2017 American Control Conference
Sheraton Seattle Hotel
May 24-26, 2017, Seattle, USA

Low-complexity stochastic modeling of spatially-evolving flows

Wei Ran, Armin Zare, M. J. Philipp Hack, and Mihailo R. Jovanovi¢

Abstract— Low-complexity approximations of the Navier-
Stokes (NS) equations are commonly used for analysis and
control of turbulent flows. In particular, stochastically-forced
linearized models have been successfully employed to capture
structural and statistical features observed in experiments and
high-fidelity simulations. In this work, we utilize stochastically-
forced linearized NS equations and the parabolized stability
equations to study the dynamics of flow fluctuations in tran-
sitional boundary layers. The parabolized model can be used
to efficiently propagate statistics of stochastic disturbances into
statistics of velocity fluctuations. Our study provides insight into
the interaction of the slowly-varying base flow with streamwise
streaks and Tollmien-Schlichting waves. It also offers a sys-
tematic, computationally efficient framework for quantifying
the influence of stochastic excitation sources (e.g., free-stream
turbulence and surface roughness) on velocity fluctuations in
weakly non-parallel flows.

Index Terms— Boundary layers, distributed systems, energy
amplification, parabolized stability equations, stochastically
forced Navier-Stokes equations.

I. INTRODUCTION

The analysis, optimization, and control of dynamical mod-
els that are based on the Navier-Stokes (NS) equations is
often hindered by their complexity and large number of de-
grees of freedom. While the existence of coherent structures
in wall-bounded shear flows [1] has inspired the development
of reduced-order models using data-driven techniques, the
important features of such models can be crucially altered
by control actuation and sensing. This gives rise to nontrivial
challenges for model-based control design [2].

In contrast, linearization of the NS equations around
mean-velocity is well-suited for analysis and synthesis using
tools of modern robust control. Linearized models subject
to stochastic excitation have been employed to replicate
structural and statistical features of transitional [3]-[5] and
turbulent [6]-[8] wall-bounded shear flows. In these models
the nonlinear terms in the NS equations are replaced by
stochastic forcing. Most studies have focused on parallel flow
configurations in which translational invariance allows for the
decoupling of the dynamical equations across streamwise and
spanwise wavenumbers. This offers significant computational
advantages for analysis, optimization, and control.

Financial support from the National Science Foundation under Award
CMMI 1363266 and the Air Force Office of Scientific Research under Award
FA9550-16-1-0009 is gratefully acknowledged.

Wei Ran, Armin Zare, and Mihailo R. Jovanovi¢ are with the Department
of Electrical Engineering, University of Southern California, Los Angeles,
CA 90089. M. J. Philipp Hack is with the Center for Turbulence Re-
search, Stanford University, Stanford, CA 94305. E-mails: wran@usc.edu,
armin.zare @usc.edu, philipp.hack@stanford.edu, mihailo@usc.edu.

978-1-5090-5994-2/$31.00 ©2017 AACC

In the flat-plate boundary layer streamwise and normal
inhomogeneity leads to the temporal eigenvalue problem for
PDEs with two spatial variables. This problem is compu-
tationally more difficult to solve than for parallel flows.
Previously, tools from sparse linear algebra and iterative
schemes have been employed to analyze the spectra of the
governing equations and provide insight into the dynamics
of transitional flows [9]-[11]. Efforts have also been made
to conduct non-modal analysis of spatially-evolving flows
including transient growth [10], [12] and resolvent [13]
analyses. In spite of these successes many challenges remain.

The Parabolized Stability Equations (PSE) result from
the removal of elliptic components from the NS equations.
The PSE respect inhomogeneity in the streamwise direction
but do not propagate information upstream. This makes
them computationally more efficient than conventional flow
simulations based on the NS equations [14]. In particular,
the resulting set of equations are convenient for marching in
the downstream direction [15]-[17]. They are thus routinely
used to compute the spatial evolution of instability modes in
a wide range of engineering problems [17].

Despite their popularity, parabolized equations have been
utilized in a rather narrow context. We revisit the modeling
of spatially-evolving boundary layer flow by examining
the utility of such models in assessing the receptivity and
quantifying the sensitivity to different types of flow distur-
bances. Our simulation-free approach lays the groundwork
for a systematic, computationally efficient framework for
quantifying the influence of stochastic excitation sources on
velocity fluctuations in weakly non-parallel flows.

