addition to Giesekus and
o-rotational Jeffereys models) to show that elasticity has a stabilizing
ffect on the shear layer instability, with an increasing 𝐸 reducing both
he growth rates and the unstable interval of wavenumbers. Even in
he absence of a density and velocity stratification, a jump in viscosity
cross an interface can lead to an instability, as first demonstrated
y Yih [111] for Newtonian fluids. Yih analyzed one of the simplest
nterfacial flows viz. wall-bounded two-layer plane Couette flow, and
ound that viscosity stratification can cause a long wave instability for
ny non-zero 𝑅𝑒; see Ref. [112] for a discussion on the underlying
hysical mechanism. The lack of a threshold 𝑅𝑒 for the onset of this
nstability should be contrasted with the Kelvin–Helmholtz instability
bove. An analogue of the viscosity stratification instability is also seen,
or instance, in lubricated pipelining [113], where a viscous core fluid
typically oil) is lubricated by a thin annulus of viscous fluid (water).

.1. Predicting interfacial instabilities using the Oldroyd-B model

Moving beyond Newtonian fluids, there is the possibility of an
lasticity mismatch between fluids having identical shear viscosities
nd densities. The first study of this scenario was carried out by
aters & Keeley [114] for a two-layer plane Couette flow of Oldroyd-
fluids; however, the authors found no instability due to an error in

he interfacial boundary condition. Chen [115] carried out a rather
imilar calculation for a core-annular coextrusion flow of a pair of UCM
luids, corrected the error above, and discovered a new instability. The
redictions were experimentally verified by Bonhomme et al. [116].
n the limit of long wavelengths, the instability arises due to a jump
n 𝑁1 across the interface. However, the elastic stratification can be
tabilizing or destabilizing, depending on the ratio of the volumetric
luxes. Hinch et al. [117] gave a simple physical explanation to show
hich fluid arrangements would be stable or unstable to varicose (as

tudied by Chen) and sinuous modes, and showed that for cases where
oth modes are unstable, the sinuous modes were the more dangerous.
urther analysis of interfacial instabilities, of UCM fluids in Couette
low, was carried out by Renardy [118]; this effort identified five modes
n the short-wave limit, of which only one is an interfacial mode. The
nterfacial mode was again shown to become unstable in the said limit
ue a stratification in elasticity even when the viscosities of the two
ayers are identical.

The above results were extended, still using the Oldroyd-B model,
o all wavelengths in symmetric three-layer planar interfacial flows
essentially the 2D analogue of the axisymmetric coextrusion config-
ration) by Miller, Wilson & Rallison [119–121], and to two-layer
rrangements in plane Poiseuille flow by Su & Khomami [122]. More
ecent works have extended the above efforts in various directions:
i) to very high Weissenberg numbers [119,121]; (ii) to two-layer
lows with moving boundaries (Couette–Poiseuille flow) [123]; (iii) by
nalyzing the effect of surfactants [124], and (iv) by exploring the use
f deformable solid boundaries as a way of suppression of interfacial
nstabilities [125,126].

.2. Shear banding and instabilities in the banded state

As discussed in another paper in this special issue [38], Oldroyd
ntroduced the Oldroyd-A model5 [35] as well as the more famous

5 Note, however, that the Oldroyd-A model is not appropriate for the de-
cription of viscoleasticity in polymer solutions, given that, under simple shear,
t predicts a negative second normal stress difference of the same magnitude as
he first normal stress difference. This feature is not experimentally observed
n polymer solutions.
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Fig. 12. Non-monotonic flow curve, as exhibited by the Johnson–Segalman model. If
the applied stress is 𝜎 = 𝜎𝑝, this can result in cco-existing states corresponding to a
pair of shear rates: 𝛾̇1 (the low-shear-rate band) and 𝛾̇3 (the high-shear-rate band). The
intermediate shear-rate 𝛾̇2 is mechanically unstable.

ldroyd-B, implying the existence of everything between the two. In
ther words, there exist valid constitutive equations with any of a
ne-parameter family of convected derivatives (collectively dubbed the

Gordon-Schowalter’ (GS) derivative [41]) all of which are consistent
ith the principle of material frame indifference. The aforementioned
arameter appears as a slip parameter, 𝑎, in the GS derivative. The
ohnson–Segalman model replaces the upper-convected derivative in
he UCM model with the GS derivative [127]. With varying 𝑎, the

convected derivative in this model transitions from a lower convected
derivative (Oldroyd-A; 𝑎 = −1) to an upper convected one (Oldroyd-B
𝑎 = 1) via the corotational or Jaumann derivative (𝑎 = 0). The resulting
response in viscometric flows has a shear-thinning character for all 𝑎
values except those corresponding to the Oldroyd-B and Oldroyd-A lim-
its. Further, for some values of 𝑎 (and 𝛽), the shear thinning is intense
enough that the shear stress exhibits a non-monotonic dependence on
shear rate, as shown in Fig. 12.

One of the most striking phenomena arising from the non-
monotonicity of the flow curve is shear banding, in which a simple
shear flow of a complex fluid, with a shear rate in the intermediate
mechanically unstable portion, spontaneously separates into high- and
low-shear-rate bands [128,129]. There has been widespread interest
in such banding flows since the phenomenon was first reported in the
early 1990s in the context of worm-like micellar solutions [130,131].
Surprisingly, shear-banded flows of worm-like micellar solutions are
themselves unstable [132,133] and exhibit a variety of instabilities
ranging from purely elastic instabilities localized in the more elastic
band [134] to instabilities of the interface between the bands [135–
138]. Although the primary banding instability is beyond the scope
of the Oldroyd-B model, significant understanding of the secondary
instabilities of banded micellar systems can be gained from drawing
analogies with the interfacial instabilities discussed above, and the
purely elastic bulk instabilities discussed in detail in Section 4 below,
both based on the Oldroyd-B model.

Thus, in shear-banded flows, one can capture the subsequent in-
stabilities in the banded state by treating each band as a distinct
Oldroyd-B fluid. For instance, the interfacial instabilities seen in shear-
banded Couette and plane Poiseuille flow [36,139–141] can be ex-
plained, at least in the long-wave limit, by Chen’s mechanism discussed
above [115], adapted to allow for the fact that the two shear bands
have mismatches of viscosity as well as of 𝑁1. It has also been shown
that the Pakdel–McKinley criterion, discussed below in Section 4.9, can
be adapted to describe (bulk) instabilities in shear-banded flows [141].

In a very recent paper, Castillo & Wilson [142] found an inter-
facial instability while analyzing the stability of channel flow of a
shear-banded thixotropic-viscoelasto-plastic fluid, which exhibits shear
banding; thus, this instability shares some similarities with the insta-
bility of the shear banded state discussed above. For the aforesaid
13

configuration, 𝑁1 varies continuously across the interface, and there
is only a jump in the viscosity; thus, the instability may be regarded as
the elastic version of the inertial instability analyzed by Yih [111]. The
authors were able to reproduce the main points of the instability (seen
in a highly shear-thinning fluid with many constitutive complications)
by using two Oldroyd-B fluids, with the interfacial value of𝑁1 matched,
but having different shear viscosities. The explanatory power of the
Oldroyd-B model is seen to extend well beyond its expected realm of
validity.

4. Instabilities in curvilinear shearing flows

The term ‘purely elastic’ instabilities has traditionally been used
to refer to the instabilities observed in flows of viscoelastic fluids,
in geometries with curved streamlines, including in particular visco-
metric configurations such as the Taylor–Couette, cone-and-plate and
parallel-plate geometries. This class of instabilities is present even
when inertial effects are not significant. As already mentioned in the
introduction, a precise prediction of the domain of existence of these
instabilities is of immense importance to rheological characterization
of polymeric liquids, since the inference of rheological properties pre-
supposes the existence of viscometric flows in the aforementioned
geometries; the occurrence of instabilities corrupts rheological mea-
surements, precluding characterization. Further, the instabilities are
of relevance to coating applications, and other polymer processing
scenarios where flow configurations akin to the said viscometric flows
occur. Excellent comprehensive reviews by the pioneers of this field,
earlier ones by Larson [3] and Shaqfeh [6], and the more recent one
by Muller [7], already exist in the literature; the goal of this section
is to provide a self-contained, but more up-to-date summary of this
important and novel class of instabilities. In fact, a discussion of these
instabilities is all the more pertinent to the present review, because
their prediction is one of the prominent success stories of the Oldroyd-B
model.

4.1. Effect of viscoelasticity on the Newtonian Taylor–Couette instability

Purely azimuthal flow of a Newtonian fluid between concentric
cylinders (the Taylor–Couette configuration), becomes unstable due to
(inertial) centrifugal effects [143]. The instability is absent when only
when both cylinders rotate in the same direction with the angular
velocity of the outer cylinder exceeding that of the inner cylinder by
the ratio (𝑅𝑜𝑢𝑡∕𝑅𝑖𝑛)2, 𝑅𝑜𝑢𝑡 and 𝑅𝑖𝑛 being the radii of the outer and inner
cylinders, respectively. This is consistent with the Rayleigh criterion
for inviscid instability that requires the base-state angular momentum
to monotonically decrease (in magnitude) with increasing radius [50].
The domain of existence of both the primary linear instability and
the various higher order transitions has been well characterized in
a parameter plane consisting of the Reynolds numbers based on the
radii and angular velocities of the inner and outer cylinders [144].
Excluding the case of strong counter-rotation, the unstable mode, at
onset, is axisymmetric and stationary (i.e., with a zero frequency). A
similar centrifugal instability is also present in ‘Dean flow’ entailing
pressure-driven flow through a curved channel, and originally analyzed
in the limit where the channel width is small compared to the radius
of curvature [145]. When a combination of cylinder rotation and a
streamwise pressure gradient drives the flow, the resulting centrifugal
instability is dubbed the ‘Taylor-Dean’ instability, and may be achieved
experimentally by inserting a meridional obstruction in the original
Taylor–Couette geometry [146].

Early efforts by Ginn and Denn [147] probed the role of weak
viscoelasticity on the centrifugal instability using a second-order fluid
model. The analysis showed that positive values of the first normal
stress difference (𝑁1), corresponding to a tension along the base-state
azimuthal streamlines, had a destabilizing effect. In contrast, a negative
second normal stress difference (𝑁2), corresponding to a tension along

the base-state axial vortex lines, had a stabilizing effect. The latter effect
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could be interpreted as being due to the resistance of the tensioned
vortex lines to bending caused by axially modulated perturbations.
This is somewhat analogous to the work of Azaiez and Homsy [110]
mentioned in the subsection above, where the bending resistance of
tensioned streamlines acts to stabilize the viscoelastic shear layer. In the
narrow-gap limit of 𝜖 ≪ 1 (𝜖 being the ratio of gap width between the
cylinders and the inner cylinder radius), the effect of an 𝑁2 appears at
a lower order in 𝜖 than 𝑁1. Hence, although 𝑁2 is usually negative and
much smaller in magnitude than 𝑁1 (typically 10%–30% for polymer
melts, and smaller for polymer solutions [148]), the stabilizing or
destabilizing action of viscoelasticity can nevertheless be expected to
depend sensitively on 𝑁2 for 𝜖 ≪ 1.

The second-order model used in Ref. [147], being restricted to
weak flows in the quasi-steady limit, is only valid for 𝑊𝑖 ≪ 1 [149];
experiments, particularly those examining instabilities, are most often
performed outside this regime, especially in the narrow-gap limit. Using
the more realistic UCM model, Walters and coworkers [150–152] again
found that 𝑅𝑒𝑐 for the stationary Newtonian mode decreased with 𝐸
for small 𝐸, this decrease being consistent with the destabilizing role
of a positive 𝑁1 mentioned above. A new oscillatory ‘inertio-elastic’
mode was found to become more unstable for higher 𝐸. Note that this
new oscillatory unstable mode is not connected to the Newtonian limit,
and is therefore not captured by the second-order fluid model. Beard
et al. [152] found the 𝑅𝑒𝑐 for this mode to also decrease monotonically
with 𝐸 in the range 0 < 𝐸 < 1, although the authors did not extend
their computations all the way down to the inertialess limit (𝑅𝑒 = 0
or 𝐸 = ∞). The destabilizing effect of weak elasticity on the Newto-
nian centrifugal instability also holds for the Dean and Taylor–Dean
configurations [153].

4.2. The purely elastic Taylor–Couette instability

While Giesekus reported evidence for the onset of a cellular insta-
bility in Taylor–Couette flow of polymer solutions as early as 1966 [6]
at Reynolds numbers of 𝑂(10−2), it is the pioneering theoretical-cum-
experimental efforts of Larson, Muller and Shaqfeh [154–156] that
led to the unequivocal establishment of an inertialess instability in
viscoelastic Taylor–Couette flow. In addition to carrying out a classical
modal stability analysis, using the Oldroyd-B model in the inertialess
limit, the authors also characterized the transition experimentally using
a Boger fluid6; Fig. 13 shows the secondary (toroidal) recirculation
patterns for both the Newtonian and purely elastic cases [154]. The
theoretical predictions, obtained for axisymmetric disturbances in the
thin gap limit, were in qualitative agreement with experimental obser-
vations. Unlike the Newtonian case, the unstable mode existed with
rotation of either cylinder, and was found to be oscillatory at onset,
with the dominant measured frequency in good agreement with theory.
However, experiments showed the vertical length scale of the cellular
pattern at onset to correspond to an axial wavenumber smaller than
the theoretical prediction. Interestingly, the cellular pattern in the
experiments continued to evolve over times much longer than the nom-
inal polymer relaxation time, with the cell height eventually shrinking
to half its initial value. The authors attributed this discrepancy to
the relatively flat neutral curve, implying the excitation of unstable
modes across a broad spectrum of wavenumbers even in the immediate

6 The term ‘Boger fluid’ refers to a class of fluids prepared by dissolving
small amounts of high-molecular weight polymer in a very viscous sol-
vent [157], which leads to a high elasticity (owing to the long relaxation
time) but negligible shear-thinning (in the viscosity); further, on account of
an intermediate-shear plateau in 𝛹1 [158], these fluids have served as model
systems reasonably well described by the Oldroyd-B model over a range of
shear rates corresponding to the aforementioned plateau. Since the elasticity
number 𝐸 scales directly with the solvent viscosity, and inversely with the
square of the flow length scale, elastic effects can be enhanced, and inertial
effects simultaneously suppressed, by use of Boger fluids in microscale flows.
14
Fig. 13. Visualization of Taylor–Couette flow using reflective mica flakes. Panel A
shows the patterns for flow of a Newtonian fluid with Taylor number 3.8 × 103, while
panel B pertains to viscoelastic Taylor–Couette flow with 𝑇 𝑎 = 𝑂(10−8) and 𝐷𝑒 = 20;
here, 𝑇 𝑎 = 𝑅𝑒2𝜖.
Source: Figure reproduced with permission from Fig. 1 of Muller et al. [154].

vicinity of the threshold, and the resulting nonlinear interactions then
contributing to the aforementioned evolution (as discussed below, con-
sideration of nonaxisymmetric disturbances leads to better agreement).
Further, the measured critical Weissenberg number was typically found
to be between 0.5–0.9 times the predicted value. Plausible reasons
behind this discrepancy are discussed in Section 4.6 below. Analogous
elastic instabilities have also been predicted in the Dean flow [159]
and Taylor–Dean flow configurations [146], with the unstable mode in
the latter case changing from an oscillatory to a stationary one, as the
pressure gradient becomes dominant in relation to cylinder rotation.

Both the elastic Taylor–Couette and Dean instabilities owe their
origin to either the base-state or perturbation hoop stress fields that
arise on account of tension along curved streamlines. For the former
flow, Larson et al. [155] proposed a physical mechanism based on a
dumbbell model for a polymer molecule, consistent with the meso-
scopic picture underlying the Oldroyd-B equation used for the stability
analysis. The toroidal circulation associated with the axisymmetric
unstable eigenmode leads to an extensional flow in the meridional
plane that stretches the dumbbell in the radial direction. This stretched
dumbbell is now acted upon by the base-state azimuthal shear, which
tilts it, leading to an increased separation between the beads along the
azimuth (see Fig. 12 of Ref. [155]). This drives a perturbation normal
stress in the 𝜃𝜃 direction (the hoop stress), which in turn produces a
radial perturbation pressure gradient. The radial flow driven by this
pressure gradient is out of phase with the original extensional flow, but
for sufficiently high 𝑊𝑖, overwhelms the original radial perturbation,
leading to overstability, and a growing oscillatory response. Note that,
on account of the underlying hoop stress, the mechanism above is
relevant only for flows with curved streamlines, and is absent, at
linear order, in the rectilinear shearing flows discussed in Section 2.
However, the mechanism can operate at a nonlinear order in rectilinear
flows, where the streamline curvature itself arises on account of the
perturbation, and this scenario is discussed in more detail in Section 7.

4.3. Finite-gap effects and nonaxisymmetric disturbances

The early theoretical efforts [154,155] were restricted to small gap-
widths (𝜖 ≪ 1) and axisymmetric disturbances. In order for the effects
of curvature, in the Oldroyd-B model, to remain important for 𝜖 ≪ 1,
one requires 𝑊𝑖 ∼ 𝜖−1∕2, and expectedly, the linear analysis [155]
yields a threshold value of 𝑊𝑖𝑐 𝜖

1
2 for instability (note that, when

inertial effects are negligible, the limit 𝑊𝑖 𝜖1∕2 ≪ 1 corresponds to
plane Couette flow which, as already seen in Section 2, is linearly
stable [62,68,72]). The above 𝑊𝑖−𝜖 scaling, and similar scalings found
for the other curvilinear flows (the parallel-plate and cone-and-plate ge-
ometries, with 𝜖 being replaced by the pertinent geometric factor), are
discussed below in Section 4.9, in the context of the Pakdel–McKinley
criterion.
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The restriction to axisymmetric disturbances, for 𝜖 ≪ 1, is often
justified based on the assumption of the azimuthal variation of the per-
turbation being on scales comparable to the cylinder radii; as a result,
for 𝜖 → 0, both axisymmetric and nonaxisymmetric modes are governed
by the same leading order eigenvalue problem. Working within the
axisymmetric disturbance framework, Shaqfeh et al. [156] showed that,
as 𝜖 increases, 𝑊𝑖𝑐 from both experiments and the finite-gap theory
decreases much more slowly with 𝜖 than the aforementioned predic-
tion (𝑊𝑖𝑐 ∝ 𝜖−1∕2) of small-gap theory. Significant (positive) deviations
of the threshold are already predicted for 𝜖 = 0.05, pointing to the
restrictive range of validity of the small-gap assumption, with 𝑊𝑖𝑐
becoming nearly independent of 𝜖 in the range 0.1 to 0.25, this being
consistent with experimental observations (Fig. 11 of Ref. [146]).

