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Abstract— We examine global exponential stability of the
primal-dual gradient flow dynamics for differentiable convex
problems with linear equality constraints. We show that if
the set of equilibrium points is affine, then, regardless of the
initial conditions, trajectories of the gradient flow move in the
direction that is perpendicular to equilibrium set. When the
objective function is strongly convex, we utilize this structure to
show that the primal-dual dynamics are globally exponentially
stable even if the constraint matrix is not full-row rank. We
also provide an explicit characterization of the exponential
convergence rate in terms of the smallest nonzero singular value
of the constraint matrix.

Index Terms— Global exponential stability, gradient flow
dynamics, Lyapunov functions, primal-dual methods.

I. INTRODUCTION

We study convex problems with linear equality constraints,

minimize
x

f(x)

subject to Ex − q = 0
(1)

where x ∈ Rn is the optimization variable, f : Rn → R is
the convex objective function, E ∈ Rm×n is the constraint
matrix with rank(E) = r < min(m,n), and q ∈ Rm is a
given vector. In this work, we are interested in characterizing
stability properties of primal-dual gradient flow dynamics,

ẋ = − ∇xL(x; y)

ẏ = + ∇yL(x; y)
(2)

where L is the Lagrangian defined as

L(x; y) = f(x) + ⟨y, Ex − q⟩ (3)

with y ∈ Rm being the vector of dual variables associated
with the linear equality constraint.

Stability and convergence properties of primal-dual meth-
ods synthesized from gradient flows in the form of (2) have
been continually studied under various scenarios for diverse
problems since the introduction of dynamics (2) in the
seminal paper [1]. Early results such as [2], [3] were concen-
trating on the global asymptotic stability of projected primal-
dual dynamics derived from the Lagrangian of inequality
constrained problems. Then in [4]–[7], asymptotic stability
of (projected) primal-dual gradient flow was established for
general saddle functions under different assumptions. In
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more recent works, the focus has started to shift toward the
exponential stability. In [8]–[13] global exponential stability
of the primal-dual gradient flow was proved for problem (1).
Also [14] and [15] showed that gradient flow is contractive
for problem (1).

However, all these results proving exponential stability as-
sume that, in addition to f being strongly convex, constraint
matrix E is full-row rank. This condition on E may sound
natural because one can think that redundant rows/constraints
can be deleted before running the algorithm, but for large
scale problems, obtaining a set of independent rows may not
be a feasible operation due to high computational or com-
munication cost. Consider for example solving undetermined
linear systems of equations, which can be brought into the
form of problem (1) by setting f to ∥ · ∥2, in a distributed
architecture where constraint matrix E is too large to fit
in a single memory hence stored in a network of memory
nodes. In that case, finding a set of independent rows would
be cumbersome because of excessive communication cost.
In such scenarios, from the current results, it is not clear
whether we have exponential stability if we start with a rank
deficient constraint matrix E. This motivates the following
question: Are the primal-dual gradient flow dynamics glob-
ally exponentially stable for problem (1) with strongly convex
objective function even if the constraint matrix E is rank
deficient?

Recently, [16] proved existence of a global exponential
convergence rate for primal-dual gradient flow applied to
a class of problems including (1) without having any as-
sumption on the constraint matrix; but this result does not
imply global exponential stability of (2). In [17], an explicit
characterization of linear convergence rates were obtained
for two different primal-dual methods that are derived from
dynamics (2) via two different discretization schemes.

In this paper, we prove the global exponential stability,
in the sense that there exists a decaying exponential upper
bound on the distance to the set of equilibrium points,
of continuous-time dynamics (2) for problem (1) without
having any assumption on constraint matrix E. Our analysis
also explicitly characterize the convergence rate. Besides
exponential stability, as different from [17], our aim is to
draw attention to an interesting phenomenon that we have
not been aware, namely, if the set of equilibrium points is
an affine set, then the trajectories of (2) move perpendicular
to the equilibria. By using this fact, existing exponential
stability analyses can be modified to remove the full row-
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rank assumption on E, and even strong convexity assumption
can be relaxed for quadratic terms in the objective function.
The latter is implied by the equivalence of asymptotic and
exponential stability in linear systems [18, Theorem 4.11].