The paper is organized as follows. In Section II, we
describe stochastically-forced linearization of the NS equa-
tions around Blasius boundary layer flow. In Section III, we
study the receptivity to stochastic excitations of the velocity
fluctuations around locally-parallel and spatially evolving
Blasius profiles. In Section IV, we adopt stochastic forcing
to model the effect of excitations in the PSE. Finally, we
provide concluding thoughts in Section V.

II. BACKGROUND

In this section, we present the equations that govern the
dynamics of flow fluctuations in incompressible flows of
Newtonian fluids and characterize the structural constraints
that are imposed on the second-order statistics by the lin-
earized dynamics.

In a flat-plate boundary layer, with geometry shown in
Fig. 1, the dynamics linearized around the Blasius boundary
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Fig. 1: Geometry of a transitional boundary layer flow subject
to stochastic forcing.

layer profile u = [U(x,y) V(z,y) 0]7 are

1
vi=—(V-a)v - (V-v)u — Vp+ — Av + {,
Reo
0= V-v,
ey
where v = [v; vy w3]T is the vector of velocity fluc-

tuations, p denotes pressure fluctuations, and v;, ve, and
vg represent components of the fluctuating velocity field
in the streamwise (z), wall-normal (y), and spanwise (z)
directions, respectively. The Reynolds number is defined as
Reg = Uxlp/v, where §g = +/vag/Us is the Blasius
length scale at the inflow, U, is the free-stream velocity,
and v is the kinematic viscosity. Spatial coordinates are non-
dimensionalized by dy, velocities by U, time by dp/Uso,
and pressure by pU2, where p is the fluid density. The
presence of the additive zero-mean stochastic body forcing f
can be justified in different ways [3]-[5]. For our purposes,
we wish to compensate the role of the neglected nonlinear
interactions by introducing stochastic sources of excitation
that perturb the otherwise linearly developing velocity field.

III. STOCHASTICALLY-FORCED LINEARIZED NS
EQUATIONS

In this section, we first examine the dynamics of flow
fluctuations in the stochastically-forced Blasius boundary
layer under a locally-parallel base flow assumption. This
assumption entails linearization around the Blasius profile
evaluated at a fixed streamwise location zg. Since the result-
ing base flow only depends on the wall-normal coordinate y,
this also allows for the parameterization of the corresponding
evolution model over horizontal wavenumbers. This reduces
the computational complexity of studying the amplification
of streamwise streaks and Tollmien-Schlichting (TS) waves,
which are of importance in the laminar-turbulent transition
of boundary layer flows. We then repeat the same exercise
for the NS equations linearized around a base flow profile
which is a function of both streamwise and wall-normal
coordinates. In fluids literature this approach is called global
analysis and it is typically computationally challenging. We
have ensured grid convergence by doubling the number of
points used to discretize the differential operators in the
streamwise and wall-normal coordinates.

A. Parallel Blasius boundary layer flow subject to free-
stream turbulence

We perform an input-output analysis to quantify the energy
amplification of velocity fluctuations subject to an exogenous
source of excitation that represents free-stream turbulence.
This excitation is modeled as white-in-time stochastic forcing
into the linearized NS equations around the parallel Blasius
base flow profile, i.e., the Blasius profile evaluated at one
streamwise location z. This choice is motivated by previous
studies which show that transient growth exhibits similar
trends for parallel and non-parallel boundary layer flows [18],
[19].

Under the assumption of a parallel base flow, translational
invariance allows us to apply Fourier transform in the plate-
parallel directions. This brings the state-space representation
of the linearized NS equations to the form

Pk,t) = AK)p(k,t) + Bk)f(k,t),
vik,t) = C(k)p(k,1).

Here, ¢ = [v] 7T]T € C?v is the state, which contains
the wall-normal velocity v, and vorticity 7 , and v € C3Nv
with IV, being the number of collocation points in the finite
dimensional approximation of the differential operators in
the wall-normal direction. Equations (2) are parameterized
by the spatial wavenumber pair k = (k,, k.); see [5] for
the expressions of A, B, and C. We consider no-slip and
no-penetration boundary conditions.
In statistical steady-state, the covariance matrix

(k) = lim E(v(k,1) v (K 1))

2

of the velocity fluctuation vector, and the covariance matrix
X(k) = lim B (k1) (k,1)
of the state in (2), are related as follows:
d =CXC.