As pointed out above, the effect of nonaxisymmetry is only expected
to enter the analysis at a higher order for 𝜖 ≪ 1. Indeed, Joo and
Shaqfeh [146] showed that the terms differentiating the various non-
axisymmetric modes are 𝑂(𝜖2𝑊𝑖3). Since 𝜖𝑊𝑖2 ∼ 𝑂(1) for curvature
effects to remain finite, these additional terms are seen to be 𝑂(𝜖1∕2),
and therefore, asymptotically small compared to the leading order
axisymmetric ones. However, detailed calculations showed the thin
gap assumption to again be very restrictive. Thus, Joo and Shaqfeh,
even for 𝜖 ∼ 10−4, found the additional terms (characterizing departure
from axisymmetry) to be important; nonaxisymmetric modes, in fact,
turned out to be more unstable than the axisymmetric mode. Joo
and Shaqfeh [146] found the results obtained using nonaxisymmetric
disturbances to be in good qualitative agreement with experimen-
tal observations of the variation of 𝑊𝑖𝑐 with 𝛽 and 𝜖. Further, the
wavenumber of the axial vortices developing at onset, determined using
an image analysis, was found to be in good agreement with the predic-
tion for the most unstable nonaxisymmetric mode (about 5.5 inverse
gap thicknesses). The results of Joo and Shaqfeh were also consistent
with the earlier findings of Avgousti and Beris [160], who again found a
nonaxisymmetric oscillatory mode in viscoelastic Taylor–Couette flow
to be more unstable than the aforementioned axisymmetric mode, even
for 𝜖 = 0.1.

4.4. The dominant instability in the 𝑊𝑖 − 𝑅𝑒 plane

The discussion above began with a brief description of the Newto-
nian Taylor–Couette instability (𝑊𝑖 = 0), and thereafter, shifted to an
examination of the purely elastic instability (𝑅𝑒 = 0) arising in the same
flow configuration. The initial efforts referred to above [147,150–152]
emphasized the destabilizing role of weak elasticity on the Newtonian
(centrifugal) instability (for 𝑁2∕𝑁1 → 0). The destabilizing nature of
weak elasticity on the Newtonian instability holds even for the Dean
and Taylor–Dean configurations [153]. A study of the opposite limit,
that is, the role of weak inertia on the purely elastic instability [155],
was first carried out by Joo and Shaqfeh [153]. Expectedly, the rotation
of the outer cylinder was found to have a stabilizing effect, and that
of the inner cylinder a destabilizing one; note that this breaks the
symmetry present in the purely elastic limit, for 𝜖 ≪ 1, where the
instability is independent of the particular cylinder being rotated7.

It is also of interest to examine the nature of the dominant unstable
mode in the 𝑅𝑒−𝑊 𝑖 plane as a whole (Fig. 14). Recall from Section 2
that, within the Oldroyd-B framework of a shear-independent viscosity
and first normal stress coefficient, the elasticity number 𝐸 = 𝑊𝑖∕𝑅𝑒 is a
convenient measure of the relative magnitudes of elasticity and inertia,
with 𝐸 = 0 and ∞ corresponding to the purely inertial and purely

7 It is perhaps worth noting that the analogous question for the other
iscometric flow configurations viz. the cone-and-plate and parallel-plate
eometries, is complicated by the fact that the purely azimuthal flow is no
onger an exact solution for finite 𝑅𝑒; see Section 4.5. Thus, the question of
tability becomes one of perturbing a base-flow configuration that itself evolves
15

ith increasing 𝑅𝑒.
Fig. 14. Dominant modes in the 𝑅𝑒 − 𝑊 𝑖 plane for viscoelastic Taylor–Couette
with outer cylinder stationary or rotating at half the angular velocity of the inner
cylinder (main schematic). The continuous lines are for the UCM limit and the dashed
lines are for 𝛽 = 0.8. The two insets show the dominant mode(s) in Taylor–Couette
low with a stationary inner cylinder and in Dean flow. For the former configuration,
he elastic mode is stabilized by inertia. In contrast to Taylor–Couette flow, a single
nstable mode continuously spans the 𝑅𝑒 −𝑊 𝑖 plane for Dean flow.

lastic limits, respectively. Avgousti and Beris [161], using both linear
tability analyses and symmetry arguments (that remain valid beyond
he linear regime), reported the existence of three different eigenmodes
n the 𝑅𝑒−𝑊 𝑖 plane for Taylor–Couette flow of a UCM fluid subject to

axisymmetric perturbations. For 𝐸 ≪ 1, the unstable mode is stationary
and its structure analogous to the well-known Taylor vortices in the
Newtonian limit; for 𝐸 ≫ 1, the unstable mode is oscillatory akin to the
purely elastic mode analyzed by [155]. For finite values of 𝐸, however,

distinct inertio-elastic oscillatory mode becomes most unstable with a
avelength and flow structure intermediate between the purely elastic
nd inertial modes. Avgousti and Beris [160] showed that the above
rend, of new modes becoming dominant with increasing 𝐸, persisted
or non-axisymmetric disturbances [161], although this finding was
estricted to the UCM limit (𝛽 = 0). Moreover, the unstable regions
n the 𝑅𝑒 − 𝑊 𝑖 plane were mapped out only for fixed wavenumbers,
nd for the specific case 𝛺𝑜𝑢𝑡∕𝛺𝑖𝑛 = 1∕2.

In contrast, Joo and Shaqfeh [153], in addition to the aforemen-
ioned angular velocity ratio, also considered the cases 𝛺𝑜𝑢𝑡 = 0, 𝛺𝑖𝑛 ≠ 0

(only inner cylinder rotating), and 𝛺𝑜𝑢𝑡 ≠ 0, 𝛺𝑖𝑛 = 0 (only outer
ylinder rotating), with the restriction of axisymmetric disturbances.
or 𝛺𝑜𝑢𝑡∕𝛺𝑖𝑛 = 1∕2 and 𝛺𝑜𝑢𝑡∕𝛺𝑖𝑛 = 0, the said authors presented

results for the critical Reynolds number, minimized over the entire
range of axial wavenumbers, as a function of 𝑊𝑖, and confirmed the
existence of three distinct modes in the 𝑅𝑒−𝑊 𝑖 plane in the UCM limit,
similar to the results of Avgousti and Beris discussed above. As shown
schematically in Fig. 14 for the UCM fluid, at low 𝑊𝑖, the continuation
of the inertial mode is dominant, while for an intermediate range of 𝑊𝑖,
the continuation of the purely-elastic mode to finite inertia becomes
the most dominant one. At still higher 𝑊𝑖 (and for a small range of
𝑊𝑖), the inertio-elastic mode is the most unstable, which eventually
gives way once again to the purely elastic mode. However, the authors
also showed that the nature of the dominant mode was sensitively
dependent on 𝛽. Thus, while the inertio-elastic mode was the most
unstable over a small, intermediate range of 𝑊𝑖 for 𝛽 = 0, this range
disappears entirely for 𝛽 slightly greater than zero, suggesting that the
inertio-elastic mode may not be relevant for polymer solutions (see
left plot in Fig. 14). Thus, for 𝛽 = 0.8 and 𝛺𝑜𝑢𝑡∕𝛺𝑖𝑛 = 0, there are
only two dominant modes in the 𝑅𝑒−𝑊 𝑖 plane, viz., the continuation
of the inertial mode from the Newtonian limit to finite 𝑊𝑖, and the
continuation of the purely-elastic mode from the inertialess limit to
finite 𝑅𝑒 (see Fig. 14). For 𝛺𝑖𝑛 = 0, there is no instability in the
Newtonian limit. Thus, the purely elastic instability, present for 𝑅𝑒 =
0, is the only unstable mode in 𝑅𝑒 − 𝑊 𝑖 plane, and the critical 𝑊𝑖
for this instability increases as 𝑅𝑒 is increased from zero. In contrast
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to this rather complicated scenario in Taylor–Couette flow, wherein
different modes become dominant as 𝐸 is increased, the same unstable
axisymmetric mode continues all the way from 𝐸 = 0 to 𝐸 = ∞
or Dean flow [153]; moreover, this scenario holds for different 𝛽

(top right plot of Fig. 14). This simple picture may not, however,
hold for nonaxisymmetric disturbances, although this remains to be
investigated.

Interestingly, the nature of the dominant instability in the 𝑅𝑒−𝑊 𝑖
plane in the limit 𝑅𝑒,𝑊 𝑖→ ∞, with 𝐸 fixed, is of relevance to the astro-
physical scenario. Note that this distinguished limiting scenario arises
only for the Oldroyd-B model since shear thinning in the nonlinear
constitutive models leads to elastic stresses scaling sub-quadratically,
and thereby, becoming asymptotically small in relation to the inertial
ones in the aforementioned limit. The limit may be termed the elastic
Rayleigh limit since the equation governing linearized evolution is a
second order ODE similar to the Rayleigh equation in the inviscid
limit [50], but with 𝐸(1 − 𝛽) as a parameter that measures the im-
portance of elastic stresses (the reduction of order points clearly to
the singular nature of this limit). It has been shown [162] that the
equations governing polymer solutions in the elastic Rayleigh limit
are identical to the magnetohydrodynamics (MHD) equations in the
relaxationless limit (that of infinite magnetic Reynolds number), with
the dumbbell end-to-end vector field being analogous to the magnetic
field. A consequence is that the instabilities of a polymer solution
in this limit have corresponding astrophysical analogs; in particular,
an inertio-elastic instability in this limit should map onto the so-
called magnetorotational instability (MRI). The axisymmetric version
of the latter instability was originally predicted by Vehlikov [163]
and Chandrasekhar [164], and rediscovered much later by Balbus and
Hawley [165]. In the polymer solution literature, the elastic Rayleigh
limit was first considered by Azaiez and Homsy [110], in the context of
a viscoelastic shear layer, although elasticity had a stabilizing influence
in this case, as already discussed in Section 3. Rallison and Hinch [166]
were the first to discover an inertio-elastic instability for a submerged
jet configuration, arising from a novel mechanism involving a resonant
interaction of elastic shear waves (the analogs of Alfven waves in the
MHD context) in the aforementioned limit. More recently, an analogous
shear-wave-driven instability has been shown to destabilize an elastic
vortex column [33]; unlike the jet, this inertio-elastic instability exists
in isolation for the vortex case, and is therefore of greater relevance.
Importantly, the vortex column configuration bears an obvious relation
to the Taylor–Couette geometry. There have indeed been experiments
in the Taylor–Couette setup motivated by the above analogy [167],
and also numerical stability calculations for relatively modest 𝑅𝑒 and
𝑊𝑖 [168]. It is certainly of interest to theoretically investigate the
instabilities of the Taylor–Couette configuration in the elastic Rayleigh
limit, and in particular, examine the relation between any unstable
modes arising from the aforementioned shear-wave-resonance mecha-
nism, and the inertio-elastic mode, at finite 𝑅𝑒 and 𝑊𝑖, that has been
discussed in the elastic instability literature [153,160].

4.5. Purely elastic instability in cone-and-plate and parallel-plate flows

The mechanism underlying the purely elastic Taylor–Couette insta-
bility is suggestive of a similar instability in the two other rheometric
flow configurations, viz., the cone-and-plate and parallel-plate geome-
tries. Magda and Larson [169] observed an anomalous increase in the
shear stress above a threshold rate of shear, in both these geome-
tries, even for a vanishingly small 𝑅𝑒. Although similar observations
had been made by earlier researchers [170,171], the aforementioned
authors were the first to ascribe the anomalous increase to a flow
transition, rather than to the intrinsic rheological character of the fluid.
Subsequent visualization experiments by McKinley et al. [172] showed
the onset of a secondary flow at the critical shear rate, corroborating
the inference of Magda and Larson.
16
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The first theoretical studies to demonstrate an instability of the flow
of an Oldroyd-B fluid, in the above geometries, were due to Phan-
Thien [173,174]. Motivated by the form of the Newtonian flow in these
geometries, the author assumed a self-similar so-called von-Karman
ansatz for the base-state flow at finite 𝑅𝑒 and 𝐷𝑒, with 𝐷𝑒 = 𝜆𝛺.
Despite the base-state flow reducing to a purely azimuthal one for zero
𝑅𝑒 (regardless of 𝐷𝑒)8, the author again invoked the Karman ansatz
for the perturbation, and demonstrated the onset of an stationary and
axisymmetric elastic linear instability beyond a critical 𝐷𝑒. The absence
of a length scale in the assumed ansatz implied a disturbance flow
field in the form of a single ‘roll’, in the meridional plane, that ‘closes
at infinity’. Thus, the only relevant dimensionless group is 𝐷𝑒 above,
with the threshold criterion therefore coming out to be independent
of the gap-angle (𝜃) for the cone-and-plate geometry, and of the non-
dimensional plate spacing (𝐻∕𝑅, 𝐻 and 𝑅 being the inter-plate spacing
and plate radii) for the parallel-plate geometry; note that 𝑊𝑖 = 𝐷𝑒∕𝜃,
and 𝐷𝑒 (𝑅∕𝐻) for the two geometries.

The aforementioned visualization experiments of McKinley et al.
[172], for the parallel plate geometry, showed that the growing dis-
turbance flow field was not of the similarity form assumed in [173];
instead, the observed patterns were characterized by a radial scale of
𝑂(𝐻). The first analysis to account for this scale was that of Oztekin
nd Brown [175], who used the Oldroyd-B model to conduct a local
tability analysis of the parallel-plate flow in the vicinity of a particular
adius (𝑅∗). While the analysis correctly showed the unstable modes to
e time dependent non-axisymmetric spiraling patterns, the prediction
f the threshold was qualitatively incorrect. The threshold 𝐷𝑒, obtained

from the Oldroyd-B analysis, bore an inverse relation to 𝑅∗, so the
torsional flow configuration was predicted to be unstable for any finite
𝐷𝑒 beyond a certain 𝑅∗ (in contrast to the Phan-Thien analysis above).
This, however, contradicted the later experiments of McKinley and
coworkers [176], who showed that the unsteady secondary motion, just
beyond the threshold, was restricted to an annular region between a
pair of critical radii. The restabilization of the flow beyond the second
critical radius arises from effects of shear thinning which decrease the
effective relaxation time at higher shear rates. This was confirmed
by a linear stability analysis using the FENE-CR model [176]. The
aforementioned restabilization also translates to the stability of the
torsional flow configuration below a threshold inter-plate spacing; the
resulting shape of the unstable region in parameter space is discussed
in Section 4.9 below in the context of the Pakdel–McKinley criterion.

An analogous scenario was shown to hold for the cone-and-plate
geometry [177]. Use of the Oldroyd-B model again reproduced the
unstable spiral patterns in a qualitative sense; unlike the parallel-
plate case, the homogeneity of the base-state shearing flow and the
resulting absence of a characteristic length scale implies that the spirals
in this case are no longer radially localized. Use of the FENE-CR
model was needed to capture the correct nature of the threshold
condition, which involved a stabilization of the flow for small enough
cone angles; this is discussed in Section 4.9. The use of a multi-
mode Giesekus model, in fact, yielded quantitative agreement with
experimental observations [178]

8 In the Newtonian case, the (inertial) centrifugal forces driving the merid-
onal secondary flow scale with the velocity, which is larger near the rotating
late, and therefore give rise to a secondary flow. In contrast, the elastic
tresses scale with the velocity gradient (the square of the gradient for Oldroyd-
), and are therefore uniform across the gap. The divergence of these stresses
ay be balanced with a radial pressure gradient, allowing the base-state flow

o have only an azimuthal component. This argument is applicable, however,
nly in the limit of small cone angles, which is when the velocity gradient
cross the gap is a constant. The existence of an elastic instability, of course,
mplies solution multiplicity, and the azimuthal flow is not the only possible
xisymmetric flow beyond a threshold 𝐷𝑒.
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4.6. Experiment vs theory (non-isothermal effects)

The comparison between theory and experiment, even for the pri-
mary transition in the viscoelastic case, is nowhere as quantitative as
for the Newtonian case. The first and perhaps obvious reason is the
uncertainty surrounding the constitutive equation used. The Oldroyd-B
equation, used in the stability analyses, is only an approximation for
the Boger fluids used in the experiments. Boger fluids have a nontrivial
spectrum of relaxation times, and consistent modeling of both their
steady state and transient rheology requires a nonlinear multimode
constitutive equation [158]. The underlying relaxation spectrum man-
ifests as a dependence of the apparent relaxation time on the method
of measurement. The resulting arbitrariness in the choice of time scale,
to be used in the Oldroyd-B model, leads one to expect an ambiguity
in the theory-experiment comparison. A second reason has already
been mentioned above in the context of the first experiments: the
shallow nature of the viscoelastic neutral curve, in comparison to the
Newtonian one (compare Figs.III-2 and III-11 of Ref. [3]), has been
speculated to lead to strong nonlinear interactions even close to onset,
that then manifest as a slow drift of the observed pattern with the
appearance of progressively smaller-scaled structure over times much
longer than the nominal relaxation time [155,179]. A second factor
favoring the aforementioned importance of nonlinearity is that the
bifurcation to the primary non-axisymmetric mode is likely a subcrit-
ical one [180], in contrast to the Newtonian case. Thus, as briefly
mentioned in Section 4.2, while the theoretical predictions based on
axisymmetric disturbances over-predict the threshold for instability,
consideration of nonaxisymmetric disturbances and the associated sub-
critical nature of the bifurcation leads to a narrowing of the gap
between the theoretical and experimental thresholds.

A third and rather unexpected reason that has led to a stark dif-
ference between theory, and some of the experiments using Boger
fluids, is the deviation from isothermal conditions arising due to viscous
heating (Boger fluids have very high viscosities). Despite the critical
parameters for instability onset being sensitive to the particular rhe-
ological model used, the elastic instability for Taylor–Couette flow,
within the usual isothermal formulation, is predicted to be always
non-axisymmetric and oscillatory at onset. However, many of the ex-
perimental observations [181–184] have revealed a primary transition
to a weak stationary axisymmetric mode on time scales much longer
than the polymer relaxation time, and at 𝑊𝑖 much lower than the
theoretical threshold. This discrepancy was addressed by Al-Mubaiyedh
et al. [185,186] who showed that the inclusion of viscous heating in
the analysis, and the resulting prediction of a thermoelastic instabil-
ity, leads to a good agreement between experiment and theory. That
viscous heating leads to destabilization is somewhat counter-intuitive
since both viscosity and the relaxation time should decrease with an
increase in temperature, and this ought to lead to a higher threshold
rotation rate for a given 𝑊𝑖𝑐 . This expected stabilizing effect has
indeed been found for other curvilinear geometries such as the parallel-
plate and cone-and-plate configurations [187,188]. The destabilizing
mechanism [185,186] for Taylor–Couette flow is argued to arise due to
the stratification of the hoop stress in the gap between the cylinders,
which drives a radial secondary flow, and the convection of base-state
temperature gradients by the radial perturbation velocity then leads to
the instability. Fig. 15 shows the slow development of the stationary
vortices on a space–time plot [181], with the plot below showing the
experimentally observed decrease in 𝐷𝑒𝑐 (to be interpreted as 𝑊𝑖𝑐) with
the Nahme number, the latter being a dimensionless measure of viscous
heating [182].