The rest of the paper is organized as follows. In Section II,
we provide the background material. In Section III, we
examine the aforementioned phenomenon and in Section IV
utilize this phenomenon to prove the global exponential
stability of (2) without having any assumptions on E. Lastly,
we demonstrate validity of our findings through computa-
tional experiments in Section V and conclude the paper in
Section VI with remarks.

Notation: ∥·∥ denotes the Euclidian norm. The range space
and null space of matrix A are denoted by R(A) and N (A),
respectively. Scalars σ(A) and σ(A) represent the largest and
smallest nonzero singular values of A, respectively.

II. BACKGROUND

We assume that q ∈ R(E), otherwise problem (1) is not
feasible. Consequently, the Karush-Kuhn-Tucker conditions

∇f(x⋆) = − ET y⋆, Ex⋆ = q (4)

are necessary and sufficient for (x⋆, y⋆) to be a primal-
dual solution pair to (1) [19]. When f is strongly convex,
problem (1) has a unique solution x⋆ and the set of optimal
dual variables Y⋆ is not a singleton but an affine set,

Y⋆ = {y ∈ Rm | ∇f(x⋆) = −ET y}
= {y ∈ Rm | y = y⋆0 + U2w, w ∈ Rm−r}.

Here, y⋆0 is the unique vector in R(E) that satisfies
∇f(x⋆) = −ET y⋆0 , the columns of U2 form an orthonormal
basis of N (ET ), and E has the singular value decomposition

E =
[
U1 U2

] [ Σ 0
0 0

] [
V T
1

V T
2

]
where Σ = diag(σ1, . . . , σr) and σ1 ≥ · · · ≥ σr > 0.

To compute a solution pair (x⋆, y⋆) for some y⋆ ∈ Y⋆, we
cannot directly solve the system of equations (4) because of
the nonlinear term ∇f . Instead, we use an alternative char-
acterization of the optimal primal-dual pairs: every solution
(x⋆, y⋆) of (4) is a saddle point of the Lagrangian satisfying

L(x⋆; y) ≤ L(x⋆; y⋆) ≤ L(x; y⋆), ∀x, y.

Based on this characterization, a solution to problem (1)
can be computed by simultaneous minimization and max-
imization of the Lagrangian over primal variable x and dual
variable y, respectively. To this end, we deploy primal-dual
gradient flow dynamics (2), which can be considered as a
natural generalization of gradient flow dynamics ẋ = ∇f(x)
to saddle functions,

ẋ = − ∇xL(x; y) = − ∇f(x) − ET y (5a)

ẏ = + ∇yL(x; y) = Ex − q (5b)

where x: [0,∞) → Rn and y: [0,∞) → Rm with arbitrary
initial conditions x(0) and y(0). The equilibrium points of

these primal-descent dual-ascent dynamics, where ẋ = 0
and ẏ = 0, identify the saddle points of the Lagrangian
that are characterized by conditions (4). Thus, we can use
these dynamics to compute a solution to problem (1). In
what follows, we examine the stability properties of these
dynamics.

III. POINTWISE CONVERGENCE AND PERPENDICULAR
MOTION OF PRIMAL-DUAL DYNAMICS

In this section, we show that the trajectories generated
by (5) move perpendicular to the set of equilibria. This
property is utilized in the remainder of the paper to prove
that dynamics (5) are globally exponentially stable even for
rank-deficient constraint matrix E.

Assumption 1: The function f is mf -strongly convex with
an Lf -Lipschitz continuous gradient ∇f .

Theorem 1: Let q ∈ R(E) and Assumption 1 hold. For
any initial condition y(0) ∈ Rm, the dual trajectory y(t) is
perpendicular to Y⋆, i.e., for any t ≥ 0

ẏ(t) ⊥ {y − y⋆ | y ∈ Y⋆} for all y⋆ ∈ Y⋆.

