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Abstract— We study the exponential stability of continuous-
time primal-dual gradient flow dynamics for convex optimiza-
tion problems with linear equality constraints. Without making
any assumptions on the rank of the constraint matrix, we
obtain a tight lower bound on the worst-case convergence rate
for smooth strongly convex objective functions. Our analysis
identifies two different convergence regimes depending on the
ratio between primal and dual time scales. When the primal
time scale is inversely proportional to the Lipschitz parameter
of the objective function and the dual time scale is large enough,
the convergence rate is inversely proportional to the condition
number of the problem. In contrast to the existing results, our
lower bound on the convergence rate does not depend on the
condition number of the constraint matrix.

Index Terms— Convex optimization, exponential stability,
gradient flow dynamics, primal-dual methods.

I. INTRODUCTION

We study the constrained convex problems of the form

minimize
x

f(x)

subject to Ex − q = 0
(1)

where x ∈ Rn is the optimization variable, f : Rn → R is
the objective function, E ∈ Rd×n is the constraint matrix,
and q ∈ Rd is a given vector. The Lagrangian associated
with problem (1) is given by

L(x; y) = f(x) + yT (Ex − q) (2)

where y ∈ Rd is the vector of dual variables associated with
the linear equality constraint in (1). We are interested in char-
acterizing a tight lower bound on the worst-case convergence
rate of Primal-Dual (PD) gradient flow dynamics

ẋ = − α1∇xL(x; y)
ẏ = + α2∇yL(x; y)

(3)

where α1, α2 > 0 are primal and dual time scale parameters.

Stability and convergence properties of PD gradient flow
dynamics resulting from possibly different saddle functions
have been studied since the seminal paper [1]. Early re-
sults [2], [3] provided conditions for the global asymptotic
stability of the projected PD dynamics based on the standard
Lagrangian for convex problems with inequality constraint.
In [4]–[7], asymptotic stability of the projected PD dynamics
was established for general saddle functions under differ-
ent assumptions. More recently, the focus shifted toward
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establishing conditions for the exponential stability of PD
dynamics. In [8]–[14], global exponential stability of the
PD dynamics resulting from various types of Lagrangian
functions was proved for possibly non-differentiable strongly
convex optimization problems.

Analyses of gradient flow dynamics have proved useful in
studying the behavior of iterative optimization algorithms.
For example, the continuous-time dynamical system view-
point has recently provided insights into the acceleration
phenomenon of the gradient methods for unconstrained opti-
mization problems [15]–[17]. Similarly, study of PD gradient
flow dynamics represents an important initial step toward
understanding the behavior of PD gradient methods. These
primal-descent dual-ascent algorithms are the workhorse
for solving large-scale min-max problems that arise, for
example, in training of generative adversarial networks [18].
However, in contrast to first-order methods for unconstrained
minimization, the theory of PD gradient methods is still
in its early stages. While lower complexity bounds have
been established for gradient methods used in unconstrained
minimization almost a half-century ago [19], equivalent
results are still scarce for their PD equivalents. Such results
are absent even when saddle functions have convex-linear
forms that arise in convex problems with equality constraints.

In [8], by assuming that E is a full-row rank matrix
and f is a strongly convex smooth function, it was shown
that dynamics (3) are exponentially stable with conservative
convergence rate estimate. In [14], we showed that the
rank assumption on E is not necessary for the exponential
stability and a conservative rate estimate was provided. The
main motivation in these papers, including [9]–[11], was to
prove the exponential stability of the dynamics rather than
obtaining tight convergence rates, whose knowledge is es-
sential for designing accelerated algorithms. Recently [20]–
[23] proposed accelerated versions of (3) and established
improved sub-linear convergence rate of O(1/t2) in the
absence of strong convexity. However, similar improvements
have yet to be seen for strongly convex functions for which
we do not have tight bounds on the linear convergence rate.