Here, % denotes complex-conjugate-transpose and E is the
expectation operator. Matrix ® contains information about
all second-order statistics of the fluctuating velocity field.
For a stable dynamical generator A, the steady-state co-
variance of the state in (2) subject to zero-mean and white-
in-time stochastic forcing with covariance ) = Q* > 0, i.e.,

E(f(t1)f*(t2)) = Q(t1 — ta),
is determined by the solution to the Lyapunov equation,
AX + XA* = —-BQB*. 3)

The energy amplification of the stochastically-forced flow
can be computed using the solution to the Lyapunov equa-
tion (3) as:

E = trace(C X C"). 4)

The receptivity to external forcing that enters in various
wall-normal locations can be evaluated by computing the
energy spectrum of the velocity fluctuations. To specify the
wall-normal region in which the forcing enters, we define
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Fig. 2: The shape of the filter function f(y); y1 = 5, y2 = 10.

f = f(y)fs where f; represents the solenoidal forcing
arising from free-stream turbulence and f(y) is the smooth
filter function defined as

fly) =

Here, y; and y» determine the shape of f(y); Fig. 2 shows
f(y) when y; =5 and yo = 10.

We compute the energy spectrum of stochastically excited
parallel Blasius boundary layer flow with Rey = 400 (the
Blasius length scale is Jg = 1). Here, we consider a wall-
normal region with L, = 25. A solenoidal white-in-time
excitation f; is first introduced to the region in the immediate
vicinity of the wall by choosing y; = 0 and y» = 5 in Eq. (5).
Figure 3a shows that the energy of velocity fluctuations is
most amplified at low streamwise wavenumbers (k; ~ 0)
with a global peak at k, = 0.42. Clearly, the energy spectrum
is dominated by streamwise elongated flow structures, with
TS waves observed at k, ~ 0.35. As the forcing region
moves away from the wall the amplification of streamwise
elongated structures persists while the amplification of the
TS waves weakens; see Fig. 3b. It is also observed that as
the region of excitation moves away from the wall, energy
amplification becomes weaker and the peak of the energy
spectrum shifts to lower values of k.. These observations
are in agreement with the global analysis of boundary layer
flow presented next.

1
- (atan(y — y1) — atan(y — y2)). (5)

B. Global analysis of stochastically-forced linearized NS
equations

We consider the linearized NS equations around a
spatially-evolving Blasius boundary layer profile and intro-
duce forcing at various wall-normal locations. To capture the
spatially evolving nature of the boundary layer, we employ
finite dimensional spatial discretization in both streamwise
and wall-normal directions. The linearized NS generator
is globally stable for the particular Reynolds number and
spanwise wavenumbers we consider in this study. Thus, the
steady-state covariance of the fluctuating velocity field can
be obtained from the solution to the Lyapunov equation (3).
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Fig. 3: Plots of log;y(F(k)) in the Blasius boundary layer
flow with Rey = 400 subject to white-in-time stochastic
excitation entering in various wall-normal regions; (a) y; =
0, y2 =5 (b) y1 =5, y2 = 10 in Eq. (5).

The computational region is a rectangular box with L, x
Ly, = 900 x 25 and the initial Reynolds number is Rey =
400. We consider the linearized dynamics given in Egs. (2)
with state ¢ = [v] T ]T € C?NNv k = k., and differen-
tial operators that are now spatially discretized in both wall-
normal and streamwise directions. Here, IV, and IV, denote
the number of collocation points in the streamwise and wall-
normal directions, respectively. We enforce homogenous
Dirichlet boundary conditions on 7 and Dirichlet/Neumann
boundary conditions on v, and introduce Sponge layers in the
streamwise direction to mitigate the influence of boundary
conditions on the fluctuation dynamics [20], [21]. Similar
to Section III-A, we assume that white-in-time stochastic
forcing is filtered by the function f(y) in (5).

Our computational experiments show that the energy
amplification increases as the region of influence for the
external forcing approaches the wall; for £, = 0.4, the
energy amplification (cf. Eq. (4)) for perturbations that enter
in the vicinity of the wall (yy = 0 and y» = 5 in
Eq. (5)) and away from the wall (y; = 5 and yo = 10)
is 3.9 x 10% and 4.0 x 10, respectively. Figures 4a and 4b
show the spatial structure of the streamwise component of
the principal response when white-in-time stochastic forcing
enters in the vicinity of the wall and away from the wall,
respectively. The streamwise growth of the streaks can be
observed. Figures 4c and 4d display the cross-section of
these streamwise elongated structures at z = 0. As Figs. 4e
and 4f demonstrate, these streaky structures are sandwiched
between counter-rotating vortical motions in the cross-stream
plane; and they contain alternating regions of fast- and slow-
moving fluid that are slightly inclined to the wall.