Furthermore, y(t) converges to ȳ⋆ ∈ Y⋆, where

ȳ⋆ = argmin
y⋆ ∈Y⋆

∥y(0) − y⋆∥. (6)

Proof: The global asymptotic stability of (5) can be
shown via LaSalle’s invariance principle by assuming only
strict1 monotonicity of ∇f [2], [10], [20]. Moreover, if ∇f
is Lipschitz continuous, then the gradient of Lagrangian (3)
is also Lipschitz continuous. The global asymptotic stability
together with Lipschitz continuity of the Lagrangian implies
the pointwise convergence of (5), i.e., there exists a ȳ⋆ ∈ Y⋆

such that ȳ⋆ = limt→∞ y(t) [5, Lemma A.3].

We use fundamental theorem of calculus to prove (6)

ȳ⋆ = lim
t→∞

y(t) = y(0) +

∫ ∞

0

ẏ(τ)dτ

= U1U
T
1 y(0) + U2U

T
2 y(0) +

∫ ∞

0

ẏ(τ)dτ

(7)

where the second equality follows from the orthogonal
decomposition of y(0) over R(E) and N (ET ). Now, our
feasibility assumption q ∈ R(E) together with (5b) implies
ẏ(t) ∈ R(E), hence ẏ(t) = U1U

T
1 ẏ(t) for t ≥ 0. Further-

more, since U2U
T
2 y(0) ⊥ R(E), equation (7) together with

ȳ⋆ ∈ Y⋆ implies that the component of ȳ⋆ in N (ET ) is
given by U2U

T
2 y(0) and

y⋆0 = U1U
T
1 y(0) +

∫ ∞

0

ẏ(τ)dτ (8)

thus we can use (8) to express ȳ⋆,

ȳ⋆ = y⋆0 + U2U
T
2 y(0) (9)

1Solely monotonicity would suffice to invoke LaSalle’s invariance princi-
ples if the dynamics were based on the augmented Lagrangian. In that case
however, the dynamics may not be as convenient as (5) for implementation
in distributed environments.
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which is exactly the orthogonal projection of y(0) onto affine
set Y⋆ as given in (6). Finally, the fact that ẏ ∈ R(E)
combined with {y−y⋆ | y ∈ Y⋆} = N (ET ) for any y⋆ ∈ Y⋆

shows that the dual trajectories generated by dynamics (5)
are perpendicular to affine set Y⋆.

We note that the perpendicular motion is not result of
solely linear dynamics. Even for linear dynamics, if the set
of equilibrium points is not affine (e.g., union of affine sets
when the objective function in (1) contains non-differentiable
terms), then we would not have this property because we
would not be able to use the orthogonal decomposition in (7).

IV. GLOBAL EXPONENTIAL STABILITY

In this section, we prove that the primal-dual dynamics are
globally exponentially stable even if the constraint matrix E
is rank-deficient. For problems with twice differentiable f ,
we propose the Lyapunov function candidate

V (x, y) =
1

2
(∥∇L(x; y)∥2 + ∥x − x⋆∥2 + dist2(y, Y⋆))

(10)
where the distance function is defined as

dist(y, Y⋆) := minimize
y⋆ ∈ Y⋆

∥y − y⋆∥.

Norm of gradient is frequently used to characterize conver-
gence rate of first-order optimization algorithms for strongly
convex problems. In particular, the square of the norm of ∇L
was used in [13] as a Lyapunov function to prove exponential
stability of a second order primal-dual method based on
proximal augmented Lagrangian for non-smooth composite
optimization problems. Here, we augment ∥∇L(x; y)∥2 with
a distance term in order to establish negative definiteness
of the time derivative along the solutions of primal-dual
gradient flow dynamics.