In this paper, we obtain a tight lower bound on the
linear convergence rate for (3) under the assumption that
f is a strongly convex function with a Lipschitz continuous
gradient. Our analysis shows how the time scale parameters
impact the convergence rate without making any assumptions
on the rank of the constraint matrix E. These parameters
have been used as an effective heuristics for avoiding limit
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cycles and divergence of primal-dual algorithms [7], [24].
Theoretical understanding of their role for the case study that
we examine serves as a motivation for a careful analysis of
more intricate convex-concave problems.

The rest of the paper is organized as follows. In Section II,
we introduce problem setup and provide background mate-
rial. We present our main result in Section III and relegate
the proofs to Section IV. We demonstrate the validity of our
findings through computational experiments in Section V and
conclude the paper in Section VI with remarks.

Notation: The range space and the null space of matrix
A are denoted by R(A) and N (A), respectively.

II. BACKGROUND

If q belongs to the range space of E, q ∈ R(E), prob-
lem (1) is feasible and the Karush-Kuhn-Tucker conditions

∇f(x⋆) = − ET y⋆, Ex⋆ = q (4)

are necessary and sufficient for (x⋆, y⋆) to be a primal-
dual solution pair to (1) [25]. When f is strongly convex,
problem (1) has a unique solution x⋆ and the optimal dual
variable y⋆ belongs to an affine set,

Y⋆ = {y⋆ ∈ Rd | ∇f(x⋆) = −ET y⋆}
= {y⋆ ∈ Rd | y⋆ = y⋆0 + U2w, w ∈ Rd−r}.

Here, r is the rank of E, y⋆0 ∈ R(E) is the unique vector
satisfying ∇f(x⋆) = −ET y⋆0 , the columns of U2 form an
orthonormal basis for N (ET ), and E has the singular value
decomposition

E =
[
U1 U2

] [ Σ 0
0 0

] [
V T
1

V T
2

]
where Σ = diag (σ1, . . . , σr) with σ1 ≥ · · · ≥ σr > 0. In
what follows, we use σ and σ to denote the largest and the
smallest nonzero singular values σ1 and σr of E.

To compute a solution pair (x⋆, y⋆) for some y⋆ ∈ Y⋆, we
cannot directly solve the system of equations (4) because
of the nonlinear term ∇f . Instead, we use an alternative
characterization of optimal primal-dual pairs: every solution
(x⋆, y⋆) of (4) is a saddle point of the Lagrangian satisfying

L(x⋆; y) ≤ L(x⋆; y⋆) ≤ L(x; y⋆), ∀x, y.

Based on this characterization, a solution to problem (1)
can be computed by simultaneous minimization and max-
imization of the Lagrangian over primal variable x and dual
variable y, respectively. To this end, we deploy primal-dual
gradient flow dynamics (3) which simplify to

ẋ = − α1∇xL(x; y) = − α1(∇f(x) + ET y) (5a)

ẏ = + α2∇yL(x; y) = + α2(Ex − q) (5b)

The equilibrium points of these primal-descent dual-ascent
gradient flow dynamics are obtained by setting ẋ = 0 and
ẏ = 0 and they correspond to the saddle points of the
Lagrangian characterized by conditions (4). Thus, we can
use these dynamics to compute a solution to problem (1).

III. MAIN RESULTS

Our main result characterizes a tight lower bound on the
worst-case convergence rate of PD gradient flow dynam-
ics (5) under the following assumption.

Assumption 1: Problem (1) is feasible, i.e., q ∈ R(E),
and the objective function f is m-strongly convex with an
L-Lipschitz continuous gradient.

Theorem 2 in [14] shows that any solution to (5) converges
exponentially to a limit point with rate ρ, i.e.,

∥(x(t), y(t)) − (x⋆, y⋆)∥2
≤ c e−ρt ∥(x(0), y(0)) − (x⋆, y⋆)∥2, ∀t ≥ 0

where c is a positive constant and

y⋆ = y⋆0 + U2U
T
2 y(0).

