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Low-complexity modeling of mode interactions in boundary layer flows

Wei Ran, Armin Zare, M. J. Philipp Hack, and Mihailo R. Jovanovi¢

Abstract— Low-complexity approximations of the Navier-
Stokes equations have been widely used in the analysis of
wall-bounded shear flows. In this paper, we augment the linear
parabolized stability equations with Floquet analysis to capture
mode interactions and their effect on the evolution of fluctuating
quantities in the transitional boundary layer. To this end,
we leverage Floquet theory by incorporating the fluctuations
that arise from primary instability mechanisms into the base
flow and accounting for different harmonics in the flow state.
We examine the formation of streamwise elongated streaks in
the presence of weakly nonlinear effects. In this process, we
capture the growth of various harmonics observed in the direct
numerical simulation of laminar streaks. Our proposed model
provides a convenient linear progression of fluctuation dynamics
in the streamwise direction and is thus well-suited for stability
analysis and real-time control of spatially-evolving flows.

Index Terms— Boundary layers, control-oriented modeling,
distributed systems, Floquet theory, parabolized stability equa-
tions, spatially-periodic systems, streaks, transitional flows.

I. INTRODUCTION

We are interested in the control-oriented modeling of spa-
tially evolving flows. Due to their high complexity and large
number of degrees of freedom, nonlinear dynamical models
that are based on the Navier-Stokes (NS) equations are not
suitable for analysis, optimization, and control. On the other
hand, experimentally and numerically generated data sets are
becoming increasingly available for a wide range of flow
configurations. This has enabled data-driven techniques for
the reduced-order modeling of fluid flow systems. Despite
being computationally tractable, such models often lack
robustness. Specifically, control actuation and sensing may
significantly alter the identified modes which introduces
nontrivial challenges for model-based control design [1].
In contrast, models that are based on the linearized NS
equations are less prone to such uncertainty and are, at the
same time, well-suited for analysis and synthesis using tools
of modern robust control [2].

The stochastically forced linearized NS equations have
been used to capture structural and statistical features of
transitional [3]-[5] and turbulent [6]—[8] channel flows. In
these models, stochastic forcing is utilized to model the
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effect of nonlinear terms in the NS equations. Moreover, in
conjunction with parallel flow assumptions, the linearized NS
equations have enabled modal and non-modal stability anal-
ysis of spatially evolving flows via eigenvalue decomposition
of the Orr-Sommerfeld equations [9]. However, such models
do not accurately capture the effect of the spatially evolving
base flow on the stability of the boundary layer. Global
stability analysis addresses this issue by accounting for the
spatially varying nature of the base flow in addition to spatial
discretization in the inhomogeneous directions [10]-[12].
Although accurate, this approach is prohibitively expensive
for flow control and optimization.

At sufficiently large amplitudes primary disturbances that
are instigated via receptivity processes involving external or
internal perturbations [13] lead to the parametric excitation
of secondary instability mechanisms. Such mechanisms in
turn trigger a strong energy transfer from the mean flow
into secondary modes [14]. The physics of such transi-
tion mechanisms has been previously studied using Floquet
analysis [14]-[16] and the Parabolized Stability Equations
(PSE) [17]-[19].

The PSE were introduced to account for non-parallel and
nonlinear effects which was not possible using eigenvalue
problems arising from the Orr-Sommerfeld equations. In
particular, the PSE were developed as a means to refine pre-
dictions of parallel flow analysis in slowly varying flows [19],
[20], e.g., the laminar boundary layer flow. In general, the
linear PSE and their stochastically forced variant provide
reasonable predictions for the evolution of primary modes
such as Tollmien-Schlichting (TS) waves in boundary layer
flow [18], [21]. However, secondary growth mechanisms that
lead to laminar-turbulent transition of the boundary layer
flow originate from mode interactions [18].

In the transitional boundary layer, primary instability
mechanisms cause perturbations to grow to finite amplitudes
and saturate at steady or quasi-steady states. Floquet stability
analysis identifies secondary instability modes as the eigen-
modes of the linearized NS equations around a modified
base flow profile that contains the spatially periodic pri-
mary velocity fluctuations. In the corresponding eigenvalue
problem, the operators inherit a lifted representation from
the spatial periodicity of the base flow [22] and as a result
capture primary-secondary mode interactions. Such lifted
representations also appear in the modeling of periodic flow
control strategies in wall-bounded shear flows [7], [23], [24].