Remark 1: The twice differentiability assumption on f
can be relaxed by utilizing different Lyapunov functions;
e.g., the quadratic function proposed in [8] or the nonlinear
function used in [9] instead of (10). Nevertheless, in our
study we use V given in (10) to provide an alternative point
of view and possibly novel insight about the synthesis of
Lyapunov functions for general saddle function problems.

Theorem 2: Let Assumption 1 hold. Then, the primal-dual
gradient flow dynamics (5) are globally exponentially stable
with convergence rate

ρ =
2mf min(m2

f , σ
2(E))

(L2
f + σ2(E) + 1)(1 + 2mfLf ).

Proof: We start our analysis by noting that because of
perpendicular motion of dual trajectories, the time depen-
dence of the distance between y(t) and Y⋆ comes from the
time dependence of solely y(t) but not from the projection
of y(t) onto Y⋆; as shown in Theorem 1, this projection is
fixed. Thus, we have

dist(y, Y⋆) = ∥y − ȳ⋆∥. (11)

To prove the theorem, we show that for all t ≥ 0

V̇ (t) ≤ −ρV (t) (12)

which implies

∥x− x⋆∥2 + dist2(y, Y⋆) ≤ 2V (x(0), y(0)) e−ρt.

To this end, we rewrite the dynamics and Lyapunov function
in terms of errors x̃ := x − x⋆, ỹ := y − ȳ⋆, and ∇̃f :=
∇f(x)−∇f(x⋆). Since ∇L(x⋆; ȳ⋆) = 0, the dynamics can
be written as

ẋ = ∇xL(x; y) − ∇xL(x⋆; ȳ⋆) = − ∇̃f − ET ỹ

ẏ = ∇yL(x; y) − ∇yL(x⋆; ȳ⋆) = Ex̃

Similarly, the Lyapunov function reads

V (x; y) = 1
2 (∥ẋ∥

2 + ∥ẏ∥2 + ∥x̃∥2 + dist2(y, Y⋆))

= 1
2 (∥ẋ∥

2 + ∥ẏ∥2 + ∥x̃∥2 + ∥ỹ∥2)

where the second line is a result of (11).

Using the chain rule, V̇ can be written as

V̇ := d
dtV = ⟨ d

dxV, ẋ⟩ + ⟨ d
dyV, ẏ⟩

= 1
2 ⟨ẋ,

d
dx∥ẋ∥

2⟩ + 1
2 ⟨ẏ,

d
dy∥ẋ∥

2⟩ + 1
2 ⟨ẋ,

d
dx∥ẏ∥

2⟩

+ 1
2 ⟨ẋ,

d
dx∥x̃∥

2⟩ + 1
2 ⟨ẏ,

d
dy∥ỹ∥

2⟩

= − ⟨ẋ, (∇2
xL)ẋ⟩ − ⟨ẏ, (∇xyL)ẋ⟩ + ⟨ẋ, (∇yxL)ẏ⟩

+ ⟨ẋ, x̃⟩ + ⟨ẏ, ỹ⟩

= − ⟨ẋ, ∇2f(x)ẋ⟩ − ⟨ẏ, Eẋ⟩ + ⟨ẋ, ET ẏ⟩

+ ⟨ẋ, x̃⟩ + ⟨ẏ, ỹ⟩

= − ⟨ẋ, ∇2f(x)ẋ⟩ + ⟨ẋ, x̃⟩ + ⟨ẏ, ỹ⟩

= − ⟨ẋ, ∇2f(x)ẋ⟩ − ⟨∇̃f, x̃⟩.

Since f is an mf -strongly convex function with an Lf -
Lipschitz continuous gradient, at any x there exists a sym-
metric and positive definite matrix Hx such that Hxx̃ = ∇̃f
and mfI ⪯ H ⪯ LfI [13, Lemma 6]. Using Hx, time
derivative V̇ can be written as

V̇ = −⟨Hxx̃+ ET ỹ, ∇2f(x)(Hxx̃+ ET ỹ)⟩ − ⟨Hxx̃, x̃⟩

= −
[

x̃
ỹ

]T
P

[
x̃
ỹ

]
where

P =

[
Hx∇2f(x)Hx + Hx Hx∇2f(x)ET

E∇2f(x)Hx E∇2f(x)ET

]
.