Theorem 1: Let Assumption 1 hold. The primal-dual gra-
dient flow dynamics (5) are globally exponentially stable
with the convergence rate ρ ≥ ρ where ρ satisfies,

α1m

4
≤ ρ ≤ α1m

2
,

α2

α1
≥ mL

4σ2
(6a)

ρ =
α1L

2

1 −

√
1− 4σ2

L2

α2

α1

 ,
α2

α1
≤ mL

4σ2
. (6b)

Furthermore, in both cases, the upper bounds on ρ cannot be
improved for any ratio α2/α1.

Proof of Theorem 1 is given in Section IV. As discussed
in [26], for a continuous-time optimization algorithm any
convergence rate can be achieved by increasing algorithmic
parameters (in our case, α1 and α2). This ambiguity can be
avoided by fixing α1.

If in addition to Assumption 1 the matrix E is full row
rank and f is twice continuously differentiable, reference [8]
showed that ρ = 0.25min (α2σ

2/L,mσ2/σ2) for α1 =
1. This lower bound suggests that, when α1 is fixed, the
convergence rate of (5) is inversely proportional to the square
of the condition number σ2/σ2 of the constraint matrix E.
In contrast, our result shows that the lower bound on ρ does
not depend on the condition number of E. Theorem 1 also
identifies two convergence regimes for dynamics (5); these
respectively occur for large and small values of α2/α1. If
α2/α1 is smaller than γ := mL/(4σ2), the lower bound
ρ determined by (6b) is bounded from below by α2σ

2/L.
Thus, the convergence rate does not depend on α1 in this
regime. On the other hand, when α2/α1 ≥ γ the lower
bound given by (6a) demonstrates that the convergence rate
is independent of α2, i.e., ρ ∼ O(α1m). Similar observation
was made using computational experiments in Figure 1 of [8]
but theoretical explanation was not provided.

IV. PROOF OF MAIN THEOREM

The coordinate transformations

x̃1 := V T
1 (x − x⋆)

x̃2 := V T
2 (x − x⋆)

ỹ1 := UT
1 (y − y⋆0)

ỹ2 := UT
2 (y − y(0))

(7)
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brings dynamics (5) to[
˙̃x1
˙̃y1

]
=

[
− α1mI − α1Σ
α2Σ 0

] [
x̃1
ỹ1

]
−

[
α1I
0

]
ũ1

˙̃x2 = − α1mx̃2 − α1ũ2
(8)

where ˙̃y2 = 0 and[
ũ1
ũ2

]
:=

[
V T
1

V T
2

]
(∇f(x) − mx − (∇f(x⋆) − mx⋆)).

Since trajectories of (5) are perpendicular to N (ET ), for any
t ≥ 0 we have ỹ2(t) = UT

2 y(0), and only dynamics (8) have
to be analyzed; see [14] for additional details.

System (8) can be viewed as a linear dynamical system in
feedback with a nonlinear block ∆,

ψ̇ = Aψ + Bũ, x̃ = Cψ, ũ = ∆(x̃) (9)

where x̃ = [x̃T1 x̃
T
2 ]

T , ũ = [ũT1 ũ
T
2 ]

T , ψ = [x̃T1 ỹ
T
1 x̃

T
2 ]

T , and

A =

 −α1mI −α1Σ 0
α2Σ 0 0
0 0 −α1mI

 , B =

−α1I 0
0 0
0 −α1I


C =

[
I 0 0
0 0 I

]
.