4.7. Secondary instabilities and elastic turbulence

Transition from the laminar state, in the Newtonian case, occurs in
contrasting fashions for the canonical (and non-inflectional) rectilinear
shearing flows examined in Section 2, and for the curvilinear shearing
17
Fig. 15. (a) Space–time plots of Taylor–Couette flow of a viscoelastic fluid at 𝐷𝑒 = 2.7,
𝑅𝑒 = 2.7, Brinkmann number = 6.5 × 10−3, and Prandtl number ≈ 24000. The extent of
the z axis is 5.82 gap widths. Reproduced with permission from Ref. [181]. (b) 𝐷𝑒𝑐
vs. Nahme number, reproduced with permission from Ref. [182]. These experiments
differed from earlier efforts in adopting the so-called adiabatic (quasi-static) path,
involving a slow ramp-up (as opposed to a step increase) to the rotation rate of interest.

flows examined here (the Taylor–Couette geometry in particular). In the
former case, with increasing 𝑅𝑒, turbulence appears abruptly and in
its entire complexity, albeit in spatially localized forms [189], while
there is a gradual but global increase in the spatiotemporal complexity
for the Taylor–Couette configuration. Thus, the topic of secondary or
higher-order transitions following the primary instability, and that lead
to the eventual turbulent state, is more pertinent to curvilinear shearing
flows; indeed, the various flow regimes for Newtonian Taylor–Couette
flow have been extensively studied and are well documented, as already
mentioned in Section 4.1 [144,190,191].

At the other extreme of elasticity being dominant (𝐸 ≫ 1), a spa-
tiotemporally disordered state has been shown to arise for sufficiently
large 𝑊𝑖, and has appropriately been termed elastic turbulence (ET).
The experiments of Groisman and Steinberg [8] were the first to char-
acterize ET in a wide-gap parallel-plate geometry (𝜖 = 0.263 and 0.526),
with the shear stress in this state being up to 20 times larger than the
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(hypothetical) laminar flow at the same rotation rate. The transition
was found to be subcritical, although the detailed pathway and the
associated rich sequence of intermediate states (more readily accessed
in a narrow-gap setting) were characterized in later experiments, in
the same geometry (𝜖 = 0.2), by Schiamberg et al. [192]. Groisman
nd Steinberg [8] also examined the power spectrum of velocity fluc-
uations in the ET state via Doppler velocimetry; the plots decayed as
−3.5 for large frequencies (𝜔), and thence, for sufficiently small length
cales (via Taylor’s frozen turbulence hypothesis). The rapid decay is
n contrast to the Kolmogorov (−5∕3)-law known for the inertial range

in Newtonian turbulence, but is consistent with theoretical constraints
obtained based on the Oldroyd-B model [193]. The implication is that,
in contrast to Newtonian turbulence, the velocity gradient is the maxi-
mum at the largest scales, and ET therefore corresponds to a stochastic
but spatially smooth chaotic flow controlled by the large scales [10].
The ET state has also been accessed in a curvilinear channel [9], the
analog of the Dean-flow configuration discussed earlier but one that
does not conform to the infinite (large) depth assumption underlying
the derivation of the theoretical stability threshold. The curvature
ratio was large to facilitate transition, which was now found to be
supercritical [194], but with the power spectra again pointing to the
large scales being dominant.

Groisman and Steinberg have also accessed an ET state in a wide-
gap (𝜖 ≈ 1) Taylor–Couette geometry [194], the transition being hys-
teretic similar to the parallel-plate configuration above. The velocity
fluctuation power spectra, however, exhibited a large-𝜔 decay exponent
a little greater than 2, thereby deviating from the scalings for the
other geometries above, in turn implying the possibly non-universal
geometry-dependent nature of the ET state. In earlier experiments
involving a Taylor–Couette configuration with a narrower gap (𝜖 = 0.5),

roisman and Steinberg have examined the higher-order transitions en-
oute to turbulence, as a function of 𝐸, although the aforementioned
T state itself was not identified [184,195–197]. For 𝐸 < 0.15, the
rimary instability of the azimuthal flow gave rise to a Newtonian-like
aylor-Vortex flow (TVF) which, with increasing 𝑅𝑒, became unstable
o a new oscillatory state termed a ‘rotating standing wave’. At a higher
𝑒, this state transitioned to yet another new oscillatory state termed

disordered oscillations’, characterized by broad peaks in the frequency
pectra and by the appearance of patches of both standing and traveling
aves in space–time plots. For 𝐸 > 0.15, the TVF directly transitioned

o disordered oscillations, while for 𝐸 > 0.22, disordered oscillations
merged directly from the purely azimuthal laminar base flow. At
igher elasticities (𝐸 ∼ 20), the transition to disordered oscillations be-
ame increasingly hysteretic. Thus, along a path of decreasing 𝑅𝑒, these
scillations persisted down to an 𝑅𝑒 much lower than that marking the
nset of the forward transition, eventually giving way to stationary so-
alled ‘diwhirls’; solitary diwhirls have since been identified via fully
onlinear computations [198]. Many of the aforementioned transitions,
or small but finite 𝐸, have been reproduced in simulations (for 𝐸 =
∕3) by Khomami and co-workers, using the Oldroyd-B and FENE-P
odels, with 𝐿 in the latter case being large enough for shear-thinning

o be unimportant [199].
Detailed experiments, with the intent of mapping both the primary

nd higher-order transitions in the Taylor–Couette geometry, have also
een conducted by Muller and co-workers. While the early experi-
ents using high-viscosity Boger fluids were likely corrupted by the

mergence of a thermoelastic instability (the later experiments of White
nd Muller pertaining to the thermoelastic instability were discussed
n more detail in Section 4.6 above), and possibly, its interaction
ith the elastic instability on account of adopting a non-quasistatic

amping protocol [183,200], later experiments [201,202], based on a
uasi-static ramping protocol, have extended the known mapping of
low states in the 𝑅𝑒𝑖𝑛 − 𝑅𝑒𝑜𝑢𝑡 plane (see Section 4.1) to non-zero 𝐸.
he general pattern is that of elasticity affecting the higher-order less
18

ymmetric flow states at a lower 𝐸, which is expected on account of the c
ime scales of oscillation involved being comparable to the polymer re-
axation time. For the highest 𝐸 examined (≈ 0.2), the authors identify
n elastically dominated turbulent state based on the emergence of a
roadband frequency spectrum, although the relation with the ET-state,
dentified by Steinberg and coworkers above, is not clear [202].

.8. Beyond Oldroyd-B

Here, we comment briefly on how features not captured by the
ldroyd-B model affect the prediction of the purely elastic instabilities

n curvilinear flows. These include (i) a nonzero 𝑁2, (ii) the existence
f a nontrivial relaxation time spectrum, (iii) the shear-rate dependence
f the viscosity and first normal stress difference, (iv) the use of a multi-
cale simulation approach that avoids closure approximations, and (v)
oing beyond the dilute regime.

Most entangled polymer solutions have negative 𝑁2’s [148], which
re predicted to strongly stabilize the purely elastic instability in
aylor–Couette flow [156], especially for small gap widths (𝜖 ≪ 1);
s alluded to in Section 4.1, in the context of the second-order fluid
odel, the effects of 𝑁2 enter at a lower order in 𝜖 (compared to 𝑁1) in

his limit. Indeed, Shaqfeh et al. [156] noted a significant discrepancy
etween the prediction from the Oldroyd-B model (𝑊𝑖𝑐 = 47) and
xperiment (𝑊𝑖𝑐 = 71) for the smallest gap ratio (𝜖 = 0.03), where
he small-gap theory should otherwise have been accurate. To address
his discrepancy, Shaqfeh et al. used a modified Oldroyd-B model with
n additional contribution to the stress tensor that, albeit of the second-
rder fluid form, gave rise to a nonzero 𝑁2, and showed that this
ndeed had a stabilizing effect. Similarly, using the Giesekus model,
eris et al. [203] also concluded that negative second normal stress
ifferences were strongly stabilizing. Indeed, for −𝑁2∕𝑁1 > 0.1 (typical
or entangled polymer solutions), 𝑊𝑖𝑐 > 100, and this could be one
eason why the purely elastic Taylor–Couette instability is not reported
or the flow of entangled polymeric solutions [3].

Larson et al. [204] used the K-KBZ equation to incorporate both
hear thinning and a relaxation time spectrum to analyze the elastic
aylor–Couette instability, and concluded that the critical conditions
re a function of both the longest (the Oldroyd-B) and the average
elaxation times. This immediately points to the arbitrariness inherent
n the choice of a single-time-scale (either linear or nonlinear) model, as
as already been pointed out in Section 4.6. In a later effort pertaining
o instability onset in the cone-and-plate and parallel-plate geometries,
multi-mode Giesekus model, with parameters tuned so as to best fit

he rheological properties of the Boger fluid used in the experiments,
as been shown to quantitatively predict the critical 𝑊𝑖 as a function
f gap width or cone angle [178]. Notwithstanding the subtle issue of
tress-conformation hysteresis that might come into play for instabili-
ies in non-viscometric flows (see discussion at the end of Section 5.3),
ultimode versions of nonlinear constitutive models appear necessary

or a quantitative match with experiments.
Larson et al. [204] found shear thinning to have a monotonically

tabilizing effect on the instability, on account of the decrease in the
irst normal stress coefficient with the shear rate. As mentioned in
ection 4.5, shear-thinning has, in fact, a profound effect on the neutral
oundary demarcating the stable and unstable regions [172,175–177],
nd this is discussed in more detail in the following subsection, in the
ontext of the Pakdel–McKinley criterion.

Although the commonly used constitutive equations like the
ldroyd-B, the FENE-P or the Giesekus models, have the obvious
dvantage of needing only modest computational resources, they are
imited either by the simplicity of the microscopic picture (Oldroyd-B),
y closure approximations (FENE-P) or by lack of a rigorous connection
o an underlying kinetic theory framework (FENE-CR, Giesekus). There
ave been some efforts, in the context of hydrodynamic stability,
hat have attempted to go beyond the said limitations by adopting a
micro-macro’ approach. For instance, Somasi and Khomami [205,206]

alculate the polymer stress field from Brownian dynamics simulations
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using Hookean or FENE dumbbells, which is subsequently coupled with
a finite-element solution of the Cauchy momentum equations. Using
this approach, the authors examined the linear stability of plane- and
Taylor–Couette flows, finding good agreement with the results of a
stability analysis carried out using closed-form constitutive equations.
However, very large computational times were required (approximately
100 times that required for a regular stability computation) even for the
simple elastic dumbbell-based models used.

Finally, the results obtained using the Oldroyd-B model are strictly
valid only in the truly dilute regime. However, the polymer solutions
used in experiments are not always in this regime, and it is important
to include the concentration dependence of the fluid rheology in a
systematic manner. In this regard, as a first step, it seems appropriate
to use the Giesekus model (discussed earlier in Section 1), with the
anisotropic drag coefficient in the model acting as a proxy for polymer
concentration. Recent efforts [207] have attempted to account for, in a
more rigorous manner, hydrodynamic interactions between chains that
come into play close to and beyond the overlap concentration. Although
the role of such inter-chain interactions has been examined in the
context of the CABER technique, now commonly used to measure the
relaxation time [208,209], in future, one could also envisage a stability
analysis, based on the rigorous models above, that extends across
the overlap concentration, spanning both the dilute and semi-dilute
regimes.

4.9. The Pakdel–McKinley criterion

We now discuss a heuristic argument developed by Pakdel and
McKinley [65,210] which unifies the threshold criteria for instability
onset in the different curvilinear shearing flows examined above. As
will be seen below and in Section 5, it allows one to arrive at sensi-
ble stability thresholds (to within a numerical factor of order unity)
even when closed form results from linear stability analysis are not
available (owing, for instance, to the geometrical complexity of the
flow configuration). The criterion incorporates the two key ingredients
required for a purely elastic instability viz. streamline curvature in the
base-state laminar flow as well as the magnitude of the streamwise (ten-
sile) normal stresses, and expresses the threshold for elastic instability
in terms a product of the Deborah and Weissenberg numbers. Recalling
the definition𝐷𝑒 = 𝜆∕𝑇 , 𝑇 = ∕𝑈 now being the residence time with 
he radius of curvature (for the curvilinear shearing flows in question),
nd writing 𝑊𝑖 in terms of the ratio of the normal and shear stresses as
𝑖 = 𝑁1∕2𝜏, the Pakdel–McKinley criterion for elastic instability may

e written as:

(𝜆𝑈∕)(𝑁1∕𝜏)]𝑐 > 𝑀2, (2)

being an order unity number in the simplest cases (curvilinear
iscometric flows), or a field (when the flow configuration is more
omplicated, and in particular, inhomogeneous, as is the case for the
on-viscometric examples considered in Section 5). Note that the ratio
𝑈∕ may also be interpreted as the ratio of the distance (along a
treamline), over which disturbances relax elastically, to the charac-
eristic radius of curvature. Replacing 𝜆𝑈 by an appropriate viscous
oundary layer length scale recovers the known stability criteria asso-
iated with Newtonian instabilities driven by curvature; these include
he classical Taylor–Couette instability itself, and the Gortler instability
ssociated with laminar boundary layers on curved surfaces [211].
ote, however, that the application of this criterion relies on the
ssumption that the instability mechanism is local and can be predictive
nly within this scenario.

We now obtain the explicit form for this criterion for the Taylor–
ouette and cone-and-plate configurations. For the former, 𝑈 = 𝛺𝑅𝑖𝑛,

corresponding to the inner cylinder (say) rotating with angular ve-
locity 𝛺, and an obvious choice for the radius of curvature is the
19

(inner) cylinder radius, viz.,  = 𝑅𝑖𝑛. The streamwise normal stress for c
Fig. 16. The variation of the threshold Weissenberg number 𝑊𝑖0 (based on the zero-
shear relaxation time) with the dimensionless parameter 𝜖, is shown qualitatively for
the Oldroyd-B, FENE-CR and FENE-P models. Here, 𝜖 = 𝑑∕𝑅𝑖𝑛 for Taylor–Couette flow,
= 𝜃0 for the cone-and-plate geometry, and 𝜖 = 𝐻∕𝑅 for the parallel plate geometry (𝐻
eing the gap width between the plates, and 𝑅 being the radius of the circular plate).

he Oldroyd-B model is 𝜏𝜃𝜃 = 2𝜂𝑝𝜆𝛾̇2, and the total shear stress 𝜏 = 𝜂𝑡𝛾̇,
𝑡 being the solution viscosity. Substituting these expressions leads to
√

𝐷𝑒𝑊𝑖)𝑐 ≥
𝑀

√

2(1 − 𝛽)
, (3)

for instability in the thin-gap limit, where 𝐷𝑒 = 𝜆𝛺, 𝑊𝑖 = 𝜆𝛾̇, and
𝜂𝑝∕𝜂𝑡 = (1 − 𝛽). Using 𝛾̇ = 𝛺𝑅𝑖𝑛∕𝑑 and the dimensionless gap width
= 𝑑∕𝑅𝑖𝑛 with 𝑊𝑖 = 𝐷𝑒∕𝜖, the above equation reduces to

𝑖𝑐𝜖
1
2 ≥ 𝑀

√

2(1 − 𝛽)
, (4)

in agreement with the original thin-gap analysis of Larson et al. [155]
(note that these authors refer to 𝑊𝑖 in (4) as 𝐷𝑒). In Eq. (4), 𝑀 is in
eneral a complicated function of 𝛽, and asymptotes to a constant only
n the limits 𝛽 → 0 and 1. In the former limit, the stability analysis
ields 𝑀 ≈ 6 for axisymmetric disturbances [155], and for the latter
ase, the threshold 𝑊𝑖 diverges as the reciprocal square root of (1 − 𝛽)

in the limit of vanishing elasticity.
For the cone-and-plate configuration, the velocity at any radial

position is 𝑈 = 𝑟𝛺, and for 𝜃0 ≪ 1, the shear rate, which is now uniform
cross the gap, is 𝛺∕(𝑟𝜃̇) = 𝛺∕𝜃0. Using  = 𝑟, and the expression for
he hoop stress mentioned for Couette flow above, one obtains:

𝑖 𝜃
1
2
0 ≥ 𝑀

√

2(1 − 𝛽)
. (5)

The same comments as above apply with regard to the 𝛽-dependence.
For 𝛽 = 0.5, linear stability analysis yields 𝑀 = 4.602 [210].

The real utility of the criterion above is evident when accounting
or shear thinning effects which may be done by using the shear-rate-
ependent analogs of the quantities that appear in Eq. (2); Thus, 𝑊𝑖
n Eq. (2) may be written as [𝛹1(𝛾̇)𝛾̇2]∕2𝜂(𝛾̇), in terms of the shear-
ependent first normal stress coefficient and viscosity. This general-
zation is particularly important since, as already seen in Section 4.5,
hear thinning associated with nonlinear constitutive models can lead
o a qualitatively different character for the unstable mode, implying a
orresponding difference in the shapes of the unstable regions in the
elevant parameter space. Considering the FENE-CR model to begin
ith, one has a shear-rate-independent viscosity, but a shear-thinning

irst normal stress coefficient given by 𝛹1(𝛾̇) = 𝛹10

√

𝐿2−3
2

1
𝛾̇𝜆0

for
𝑊𝑖0(= 𝛾̇𝜆0) ≫ 1; here, the subscript ‘0’ denotes the zero-shear-rate
limit. Using these expressions, one obtains 𝜖 𝐿

2−3
2 > 𝑀2

(1−𝛽) , which points
to a shear-rate-independent geometrical threshold for instability for
𝑊𝑖0 ≫ 1. Thus, for a given 𝛽 shear thinning eliminates the instability
elow a certain critical 𝜖 (= 2𝑀2

(1−𝛽)(𝐿2−3) ). Note that the above large-
𝑖0 threshold applies to different configurations via an appropriate

hoice of 𝜖; for instance, 𝜖 = 𝑑∕𝑅𝑖𝑛 for Taylor–Couette flow, 𝜖 = 𝜃0 for
he cone-and-plate configuration, and 𝜖 = 𝐻∕𝑅 for the parallel-plate
onfiguration.
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Consideration of the more widely used FENE-P model, which pre-
dicts shear thinning of both 𝛹1 (∝ 𝛾̇−

4
3 ) and 𝜂 (= 𝜂𝑝 + 𝜂𝑠 with 𝜂𝑝 ∝

̇ −
2
3 ) [44], yields the Pakdel–McKinley criterion in the form 𝜖

3
2 𝐿3

8𝑊𝑖0
>

𝑀3

(1−𝛽0)
for 𝑊𝑖0 ≫ 1, which points to a clear contradiction since 𝜖 ≪ 1;

his implies that shear thinning has a stronger role to play for the FENE-
case, with the unstable region turning over at a finite 𝑊𝑖0. A sketch

of the boundaries demarcating the unstable region on the 𝜖−𝑊 𝑖 plane,
obtained using the Oldroyd-B and nonlinear (FENE-CR and FENE-P)
constitutive models, are shown in Fig. 16. While the Oldroyd-B captures
the lower branch of this boundary, the upper branch arises solely due
to effects of shear thinning, and as seen above, is dependent on the
details of the nonlinear terms (the version of Fig. 16, on the 𝐷𝑒0 − 1∕𝜖
lane appears in [210], without the trend for the FENE-P model).

In summary, while the Oldroyd-B model and its refinements do
rovide a first-cut prediction of viscoelastic instabilities in flows with
urvilinear streamlines, the comparison between experimental observa-
ions and theoretical predictions for instability in viscoelastic Taylor–
ouette (and other viscometric) flows is not nearly as quantitative
s their Newtonian counterparts for the following reasons: (i) the
ensitivity of the threshold conditions to details of fluid rheology such
s shear thinning, spectrum of relaxation times, and a nonzero 𝑁2,
ii) the relatively shallow neutral curve that results in multiple modes
etting excited at the onset, and (iii) viscous heating effects (in certain
nstances).