IV. STOCHASTICALLY-FORCED LINEAR PARABOLIZED
STABILITY EQUATIONS

While it is customary to use the parallel-flow approxi-
mation to study the stability of boundary layer flows to
small amplitude perturbations, this approximation does not
accurately capture the effect of the spatially-evolving base
flow on the stability of the boundary layer. This issue can
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Fig. 4: Principal modes with k, = 0.4, resulting from
exitation in the vicinity (a,c,e) (y; = 0 and 2 = 5 in (5)) and
away from the wall (b,d,f) (y;1 = 5 and yo = 10 in (5)). (a,b)
Streamwise velocity component where red and blue colors
denote regions of high and low velocity; (c,d) streamwise
velocity at z = 0; (e,f) y-z slice of streamwise velocity (color
plots) and vorticity (contour lines) at z = 1150.

be addressed by examining the spatial growth of specific
wave structures. Furthermore, in the absence of body forcing
and neutrally stable modes, linearized models that do not
account for the spatial evolution of the base flow predict
either asymptotic decay or unbounded growth of fluctuations.
On the other hand, the global analysis and direct numerical
simulation of spatially-evolving flows may be prohibitively
expensive for analysis and control purposes.

To refine predictions of parallel flow analysis, we utilize
the Parabolized Stability Equations (PSE) to study the dy-
namics of flow fluctuations in flat-plate boundary layers.
These equations are obtained by removing elliptic compo-
nents from the NS equations and they can be easily advanced
downstream via a marching procedure. This approach is sig-
nificantly more efficient than conventional flow simulations
based on the NS equations. In contrast to standard PSE-based
analysis, we introduce a stochastic forcing term and show

that linear PSE can be used to march covariance matrices
downstream in a computationally efficient manner.

We next provide a brief overview of the stochastically-
forced linear PSE. Additional details regarding the PSE can
be found in [15], [16].

A. Linear parabolized stability equations

In weakly non-parallel flows, e.g. the pre-transitional
boundary layer, flow fluctuations can be separated into slowly
and rapidly varying components [15]. This is achieved by
considering the following decomposition for the fluctuation
field ¢ = [v1 ve w3 p]T in (1),

a(z,y,21) = a(z,y)x(z,2,t) + complex conj.,
x(z,z,t) = exp(i(0(z) + k. z — wt)),

x
o) = [ ate)ae,
To
where q(z,y) and x(z,z,t) are the shape and phase func-
tions, k, and w are the spanwise wavenumber and temporal
frequency, and «(x) is the streamwise varying generalization
of the wavenumber [15]. The ambiguity arising from the
streamwise variation of both q and « is resolved by imposing
the condition ny q*q. dy = 0 [15]. The PSE approximation
assumes the streamwise variation of q and « as sufficiently
small to neglect q;z, gy, zQy, and their higher order
derivates with respect to z. The stochastically-forced linear
PSE thus take the form

Lqg+ Mq; +a,Nq = f, (6)

where expressions for operator-valued matrices L, M, and
N can be found in [16]. We discretize these operators using
a pseudospectral scheme with IV, Chebyshev collocation
points in the wall-normal direction [22].

In what follows, we use the PSE to propagate the spatially-
evolving state covariance,

X(z) = E(q(z)q"(2)),
via the Lyapunov equation
Xip1 = Ay Xi Ay + B B, (7)

where E is the expectation operator, k identifies the stream-
wise location, and 2 represents the covariance of the
white stochastic disturbance f. The dynamical matrix A
and the input matrix B result from a rearrangement of
the stochastically-forced linear PSE (6) with a constant
streamwise wavenumber o,

9@ = (-M7'L)q + (-M7f.
—— ——

A B

These equations provide a good approximation of pertur-
bations with slowly-varying streamwise wavenumbers [23].
The streamwise dependence of our equations follows from
the dependence of the state q, and matrices L and M on the
streamwise location . Propagation of the state covariance
X}, using Eq. (7) offers significant computational advantage
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Fig. 5: Peak of the amplitude of TS waves at w = 0.0344 in
a flat-plate boundary layer flow; nonlinear PSE (solid), linear
PSE without forcing (dashed), linear PSE with white forcing
(A), and linear PSE with white, but z-dependent forcing
designed using the procedure explained in Section IV-B (O).

over computation of the covariance from the ensemble aver-
age of many stochastic simulations.

We next consider the streamwise evolution of a two-
dimensional TS wave and provide a comparison of the results
obtained using linear PSE with and without stochastic forcing
and nonlinear PSE. In this context, the results of nonlinear
PSE, which we consider as the ground-truth, closely match
the results of direct numerical simulations [15].