Since affine transformation with a unitary matrix does not
change parameters of strong convexity and Lipschitz conti-
nuity, f(V x̃ + x⋆) is an m−strongly convex function with
an L-Lipschitz continuous gradient. This implies Lipschitz
continuity with modulus L̃ := L−m and monotonicity [10]
of the nonlinear term ∆ which is defined as

∆(x̃) := V T (∇f(x) − mx − (∇f(x⋆) − mx⋆))

= V T (∇f(V x̃+ x⋆) − mV x̃ − ∇f(x⋆)).
(10)

This equation along with the aforementioned properties of
∆ can be used to characterize it in terms of the following
sector bound condition,[

x̃ − x
ũ − u

]T
Π

[
x̃ − x
ũ − u

]
≥ 0 (11a)

where (x, u) is any reference point satisfying u = ∆(x) and
Π is given by [27],

Π =

[
0 L̃I

L̃I −2I

]
(11b)

The existence of a quadratic Lyapunov function V (ψ) =
ψTPψ whose derivative along the solutions of (9) satisfies
V̇ ≤ −2ρV provides a sufficient condition for the ρ-
exponential stability of (9). This condition is equivalent to
the existence of matrix P ≻ 0 that satisfies [28, Theorem 3],[
AT

ρ P + PAρ PB
BTP 0

]
+

[
CT 0
0 I

]
Π

[
C 0
0 I

]
⪯ 0.

(12)
where Aρ := A+ ρI .

Since (A,B) is a controllable pair, if matrix Aρ is Hur-
witz, then an equivalent characterization of condition (12) in

the frequency domain is obtained using KYP Lemma [29,
Theorem 1],[

G∗
ρ(jω) I

]
Π

[
Gρ(jω)

I

]
⪯ 0 ∀ω ∈ R (13)

where Gρ(jω) := C(jωI − Aρ)
−1B and G∗

ρ(jω) is the
complex conjugate transpose of Gρ(jω). For the matrix Π
in (11), condition (13) simplifies to

Re[Gρ(jω)] ⪯ (1/L̃)I, ∀ω ∈ R. (14)

The transfer function of system (9) is given by

Gρ(s) =

[
G1(s− ρ) 0

0 G2(s− ρ)

]
where G1 and G2 are diagonal matrices that determine
transfer functions from ũk to x̃k, for k = 1, 2. The nonzero
entries of these diagonal matrices are given by

[G1(s)]ii =
−α1s

s2 + α1ms+ α1α2σ2
i

i = 1, . . . ,m

[G2(s)]ii = −α1/(s+ α1m) i = 1, . . . , n−m.

The rest of the proof is organized as follows. We first
determine the conditions for the matrix Aρ to be Hurwitz;
since system (9) is controllable and observable, we can
equivalently study stability of the transfer function Gρ(s).
The (x̃1, ỹ1)- and x̃2-dynamics are decoupled and we exam-
ine their stability properties in Section IV-A and Section IV-
B, respectively. Then, in Section IV-C and Section IV-D, we
identify conditions that algorithmic parameters α1 and α2

as well as the convergence rate ρ have to satisfy in order
for the KYP lemma to hold. In Section IV-D, we obtain
the lower bound identified in (6) on the convergence rate.
Finally, in Section IV-E, we demonstrate the tightness of the
bounds given in (6) by providing an example where the best
convergence rates match those established in Theorem 1.

A. Stability of the x̃2-dynamics

Transfer function G2(s − ρ) is stable if and only if all
its poles have negative real parts. Since the denominator of
G2(s−ρ) is given by Φ2(s) := s−ρ+α1m, the convergence
rate ρ must satisfy ρ < α1m.

B. Stability of the x̃1-dynamics

Transfer function G1(s−ρ) is stable if and only if the roots
of its denominator Φ1(s) = (s−ρ)2+α1m(s−ρ)+α1α2σ

2
i

have negative real parts for all i = 1, . . . ,m. The coefficients
of Φ1 are polynomials in ρ, i.e.,

Φ1(s) = s2 + a1(ρ)s + a0(ρ)

where
a0(ρ) = ρ2 − α1mρ + α1α2σ

2
i

a1(ρ) = α1m − 2ρ.

The Routh-Hurwitz stability criterion

a0(ρ) > 0, a1(ρ) > 0 (15)
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is a necessary and sufficient condition for the stability of Φ1.
Due to the positivity of a0, the convergence rate must satisfy

ρ < α1m/2. (16)

We skip positivity of a1(ρ) for now since it is guaranteed
later by a stronger condition in Section IV-D.