. Instabilities in non-viscometric flows

There is a wide variety of flow situations beyond the viscometric
lows discussed in the previous two sections, which conform to a
ocal simple-shear topology,9 and many of them are again suscepti-
le to elastic instabilities. Poole [213] constructed a purely elastic
nstability ‘flow map’ which categorizes flows as being viscometric,
hear- or extension-dominated, and those with mixed kinematics. By
ay of illustration, flows in the Taylor–Dean, Dean, and serpentine-

hannel configurations are predominantly shear-dominated, while the
low in a cross-slot geometry or a T-channel (in the vicinity of the
tagnation points) would be largely extensional, with a fluid element
xperiencing elongation or compression in the streamwise direction.
low past a cylinder, or a periodic array of cylinders, and that through
contraction–expansion geometry, would be characterized by mixed

inematics. In this section, we do not aim to be comprehensive in
erms of coverage of the aforementioned non-viscometric flows, but
nstead provide a few canonical examples to showcase the range of real
nstabilities for which the Oldroyd-B model nevertheless provides an
mportant foundation.

Before venturing into a discussion on stability, it is worth empha-
izing that, for both the rectilinear and curvilinear viscometric flow
onfigurations in Sections 2 and 4, the base-state is independent of
𝑖 for the Oldroyd-B model, being identical to that for a Newtonian

luid. This is no longer true for a non-viscometric flow. There is a
trong dependence of the base-state flow itself on 𝑊𝑖 (or, 𝐷𝑒, as
ppropriate) for both the Oldroyd-B and nonlinear constitutive models,
s also evident in experiments and computations [214,215]. In fact, in
ontrast to the aforementioned viscometric cases, the dependence on
𝑖 is usually the strongest for the Oldroyd-B model, on account of the

xtensional stresses having the maximum magnitude (this in turn being
ue to the underlying divergence of the extensional viscosity, at an

9 Note that the local linear flow topology for Taylor–Couette flow, depend-
ng on the ratio of the cylinder angular velocities, may range over the entire
ne-parameter family of planar linear flows which include the hyperbolic and
lliptic linear flows [212]; similar comments apply to the other curvilinear
lows. However, the unsteadiness arising from the changing orientations of
he principal axes leads to simple-shear-like kinematics in the neighborhood
20

f a material point.
order unity 𝑊𝑖, in a homogeneous extensional flow, mentioned in the
ntroduction). Thus, calculation of the base-state itself is often a non-
rivial task. An example is the flow past a confined circular cylinder
r a sphere, both of which have served as benchmark problems for
iscoelastic fluid mechanics [216]; although, the degree of confinement
pecified has evolved over the years [217]. Despite the absence of a
eometrical singularity, and extensive research on improved numerical
lgorithms for this problem, the results for the drag coefficient for the
ylinder, particularly for the Oldroyd-B model, are available only over
modest range of 𝑊𝑖 (defined as 𝜆𝑈∕𝑎, 𝑎 being the cylinder or sphere

radius, and being interchangeable with 𝐷𝑒 for weak confinement; see
Refs. [37,218]). The breakdown of the numerics at a 𝑊𝑖 of order
unity, occurs in fact across a range of non-viscometric geometries that
are dominated by an underlying extensional flow topology, and was
originally thought to be on account of a possible physical singularity,
therefore being dubbed the high-Weissenberg-number problem [219].

For the aforementioned cylinder/sphere geometries, the high-
Weissenberg-number problem is now thought to arise due to the even-
tual inability of most numerical algorithms to resolve the increasingly
steep stress boundary layer that develops in the neighborhood of the
rear stagnation streamline for 𝑊𝑖 ≥ 𝑂(1) (the large stresses arise from
the slowly relaxing polymer molecules that were originally stretched
in the vicinity of the rear stagnation point; see Ref. [37]). In fact, the
steady numerical solution breaks down in the immediate vicinity of
the rear stagnation point at a 𝑊𝑖 even lower than the modest value
affecting the drag coefficient; the region of large stresses above has
been termed the ‘birefringent strand’ on account of its appearance
(as a bright line) in optical experiments [220]. As a result, nonlinear
models, where the extensional thickening is alleviated by choosing
appropriately modest values of the finite extensibility parameter (the
parameter 𝐿 in the FENE-CR model [221], for instance), are often
chosen for computational tractability. This allows one to obtain so-
lutions for 𝑊𝑖 larger than the breakdown value for the Oldroyd-B
model, although the steady solution still breaks down for modest
values of 𝐿 in the immediate vicinity of the rear stagnation point;
see Ref. [222]. Interestingly, there have been recent suggestions of an
actual singularity (for the Oldroyd-B model), at the point corresponding
to the maximum stress, along the rear stagnation streamline [223,224],
harking back to the aforementioned high-𝑊𝑖 problem. Given that the
extensional flow in the vicinity of the rear stagnation point becomes
arbitrarily weak (see the subsection below regarding stagnation points
on a no-slip surface), so a given fluid element (polymer molecule) only
experiences a strong extensional flow for a finite time (and thence, a
finite strain) in traveling from the neighborhood of the stagnation point
to any point on the rear stagnation streamline, the emergence of a
singularity at a finite 𝑊𝑖 is not obvious. A definitive solution of the
flow past a cylinder, based on the Oldroyd-B model for 𝑊𝑖 ≥ 𝑂(1),
remains an outstanding question; moreover, notwithstanding issues
pertaining to stress-conformation hysteresis discussed towards the end
of this section, such a solution would be relevant to interpreting the
flow fields obtained from nonlinear constitutive models such as FENE-P
or FENE-CR for large 𝐿’s (high molecular weight polymers).

5.1. Cross-slot flow

The instability that has garnered substantial attention in recent
years is the family of flows seen in a symmetric planar cross-slot
experiment; the geometry for this experiment may be regarded as a
canonical one for an extensional flow topology. The classical cross-slot
geometry consists of four bisecting rectangular channels, with pairs of
opposing inlets and outlets, which result in a flow field with a free
stagnation point nominally located at the center. The fluid velocity at
this point is, of course, zero by definition, but the velocity gradient,
characterizing the local linear extensional flow, remains finite. Similar
free stagnation points occur, for instance, on the surface of a translating

bubble, in the opposing-jet configuration, and in the flows generated
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Fig. 17. Dye advection patterns for a cross-channel flow with two inputs and two
outputs at low 𝑅𝑒 (< 10−2) for (a) Newtonian fluid, and (b) PAA flexible polymer
solution (strain rate 𝜖̇ = 0.36 s−1, Weissenberg number 𝑊𝑖 = 4.5), where the interface
between dyed and undyed fluid is deformed by an instability.
Source: Reproduced with permission from Ref. [234].

in two-roll and four-roll mills. The flow transitions that occur in these
settings share qualitative similarities in that they are confined to a small
region near the stagnation point comprising highly stretched polymer
molecules.

In light of the modified cross-slot geometry also discussed below, it
is worth contrasting the nature of the aforementioned free stagnation
points to those on a rigid particle. A stagnation point in the latter case is
only one of a continuum of zero velocity points on the particle surface,
and is distinguished by the presence of a local nonlinear extensional
flow in its neighborhood (with the streamwise velocity gradient going
to zero right at the surface) in contrast to the simple shear flow in
the vicinity of the other points. Similar to the case of the translating
cylinder/sphere geometries discussed above, a characteristic feature
arising from the (linear or nonlinear) extensional flow associated with
stagnation points is the formation of ‘birefringent strands’ correspond-
ing to highly localized regions of stretched polymers (associated with
large stresses), extending downstream from the stagnation point. The
early experiments of Gardner et al. in 1982 [225] in the cross-slot
geometry showed the existence of a velocity minimum along the center-
line of the outgoing channel, close to the stagnation point, and that was
attributed to the extended polymer molecules. Later simulations [226]
in a four-roll mill geometry, using the FENE-CR and FENE-P models,
demonstrated the existence of the birefringent strand, and a double-
humped velocity profile along the outgoing flow axes for 𝑊𝑖 ∼ 𝑂(1).
The evolving structure of the birefringent strands with increasing 𝑊𝑖,
and the associated singular stresses, in a flow that still conforms to the
symmetry of the cross-slot about the inlet channel centerline, has been
studied in detail in other efforts [220,227–229]. Clearly, even prior
to the onset of the symmetry-breaking instability discussed below, the
structure of the flow in these configurations is quite nontrivial (also see
Ref. [230]).

While Muller, Odell and Tatham [231] observed instabilities in
viscoelastic flows of opposing jets, and Broadbent, Pountney and Wal-
ters [232], and Ng and Leal [233], observed instabilities in stagnation
point flows in two-roll and four-roll mills, respectively, it is the more
recent experiments of Arratia and coworkers [234], using a high-
molecular weight polyacrylamide solution in a microfluidic cross-slot
configuration, that have unambiguously established the existence of
an elastic instability; this instability limits the use of the cross-slot
device as an extensional-flow rheometer. The instability observed is
best understood visually; see Fig. 17. At low 𝑊𝑖, the incoming flow
along the left and right channels in the figure) divides symmetrically
into the ‘‘up’’ and ‘‘down’’ outflows, in the manner expected of a
Newtonian fluid in the inertialess limit. As 𝑊𝑖 is increased, this sym-
metric flow becomes unstable and the system transitions to an alternate
steady state. Additional unsteady instabilities also occur, as described
by Arratia et al. [234] and, more recently, by Sousa et al. [235]; but,
perhaps because of its appealing simplicity, the steady transition has
seen the most intense modeling activity.

As mentioned in the Introduction, on account of the divergence of
the extensional viscosity, the Oldroyd-B model is at its best in flows
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that are shear-dominated. Thus, it is by no means obvious to choose
the Oldroyd-B model to analyze the flow in the cross-slot geometry.
Nevertheless, on account of the fewer dimensionless parameters in-
volved, Oldroyd-B remains a convenient first choice for modeling any
new phenomenon, including ones that owe their origin to an underlying
(transient) extensional flow. Indeed, the first simulations to replicate
the observed cross-slot instability were carried out by Poole et al. in
2007 [236] using the UCM model. The same flow was later simulated
by Rocha et al. [237] using the FENE-P and FENE-CR models, to deter-
mine how the threshold 𝑊𝑖 varies with 𝛽 and 𝐿. The threshold 𝑊𝑖 was
found to increase with decreasing 𝐿, and in addition, a slight smoothing
of the cross-slot corners was found to have a minimal influence; both
factors point to the apparent importance of extensional stresses close to
the stagnation point. In contrast, for a strongly rounded corner, Rocha
et al. found that the threshold 𝑊𝑖 is significantly higher, indicative
of the destabilizing role played by the sharp corners. The observation
of the instability, and the above computations, sparked a renewed
interest in the stability of pure extensional flows of the Oldroyd-B
fluid [238–241]. In fact, it had been known since 1985 that unbounded
planar linear flows (including planar extension) of an Oldroyd-B fluid
were susceptible to a linear instability [242] involving 2D plane-wave
perturbations with a convected wavevector. This instability, however,
has an essentially Newtonian origin [243].

The aforementioned focus on the extensional flow topology is,
in fact, not representative of the classical cross-slot geometry. While
the fluid elements passing in the immediate vicinity of the cross-slot
stagnation point do experience a predominantly extensional flow, those
passing between the stagnation point and the re-entrant corners also
experience shear; in fact, the flow topology in the immediate vicinity
of the re-entrant corners is singular, and very different from that close
to the stagnation point [244,245]. In light of the heterogeneity in
the local flow topologies, it is important to determine if the observed
instability in Ref. [234] is dominated by the extensional flow dynamics
close to the stagnation point, or otherwise. The breakthrough in this
regard came when Davoodi et al. [246] modified the cross-slot by
placing a small solid cylinder, with the cylinder center at the point
where the stagnation point would otherwise be located. Based on the
description of the flow topology above, in the vicinity of a no-slip
surface, one no longer expects an extension-dominant character for the
flow away from the corners. Nevertheless, and contrary to expectations,
the presence of the cylinder (of sufficiently small radius) made little
difference to the instability, indicating that the stagnation point was
not, in fact, the critical area of the flow. The authors went on to show
that the onset of instability can be predicted rather well using the
Pakdel–McKinley criterion discussed in Section 4.9 above. While the
value of 𝑀 required for instability, in the aforementioned criterion,
is known from linear stability calculations for the viscometric flows
in Section 4, for the cross-slot flow, it must be regarded as a scalar
field, either determined experimentally or from a detailed computation
of the base-state; the maximum value of this ‘𝑀−field’ would then
determine the threshold. Davoodi et al. [246] plotted contours of the
𝑀-field, and found it to be the largest near the four corners, both in
the absence and presence of the cylindrical insert at the center, this
largeness being attributed to the strong streamline curvature and high
deformation rate prevalent near the corners. A further confirmation
of the corners being responsible for this instability was the aforemen-
tioned (numerical) prediction of delayed onset when the corners were
strongly rounded [237]. In hindsight, this explains why the Oldroyd
model, even with its problematic response to extension, turned out to
reproduce experimental observations so well.

A closely related line of research is that of Haward, Alves, McKinley
and collaborators [230], who have focused on a shape-optimized cross-
slot flow geometry, in order to overcome the limitation of the afore-
mentioned classical cross-slot geometry where the re-entrant corners
likely decrease the neighborhood in which the flow is predominantly



Journal of Non-Newtonian Fluid Mechanics 302 (2022) 104742H.A. Castillo Sánchez et al.
Fig. 18. Schematic of the contraction flow geometry showing the key flow structures
(i.e., the lip and corner vortices) and the locations of the corner and reentrant corner.

extensional, in turn leading to an instability that is (re-entrant) shear-
dominated. In this modified cross-slot, abbreviated as ‘OSCER’, the
sharp corners are replaced by smoothly varying contours, which result
in a homogeneous elongation flow over a larger neighborhood of the
stagnation point. The OSCER configuration was found to be susceptible
to a novel time dependent elastic instability at 𝑊𝑖’s lower than that
corresponding to the steady asymmetric transition in the classical
cross-slot configuration [239,247,248].

To understand the origin of the aforementioned instability, Haward
et al. [248] again plotted the ‘𝑀-field’ (of the Pakdel–McKinley cri-
terion) for the OSCER geometry using observations from their experi-
ments, and found that the maximum value of 𝑀 in the flow field, at
the onset of the instability, was comparable to the critical value found
numerically for planar stagnation flow [249], and to the experimental
threshold for the onset of purely elastic instability in torsional shearing
flows discussed in Section 4.9. Crucially, the maximum 𝑀 occurred
close to the stagnation point, in marked contrast to the classical cross-
slot, suggesting an extensional origin for the elastic instability instead.
In this regard, it is worth noting that the Pakdel–McKinley criterion
was developed for viscometric (or nearly viscometric) shearing flows.
That it works well in the prediction of elastic instabilities in both
the classical cross-slot and the OSCER configurations suggests that
the observed instability relies only on the (local) coupling between
the streamline curvature and streamwise tensile stresses, regardless of
whether the underlying kinematics is shear or extension dominated.
Nevertheless, the success of the criterion is not a substitute for the
actual physical mechanism, and more work is needed in this regard that
would likely benefit from the focus on the dynamics in the vicinity of
the birefringent strand [250,251].

Unlike the original experiments in the classical cross-slot geometry,
the OSCER device has also been analyzed in regimes which allow effects
of both inertia and elasticity to become important [247], with the
ratio of the two (as already seen) being characterized by the elasticity
number 𝐸. The discussion in the preceding paragraphs pertains to the
elasticity dominant limit. In the opposite limit of 𝐸 < 𝑂(1), the instabil-
ity in the OSCER device occurred only beyond a critical 𝑅𝑒, manifesting
as an oscillatory motion of the birefringent strand alluded to above.
Owing to the importance of both elasticity and inertia, the authors have
referred to this mode as an ‘inertio-elastic’ mode. The experimental
results have been summarized in the form of a stability diagram on
the 𝑅𝑒 −𝑊 𝑖 plane, demarcating regions of occurrence of stable flows
conforming to the cross-slot symmetry, and those corresponding to
purely elastic and inertio-elastic instabilities.

5.2. Contraction–expansion flow

One of the original benchmark problems, proposed in the context of
numerical simulations of viscoelastic flows, was the 4:1:4 contraction–
expansion flow (or, just the 4:1 contraction flow) of an Oldroyd-B
fluid [216], that captures some features of industrial flows like extru-
sion. As pointed out by Rothstein and McKinley [252], the geometry
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(see Fig. 18) allows for complex kinematics with a shearing deformation
dominant near the walls, and a non-homogeneous extensional flow
dominant along the centerline upstream of the contraction plane; one
expects further complications in the vicinity of the geometric singu-
larities (the reentrant corners). In the context of polymer extrusion,
the aim is to optimize the entrance geometry, so as to minimize the
pressure drop. While early efforts (e.g., Refs. [253,254]) focused on
accurate pressure drop calculations, it became clear subsequently that
there exists a rich variety of flow patterns in this configuration, many of
which owe their origin to elastic instabilities. As a result, there is now
a much wider interest, from a fundamental perspective, in the different
flow regimes and the relevant ranges of existence.

Previous studies have explored both axisymmetric [252,255,256]
and planar [257,258] contraction/extraction flows, although more at-
tention has been given to the former case. In part, this difference in
emphasis could be due to the much lower strains achieved in macro-
scopic planar contractions (for the same superficial velocity), leading to
less pronounced viscoelastic effects; recent efforts (discussed below) by
McKinley and coworkers [257,258] have used micro-scale fabrication
to partially overcome this limitation. An important question, in the
present context, is as to how well the Oldroyd-B model captures the
different flow transitions and instabilities.

We first briefly outline the salient observations concerning the
sequence of flow patterns obtained with increasing flow rate. The
details of this sequence depend sensitively on the geometry (planar vs.
axisymmetric), the contraction ratio, and on the nature of the polymer
solution (as characterized by its transient extensional rheology). Boger’s
1987 review [259] provided a summary of the flow transitions for
the axisymmetric case, for non shear-thinning (Boger) fluids at low 𝑅𝑒,
upstream of the contraction plane; in this limit, 𝑊𝑖 = 8𝜆𝑉𝑑∕𝐷𝑑 can be
used as a dimensionless measure of the flow rate, and is based on the
velocity 𝑉𝑑 and diameter 𝐷𝑑 corresponding to the downstream section.
For small 𝑊𝑖, the flow resembles Newtonian creeping-flow, with the
appearance of a Moffatt eddy at the outer stagnant corners upstream.
For higher 𝑊𝑖, two distinct sequences are observed depending on the
nature of the polymer [259]. For polyacrylamide/corn syrup Boger
fluids, elastic effects lead to the corner vortex growing radially inward
towards the re-entrant corner, and in the upstream direction, with
increasing 𝑊𝑖; the flow remains largely steady in this regime. At higher
𝑊𝑖, the streamlines diverge away from the centerline upstream [172].
In contrast, for polyisobutylene/polybutene Boger fluids, the corner
vortex decreases in size with increasing 𝑊𝑖. A separate lip vortex
forms at the re-entrant corner (Fig. 18), the flow in the vicinity of
the lip being unsteady and three-dimensional. Subsequent upstream
vortex growth originates from the outward radial growth of the lip
vortex [255]. Despite the location of its inception being different for the
two cases above, at very high 𝑊𝑖, the large upstream vortex becomes
unstable to a global dynamical mode in both cases. The contraction
ratio also determines as to which of the two aforementioned sequences
occurs, with there being a transition from the lip-vortex sequence for
lower contraction ratios, to the corner-vortex one for higher contraction
ratios. Rounding the re-entrant corners leads to an increase in the 𝑊𝑖
required for flow transitions, but the overall structure of the flow field
remains largely unaffected.