To obtain (12), we need to show that the smallest singular
value of P is non-zero, but since E is not full-row rank, P is
not strictly positive-definite. This is the main reason behind
the full-row rank assumption on E in many existing results.
However, we can circumvent this issue without making any
assumptions on E by utilizing the fact that the trajectories
are perpendicular to the equilibrium set. In particular, the
orthogonal decomposition of y together with (9) yields

ỹ = U1U1y(0) − y⋆0 ∈ R(E).
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Let w̃ := UT
1 ỹ. Since ỹ ∈ R(E), U1w̃ = ỹ. Substitution of

w̃ into V̇ results in

V̇ = −
[

x̃
w̃

]T
P̃

[
x̃
w̃

]
(13)

where

P̃ =

[
Hx∇2f(x)Hx + Hx Hx∇2f(x)V1Σ

ΣV T
1 ∇2f(x)Hx ΣV T

1 ∇2f(x)V1Σ

]
.

We can derive a lower bound on the singular values of P̃ as
follows

P̃ =

[
Hx

ΣV T
1

]
∇2f(x)

[
Hx V1Σ

]
+

[
Hx 0
0 0

]
⪰ mf

[
Hx

ΣV T
1

] [
Hx V1Σ

]
+

[
Hx 0
0 0

]
= mf

[
Hx 0
0 Σ

][
I V1

V T
1 I

][
Hx 0
0 Σ

]
+

[
Hx 0
0 0

]
= mf

[
Hx 0
0 Σ

][
I + (1/mf )H

−1
x V1

V T
1 I

][
Hx 0
0 Σ

]
.

where the inequality is obtained by using the implication of
strong convexity on the Hessian, i.e., ∥∇2f(x)∥ ⪰ mfI .
Since Hx ⪯ LfI , we have[

I + (1/mf )H
−1
x V1

V T
1 I

]
⪰

[
(1 + (mfLf )

−1)I V1

V T
1 I

]
⪰ α

2 + α
I

where the second inequality is obtained by using Lemma 1
provided in Appendix with α := (Lfmf )

−1. Finally, Theo-
rem 7.7.2 in [21] yields

P̃ ⪰ mf
α

2 + α

[
Hx 0
0 Σ

]2
⪰ mf

α

2 + α
min

(
m2

f , σ
2(E)

)
I

= c1I

where c1 := mf min(m2
f , σ

2(E))/(1 + 2mfLf ).

Substitution of the lower bound on the singular values of
P̃ into (13) yields

V̇ ≤ − c1 (∥x̃∥2 + ∥w̃∥2) = − c1 (∥x̃∥2 + ∥ỹ∥2) (14)

where the equality follows from U1w̃ = ỹ.

Lastly, by using (11) and the Lipschitz continuity of ∇L,
which is proved in Lemma 2 provided in Appendix, we show
that the Lyapunov function itself has the following quadratic
upper bound

V (x; y) ≤ c2 (∥x − x⋆∥2 + ∥y − ȳ⋆∥2) (15)

where c2 = (L2
f + σ2(E) + 1)/2. Combining (14) with (15)

yields (12) with ρ = c1/c2, which completes the proof.

V. AN EXAMPLE

To demonstrate the global exponential stability of (5)
for a rank-deficient E and the perpendicular motion of the
trajectories toward the equilibria, we examine the problem
of finding the weighted least-norm solution to an under-
determined linear system of equations. We set f(x) in (1)
to 1

2∥Wx∥2 where the weight matrix W ∈ R10×10 is
drawn from the multivariate standard normal distribution. As
for the constraint, we set U1 to the first two columns of
identity matrix of size 3× 3, Σ = diag(1, 2), and construct
V1 ∈ R10×2 by drawing an orthonormal set of two vectors
from the multivariate standard normal distribution. Then, we
set E = U1ΣV

T
1 which is in R3×10. In this way, Y⋆ is a

line parallel to one of the coordinate axis in 3D plot. Finally,
vector q is a random vector in R(U1).