C. KYP lemma for the x̃2-dynamics

Condition (14) implies that G2 has to satisfy

Re[G2(jω − ρ)] = Re

[
−α1

jω + α1m − ρ

]
≤ 1/L̃

for all ω ∈ R, which is true under stability condition (16)
since G2(jω − ρ) is a first-order transfer function with
negative real part for any ω ∈ R.

D. KYP Lemma for the x̃1-dynamics

Condition (14) implies that G1 has to satisfy

Re[G1(jω − ρ)]

= Re

[
−α1(jω − ρ)

a1(ρ) − ω2 + jωa0(ρ)

]
=

α1ρ(a1(ρ) − ω2) − α1ω
2a0(ρ)

(a1(ρ) − ω2)2 + a0(ρ)2ω2
≤ 1/L̃

⇐⇒ Γ(ω) := ω4 + b2(ρ)ω
2 + b0(ρ) ≥ 0

for all ω ∈ R where

b0(ρ) = a1(ρ)(a1(ρ) − α1L̃ρ)

b2(ρ) = a20(ρ) − 2a1(ρ) + α1L̃(ρ + a0(ρ)).

A necessary and sufficient condition for Γ(ω) ≥ 0,∀ω is

ω2 + b2(ρ)ω + b0(ρ) ≥ 0, ∀ω ≥ 0

which is equivalent to showing that

b0(ρ) ≥ 0, b2(ρ) + 2
√
b0(ρ) ≥ 0. (17)

It is worth noting that verifying only sufficient conditions for
nonnegativity of Γ, i.e.,

b0(ρ) ≥ 0, b2(ρ) ≥ 0

results in highly conservative bounds on ρ.

First inequality in (17). Fourth order polynomial b0(ρ) can
be decomposed into the multiplication of two second order
polynomials

b0(ρ) = (ρ2 − α1mρ + α1α2σ
2
i )(ρ

2 − α1Lρ + α1α2σ
2
i )

= a1(ρ)a2(ρ)

where a2(ρ) = ρ2 − α1Lρ + α1α2σ
2
i .

Due to stability condition (15), a1(ρ) is positive, which
implies that for nonnegativity of b0(ρ), a2(ρ) must be
nonnegative since a1(ρ) ≥ a2(ρ) for any ρ. Hence, it suffices
to check whether

ρ2 − α1Lρ + α1α2σ
2 ≥ 0 (18)

which is true in either of the following cases:

(i) α2/α1 ≥ L2/(4σ2), i.e., the discriminant is non-
positive. In this case, there is no restriction on the
convergence rate except stability condition (16).

(ii) α2/α1 ≤ L2/(4σ2), i.e., the discriminant is non-
negative. Considering also (16), the convergence rate
has to satisfy

ρ ≤ min

α1m

2
,
α1L

2

1 −

√
1 − 4σ2

L2

α2

α1

 .

In this case, the upper bound on the convergence rate is
determined by the second argument in the min operator
if and only if α2/α1 ≤ (2mL−m2)/(4σ2). Moreover,
since 1−

√
1− 2/z ≥ 1/z for any z ≥ 2, if α2/α1 ≥

mL/(4σ2), we have

α1L

2

1 −

√
1 − 4σ2

L2

α2

α1

 ≥ α1m

4
. (19)

Second inequality in (17). The left hand side of second
inequality can be expressed in terms of a1(ρ) and a2(ρ) as

b̃(ρ) := b2(ρ) + 2
√
b0(ρ)

= 2ρ2 − α1(m + L)ρ− 2α1α2σ
2
i + α2

1Lm

+ 2
√
a1(ρ)a2(ρ)

= a1(ρ) + a2(ρ) + 2
√
a1(ρ)a2(ρ) + α2

1Lm

− 4α1α2σ
2
i

=
(√

a1(ρ) +
√
a2(ρ)