In addition to the novel flow structures engendered by elastic-
ity, the pressure drop also shows nontrivial features compared to the
Newtonian case. The pressure drop, normalized by the corresponding
Newtonian value, is always greater than unity, and increases mono-
tonically with 𝑊𝑖 before saturating; the initial increase with 𝑊𝑖 is
not necessarily a signature of an elastic instability — for instance, the
dimensionless pressure drop increases above unity at 𝑊𝑖 ∼ 0.4, but
the onset of instability occurs only for 𝑊𝑖 > 2.6. When instability
does occur, it manifests initially as local small-amplitude fluctuations
in the pressure measurements, and then, as global periodic oscillations

in the pressure drop across the orifice [252]. The additional pressure
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Fig. 19. Summary of flow patterns in elastoinertial contraction flow in the 𝑅𝑒 −𝑊 𝑖
plane, for a contraction ratio of 16:1.
Source: Figure reproduced with permission from Rodd et al. [257].

drop above, even in the steady regime, is not captured by simula-
tions that use nonlinear dumbbell models such as FENE-P [260] or
FENE-CR [261], with the simulations predicting a pressure drop that
decreases with increasing 𝑊𝑖 for large (and realistic) values of 𝐿; an
increase is predicted only for very modest 𝐿’s [261]; the implication
for the Oldroyd-B model, corresponding to the infinite-extension limit,
is that the pressure drop must decrease monotonically for all 𝑊𝑖.

For flow of Boger fluids through macroscopic planar contraction
geometries, as mentioned above, elastic effects are not as pronounced
as in the axisymmetric case. In general, in going from axisymmet-
ric to planar contraction flows, there is a reduction in the size, or
even disappearance, of the corner vortex for the same contraction
ratio. However, Rodd and coworkers [257,258], using micro-fabricated
planar contraction–expansion geometries to access higher elasticity
number regimes, as well as a larger fraction of the 𝑊𝑖–𝑅𝑒 parameter
plane, observed significant vortex growth upstream of the contraction
plane for a contraction ratio of 16 ∶ 1; this growth being accompanied
by a 200% increase in pressure drop across the contraction. The flow
eventually becomes unstable and three dimensional.

The sequence of flow transitions, in the micro-scale planar contrac-
tion geometry above, is depicted in the 𝑅𝑒 −𝑊 𝑖 plane in Fig. 19, and
is seen to be sensitively dependent on 𝐸. For high 𝐸 (≈ 90), onset of
an elastic instability is marked by local velocity fluctuations at 𝑊 ≈
50. This is followed by the development of coherent and stable lip
vortices for 50 < 𝑊𝑖 < 100, which subsequently develop into larger
asymmetric viscoelastic corner vortices that continue to grow upstream
for 𝑊𝑖 > 100. Thus, for 𝐸 ≈ 90 and a contraction ratio of 16:1, the
flow appears to take the lip-vortex route described above; for the same
contraction ratio, corner (and not lip) vortices are observed for flow
through an axisymmetric contraction [259].10 For lower 𝐸, inertio-
elastic instabilities upstream of the contraction plane at 𝑊𝑖 ∼ 50 replace
the lip vortices observed for higher elasticities. For 100 < 𝑊𝑖 < 150,
elastic vortices grow steadily upstream. These vortices are essentially
symmetric for 𝐸 = 9 but become temporally unsteady, developing into
spatially bistable structures for 𝐸 = 3.8, as inertial effects become

10 Note that the planar geometry used by [257,258] has the depth dimension
being much smaller than the characteristic in-plane length scales, in contrast
to the usual planar limit corresponding to an infinite depth [262,263]. The
consequence is the existence of a strong shear in the depth coordinate, and
the implications, especially for viscoelastic flows, are not clear.
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important. Diverging streamlines eventually develop for 𝑊𝑖 > 150,
just upstream of the elastic vortex structures. Upstream divergence of
streamlines appears to, in fact, be a common feature of non-Newtonian
entry flows that are governed by the competing effects of inertia and
fluid elasticity.

The dimensionless pressure drop across the micro-scale planar con-
traction in general shows an increase with 𝑊𝑖, eventually saturating to
a plateau. Rodd et al. [257] attributed this saturation to the polymer
molecules being fully extended at sufficiently high 𝑊𝑖, the solution
behaving as an anisotropic viscous fluid in this limit, with the enhanced
pressure drop being determined by the extensional viscosity corre-
sponding to the aligned rod-like polymers. Interestingly, the pressure
drop was higher for the 0.05% solution (of PEO) compared to the 0.3%
solution. The authors attributed this to a departure from the dilute
regime, with inter-chain interactions resulting in a overall decrease
in polymer extensibility, in turn leading to a decreased pressure drop
compared to the lower concentration solutions.

The recent review article by Alves et al. [218] provides a state-
of-the-art summary of numerical simulations of viscoelastic flows, and
includes a summary of contraction/expansion flows. Alves and collabo-
rators have previously analyzed the sequence of flow states that emerge
as a function of 𝑊𝑖, for both planar [264] and axisymmetric [265]
contractions, using the Oldroyd-B and PTT models, and were able
to qualitatively obtain the sequence of flow transitions and upstream
vortex growth observed in experiments. The authors further demar-
cated the occurrence of the various flow states discussed above, in the
contraction ratio-𝑊𝑖 plane. For the simple models used, the nature of
such phase diagrams were rather similar for both geometries, in sharp
contrast to the experimental observations discussed above. However,
the computations have thus far focused on the steady regime and
(unsteady) regimes where the vortices exhibit considerable oscillations
(> 1%) in their size, but have not been used to predict the onset of
elastic instabilities in this geometry.

Given the discrepancies in the pressure drop between dumbbell-
based simulations and experimental observations, discussed above, it
remains to be seen if use of the Oldroyd-B model would at all be
useful in the prediction of elastic instabilities in this flow configura-
tion. In this regard, it is worth mentioning one stability analysis of
the contraction–expansion flow configuration [266], which found a
primary downstream mode of instability — but, this work pertained to
polymer melts, and accordingly used the Rolie-Poly model (described
in Ref. [267]); the mechanism was found to be critically dependent on
chain stretch. Thus, it is not surprising that this downstream instability
has neither been predicted in computations using the Oldroyd-B model
nor observed in experiments using dilute solutions. An accurate predic-
tion of both the steady flow and the onset of instabilities in contraction
flows, therefore, remains a challenge. The challenge here is two-fold:
first, one needs a constitutive model that captures the stress response
in a strong and transient extensional flow; second, one needs accurate
numerical schemes for implementing such a constitutive model.

5.3. Viscoelastic flow past a cylinder

Flow around a circular cylinder is one of the most widely studied ex-
ternal flow configurations in fluid mechanics. As mentioned earlier, this
configuration in a confined setting, with the cylinder diameter equaling
half the separation between the confining boundaries (corresponding to
the so-called blockage ratio of 0.5), was one of the original benchmark
problems in viscoelastic fluid mechanics, having been extensively used
to test how well constitutive models and numerical schemes are able to
predict experimental data [216,218]. With the advent of microfabrica-
tion and 3D printing technologies, it is now possible to fabricate glass
cylinders with radii of 𝑂(10)μm [268,269]. The fabrication of slender
high-aspect-ratio nearly rigid cylinders, in a low-blockage-ratio (∼ 0.1)
setting, allows experiments that mimic the theoretical limit of 2D flow
past an infinite circular cylinder. Further, for cylinders of such small
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Fig. 20. Effect of shear thinning on the emergence of flow asymmetry in flow past
a cylinder, as obtained using the l-PTT model. Note that shear thinning is more
pronounced in this model as 𝛽 is decreased.
Source: Reproduced with permission from Haward et al. [273].

radii, the typical Reynolds numbers will be significantly lower than
unity, the Weissenberg numbers being very high at the same time,
implying that elastic forces can be significantly enhanced (𝑅𝑒 < 10−4,
𝑊𝑖 ∼ 𝑂(4000) and 𝐸 ∼ 𝑂(108) in Ref. [269], with 𝑊𝑖 defined using the
average velocity in the microfluidic channel)). Such flows provide ideal
platforms for studying purely elastic instabilities in a canonical non-
viscometric setting characterized by both shear (the gap between the
cylinder and wall) and extensional (front and rear stagnation points)
kinematics.

For lower 𝑊𝑖, the flow around the cylinder, although laterally
symmetric, exhibits a fore-aft asymmetry. This asymmetry is on account
of an elastic wake comprising the region of slow-moving fluid that
develops along the rear stagnation streamline for 𝑊𝑖 ≥ 𝑂(1). The
asymmetry increases with 𝑊𝑖, reflecting the increased length needed
for the fluid to relax back to the ambient uniform flow at larger 𝑊𝑖;
this behavior has been observed for both spheres [270] and cylin-
ders [268], and the computational difficulties in capturing the elastic
stresses around the rear stagnation streamline were already mentioned
in the introduction to non-viscometric flows above. The experiments
of Kenney et al. [271] demonstrated the existence of instabilities both
downstream (for low blockage ratios) and upstream (for high blockage
ratios) of the cylinder. In the latter case, the gap between the cylinder
and the confining boundary becomes narrow compared to the cylinder
radius, and hence the flow into the gap mimics that of a (smooth)
planar contraction geometry; upstream instabilities are well-known
to occur in this geometry, as discussed in Section 5.2 above. Even
prior to the advent of the microfluidic setting, flow past a cylinder
has been shown to be susceptible to a purely elastic instability that
leads to spanwise variations of the streamwise velocity in the elastic
wake downstream [272]. The instability appears to have its origin
in the extensional flow close to the rear stagnation point, and has
been analyzed along these lines using the Oldroyd-B model [249];
importantly, despite the extensional kinematics, the threshold has been
successfully interpreted in terms of the Pakdel–McKinley criterion.
24
Fig. 21. Critical conditions in the 𝛽 −𝑊 𝑖 plane for the onset of asymmetric flow in
flow past a cylinder as obtained using the l-PTT model.
Source: Reproduced with permission from Haward et al. [273].

Recent experiments have shown that the lateral symmetry of the
flow is broken, beyond a threshold 𝑊𝑖, due to an instability that also
leads to a distortion of the downstream elastic wake [269,274]. The
resulting asymmetric flow is characterized by the preferential passage
of the fluid around one side of the cylinder. Theoretically speaking,
the instability corresponds to a pitchfork bifurcation, with passage of
the fluid around either side being possible, the preferred side being
determined by experimental conditions (see Fig. 12 in Ref. [274]).
Numerical simulations of flow past a cylinder, carried out [273] using
the linear Phan-Thien and Tanner (l-PTT) model11, showed that the
threshold Weissenberg number, 𝑊𝑖𝑐 , scales with blockage ratio, 𝐵𝑅,
as 𝑊𝑖𝑐 ∼ 1∕𝐵𝑅, consistent with the predictions obtained using the
Pakdel–McKinley criterion [210]. Nevertheless, unlike the elastic-wake
instability mentioned above [272], the onset of a lateral asymmetry
appears to require a combination of shear thinning and elasticity, with
shear thinning playing an essential role (see Fig. 20). In the context of
the l-PTT model shear thinning is mainly determined by the viscosity
ratio parameter 𝛽; smaller 𝛽 indicates larger shear thinning.

Haward et al. [273] summarized their results in terms of a stability
diagram in the 𝑊𝑖 − 𝛽 plane, wherein the regions of stable symmetric
flow and bistable asymmetric flow were demarcated (see Fig. 21).
Laterally asymmetric flows are observed only when the characteristic
shear rate near the cylinder lies in the intermediate shear-thinning
portion of the flow curve for the relevant constitutive model; thus,
for shear rates corresponding to the high-shear plateau, symmetric
flows are recovered despite the large 𝑊𝑖. In light of this, the success
of the Pakdel–McKinley criterion, developed for instabilities with a
purely elastic origin (whose region of occurrence, in the relevant pa-
rameter space, could be modified by shear-thinning effects; see Fig. 16
in Section 4.9) is a little surprising. Further, calculations based on

11 The Phan-Thien and Tanner (PTT) model is a nonlinear generalization
of the Johnson–Segalman model (Section 3.2), with the relaxation time being
a function of the trace of the stress tensor. Two functional forms have been
proposed for the relaxation time: (i) a linear (resulting in the ‘l-PTT’ model),
and (ii) an exponential function, of the trace of the stress tensor. In addition
to the slip parameter 𝑎 of the JS model, another parameter 𝜖 characterizes the
strength of the nonlinearity, with 𝜖 = 0 recovering the JS model. Similar to
the JS model, the PTT model also predicts shear thinning, and could exhibit
non-monotonicity of the constitutive curve in certain parametric regimes. The
exponential version of the PTT model is suited for modeling extensional flows
and predicts strain softening of the extensional viscosity at high strain rates.
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the constant-viscosity FENE-CR model have only shown a localized
oscillation/instability in the immediate neighborhood of the rear stag-
nation point, and it is unclear as to whether this time dependence is
a physical or a numerical artifact (see discussion in the beginning of
this section on the high-𝑊𝑖 problem). For instance, it is unclear if the
shear-thinning rheology amplifies this local breakdown of the steady
symmetric solution into a global symmetry-breaking instability [273].
Thus, while the authors have constructed a stability diagram using
𝑊𝑖 and a parameter that characterizes the extent of shear thinning, a
more comprehensive (and numerically difficult) investigation of the pa-
rameter space, particularly in the near-constant-viscosity limit, appears
necessary to elucidate the physical mechanism.

We end this section by pointing out that the dumbbell (Oldroyd-
B/FENE-CR/FENE-P) class of models have proved grossly inadequate
in predicting the increase (with 𝑊𝑖) of either the pressure drop for
contraction flows, or the drag coefficient for flow past a cylinder (or
sphere). In both these configurations, the dynamics for 𝑊𝑖 of order
unity or greater is dominated by fluid elements that experience a
transient extensional flow (close to the centerline for the contraction
flow, and in the neighborhood of the rear stagnation point for the
sphere/cylinder). It is therefore thought that the phenomenon of stress-
conformation hysteresis, that arises in transient extensional flows [275,
276], and the resulting dissipative stresses, may play a key role in
the aforementioned increase in frictional resistance [252,256,277].
Accounting for the hysteresis-induced increase in frictional resistance
will require either a fine-grained description of the polymer chains that
accounts for internal degrees of freedom (a Kramers bead-rod chain was
used in [276]), or the incorporation of an additional dissipative stress
contribution within the dumbbell framework12 [278,279]. However,
even after using such a dumbbell model that accounts for dissipative
stresses, Yang and Khomami [280] concluded that it is not possible to
predict experimental observations quantitatively. Much later, Khomami
and coworkers have employed a multi-scale approach that adopted a
Brownian configuration field approach to simulate the dynamics of
a bead–spring chain, coupled with a finite-element simulation of the
continuum field equations, for both the flow through the contraction–
expansion geometry [281], and the flow past a sphere [282]. These
studies have shown that it is indeed possible to capture the experimen-
tal trends exhibited by pressure drop or drag coefficient with 𝑊𝑖 using
such an approach. It is, however, an open question as to whether the
prediction of instabilities in these configurations would also require an
approach that accounts for the aforementioned subtleties.

6. Nonmodal stability

Modal stability analysis has been successful at explaining experi-
mental observations in large variety of fluid flows. However, and per-
haps surprisingly, it fails for rectilinear flows of Newtonian fluids. Stan-
dard linear stability analysis predicts plane Couette flow and Hagen–
Poiseuille (i.e., pipe) flow to be linearly stable for all Reynolds numbers.
Yet, instability is observed experimentally. Although plane Poiseuille
flow is predicted to be linearly unstable above a certain Reynolds
number, in practice instability is observed at Reynolds numbers much
lower than this critical value.

While these discrepancies may be attributed to the presence of
finite-amplitude perturbations, which would cause the assumption of
linearization to fail, it is now widely recognized that the discrepancies

12 Note that hysteresis already occurs within the framework of a nonlinear
umbbell (FENE) model. For instance, the distribution of dumbbell end-to-
nd vectors, during a step-down (relaxation) protocol, does not retrace the
equence followed during start-up of the extensional flow; an aspect not cap-
ured by the pre-averaged models (FENE-P). The stress-conformation hysteresis
iffers from the distributional hysteresis above, and refers to the inability,
specially in transient extensional flows, of the internal degrees of freedom
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n a fine-grained model to equilibrate for a given end-to-end separation vector
are likely due to other assumptions inherent in modal analysis [283–
286]. As briefly mentioned in Section 1, modal analysis provides pre-
dictions about asymptotic stability, i.e., whether perturbations grow or
decay at long times. It says nothing about behavior at short times. How-
ever, two stable modes can interact in such a way that a disturbance
grows at short times before decaying at long times. This growth at short
times could put the flow into a regime where nonlinear effects are no
longer negligible, causing a transition to another flow state. Thus, an
initially small-amplitude disturbance can be amplified through a purely
linear mechanism that is overlooked by modal analysis.

Nonmodal analysis provides information about this alternative type
f perturbation growth [286,287]. It is worth mentioning that the
riginal nonmodal analyses were restricted to infinitesimal distur-
ances [51]. Within this assumption, the optimal disturbances corre-
ponding to maximum transient growth in Newtonian shear flows were
dentified in most cases as counter-rotating streamwise vortices aligned
long the spanwise direction, giving rise to growing streaks. The
etailed manner in which this growth would eventually be modified
y nonlinear effects was addressed much later [288,289] for Newtonian
lows. These efforts have obtained three-dimensional spatially localized
tructures, by accounting for the effects of nonlinearity within a more
eneral optimization approach. This approach has not yet been adopted
or viscoelastic flows, and we restrict our discussion here to nonmodal
rowth in viscoelastic shear flows within a linearized framework.

In this section, we provide an overview of some basic ideas, discuss
heir relevance to viscoelastic channel flows, highlight some recent
esults related to amplification of external disturbances, and identify
ome important open issues in the area. Our discussion is not intended
o be a comprehensive tutorial or review, but is instead aimed at
roviding non-expert readers a brief introduction to some fundamental
oncepts and selected results.