Figure 1 shows that even if constraint matrix E is not
full row rank, the distance between the trajectory of dynam-
ics (5) and the set of equilibrium points has an exponentially
decaying upper bound. Moreover, Figure 2 shows that the
trajectory moves perpendicular to the set of equilibrium
points and converges to the projection of y(0) onto affine
set Y⋆, which verifies the analysis provided in Section III.

lo
g
1
0
d
is
t(
(x
,y
),
(x

⋆
,Y

⋆
))

0 20 40 60 80 100

-8

-6

-4

-2

0

2

t

Fig. 1. Exponential convergence of the primal dual dynamics.

VI. CONCLUDING REMARKS

We study stability properties of primal-dual gradient flow
dynamics for differentiable convex problems with linear
equality constraints. We show that if the set of equilibrium
points is affine, then the trajectories exhibit a perpendicular
motion toward the equilibria. For strongly convex objective
functions, this structural property is utilized to prove global
exponential stability of the primal-dual gradient flow dy-
namics without requiring full-row rank assumption on the
constraint matrix. The same approach can also be used to
relax the strong convexity assumption on the quadratic terms
in the objective functions.

APPENDIX

Lemma 1: Let Q ∈ Rn×r be such that QTQ = Ir. Then
for any α > 0, the smallest singular value of

Ψ :=

[
(1 + α)In Q

QT Ir

]
satisfies σ(Ψ) ≥ α/(α+ 2).
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y 3

y1 y2

y 2

y1

y 3

y1

Fig. 2. The trajectory of the dual variables. The blue line is the trajectory of y(t) for t ≥ 0, the blue dot is initial point y(0), the red dot is limit point
ȳ⋆, the red line is affine set Y⋆, the black dot is the origin and the dashed black lines are the canonical coordinates. As seen on y1y2 and y1y3 plots, the
dual trajectory always stays in the hyperplane perpendicular to Y⋆.

Proof: The smallest singular value of Ψ, which is
nonzero since Ψ is invertable, can be defined as

σ(Ψ) := min
∥z1∥2 + ∥z2∥2 = 1

[
z1
z2

]T
Ψ

[
z1
z2

]
= min

∥z1∥2 + ∥z2∥2 = 1
∥z1 + Qz2∥2 + α∥z1∥2.

By using the following basic inequality [22, Equation 3.7]

∥u + v∥2 ≥ 1

β + 1
∥u∥2 − 1

β
∥v∥2, ∀β > 0 (16)

we obtain

∥z1 + Qz2∥2 + α∥z1∥2 ≥ 1
β+1∥z2∥

2 + (α− 1/β)∥z1∥2

≥ α
α+2 (∥z2∥

2 + ∥z1∥2)

where the second line is obtained by setting β = 2/α.
Substitution of this inequality into the definition of σ(Ψ)
gives the desired result.

Lemma 2: The gradient of Lagrangian (3) is Lipschitz
continuous with modulus (L2

f + σ2(E)).

Proof: For any pairs (x, y) and (x′, y′), the gradient of
L satisfies

∥∇L(x; y) − ∇L(x′; y′)∥2

= ∥∇f(x)−∇f(x′) + ET (y − y′)∥2 + ∥E(x− x′)∥2

≤ ∥∇f(x)−∇f(x′)∥2 + ∥ET (y − y′)∥2 + ∥E(x− x′)∥2

≤ L2
f∥x− x′∥2 + σ2(E)∥y − y′∥2 + σ2(E)∥x− x′∥2

≤ (L2
f + σ2(E))(∥(x, y) − (x′, y′)∥2.

The first inequality is obtained by using triangle inequality
and the second inequality follows from the assumption that
∇f is Lf -Lipschitz continuous.
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