In this paper, we propose a framework which utilizes Flo-
quet theory [25] to capture the dominant mode interactions
and adopts the assumptions of the linear PSE to account for
the spatial evolution of the base flow. The resulting equations
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Fig. 1. Geometry of a transitional boundary layer flow.

are advanced downstream via a marching procedure. Our
framework thus inherits the ability to account for mode
interactions from Floquet theory while maintaining the low-
complexity of the linear PSE. As a result, our models not
only replicate the dominant physics of typical transitional
flows, they are convenient for flow control design.

Our presentation is organized as follows. In Section II,
we describe the linearized NS equations and the linear
PSE. In Section III, we derive the proposed parabolized
Floquet equations and explain our modeling framework. In
Section IV, we use our framework to study the formation of
streaks in the boundary layer flow. We conclude with remarks
and future directions in Section V.

II. BACKGROUND

In this section, we present the equations that govern
the dynamics of flow fluctuations in incompressible flows
of Newtonian fluids and provide details on our proposed
model for the downstream marching of spatially growing
fluctuations in boundary layer flows.

In a flat-plate boundary layer, with geometry shown in
Fig. 1, the dynamics of flow fluctuations around a two-
dimensional base flow profile u = [U(z,y) V(z,y) 0]7
are governed by the linearized NS equations

1
a—Vp+ —Av

vi = —(V.-a)v - (V-v) oo 0
0 = V-v,
where v = [u v w]T is the vector of velocity fluctu-

ations, p denotes pressure fluctuations, and u, v, and w
represent streamwise (x), wall-normal (y), and spanwise (z)
components of the fluctuating velocity field, respectively.
The Reynolds number is defined as Req = Uydp/v, where
do = \/vx0/Us is the Blasius length scale at the inflow
x0, Uy is the free-stream velocity, and v is the kinematic
viscosity. Spatial coordinates are non-dimensionalized by do,
velocities by U, time by §y/Us., and pressure by pUZ,
where p is the fluid density.

It is customary to use the parallel-flow approximation to
study the stability of boundary layer flows to small amplitude
perturbations [9]. Moreover, by leveraging the additional
degree of freedom introduced by Floquet theory [25], such
models have been used to investigate secondary instabilities
that inflict transition [9], [14]. However, this approximation
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does not accurately capture the effect of the spatially-
evolving base flow on the stability of the boundary layer. This
issue can be addressed using global stability analysis which
accounts for the spatially varying nature of the base flow
in addition to the spatial discretization of all inhomogeneous
directions. Nevertheless, global analysis of spatially-evolving
flows is prohibitively expensive for analysis and control
purposes.

To provide a convenient framework for the spatial march-
ing of velocity fluctuations in weakly nonlinear scenarios,
the parabolized stability equations (PSE) were introduced to
refine predictions of parallel flow analysis [18]-[20]. These
equations are obtained by removing the dominant elliptic
components from the NS equations and are significantly
more efficient than conventional flow simulations based on
the governing equations.

In weakly non-parallel flows, e.g., the pre-transitional
boundary layer, flow fluctuations can be separated into slowly
and rapidly varying components [20]. This is achieved by
considering the following decomposition for the fluctuation
field g = [u v w p]T in (1). For a specific spanwise
wavenumber and temporal frequency pair (3, w), we consider

qa(z,y,2,t) = da(z,y) x(w,2,t) + complex conjugate,
x(x,z,t) = exp(i(afx)z + Sz — wt)),
ba) = [ ale)as

where q(x,y) and x(z, z,t) are the shape and phase func-
tions and a(z) is the streamwise varying generalization of
the wavenumber [20]. This decomposition separates slowly
(4(x,y)) and rapidly (x(z, z,t)) varying scales in the stream-
wise direction. The ambiguity arising from the streamwise
variation of both q and « is resolved by imposing the
condition fﬂy q*q, dy = 0 [20]. This condition has also
been used to develop iterative schemes for updating o at
each streamwise location x; see [18, Section 3.2.5]. Based
on this, the linearized NS equations are parabolized with
the assumption that the streamwise variation of q and « are
sufficiently small to neglect Quz, Qpzs (zQs, i/ Reg. This
amounts to the removal of terms of O(1/Re2) and higher,
and thus the dominant source of ellipticity from the NS
equations. The linear PSE take the form

Lél'i_M(Alz = 0, (2)

where expressions for the operator-valued matrices L and M
can be found in [18].