.1. Nonmodal amplification: Basic ideas

To illustrate the basic ideas of nonmodal amplification, we consider
he coupled pair of constant-coefficient linear ordinary differential
quations (adapted from [290]; see also [291]):
(

𝑥̇1
𝑥̇2

)

=
(

𝜆1 0
𝑅 𝜆2

)(

𝑥1
𝑥2

)

, (6)

here the dot denotes a time derivative and 𝜆1, 𝜆2, and 𝑅 are all real
onstants. We denote the matrix appearing in (6) as 𝐀. The solution to
his equation system for 𝜆1 ≠ 𝜆2 is

1 = 𝑥01𝑒
𝜆1𝑡, (7)

𝑥2 = 𝑥02𝑒
𝜆2𝑡 +

𝑅𝑥01
𝜆1 − 𝜆2

(

𝑒𝜆1𝑡 − 𝑒𝜆2𝑡
)

, (8)

where 𝑥01 and 𝑥02 are the initial conditions for 𝑥1 and 𝑥2.
With 𝜆1, 𝜆2 < 0, both 𝑥1 and 𝑥2 decay to zero as 𝑡 → ∞. However,

if 𝑅 ≠ 0, 𝑥2 can grow before decaying if 𝑥01 ≠ 0. Note that the
difference of the two decaying exponentials appearing in the expression
for 𝑥2 is zero at 𝑡 = 0 and approaches zero at long times, but is
non-zero at intermediate times. The influence of this term increases
as the magnitude of 𝑅 does, and so does the amplification rate, since
𝑑𝑥2∕𝑑𝑡 ∼ 𝑅𝑥01 for 𝑅 ≫ 1. Thus, there exist initial conditions such
that 𝑥2 can exhibit large transient growth. Such growth is also referred
to as nonmodal amplification because it would be missed by standard
modal analysis, which focuses on responses triggered by individual
eigenvalues, and thus long-time behavior. We note that terms like 𝑡𝑒−𝑡
that arise when 𝜆1 = 𝜆2 reflect a resonant interaction and also exhibit
transient growth, but such terms are not required for transient growth
as the above example illustrates.

Clearly, the parameter 𝑅 is causing this behavior. If 𝑅 = 0, there
is no transient growth and both 𝑥1 and 𝑥2 decay monotonically to
zero. When 𝑅 ≠ 0, the two stable modes interact, leading to nonmodal
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amplification. Having 𝑅 ≠ 0 significantly changes the properties of the
matrix 𝐀 in (6). In particular, 𝐀 no longer commutes with its adjoint,

hich in this case is simply the transpose.
When a linear operator 𝐋 commutes with its adjoint 𝐋∗, then 𝐋𝐋∗ =

𝐋∗𝐋 and we refer to 𝐋 as being a normal linear operator [292,293].
Normal linear operators have orthogonal eigenfunctions. However, if
𝐋 does not commute with its adjoint, then 𝐋𝐋∗ ≠ 𝐋∗𝐋, and 𝐋 is non-
ormal. Non-normal linear operators produce eigenfunctions that are
on-orthogonal.

In the above example, the eigenvectors of the matrix 𝐀 are given by

(

0
1

)

, 1
√

1 + 𝑅2∕(𝜆1 − 𝜆2)2

(

1
𝑅

𝜆1−𝜆2

)

. (9)

hese eigenvectors are orthogonal only when 𝑅 = 0, and as 𝑅 → ∞,
hese eigenvectors become parallel. In that situation, an initial condi-
ion that is nearly orthogonal to the eigenvectors would be ‘‘misfit’’,
nd the coefficients involved in the solution would have a very large
agnitude (e.g., ( 1 0 )𝑇 = −𝜖−1 ( 0 1 )𝑇 + 𝜖−1 ( 𝜖 1 )𝑇 , where 𝜖 ≪ 1).

If system (6) represents the linearization of a nonlinear system
round a steady state, then simply focusing on the eigenvalues is
isleading. The steady state is asymptotically stable, but there may

e large growth of perturbations at short times. This would put the
ystem into a regime where nonlinear terms are no longer negligible,
nd the system may transition to another state rather than returning to
he steady state one started with.

Although the above discussion has focused on an unforced linear
ystem with non-zero initial conditions, the same ideas apply to a
orced linear system with zero initial conditions. If the underlying linear
perator is non-normal, then perturbations in the problem variables
reated by the forcing can have magnitudes considerably larger than
he magnitude of the forcing (e.g., see [286,287,294]).

.2. Relevance to viscoelastic channel flows

The above example is directly relevant to channel flows of Newto-
ian and viscoelastic fluids [101]. We consider channel flows driven
y a constant pressure gradient (plane Poiseuille flow) or a constant
oundary velocity (plane Couette flow). The streamwise direction (di-
ection of mean flow) is 𝑥, the wall-normal direction is 𝑦, the spanwise
irection is 𝑧, and 𝑡 is time. The equations are linearized around the
ase state and Fourier transforms are applied in the 𝑥- and 𝑧-directions
o obtain a system of partial differential equations for the velocity,
ressure, and stress fluctuations where 𝑦 and 𝑡 are the independent
ariables. The Fourier transforms introduce the wavenumbers 𝑘𝑥 and
𝑧, characterizing variations in the streamwise and spanwise directions,
espectively.

For streamwise-constant disturbances (𝑘𝑥 = 0), the linearized gov-
erning equations can be put into forms very similar to the example
problem (6), allowing us to make powerful analogies [101]. For chan-
nel flows of Newtonian fluids, the linearized governing equations can
be written as
(

𝜓̇
𝑢̇

)

=
(

𝐀̄11 0
𝑅𝑒𝐀̄21 𝐀̄22

)(

𝜓
𝑢

)

, (10)

where 𝜓 is the streamfunction in the 𝑦𝑧-plane, 𝑢 is the streamwise
elocity component, and the dot now denotes a partial derivative with
espect to time. Here, 𝐀̄11 = 𝛥−1𝛥2 is the Orr–Sommerfeld operator,
nd 𝐀̄22 = 𝛥 is the Squire operator, and the operator 𝐀̄21 = −𝑖𝑘𝑧𝑈̄ ′(𝑦)

is the vortex-tilting or lift-up operator [295,296], 𝛥 = 𝜕𝑦𝑦 − 𝑘2𝑧, 𝛥2 =
𝜕𝑦𝑦𝑦𝑦−2𝑘2𝑧𝜕𝑦𝑦+𝑘

4
𝑧, 𝑈̄ (𝑦) is the base-state velocity, and the prime denotes

a derivative. System (10) is characterized by the Reynolds number
𝑅𝑒 = 𝜌𝑈0𝐿∕𝜂𝑠, where 𝜌 is the density, 𝑈0 is the maximum magnitude
of the base-state velocity, 𝐿 is the channel half-height, and 𝜂𝑠 is the
26

viscosity. a
Comparing (10) with (6), we see that the Reynolds number 𝑅𝑒
in (10) plays the role of the parameter 𝑅 in (6). When 𝑅𝑒 is non-
zero, the Orr–Sommerfeld and Squire modes become coupled, and the
problem becomes increasingly non-normal as 𝑅𝑒 increases. Note that
the analogy can be made more direct by recognizing that numerical
discretization of the derivatives with respect to 𝑦 converts the operator
in (10) into a standard matrix, and the example problem (6) can be
generalized to higher dimensions. The coupling term 𝐀̄21 = −𝑖𝑘𝑧𝑈̄ ′(𝑦)
involves interaction between the mean shear, or vorticity, and three-
dimensional velocity perturbations (This term is often referred to as
vortex tilting, but it really involves the mean vorticity.) It gives rise to
alternating regions of high and low streamwise velocity, often referred
to as streamwise streaks [295,296].

For inertialess channel flows of Oldroyd-B fluids, the linearized gov-
erning equations for the components of the polymer stress fluctuations
𝜏𝑖𝑗 can be written as [101]
(

𝝉̇1
𝝉̇2

)

=
(

𝐀11 0
𝑊 𝑖𝐀21 𝐀22

)(

𝝉1
𝝉2

)

, (11)

here 𝝉1 =
(

𝜏22 𝜏23 𝜏33
)𝑇 and 𝝉2 =

(

𝜏12 𝜏13
)𝑇 with (1, 2, 3) represent-

ing (𝑥, 𝑦, 𝑧). The Weissenberg number is given by 𝑊𝑖 = 𝜆𝑈0∕𝐿, where
𝜆 is the fluid relaxation time.

The operators 𝐀11, 𝐀22, and 𝐀21 are all independent of 𝑊𝑖 and their
definitions can be found in [101]. A static-in-time relationship [101]
(not shown here) connects the polymer stress fluctuations to the ve-
locity fluctuations. The operators 𝐀11 and 𝐀22 involve the spanwise
wavenumber 𝑘𝑧, derivatives with respect to 𝑦, and the viscosity ratio
𝛽 = 𝜂𝑠∕(𝜂𝑠 + 𝜂𝑝), where 𝜂𝑠 and 𝜂𝑝 are, respectively, the solvent and
olymer contributions to the viscosity. The operator 𝐀21 shares these
eatures as well, but it also involves the first and second derivatives of
he base-state velocity. This operator embeds the interaction between
ase-state velocity gradients and polymer stress fluctuations, and the
nteraction between base-state polymer stress gradients and velocity
luctuations. Physically, such interactions produce polymer stretching.

Comparing (11) with (10) reveals a remarkable analogy between
reeping flows of Oldroyd-B fluids and inertial flows of Newtonian
luids for streamwise-constant disturbances [101]. Polymer stretching
nd the Weissenberg number in elasticity-dominated flows of viscoelas-
ic fluids play the role of vortex tilting and the Reynolds number in
nertia-dominated flows of Newtonian fluids. When 𝑊𝑖 = 0, there is
o coupling between 𝝉1 and 𝝉2 in Eq. (11). However, when 𝑊𝑖 ≠
, the evolution of 𝝉2 is influenced by 𝝉1 and system (11) becomes
ncreasingly non-normal as 𝑊𝑖 increases.

The discussion above lays bare the relevance of example problem
6) to nonmodal amplification in streamwise-constant channel flows
f Newtonian and viscoelastic fluids. In the case of Newtonian fluids,
nitially small-amplitude perturbations can become highly amplified
hrough a nonmodal mechanism. This puts the flow into a regime
here nonlinear terms are no longer negligible, triggering a transition

o turbulence even when no eigenvalue of the linearized problem has
positive real part [297–301]. In the case of viscoelastic fluids, such

isturbance amplification can potentially trigger a transition to elastic
urbulence. Further discussion of the linearized dynamics in viscoelastic
luids can be found in [104].

In analogy with example problem (6), the discussion above implies
hat there exist initial conditions for systems (10) and (11) that lead
o large transient growth of flow fluctuations. This raises the question
f how such initial conditions can be generated [294,302,303], a topic
e turn to next.

.3. Amplification of external disturbances

Fluid flows in practice are subject to disturbances that arise from
ources such as vibrations and pressure fluctuations. If these distur-
ances are amplified by the flow, they could produce the initial condi-
ions that lead to significant transient growth, or can themselves induce
flow transition [294,302,303].
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Fig. 22. Plot of (1/2)log10 for plane Poiseuille of a Newtonian fluid at 𝑅𝑒 = 2000.
Source: Adapted (with permission) from Fig. 5 of [294].

While the exact form of disturbances that arise in experimental
settings may be unknown, it is still useful to consider how a flow model
responds to various types of well-defined disturbances. This is closely
related to the topic of frequency response, which is often covered in
undergraduate courses on control systems. There, one typically consid-
ers systems of ordinary differential equations with disturbances that are
time-periodic. Of course, disturbances can be localized in time as well
(e.g., an impulse), and with the partial differential equations that arise
in flow models, the disturbances can be spatially varying. Disturbance
amplification can also provide insight into model robustness, or how
sensitive a model is to neglected terms [286,291,294,302].

Some of the most basic disturbances that can be considered in fluid
flows are those that are random, e.g., white noise. A simple way to
account for these disturbances is to include them as body forces in
the linearized equations. Because disturbances are easily characterized
by streamwise and spanwise wavenumbers, it is particularly useful
to consider disturbances that are harmonic in those directions but
stochastic in the wall-normal direction and time. It then of interest to
know how the disturbances to the base flow behave as a function of the
streamwise and spanwise wavenumbers, and other parameters such as
the Reynolds number, Weissenberg number, and viscosity ratio.

In control-systems courses, transfer functions relate input and out-
put variables. The same idea can be applied to fluid flows, with the
input being the body force and the output measured in terms of scalar
quantities like the kinetic energy of the velocity fluctuations [287].
Below, we discuss some important results concerning this topic, which
draw heavily upon ideas and tools from linear systems theory and
control theory.

We begin with inertial flows of Newtonian fluids subject to a body
force that is harmonic in the streamwise and spanwise directions but
stochastic (white noise) in the wall-normal direction and time [294].
Fig. 22 shows a plot of the ensemble average energy density,  . This
quantity, which we will refer to as the energy density for brevity, is
simply the kinetic energy of the velocity fluctuations averaged over the
wall-normal direction and time [294,302].

Fig. 22 shows the energy density as a function of 𝑘𝑥 and 𝑘𝑧 for plane
Poiseuille of a Newtonian fluid at 𝑅𝑒 = 2000. The largest energy density
occurs for 𝑘𝑥 ≈ 0 and 𝑘𝑧 ≈ 1.78, which corresponds to streamwise-
constant disturbances. In this limit, an analytical expression can be
obtained for the energy density [294,302]

 = 𝑅𝑒𝑓𝑁 (𝑘𝑧) + 𝑅𝑒3𝑔𝑁 (𝑘𝑧). (12)

The function 𝑓𝑁 is a monotonically decreasing function of 𝑘𝑧, whereas
the function 𝑔 has a peak at 𝑘 ≈ 1.78. The function 𝑓 reflects the
27

𝑁 𝑧
Fig. 23. Plots of (1/2)log10 for plane Poiseuille of an Oldroyd-B fluid at 𝑅𝑒 = 1000
and two different values of 𝐸 = 𝑊 𝑖∕𝑅𝑒: (a) 𝐸 = 0.1 and (b) 𝐸 = 10.
Source: Adapted (with permission) from Fig. 4 of [304].

influence of viscous dissipation and the function 𝑔 reflects the influence
of vortex tilting. Thus, for 𝑅𝑒 ≫ 1, the term involving 𝑔 dominates, and
the energy density is largest for 𝑂(1) values of 𝑘𝑧. This highlights the
importance of three-dimensional disturbances in inertial channel flows
of Newtonian fluids.

Fig. 23 shows the energy density as a function of 𝑘𝑥 and 𝑘𝑧 for
plane Poiseuille of an Oldroyd-B fluid at 𝑅𝑒 = 1000, and two different
elasticity numbers, 𝐸 = 0.1 and 10 [304]. It is seen that the energy
density increases with increasing elasticity number. In addition, the
most amplified disturbances become increasingly streamwise constant
as the elasticity number increases.

For streamwise-constant disturbances at large elasticity numbers,
the energy density is found to obey the following expression [305]

 ≈ 𝑅𝑒𝑓𝑉 𝐸 (𝑘𝑧, 𝛽) + 𝐸𝑅𝑒3𝑔𝑉 𝐸 (𝑘𝑧, 𝛽), (13)

As in the Newtonian case, the function 𝑓𝑉 𝐸 is a monotonically decreas-
ing function of 𝑘𝑧, whereas the function 𝑔𝑉 𝐸 has a peak at 𝑘𝑧 = 𝑂(1).
The function 𝑓 again reflects the influence of viscous dissipation but
the function 𝑔 now reflects the interaction of the polymer stresses with
the velocity field. When 𝑅𝑒 ≪ 1, the term involving 𝑔 dominates if 𝐸 is
large enough, and the energy density is largest at 𝑂(1) values of 𝑘𝑧. This
highlights the importance of three-dimensional disturbances in strongly
elastic channel flows of viscoelastic fluids.

In the creeping-flow limit, the problem of energy amplification
from stochastic forcing becomes ill-posed since the forcing affects the
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velocity and pressure directly without being ‘‘filtered’’ by the un-
steady inertial term [102]. This issue can be addressed by applying
singular perturbation methods to treat the case of large elasticity
numbers [102]. Such an analysis shows that for inertialess streamwise-
constant flows of Oldroyd-B fluids, the linearized dynamics of the
wall-normal vorticity 𝜂 are governed by

𝜕𝑡𝛥𝜂 = −𝑊 𝑖(1∕𝛽 − 1)(𝜕𝑦𝑧(𝑈 ′(𝑦)𝜏22) + 𝜕𝑧𝑧(𝑈 ′(𝑦)𝜏23)) − (1∕𝛽)𝛥𝜂 (14)

In contrast, for streamwise-constant inertial flows of Newtonian
fluids, the linearized dynamics of 𝜂 are governed by

𝜕𝑡𝜂 = −𝑅𝑒𝑈 ′(𝑦)𝜕𝑧𝑣 + 𝛥𝜂, (15)

where 𝑣 is the wall-normal velocity fluctuation. The first term on the
right-hand side of (15) corresponds to vortex-tilting and acts as a source
term. The spanwise vorticity of the base flow, 𝑈 ′(𝑦) gets ‘‘tilted’’ in
the wall-normal direction by spanwise changes in 𝑣. This leads to the
amplification of 𝜂 and thereby the streamwise velocity (𝜂 = 𝜕𝑧𝑢), giving
rise to streamwise streaks.

We now consider the physical interpretation of (14); for additional
details, see [102] and Section 3.2 of Ref. [287]. Here, the first term on
the right-hand side represents spanwise variations in stretching of poly-
mer stress fluctuations by the background shear. This stretching, which
acts as a source term, produces amplification of 𝜂 and, consequently,
𝑢, leading to streamwise streaks. This is the viscoelastic analog of the
lift-up effect, which was briefly mentioned in Section 2.4. Thus, there
is again a remarkable analogy between creeping flows of Oldroyd-B
fluids and inertial flows of Newtonian fluids for streamwise-constant
disturbances. Polymer stretching and the Weissenberg number take the
roles of vortex tilting and the Reynolds number.

Further analysis reveals that the energy associated with the velocity
fluctuations is 𝑂(𝑊 𝑖2) [102]. One can also define an energy associated
with the stress fluctuations, and this is 𝑂(𝑊 𝑖4) [102]. The same scalings
are obtained if one considers creeping flows with disturbances that
are harmonic in time as well as in the streamwise and spanwise
directions, and deterministic in the wall-normal direction [291]. Thus,
in the creeping-flow limit, the more elastic the fluid is, the larger the
disturbance amplification.

Although the above discussion focuses on work conducted over
approximately the past decade, it must be pointed out that the po-
tential importance of nonmodal amplification in channel flows of vis-
coelastic fluids was recognized much earlier [306–310]. However, that
prior work mainly focused on two-dimensional (i.e., spanwise-constant)
flows and did not consider amplification of external disturbances.

6.4. Open issues

The results highlighted above indicate that channel flows of vis-
coelastic fluids are exceedingly sensitive to external disturbances. Am-
plification of these disturbances could create the initial conditions
needed for transient growth, or can itself put the flow into a regime
where nonlinear effects are no longer negligible. In this way, amplifi-
cation of initially small-amplitude disturbances by a purely linear but
nonmodal mechanism may eventually trigger a transition to a more
complicated flow state such as elastic turbulence.

Despite this progress in our fundamental understanding of non-
modal amplification, there remain important open issues, some of
which are identified and briefly discussed here.

Localized disturbances
The discussion in Section 6.3 focused on disturbances in the form

of body forces distributed throughout the flow domain. However, this
is unlikely to be the case in most experiments, where localized dis-
turbances are easier to realize. A simple way to introduce a localized
disturbance in experiments is via obstacles, which exert a drag force on
the fluid (e.g., [11,12,312]). Although these obstacles are of finite size,
consideration in nonmodal analysis of disturbances that are localized
at a point reveals rather rich behavior in the linearized dynamics.
28
Fig. 24. Three-dimensional streamtubes of the velocity fluctuation vector arising from
an impulsive disturbance in plane Poiseuille flow at 𝑅𝑒 = 50. For the FENE-CR fluid,
𝑊𝑖 = 50, 𝛽 = 0.5, and 𝐿 = 100 (where 𝐿 is the maximum polymer extensibility).
Source: Reproduced with permission from Fig. 9 of [311].