B. Streamwise evolution of a two-dimensional TS wave

We study the streamwise evolution of a two-dimensional
TS wave (k, = 0) with an initial amplitude of 2.5 x 1073
and temporal frequency w = 0.0344. All computations are
initialized at Rey = 400 with the streamwise wavenumber
« and shape function corresponding to the considered TS-
mode. This mode is identified by the eigenvalue with the
largest imaginary part in the spatial eigenvalue problem. This
problem studies the stability of the linearized NS equations
for a particular Reynolds number, spanwise wavenumber, and
temporal frequency.

The computational domain is L, x L, = 2400 x 60
with homogenous Dirichlet boundary conditions applied in
the wall-normal direction. We conduct 400 simulations of
stochastically-forced linear PSE (6), with different realiza-
tions of white stochastic forcing. As in Section III-A, we
filter the forcing using the function f(y) in (5) with y; = 0
and y» = 10. The velocity profiles and covariances that
result from the ensemble average of these simulations are
compared with the results of linear and nonlinear PSE with
no stochastic forcing under the same parameter space and
initial conditions.

Figure 5 shows the peak amplitude of the streamwise ve-
locity component of the TS wave. Relative to nonlinear PSE,
linear PSE with and without white stochastic forcing under-
estimates the streamwise location of the peak. Figure 6 shows
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Fig. 6: Velocity covariance matrices at x = 2800 resulting
from (a,c) simulation of nonlinear PSE, and (b,d) from
propagation of Eq. (7) in Blasius boundary layer flow with
TS mode initialization. (a,b) The streamwise correlation
matrix X,,,,, and (c,d) the streamwise/wall-normal cross
correlation matrix X, ,.

covariance matrices of the streamwise and streamwise/wall-
normal velocity components at the outflow (z = 2800).
These are obtained using simulations of nonlinear PSE and
propagation of Eq. (7). We see that the outflow velocity
covariances resulting from linear PSE with white forcing
capture the essential trends observed in nonlinear PSE.

Our computations show that it is not feasible to exactly
match velocity correlations and growth trends with an z-
independent white stochastic excitation of the linear PSE.
This necessitates the use of z-dependent or colored forcing.
As we show next, a forcing field which is streamwise depen-
dent but uncorrelated in the wall-normal direction enables us
to better predict the location of the peak amplitude in Fig. 5.

In order to obtain this forcing, we first use X and Xy
resulting from nonlinear PSE to compute the covariance
7y, := B, B*. This covariance corresponds to a spatially
correlated process in the streamwise direction and is thus
z-dependent and not necessarily positive semi-definite. We
then project these forcing correlations onto the positive-
definite cone to obtain uncorrelated noise in the wall-normal
direction. The result of incorporating this white but z-
dependent forcing is also shown in Fig. 5. Clearly, the peak
amplitude resulting from this model matches the curve from
nonlinear PSE simulations.

To further evaluate the performance of this model, we
examine the error in matching the full state covariance matrix
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Fig. 7: (a) Relative error in matching the amplitude of stream-
wise velocity (solid) and in matching the state covariance
X () (dashed) using the linear PSE with z-dependent white
forcing in the spatial evolution of a 2D TS wave with
w = 0.0344. (b) The amplitude of the streamwise component
of a 2D TS waves at x = 1528 from nonlinear PSE (solid)
and stochastically forced linear PSE (O).

X and the amplitude of the streamwise velocity profile |v|
as a function of the streamwise location x; see Fig. 7a.
This figure shows that the streamwise velocity amplitude
and covariance matrices are reasonably recovered. Figure 7b
shows the amplitude of the streamwise velocity |v1]| at the
location with highest error (x = 1528). The profiles resulting
from linear PSE with x-dependent white forcing perfectly
match the results of nonlinear PSE.

V. CONCLUDING REMARKS

In the present study, we have utilized stochastically-forced
linearized NS equations and stochastically-forced linear PSE
to study the dynamics of flow fluctuations in the Blasius
boundary layer. In particular, we have examined the recep-
tivity of the spatially-evolving Blasius boundary layer flow
to free-stream disturbances which we model as stochastic
excitations that enter at specific wall-normal locations. We
also incorporate stochastic forcing into the linear PSE to
study the streamwise evolution of TS waves. While white
stochastic excitation is not able to improve predictions
relative to the conventional linear PSE without stochastic
forcing, we achieve better predictions of transient peaks
using white, but z-dependent forcing. The predictive power
of our approach can be further improved by utilizing recently
developed theoretical framework for identifying the spatio-
temporal spectrum of stochastic excitation sources [8], [24].
The problem of employing such a framework in order to
recover partially-observed statistical signatures of spatially-
evolving flows via low-complexity stochastic models will be
studied in our future work.
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