We next propose a two-step modeling procedure which
combines Floquet theory with linear PSE to study the role
of mode interactions in weakly nonlinear mechanisms that
arise in spatially evolving flows.

III. PARABOLIZED FLOQUET EQUATIONS

In the transitional boundary layer flow, primary instabili-
ties can cause perturbations to grow to finite amplitudes and
saturate at steady or quasi-steady states. Secondary stability



analysis examines the linear stability of fluctuations in the
modulated flow state, and it thus considers linearization
around the modified base flow

3)

where ug denotes the original base flow and u,, represents
the primary fluctuation field. Due to the spatial periodic-
ity of the primary fluctuations, the new stability problem
involves equations with spatially periodic coefficients, for
which solutions can be found using Floquet analysis. When
the spatially periodic flow structures are superposed to the
Blasius boundary layer profile, the modified base flow (3)
takes the form

u = up + up,

o0

Z um(aj?y) ¢m(x’z7t)7

m=—00

u(z,y,z,t) “4)

where ug = [Ug(z,y) Vp(z,y) 0]7 represents the Blasius
boundary layer profile, ¢9 = 1, u,, and ¢,, (m # 0)
denote the shape and phase functions of the harmonics
that constitute the primary fluctuation field (e.g. streaks),
and u}, = u_,,. Subsequently, the fluctuations around the

modified base flow U are given by the similarly formed
ansatz

WK

An(z,Y) Xn(z, 2, 1), )

oo

q(z,y,z,t) =

n

where q,(z,y) and x,(z, 2,t) denote the shape and phase
functions of the corresponding harmonics that constitute the
fluctuation field q. In Eq. (5), the phase functions x,, share
a uniform spatial growth rate, i.e., all modes share a uniform
streamwise wavenumber a(z).

Following the PSE assumption, the parabolized linear NS
equations that govern the dynamics of fluctuations around the
modified base flow (3) give rise to the Parabolized Floquet
Equations (PFE)

Lrq+ Mrq, = 0. (6)

Here, the state

[ - .]T7

contains all harmonics in the spanwise direction z with

~T ~T AT
q qn—l qn qn+1

(Aln - [/an ﬁn uA)n ﬁn}Ta
and Lz and Mp inherit the following lifted representation
from the periodicity of the base flow [22]

Lo—10 Lp—141 Lp—142
Lr = | L., | P
Ln+1,72 Ln+1,71 Ln+1,0

The operator L; ; captures the contribution of the jth har-
monic ¢; on the dynamics of the ith harmonic ¢; induced
by the periodicity of the base flow.
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To model the effect of mode interactions in weakly non-
linear regimes we consider the following two-step procedure:

1) The linear PSE are used to march the fundamental
harmonic and obtain its corresponding velocity profile
up,, at each location in the streamwise direction.

2) The PFE are used to march all harmonics ¢ and
obtain the evolution of velocity fluctuations around the
modified base flow u.

The PFE are thus used to study the effect of dominant
harmonic interactions on the growth of disturbances in
the streamwise direction. The schematic diagram in Fig. 2
illustrates our modeling procedure.

Comparison with nonlinear PSE

In contrast to the nonlinear PSE, which treat the interaction
of various modes as a nonlinear input forcing, the PFE
introduced in Eq. (6) account for a subset of essential
interactions between the primary and secondary modes while
maintaining the linear progression of the governing equa-
tions. Moreover, from a conceptual standpoint, it is much
easier to implement the PFE than the nonlinear PSE. This
is because the PFE do not involve the inner iterations that
are required to update the nonlinear forcing term. Moreover,
the uniform growth rate considered by PFE allows for the
update of a uniform streamwise wavenumber «(x) for all
harmonics. While this feature may introduce inaccuracies to
the evolution of disturbances, in Section IV we show that the
PFE can indeed provide correct predictions of the evolution
of laminar streaks in boundary layer flow.