An example of the dramatic influence viscoelasticity can have on the
linearized dynamics of localized disturbances is shown in Fig. 24 [311]
(Other examples of the evolution of localized disturbances are discussed
in [107,313].) Here, the disturbance occurs in plane Poiseuille flow
and takes the form of an impulse in space and time. The FENE-CR
constitutive equation, which accounts for the finite extensibility of
polymer molecules, is used for these calculations.

It is seen from Fig. 24 that the presence of vortical structures is
more pronounced in viscoelastic fluids than in Newtonian fluids. The
curved streamlines associated with these vortical structures could be
susceptible to additional instabilities [3,6] if the amplitude of the veloc-
ity disturbance becomes sufficiently large. Determining whether such
a transition occurs will require nonlinear calculations, another open
issue we discuss below. Nonlinear calculations involving finite-sized
obstacles similar to those used in experiments (e.g., [11,12,312]) would
also help bridge the gap between theory and experiment, as would
additional experiments in which the disturbances are more localized
(e.g., by using a small actuator).

As another example of the richness of the linearized dynamics,
recent calculations using localized time-periodic disturbances in plane
Poiseuille flow show that polymer-stress fluctuations can be amplified
by an order of magnitude while there is only negligible amplification
of velocity fluctuations [314]. This appears consistent with experi-
mental observations of elastic turbulence in microchannel flows of
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viscoelastic fluids, where the magnitude of velocity fluctuations de-
creases downstream before increasing [11,12]. Notably, the large stress
amplification is highly localized in space, occurs for spanwise-constant
disturbances, and was overlooked in prior studies that used square-
integrated measures of disturbance amplification, which are typically
applied in nonmodal analysis [314]. The large stress amplification
can put the flow into a regime where nonlinear terms are no longer
negligible, and this could trigger a transition to elastic turbulence.

Finite extensibility
As noted above, the calculations shown in Fig. 24 use the FENE-CR

constitutive equation. Accounting for the finite extensibility of polymer
molecules is important for strengthening connections between theory
and experiment. Some progress has already been made on this front.
In Ref. [291] the influence of harmonic body forces on creeping plane
Couette flow of FENE-CR fluids was examined. It was found that the
velocity and polymer stress fluctuations are proportional to 𝐿̂2 and
̂ 4, respectively, as 𝑊𝑖 → ∞, where 𝐿̂ is the maximum polymer
extensibility. In contrast, as 𝐿̂ → ∞, the velocity and polymer stress
fluctuations are bounded by 𝑊𝑖2 and 𝑊𝑖4, respectively (see also Sec-
tion 6.3). Clearly, finite extensibility places bounds on the achievable
level of nonmodal amplification. Nonlinear calculations will thus be
critical to ascertaining how important nonmodal amplification is in
triggering flow transitions to complex states such as elastic turbulence.

Nonlinear calculations
Despite all the progress made in understanding the fundamentals of

nonmodal amplification in channel flows of viscoelastic fluids, it is still
unclear what role nonmodal amplification plays in transition to elastic
turbulence. For such a transition to take place, disturbances need to be
of a large enough amplitude. Whether this occurs through nonmodal
amplification of an initially small-amplitude disturbance or through an
externally imposed disturbance of finite amplitude [315] remains an
open question. Nonlinear calculations (both weakly nonlinear analysis
and direct numerical simulations) are needed to resolve this issue.

Two-dimensional numerical simulations conducted by Atalik and
Keunings approximately two decades ago using a fully spectral method
suggest that nonmodal amplification can lead to nonlinear flow states
in plane Poiseuille flow of Oldroyd-B fluids [307]. These flow states
exhibit finite-amplitude periodic-like oscillations, and can occur at
very low Reynolds numbers (∼0.1) and sufficiently large Weissenberg
numbers. They are observed only when the ratio of the solvent vis-
cosity to the total viscosity is sufficiently small, and are not observed
in plane Couette flow. Elastic turbulence was not observed, perhaps
because the simulations were restricted to 2D. The discussion in Sec-
tions 6.2 and 6.3 highlights the importance of 3D—and in particular,
spanwise-constant—perturbations.

Experiments showing elastic turbulence in channel flows typically
perturb the flow with obstacles such as cylinders located near the
channel inlet (e.g., [11,12,312]). Definitively unraveling what is actu-
ally happening in the experiments will likely involve careful interplay
with detailed nonlinear calculations, particularly in the regime where
the elasticity numbers (𝐸 = 𝑊 𝑖∕𝑅𝑒; see Section 6.3) are large and
steep polymer stress gradients may arise. Such calculations remain an
outstanding challenge that contains rich mathematical and computa-
tional issues (e.g., see [316–318]). The insights gained from nonmodal
analysis are likely to be helpful for interpreting results from those
calculations.

7. Nonlinear stability of parallel shear flows

The analysis of viscoelastic flow instabilities presented in the pre-
vious Sections was largely restricted to the linear theory, either modal
or nonmodal. Here, we demonstrate that the Oldroyd-B model can also
be used to successfully describe strongly nonlinear states that emerge
beyond a linear instability or even in its absence. As an example, we
treat the case of parallel shear flows of dilute polymer solutions, like
pressure-driven flows in a channel or pipe.
29
As discussed in Section 2.2, such flows are mostly linearly stable.
With the exception of the recently discovered linear instabilities in
pressure-driven channel flow [66] at ultra low polymer concentrations,
1− 𝛽 ≪ 1, and very high levels of elasticity, 𝑊𝑖 > 𝑂(1000), there are no
known linear instabilities in the majority of the parameter space. As a
result, such flows have long been believed to exhibit no states that are
not laminar. This assumption was challenged by Bonn, Morozov, van
Saarloos, and collaborators [80,319,320] who proposed that, despite
being linearly stable, parallel shear flows of viscoelastic fluids can
exhibit nonlinear instabilities: while infinitesimal perturbations to such
flows always decay, a finite-amplitude perturbation may be sufficient to
drive the flow unstable. Below, we review theoretical and experimental
efforts to discover such instabilities, and discuss their implications
for our understanding of elastic turbulence. While there have been
very recent efforts [67,89] that have carried out weakly nonlinear
analyses for the elastoinertial center-mode instability at finite 𝑅𝑒 (see
Section 2.4), the discussion in the present section will confine itself to
the earlier body of work that has focused on inertialess flows.

7.1. Weakly nonlinear analysis

To verify the suggestion made by Bonn, Morozov, van Saarloos,
and collaborators in [80,319], one has to demonstrate that viscoelastic
parallel shear flows support other states rather than the laminar one.
As there are no general methods of finding nonlinear solutions of
partial differential equations, one has to rely on approximate, often ad
hoc, techniques. In the presence of a linear instability, a novel state
bifurcating from the laminar profile is guaranteed to become arbitrarily
weak as the distance to the linear instability decreases. This allows one
to construct a nonlinear solution perturbatively, using the distance to
the linear instability threshold as a control parameter. Such techniques,
that are often referred to as amplitude equations, are the dynamical sys-
tems analogues of the Landau theory of second-order phase transitions,
and have been successfully employed to study various pattern-forming
systems [321,322]. In the absence of a linear instability, Morozov and
van Saarloos formulated a novel version of the amplitude equation
technique [81,108,109,229] that relies on the weakness of the nonlinear
state rather than the distance to the instability threshold (which is
formally infinite in this case). Below, we follow the latest version of
the theory as formulated in [315].

We consider a flow between two parallel infinite plates forced either
by an applied constant pressure gradient along the plates (pressure-
driven channel flow) or by the relative sliding of the plates (plane
Couette flow). We select a Cartesian coordinate system with (𝑥, 𝑦, 𝑧)
being along the streamwise, velocity gradient, and spanwise directions,
respectively. As in the previous Sections, our starting point is the
dimensionless version of the Oldroyd-B model. In the absence of inertia,
it is given by

𝝉 +𝑊𝑖
[ 𝜕𝝉
𝜕𝑡

+ 𝒗 ⋅ ∇𝝉 − (∇𝒗)𝑇 ⋅ 𝝉 − 𝝉 ⋅ (∇𝒗)
]

= (∇𝒗) + (∇𝒗)𝑇 , (16)

− ∇𝑝 + 𝛽∇2𝒗 + (1 − 𝛽)∇ ⋅ 𝝉 = 0, (17)

∇ ⋅ 𝒗 = 0, (18)

here 𝑝 is the pressure, 𝝉 is the polymeric contribution to the total
tress, and 𝒗 is the velocity of the fluid assumed to satisfy the ap-
ropriate no-slip boundary conditions. These equations are rendered
imensionless by using the maximum value of the laminar fluid velocity

as a unit of velocity, half the distance between the plates 𝑑 as a unit
f length, and their ratio 𝑑∕ as a unit of time. This yields 𝑊𝑖 = 𝜆 ∕𝑑
nd 𝛽 = 𝜂𝑠∕(𝜂𝑠 + 𝜂𝑝), where 𝜂𝑠 and 𝜂𝑝 are the solvent and polymer
ontributions to the total viscosity of the solution; 𝜆 is the Maxwell
elaxation time of the model. Eqs. (16)–(18) can be written concisely
s

̂𝑉 + 𝐴̂ 𝜕𝑉 = 𝑁 (𝑉 , 𝑉 ) , (19)

𝜕𝑡
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where the perturbation vector 𝑉 =
(

𝒗′, 𝝉 ′, 𝑝′
)𝑇 , comprises deviations

of the velocity, stress, and pressure from their laminar values. Here, ̂
and 𝑁 are the linear operator and the quadratic nonlinear operator,
respectively, while the constant diagonal matrix 𝐴̂ encodes the fact
that only some equations in (16)–(18) contain time-derivatives. Their
explicit expressions can be found in [315].

In the most general terms, a solution of Eq. (19) can be written as
a Fourier series in the streamwise and spanwise directions, i.e.

𝑉 (𝑥, 𝑦, 𝑧, 𝑡) =
∞
∑

𝑛,𝑚=−∞
𝑈𝑛,𝑚(𝑦, 𝑡)𝑒𝑖𝑛𝑘𝑥𝑥𝑒𝑖𝑚𝑘𝑧𝑧, (20)

where the wavenumbers 𝑘𝑥 and 𝑘𝑧 set the dominant length-scales in the
corresponding directions. The weakly nonlinear analysis of Morozov
and van Saarloos [315] approximates this expression with

𝑉 (𝑥, 𝑦, 𝑧, 𝑡) = 𝛷(𝑡)𝑒𝑖(𝑘𝑥𝑥+𝑘𝑧𝑧)𝑉𝑙𝑖𝑛(𝑦) +𝛷∗(𝑡)𝑒−𝑖(𝑘𝑥𝑥+𝑘𝑧𝑧)𝑉 ∗
𝑙𝑖𝑛(𝑦)

+ 𝑈0(𝑦, 𝑡) +
∞
∑

𝑛=2

[

𝑈𝑛(𝑦, 𝑡)𝑒𝑖𝑛(𝑘𝑥𝑥+𝑘𝑧𝑧) + 𝑈∗
𝑛 (𝑦, 𝑡)𝑒

−𝑖𝑛(𝑘𝑥𝑥+𝑘𝑧𝑧)
]

, (21)

where ’’∗’’ denotes complex conjugation. This expansion is built around
the eigenfunction 𝑒𝑖(𝑘𝑥𝑥+𝑘𝑧𝑧)𝑉𝑙𝑖𝑛(𝑦) of the linear operator,

̂𝑒𝑖(𝑘𝑥𝑥+𝑘𝑧𝑧)𝑉𝑙𝑖𝑛(𝑦) = −𝜒𝐴̂𝑒𝑖(𝑘𝑥𝑥+𝑘𝑧𝑧)𝑉𝑙𝑖𝑛(𝑦), (22)

where 𝜒 is an eigenvalue. In what follows, we use the least stable
eigenvalues as the basis for our analysis. In plane Couette flow, these
are given by the extension to the Oldroyd-B model of the Gorodtsov–
Leonov modes [62] discussed in Section 2.2, while in pressure-driven
channel flows, we use the least stable of the three leading eigenvalues.
(e.g. see Fig. 6 of [63]).

The higher Fourier harmonics 𝑈𝑛 are assumed to be forced by the
dynamics of the time-dependent amplitude of the first Fourier mode
𝛷(𝑡) and are thus produced by the recursive nonlinear interaction of the
first Fourier mode with itself and other modes produced in the process.
This yields

𝑈0(𝑦, 𝑡) = |𝛷(𝑡)|2𝑢(2)0 (𝑦) + |𝛷(𝑡)|4𝑢(4)0 (𝑦) +⋯ ,

𝑈2(𝑦, 𝑡) = 𝛷2(𝑡)𝑢(2)2 (𝑦) +𝛷2(𝑡)|𝛷(𝑡)|2𝑢(4)2 (𝑦) +⋯ , (23)

𝑈3(𝑦, 𝑡) = 𝛷3(𝑡)𝑢(3)3 (𝑦) +⋯ ,

⋯ ,

where the unknown functions 𝑢(𝑚)𝑛 (𝑦) are to be determined from the
analysis. One can view Eq. (21) as a version of the Fourier expansion,
Eq. (20), with an extra assumption about the form and interrelation
between the coefficients. Unlike the usual amplitude equation tech-
nique [321,322], there is no guarantee that this procedure yields a
converging, meaningful solution; this has to be checked a posteriori.

The goal of the theory is thus to determine the time-evolution of
the amplitude 𝛷(𝑡), which is obtained by projecting the dynamics of
Eq. (19) on to the slow manifold with the help of the adjoint operator;
see [315] for details. Its main result is the derivation of the following
equation for the amplitude:
𝑑𝛷
𝑑𝑡

= 𝜒𝛷+𝐶3𝛷|𝛷|
2+𝐶5𝛷|𝛷|

4+𝐶7𝛷|𝛷|
6+𝐶9𝛷|𝛷|

8+𝐶11𝛷|𝛷|
10 ⋯ , (24)

where the complex coefficients 𝐶 ’s are functions of 𝑘𝑥, 𝑘𝑧, 𝑊𝑖, 𝛽, and
the particular eigenmode selected for the analysis. For sufficiently small
values of 𝛷(𝑡), the amplitude equation reduces to the long-time decay
predicted by the linear stability analysis, i.e. 𝛷(𝑡) ∼ 𝑒𝜒𝑡, while for larger
values of 𝛷(𝑡) it can exhibit non-trivial behavior. Although the type of
solutions it can support varies from steady states and periodic orbits
to chaotic dynamics, below we focus on traveling waves in the form
𝛷(𝑡) = 𝛹 𝑒𝑖 𝛺 𝑡, where 𝛹 and 𝛺 are real numbers.

The asymptotic nature of Eq. (24) implies that only converging
series can represent a physical solution. To lie within the radius of
convergence, defined by the coefficients 𝐶 ’s, the solution amplitude 𝛹
has to be sufficiently small. In turn, this implies that the solutions that
30
Fig. 25. Steady-state amplitude 𝛹 of the traveling-wave solution as a function of 𝑊𝑖.
(a) Plane Couette flow of a UCM fluid (𝛽 = 0) with 𝑘𝑥 = 𝑘𝑧 = 1. Calculations were
performed in the presence of small amounts of inertia with the Reynolds number
𝑅𝑒 = 10−3𝑊𝑖. (b) Plane channel flow of an Oldroyd-B model with 𝛽 = 0.05, 𝑘𝑥 = 1
and 𝑘𝑧 = 2, in the absence of inertia, 𝑅𝑒 = 0.
Source: Replotted under Creative Commons CC licence from [315].

can be found by this method have to be sufficiently close to the original
eigenmode used as the starting point of the theory. Convergence of the
series for 𝛹 can be assessed by studying the traveling wave solutions
of Eq. (24) with a progressively increasing number of terms, i.e.

0 = 𝑅𝑒 (𝜒) + 𝑅𝑒
(

𝐶3
)

𝛹 2
1 , (25)

0 = 𝑅𝑒 (𝜒) + 𝑅𝑒
(

𝐶3
)

𝛹 2
2 + 𝑅𝑒

(

𝐶5
)

𝛹 4
2 , (26)

⋯ (27)

In Fig. 25 we plot the consecutive approximation to the traveling
wave amplitude 𝛹 using this procedure for plane Couette and channel
flows. Although we had no reason to expect this a priori, the low-
branch amplitude values and the position of the saddle–node (the point
where the lower branch turns vertically upwards) appear to converge;
see [315] for the details of convergence tests. As can be seen from
Fig. 25, the upper branches, which set the saturated amplitude of
the traveling wave solutions, diverge rapidly close to the saddle–node
of the bifurcation, indicating that the corresponding values of 𝛹 lie
outside the radius of convergence of the asymptotic series in Eq. (24).
Nevertheless, the highest-order upper-branch amplitude values of the
amplitude 𝛹 in Fig. 25 allow us to study the spatial structure of the
solution predicted by the theory. As an illustration, in Fig. 26 we plot
the velocity profile at 𝑧 = 0 in the 𝑥𝑦-plane, where arrows trace the
in-plane components of the deviation of the velocity from its laminar
profile, while the color gives the spanwise velocity. Additional plots of
the stress and velocity fields can be found in [315].

The main conclusion to be drawn from these results is that both
plane Couette and channel flows of model Oldroyd-B fluids exhibit
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Fig. 26. The velocity profile at 𝑧 = 0 in the 𝑥𝑦-plane for plane channel flow of an
Oldroyd-B model with 𝛽 = 0.05, 𝑘𝑥 = 1 and 𝑘𝑧 = 2, as in Fig. 25; arrows denote the
in-plane components of the deviation of the velocity from its laminar profile, while the
color gives the spanwise velocity.
Source: Reproduced under Creative Commons CC licence from [315].

traveling-wave solutions above the saddle–node value of the Weis-
senberg number 𝑊𝑖𝑠𝑛 ≈ 3. We now summarize how these results
compare against recent studies of perturbed viscoelastic channel flows.

7.2. Experimental evidence

First indication that parallel shear flows of viscoelastic fluids can
exhibit sub-critical instabilities can already be seen in the early turbu-
lence experiments [22] already mentioned in Section 2.3. There, it was
observed that addition of polymers to Newtonian pipe flows before the
onset of Newtonian turbulence often leads to drag-enhancement, be-
traying a transition that is different in nature. These novel instabilities
can be observed as long as the pipe diameter is small enough (typically
a few millimeters), yielding high values of 𝑊𝑖, in which case they exist
at Reynolds numbers significantly smaller than the onset of Newtonian
turbulence. It is natural to suggest that these instabilities have a purely
elastic origin, as was proposed by Samanta et al. [22], with their region
of existence spreading from 𝑅𝑒 = 0 to the values observed in early
turbulence experiments [23,24,83,84].