)2

+ α2
1Lm − 4α1α2σ

2
i

(20)
Since b̃(ρ) is decreasing in α2 and σi, it suffices to check
whether b̃(ρ) ≥ 0 for the mth-mode, i.e., σi = σ. Unfortu-
nately we do not have analytical expressions for the roots
of b̃(ρ) since it is signomial, i.e., its powers are not natural
numbers. Nonetheless, in what follows, we show that
(a) b̃(α1m/2) < 0 for finite values of α2/α1 ratio, but

the smallest root of b̃(ρ) converges to α1m/2 as ratio
α2/α1 → ∞.

(b) b̃(α1m/4) > 0 if α2/α1 ≥ (4mL−m2)/(16σ2).
Combining results (a) and (b) with (19) yields (6a). More-
over, if α2/α1 ≤ mL/4σ2, then b̃(ρ) ≥ a2(ρ), which implies
that (18) is the only limiting factor on the convergence rate,
thus (6b) is obtained. These two results complete the first
part of the proof.

To obtain results (a) and (b) above, let

v := α2σ
2/(α1L

2), w := m/(kL)

for some k ≥ 2. Then, b̃(ρ) at ρ = α1m/k becomes

b̃(α1m/k)/(α
2
1L

2)

= (
√
w2 − w + v +

√
v − (k − 1)w2)2 − 4v + kw

= (2 − k)w2 + (k − 1)w − 2v

+ 2
√

(w2 − w + v)(v − (k − 1)w2)
(21)
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Setting k = 2 in (21) yields

b̃(α1m/2)

2α2
1L

2
= w/2 − v +

√
(w2 − w + v)(v − w2)

=
√

(v − w/2)2 + w3 − w4 − w2/4 − (v − w/2)

which converges to zero as v → ∞ since

lim
z→∞

√
z2 − a − z = 0

for any a <∞. For finite values of v on the other hand,

a2(α1m/2) ≥ 0 ⇐⇒ α2/α1 ≥ (2mL−m2)/(4σ2)

which implies that the square-root term in (21) is positive
and b̃(α1m/2) ≥ 0 if and only if

− wv + v2 + w3 − w4 ≥ v2 − wv + w2/4

⇐⇒ w2(1/2 − w)2 ≤ 0 ⇐⇒ w = 1/2 ⇐⇒ m = L.

Thus, except for the least-norm problems with linear equality
constraints, the convergence rate of (5) is strictly less than
α1m/2 for finite values of α2 and it converges to α1m/2 as
α2 → ∞. This proves result (a).

For result (b), we have

a2(α1m/4) ≥ 0 ⇐⇒ α2/α1 ≥ (4mL−m2)/(16σ2).

Also, setting k = 4 in (21) yields

b̃(α1m/4)

2α2
1L

2
= −w2 +

3

2
w− v+

√
(w2 − w + v)(v − 3w2)

where the square-root term is positive if α2/α1 ≥ (4mL −
m2) ≥ (16σ2) and the other term is negative if and only if
v ≥ (6mL − m2)/(16L2). Therefore, for the positivity of
b̃(α1m/4), it suffices to check if

(w2 − w + v)(v − 3w2) ≥ (w2 − 3

2
w + v)2

⇐⇒ v ≥ w(4w − 3)2/(8(1 − 2w))

for v ≥ (6mL −m2)/(16L2). This condition is equivalent
to verifying

(6mL−m2)/(16L2) ≥ w(4w − 3)2/(8(1 − 2w))

⇐⇒ 12 − 2/κ ≥ (1/κ − 3)2/(1 − 1/(2κ))

which holds for any κ = L/m ≥ 1. Thus, (b) is proved.

E. Tightness of the upper bound in (6)
To prove the second part of the theorem, we consider the

least norm problem with linear equality constraints, i.e., we
set f(x) = m

2 ∥x∥
2 in problem (1). After the coordinate

transformation (7) is applied, dynamics (5) read[
˙̃x1
˙̃y1

]
=

[
− α1mI − α1Σ
α2Σ 0

] [
x̃1
ỹ1

]
˙̃x2 = − α1mx̃2.