In addition, in many scenarios, e.g., the H-type transition
scenario in boundary layer flow, the growth of nonlinear
terms can cause the convergence of the nonlinear PSE to
deteriorate. Specifically, after secondary modes grow to the
same order of magnitude as primary modes, the nonlinear
terms become dominant and at some point update schemes
for a(x) fail to converge. While the location at which update
schemes fail to converge has been previously used to predict
the onset of transition [26], there have been some efforts
to suppress the feedback from secondary modes to primary
modes and maintain the march of nonlinear PSE through
the transitional region [18, Section 3.4.3]. The framework
proposed in this paper allows for the formal investigation
of such effects; see [27] for the application of the PFE in
predicting the growth of subharmonic modes of the H-type
transition scenario.

IV. STREAMWISE ELONGATED STREAKS

The bypass transition process refers to transition ema-
nating from non-modal growth mechanisms and includes
the algebraic or transient growth of streamwise elongated
modes (streaks) [9]. In fact, streamwise elongated streaks
are among the most important physical structures that appear
as a result of bypass transition in boundary layer flows.
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Fig. 2.
base flow terms that enter as coefficients into the linear PSE and PFE.

Secondary instability analysis of saturated streaks has been
previously used to analyze the breakdown stage in the
transition process [15], [16], [28]. In this section, we utilize
Floquet theory in an earlier stage of the transition process
and before the breakdown of streaks. We consider the case
in which interactions between various spanwise harmonics
contribute to a significant mean-flow distortion (MFD) that
in turn affects the energy balance among various harmonics
that form streaks. While the linear PSE fail to predict such
a phenomenon, we demonstrate how the PFE provide the
means to predict the correct trend in the MFD as well as the
resulting velocity distribution.

A. Setup

Starting from an initial condition identified as the optimal
disturbance in triggering algebraic growth in the Blasius
boundary layer flow [29], we extract the spatial growth
predicted by the evolution of the primary harmonic via
linear PSE. We use the solution to this primary linear PSE
computation to augment the Blasius boundary layer profile
ug in the base flow for the subsequent PFE computation

U(z,y) = Upl(z,y) + Us(z,y)e?* + Ui(x,y)e
V(Ivy) = VB($7y)
W(z,y) = 0.

)

Since the velocity field of streamwise elongated streaks
is dominated by its streamwise component, we only use
the streamwise component of the solution to linear PSE,
Us(z,y), in (7). The state in the PFE takes the form of
the following Fourier expansion

o0

q(z,y,z,t) = ella(@)r —wt) Z qn(%y)einﬁz,

n=-—oo

(®)

where qo is the MFD and higher-order harmonics in the
spanwise direction represent various streaks of wavelength
27 /(nfB). Operators Ly and Mg in Eq. (6) are provided in
the appendix.

B. Nonlinear evolution of streaks

The physics of the streamwise growing streaky structure
is comprised of various harmonics in the spanwise direction.
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Floquet Equations

/

The PFE are triggered with a primary disturbance up, that results from linear PSE and modulates the base flow. The diagonal lines represent

The mean flow distortion qg is generated as a result of the
nonlinearity of the NS equations which cause interactions
between various harmonics. To investigate the result of such
interactions, we consider various truncations of the bi-infinite
state q to 2N + 1 harmonics in z, i.e., n = —N,--- , N.
In this study, a truncation with N = 3 proved sufficient
to capture the relevant physics. We consider a rectangular
computational domain with L, x L, = 2000 x 60, where
L, and L, denote the length of the computational domain
in the streamwise and wall-normal directions, respectively.
Homogenous Dirichlet boundary conditions are enforced
in the wall-normal direction, and differential operators are
discretized using a pseudospectral scheme with N, = 80
Chebyshev collocation points in the wall-normal direc-
tion [30]. To march the linear PSE and PFE downstream, we
adopt an implicit Euler scheme with step-size Az = 15. Our
computational experiments show that similar predictions can
be achieved with appreciably coarser computational grids,
e.g., Ny =40 and Az = 30.