A more convincing, yet still indirect, evidence for the existence of
sub-critical instabilities in parallel shear flows comes from the phe-
nomenon of melt fracture (mentioned earlier in Sec. ), observed when
concentrated polymer solutions or melts are extruded from a thin
capillary [323]. Above a critical extrusion speed, the extrudate devel-
ops unwanted long-wave undulations of its surface and even breaks
entirely. The origin of melt fracture, which limits virtually every in-
dustrial process that involves extrusion, is hotly debated, with possible
explanations ranging from bulk phenomena to the stick–slip behavior
at the capillary exit [5]. By studying a wide range of viscoelastic
fluids, Bertola et al. [80] have shown that extrudate undulations appear
through a sub-critical instability with the saddle–node Weissenberg
number being around 𝑊𝑖 = 5. Supported by an early version of the
weakly nonlinear analysis developed by Meulenbroek et al. [319] that
predicted the same saddle–node value of the Weissenberg number,
Bertola et al. [80] concluded that their observations are consistent
with a sub-critical instability originating inside the capillary and being
advected downstream by the flow.

To demonstrate the bulk origin of such instabilities, Bonn et al. [324]
conducted a series of experiments with dilute and semi-dilute polymer
solutions that were fed from a thin capillary into a capillary of a
larger radius. The resulting sudden-expansion flow at the entry to the
large capillary provided a high level of flow fluctuations capable of
inducing the instability. For low 𝑊𝑖, Bonn et al. [324] observed that
the inlet perturbations decayed along the large capillary, while for
𝑊𝑖 ≥ 4 perturbations persisted far downstream. While being consistent
31
Table 1
Saddle–node value of 𝑊𝑖 for various flow geometries. Here 𝛽 = 0 for plane Couette
and pipe Poiseuille flows, while 𝛽 = 0.05 for plane Poiseuille flow. In the experiments
of Pan et al. [11], 𝛽 ≈ 0.5.

Plane Couette Flow Pipe Flow Channel Flow

Experiment – 4a–5b 5–6c

Weakly nonlinear analysis 3d 5e 3f

aBonn et al. [324].
bBertola et al. [80].
cPan et al. [11].
dMorozov and van Saarloos [108].
eMeulenbroek et al. [319].
fMorozov and van Saarloos [315].

with the scenario proposed here, that study has not demonstrated the
sub-critical nature of the instability.

The issue was finally settled by Arratia and co-workers [11–13] who
simultaneously demonstrated the existence of large three-dimensional
flow fluctuations inside a microfluidic channel flow of dilute polymer
solutions and the sub-critical nature of the transition. Their experimen-
tal setup consisted of a long microfluidic channel partially blocked at
the entrance by a row of cylindrical obstacles along the flow direction.
Flows of polymer solutions around cylinders have been extensively
studied, both experimentally and numerically, and are known to ex-
hibit a linear instability above a critical 𝑊𝑖; we refer to [11–13]
for relevant references. This instability was used by Arratia et al. to
generate flow perturbations and they observed their development far
downstream of the cylinders. Above 𝑊𝑖 ≈ 5 − 6, they reported that
the inlet perturbations stayed at a constant level far downstream from
the cylinders, indicating a sustained nonlinear state. By reducing the
flow rate from that state, Arratia and co-workers observed that the
fluctuations disappeared at lower values of 𝑊𝑖 than at their onset,
thus confirming their sub-critical nature. The instability around the
cylinders has been shown to be a supercritical bifurcation and, thus,
is not responsible for the phenomenon observed. Later work by Qin
et al. [12,13] has demonstrated the three-dimensional nature of the
nonlinear flow state thus created. An interesting feature of the experi-
ments by Bonn et al. [324] and by Arratia and co-workers [11–13] is
that a large inlet perturbation is required to drive the transition. The
saddle–node value of the Weissenberg number reported by Arratia et al.
is somewhat higher than the one predicted in Fig. 25, which can be
due to a different value of 𝛽 for the solutions used in the experiments,
their shear-thinning nature not accounted for in the Oldroyd-B model,
and the approximate nature of the weakly nonlinear analysis presented
above. Nevertheless, these experiments convincingly demonstrate the
existence of non-trivial flow states in channel flows of viscoelastic flu-
ids, in line with the original suggestion of Bonn, Morozov, van Saarloos,
and collaborators [80,109,319,320]; see the summary in Table 1.

It is important to stress that the secondary flow structures predicted
above might be difficult to detect experimentally. In the purely elastic
regime, or at low 𝑅𝑒, the dynamical variable is the polymeric stress, as
can be seen from Eqs. (16)–(18), while the velocity field adiabatically
adjusts to its evolution. As the weakly nonlinear analysis presented
above suggests, even weak velocity fields can develop sufficient gra-
dients to re-inforce nonlinear dynamics of the stress. In the absence of
reliable techniques to measure three-dimensional profiles of polymeric
stresses, this might lead to a situation where a strongly nonlinear state
is only weakly manifested through the available observables, i.e. the
mean-velocity fluctuations as used in [11,324]. The weakly nonlinear
analysis further suggests that the streamwise vortices and streaks in a
plane perpendicular to the flow direction might be the best candidates
for experimental detection [315]. Such structures are a hallmark of
Newtonian coherent structures [325]; they also feature prominently in
the non-normal growth analysis by Kumar and Jovanović [101,102];
see also Section 6. Recent experiments by Qin et al. [12] and Jha and
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Steinberg [14] present preliminary evidence for the existence of such
coherent structures.

In view of the potential difficulties in resolving three-dimensional
velocity fields associated with purely elastic instabilities in straight
channels, it would be natural to address this question in direct numeri-
cal simulations. Unfortunately, such calculations are made notoriously
difficult by the so-called High-Weissenberg Number Problem [326],
that renders simulations unphysical at sufficiently high values of 𝑊𝑖.
n the absence of shear-thinning, the Oldroyd-B model often suffers
rom the High-Weissenberg Number Problem even at very low 𝑊𝑖 ∼ 1−
[326]. Atalik and Keunings [307] performed numerical simulations of

wo-dimensional parallel shear flows of various constitutive models and
eported large fluctuations of vorticity at low 𝑅𝑒 and 𝑊𝑖 ∼ 0.5. Unfortu-

nately, that study did not provide the spatial profiles of the associated
velocity field. Also the low value of 𝑊𝑖 needed to generate oscillations
and the low numerical resolutions used in those simulations bring in
question whether they are indeed related to the instabilities discussed
here. Sadanandan and Sureshkumar performed similar simulations of
an Oldroyd-B fluid in channel flows and observed large velocity fluc-
tuations above 𝑊𝑖 ∼ 3 (private communication). Unfortunately, those
simulations ultimately suffered from the High-Weissenberg Number
Problem and did not yield a turbulent-like steady-state. In the past
years, there emerged a class of numerical techniques to ensure positive-
definiteness of the conformation tensor (absence thereof was implicated
as a cause of the High-Weissenberg Number Problem) [218,327,328].
Their use in unsteady parallel shear flows should provide the ultimate
argument for the existence of sub-critical instabilities in such flows.

7.3. Elastic turbulence in parallel shear flows

The sub-critical transition in viscoelastic fluids presented above
echos the instability scenario in parallel shear flows of Newtonian
fluids [329,330]. Recently, the transition to Newtonian turbulence
has been understood to be organized by the exact solutions of the
Navier–Stokes equations. These three-dimensional coherent structures
in the form of traveling waves or periodic orbits comprise streamwise
vortices, streaks, and three-dimensional flows connecting them dynami-
cally [30,92,93,331–334], and appear through a sub-critical bifurcation
from infinity. Importantly, they are linearly unstable forming saddle-
like structures in phase space: A turbulent trajectory passing by in the
vicinity of such a structure is attracted towards it only to be eventually
repelled along one of the few unstable directions [329,330]. In the
presence of a sufficient number of such solutions in the phase space,
after overcoming a critical threshold, a turbulent trajectory performs a
random walk in the phase space, being trapped among a large number
of such structures. This scenario, coupled with the process of spatial
splitting and merging of the localized coherent structures, was recently
shown to place the transition to Newtonian turbulence within the
directed percolation universality class [335].

The experimental results by Bonn et al. [324] and by Arratia and
co-workers [11–13] demonstrate that while parallel shear flows of
dilute polymer solutions are linearly stable, they exhibit sub-critical
transitions that lead directly to a chaotic state related to purely elastic
turbulence previously only observed in shear flows with curved stream-
lines [8,194,336]. The results of the weakly nonlinear analysis suggest
that transition might also be guided by unstable coherent structures:
While the nonlinear states described in Section 7.1 might be linearly
unstable, and thus inherently unobservable, they could organize the
phase space dynamics in a way similar to their Newtonian counterparts.
Their spatial structure, however, might be fundamentally different from
the Newtonian coherent structures. Indeed, the weakly nonlinear anal-
ysis predicts that viscoelastic solutions could equally exist as two- and
three-dimensional structures, while the recent work on elasto-inertial
turbulence [22,55–57,82,337] points towards the importance of (quasi)
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two-dimensional coherent structures. Future work is needed to uncover t
the exact nature of purely elastic turbulence in parallel shear flows and
its similarities and differences to the Newtonian transition scenario.

We conclude by noting that the recent discovery of a linear in-
stability in purely elastic channel flows by Khalid et al. [66] also
provides a useful suggestion regarding the spatial structure of flow
fields associated with purely elastic coherent structures. Although that
instability exists only for 1 − 𝛽 < 𝑂(10−2), the corresponding nonlinear
tate has been shown to be sub-critical [67], similar to its elastoinertial
ounterpart [56]. It is possible that, while no longer being associated
ith a linear instability, that solution persists to the experimentally

elevant values of 𝛽 as a bifurcation from infinity. If that is indeed
he case, it could potentially connect to the structures suggested in
efs. [108,109,338] as they are related to the same eigenmode of the

inear operator.

. Conclusions and outlook

The present review, written on the occasion of the birth centenary
f James Oldroyd, has provided a summary of various instabilities
ncountered in viscoelastic shearing flows. Despite not accounting for

shear-dependent viscosity and first normal stress coefficient, the
ldroyd-B model has been quite versatile in its ability to predict, at

east qualitatively, a host of instabilities in rectilinear and curvilinear
iscometric flow configurations. Likewise, despite predicting a diver-
ent stress response in steady extensional flows beyond a threshold
𝑖, the Oldroyd-B does provide a qualitative explanation even for

nstabilities in non-viscometric flows, provided the base-state stresses
emain finite; artifacts might arise, however, in parameter intervals
here the base-state stresses diverge [242]. The model has also proved
seful in interpreting secondary interfacial instabilities in multilayered
hearing flows that might arise as the saturated state of a primary
hear-banding instability.

While the Oldroyd-B model was originally intended for dilute poly-
er solutions, the pioneering experimental efforts that led to the dis-

overy of EIT in pipe flow (Samanta et al. [22]), and subsequent efforts
hat further elucidated this transition [83], use a range of polymer so-
utions with polymer concentrations extending to the overlap value and
eyond, and therefore, may not be deemed truly dilute. Thus, although
he Oldroyd-B model has been used to predict a linear elastoinertial
nstability in pipe flow [32,78] that coincides with the observed onset
f EIT, an accurate prediction of the elasto-inertial instability beyond
he dilute regime may require a more detailed constitutive model that
ccounts for inter-chain interactions. Prabhakar and co-workers have
eveloped a constitutive equation that accounts for such interactions,
lthough this model is yet to be used within the framework of a
tability analysis [207,339]. Further, it is well known that polymer so-
utions that are dilute, based on the equilibrium coil dimension (which
etermines the overlap concentration), may no longer be so at high
hear rates, since the volume fraction that controls hydrodynamic
nteractions is determined by the longest chain dimension. While this
hain-extension-induced departure from the dilute regime may not be
elevant to a linear stability analysis, it might be important in analyses
hat account for the nonlinear feedback from finitely extended polymer
olecules; turbulent drag reduction being one example.

Curvilinear viscometric shearing flows undoubtedly remain the
edrock on which the success of the Oldroyd-B model has been built,
ith the model providing a first-cut prediction of purely elastic in-

tabilities in all of the viscometric flow configurations including the
aylor–Couette, parallel-plate and cone-and-plate geometries. The in-
lusion of multiple relaxation modes and shear thinning does lead to a
ore accurate prediction of the threshold criterion. Shear thinning, in
articular, has an important effect in terms of leading to a restabiliza-
ion at sufficiently high shear rates. The rigorous thresholds obtained
rom linear stability analyses of the aforementioned viscometric flows
ave led to the development of the heuristic Pakdel–McKinley criterion

hat has since been applied over a wider range of shearing flows,
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with the incorporation of additional physics; for instance, the shear-
thinning-induced stabilization above can be explained by generalizing
the said criterion to account for shear-rate-dependent rheological prop-
erties. Interestingly, and perhaps unexpectedly, Oldroyd-B-based stabil-
ity analyses have had some success even for non-viscometric flows that
include elastic wake instabilities [249] and the instabilities observed in
a cross-slot configuration [236]. Again, perhaps a bit unexpectedly, the
Pakdel–McKinley criterion has been used successfully to rationalize the
onset of many non-viscometric flow instabilities [268,273].

It must, however, be said that our understanding of non-viscometric
flow instabilities is not at par with that of the viscometric ones. The
original identification of the elastic instabilities in viscometric flows,
based on linear stability analyses, were accompanied by physical argu-
ments involving the interaction of the polymer molecules (dumbbells)
with the imposed perturbation, that clearly pointed to a positive
feedback mechanism, in turn implying an exponential growth [6,155].
There exist no analogs of these detailed microscopic arguments for
the non-viscometric instabilities discussed in Section 5. For instance,
with regard to Section 5.1 concerning the cross-slot configuration, the
current understanding points to the existence of two apparently distinct
elastic instabilities with one correlating to the sheared regions between
the center and the re-entrant corners regions [237], and the other
originating at the stagnation point at the center of the slot [248]. The
underlying flow configuration in both cases is a cross-slot with rounded
corners (one of them being the OSCER [239]), and the rationaliza-
tion of the instability origins is based solely on the Pakdel–McKinley
criterion, specifically, the differing 𝑀-field contours for the two cross-
slot configurations. Microscopic physical arguments, along the lines
of those developed for the viscometric flow instabilities, may provide
further clarification. For the other widely studied non-viscometric flow
configuration, that of a contraction-flow geometry, an accurate pre-
diction of both the novel flow states and elastic instabilities observed
in experiments, with the associated macroscopic signatures (pressure
drop) remains an open challenge in viscoelastic fluid mechanics.

With regard to rectilinear shearing flows, predictions based on
recent linear stability analyses [32,78], using the Oldroyd-B model,
appear to correlate well to observations of transition in viscoelastic
pipe flow [23], in sharp contrast to the well-known disconnect in
the Newtonian case. Important questions regarding the nature of post-
transition scenarios remain, however. For instance, what is the nature
of the bifurcation at onset? What is(are) the pathway(s) to the EIT state
from the initially growing elastoinertial centermode eigenfunction? Is
there a generic connection between the EIT and ET states, as has been
shown for the case of viscoelastic channel flow [66,67]? The answers to
these questions will likely differ depending on the particular region in
the 𝑅𝑒−𝑊 𝑖−𝛽 space. In this regard, there is a need for direct numerical
simulations and weakly nonlinear analyses of channel and pipe flows.
Recent efforts have taken a step towards answering these questions by
showing that the elastoinertial center-mode instability is subcritical,
especially for dilute solutions (𝛽 > 0.8), both in channel [56,67] and
pipe [89] flow, in turn showing that the instability could be relevant
even in parameter regimes where the flow is linearly stable; see dashed
curves in Fig. 11. It is also of interest to go beyond the Oldroyd-B
model and examine, for instance, the role of finite extensibility both in
the initial instability and the subsequent nonlinear transition process.
Interestingly, and in contrast to what is known for curvilinear shearing
flows [210], the preliminary results obtained by Buza et al. [67], using
the FENE-P model, point to a potential destabilizing role of finite
extensibility, with the center-mode instability now present in a larger
region of parameter space.

It is worth commenting briefly on the topic of exact nonlinear
solutions of the governing equations of motion — the so-called exact
coherent states. In the Newtonian case, these ECSs have been a valuable
aid in an understanding of the self-sustaining process that underlies
transitional Newtonian turbulence, and form the basis of a dynamical
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systems interpretation of transition. A large number of Newtonian ECSs
have now been found, across the canonical shearing flows, and a
number of review articles have appeared on this topic [88,94,325]. In
comparison, there exists a paucity of elastic and elastoinertial coherent
structures that might help unravel the dynamical processes underly-
ing ET or EIT (an exception in this regard is the ‘diwhirl’ solution
found by Kumar and Graham [198], an effort that was motivated
by the Groisman–Steinberg experiments [196] on the pronouncedly
hysteretic transitions in viscoelastic Taylor–Couette flow). While there
exist both nonmodal and nonlinear analyses of rectilinear shearing
flows, in the purely elastic limit, as described in Sections 6 and 7,
the elements in these efforts have not, as yet, come together in the
discovery of an elastic ECS. Very recent experiments in microfluidic
channels [14] have taken a step towards exploring coherent structures
underlying the purely elastic transition, although the interpretation
of the results (especially, the attribution of the dynamics to Alfen-
like elastic waves [340]) requires further investigation. In this regard,
the recent linear elastoinertial [32] and elastic [66] eigenfunctions,
underlying the respective center-mode instabilities, may serve as useful
initial guesses for numerical continuation to exact nonlinear states; as
mentioned above, the results of Page et al. [56] exemplify such an
effort.

We end with the mention of a few instabilities that cannot be
captured by the Oldroyd-B model. As already discussed in Section 3.2,
the Oldroyd-B model cannot capture ‘constitutive instabilities’, ex-
hibited by a range of complex fluids particularly worm-like micellar
solutions, since they arise due to the non-monotonic nature of the
flow curve [128]. Next, there have been both experimental [341–345]
and theoretical [346–348] efforts that have studied instabilities, at
very low 𝑅𝑒, in rectilinear shearing flows of concentrated, and thence,
strongly shear thinning, polymer solutions. Such instabilities are now
understood to be driven by the combined action of fluid elasticity and
shear thinning, their prediction again being outside the purview of the
Oldroyd-B model; the (phenomenological) White–Metzner model [41],
where the degree of shear thinning can be independently specified,
has been used to examine such instabilities. The Oldroyd-B model also
cannot predict instabilities that rely essentially on a non-zero second
normal stress difference [148]. This includes ‘edge fracture’ which
arises when a viscoelastic fluid is sheared, for example, in the cone-and-
plate geometry. The free surface at the rim gets destabilized, leading
to a complicated edge profile resembling fracture in elastic solids.
The Johnson–Segalman and Giesekus models, both of which predict
a negative 𝑁2, have been used [349] to predict edge fracture; the
nterpretation of a negative 𝑁2 as a tension along the radial vortex

lines in the said geometry is suggestive of its destabilizing action in
the above geometry. Another 𝑁2-driven phenomenon is the spanwise
instability of a two-layer sheared suspension flow, driven by a jump
in 𝑁2 across the interface [350]. Finally, the Oldroyd-B model cannot
predict phenomena where coupling between the flow and polymer
concentration plays a central role, since the model assumes a uniform
(and dilute) polymer concentration. This coupling has been shown to
lead to an instability in plane Couette flow, even when the constitutive
curve of the fluid is monotonic [351–357].

To conclude, one may regard the Oldroyd-B model as a sufficiently
simple, yet realistic, model that allows for detailed mathematical anal-
ysis and numerical computations. It can, therefore, be argued that,
even after seven decades since it was proposed by James Oldroyd, the
Oldroyd-B model remains the ‘go-to’ model when one is faced with the
prediction of a novel instability in viscoelastic flows.
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