(22)

The convergence rate of linear system (22) is determined
by the eigenvalues of the state matrix. For x̃1-dynamics and
i = 1, . . . ,m, the eigenvalues are

λi = − α1m

2

(
1 ±

√
1 − (4α2σ2

i )/(α1m2)

)

thus, the convergence rate of (22) is given by

ρ =
α1m

2
min
i

Re

[
1 −

√
1 − (4α2σ2

i )/(α1m2)

]
which implies that the best lower bound on the worst-
case convergence rate of (22) is ρ = α1m/2 if α2/α1 ≥
m2/(4σ2); ρ = α1m(1 −

√
1− (4σ2/m2)(α2/α1))/2 oth-

erwise. Since m = L in this problem, bounds in (6) are
recovered.

V. COMPUTATIONAL EXPERIMENTS

We demonstrate the validity of our analysis on prob-
lems where f has quadratic form f(x) = 0.5xTWx. In
this case (5) becomes a linear dynamical system whose
worst-case convergence rate can be exactly determined by
computing the eigenvalues of the state matrix. We use two
different weight matrices W1 and W2. To obtain these weight
matrices, we first compute QTQ, where the entries of Q are
sampled from standard normal distribution. Then, we alter
the singular values in two different ways: for W1, the singular
values are uniformly sampled from interval [m, L] in the
logarithmic scale; for W2, the largest singular value is set to
L, and the rest is set to m. Then, two different constraint
matrices E1, E2 ∈ Rd×n are generated in the same way as
Q. Singular values of E1 and E2 are scaled in the same way
as W1. For both E1 and E2, the smallest non-zero singular
value is set to σ = 0.1, whereas the largest singular values
are set to 1 and 104, respectively.

In Figure 1, we plot the worst-case convergence rate
of (5) and the lower bounds given in (6) for three different
problems with parameters (d, n, r,m,L) = (10, 20, 5, 1, 10).
For (W2, E1) pair, the problem is very similar to finding
the least-norm solution, hence as explained in Section IV-
E, the convergence rate is saturated when α2/α1 exceeds
m2/(4σ2), then it is lower bounded by α1m/2. This example
illustrates the tightness of the lower bound. The other two
pairs (W1, E1) and (W1, E2) demonstrate that the condition
number of the constraint matrices, 10 and 105 respectively,
does not have much impact on the worst-case convergence
rate of (5).

In Figure 2, we plot the numerical convergence of (5) on
(W1, E1) pair for different values of α1 and α2. The ratio
α2/α1 in the first six cases is smaller than the threshold
γ = mL/(4σ2); hence, the convergence rate is substantially
smaller than α1m/2 as anticipated in Theorem 1. Moreover,
in that region, ρ is well approximated by α2σ

2/L suggesting
that the convergence is insensitive to α1, which can be ob-
served in the figure as well. The ratio of α2/α1 is larger than
γ in the remaining three cases where the convergence rate is
lower bounded by α1m/2. In that region, the convergence
rate is proportional to α1 but independent of α2. As seen in
the figure, even if α2 is multiplied by hundred, the change
in the rate is insignificant.

VI. CONCLUSION

We studied the convergence of primal-dual gradient flow
dynamics applied to the equality constrained convex prob-
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case convergence rate of (5) when the specified (weight matrix, constraint
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lems with smooth strongly convex objective functions. With-
out making any assumptions on the constraint matrix, we
obtained a tight lower bound on the linear convergence
rate. Our analysis also reveals the effect of primal and dual
time scales on convergence. Our ongoing effort aims to
design accelerated dynamics for strongly convex problems
with constraints using constant parameters. Also, it would be
interesting to study the discrepancy between the convergence
of continuous and discrete time dynamics.
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