The temporal frequency, streamwise wavenumber, and
fundamental spanwise wavenumber are set to w = 0, o =
—10754, and 8 = 0.4065, respectively. Note that Re{a} = 0
corresponds to infinitely long structures in the streamwise
direction. We initialize the PFE computation at Rey = 467
(this corresponds to the streamwise location zg = 467)
and zero initial conditions for all q, with n # +1. The
fundamental harmonic §4 is initialized with the same initial
condition as the primary linear PSE computations. Since
this case study considers the evolution of perturbations with
a slowly varying streamwise wavenumber o we assume
o = 0 for both the primary linear PSE and the subsequent
PFE computations [31].

To verify the predictions of our framework, we also per-
formed numerical simulations of the nonlinear NS equations
with the same initial conditions. The numerical simulations
were conducted using a second-order finite volume code with
1024 x 192 x 192 grid points in the streamwise, wall-normal,
and spanwise dimensions, respectively.

Figure 3 compares the result of Direct Numerical Simula-
tion (DNS) of the NS equations and the predictions of PFE
and linear PSE. As shown in this figure, the evolution of
all harmonics involves an initial algebraic growth followed
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Fig. 4. Cross-plane contours of the streamwise velocity of the streak

comprised of all harmonics in the spanwise direction at x = 2400 resulting
from DNS (a), PFE with (b) and without (¢) the MFD, and Linear PSE (d).

by saturation. The solution to the linear PSE accurately
predicts the evolution of the fundamental spanwise harmonic;
cf. Eq. (8). Subsequently, the PFE accurately predict the
growth of the dominant harmonics, and especially the MFD.
While a discrepancy is observed for the third harmonic, its
contribution to the overall structure of the streak is negligible.
Since all harmonics other than qi; were initialized with
zero, it is worth noting that the reasonable prediction of
growth rates and generation of the MFD component would
not have been possible without accounting for the interaction
between various harmonics.

Figure 4 shows the cross-plane spatial structure of the
streak comprised of all harmonics in the spanwise direction
at z 2400. Figure 4(b) demonstrates perfect matching
with the result of DNS. As shown in Fig. 4(c), the velocity
distribution would not be correct in the absence of the MFD.
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Moreover, as it is clear from comparing Figs. 4(a) and 4(d),
there is a significant discrepancy between the shape of the
structures in the cross-plane if the interaction between modes
is not taken into account. Due to the significant relative
amplitude of the first (fundamental) harmonic compared with
the second and third harmonics, the velocity distribution re-
sulting from the linear PSE are dominated by the structure of
the first harmonic. In addition, in the absence of interactions
between harmonics, the linear PSE would not be able to
generate the MFD and would result in inaccurate predictions
for the amplitude of higher-order harmonics; see dashed lines
in Fig. 3.

V. CONCLUDING REMARKS

We have combined Floquet theory and the linear PSE to
develop the PFE which can be used to conveniently march
primary and secondary instability modes while accounting
for dominant mode interactions. This framework involves
two steps: (i) the primary modes are marched using the
linear PSE; (ii) weakly nonlinear effects and interaction
of modes are captured via the PFE. Nonlinear effects are
captured by dominant interactions among various harmonics
of the fluctuation field which includes the primary har-
monics from step (i). The PFE involve a convenient linear
march of various harmonics and is of low-complexity. It is
thus better suited for the purpose of analysis and control
synthesis than conventional nonlinear models. We use the
proposed framework for the secondary instability analysis
of streamwise elongated streaks in the laminar boundary
layer flow. Our results demonstrate good agreement with
numerical simulations of the nonlinear equations. We refer
the interested reader to [27] for a more detailed description of
the PFE framework and an in-depth discussion on the utility
of this model in predicting subharmonic growth in H-type
transition.

We note that the overall performance of the proposed
method relies on a reasonable prediction of the evolution
of the primary modes using linear PSE. When the linear
PSE cannot accurately predict the evolution of the primary
modes, an additional source of white or colored stochastic
excitation can be used to replicate the effect of nonlinear-
ities and improve predictions of the linear PSE; see [21,
Section IV]. For this purpose, the spatio-temporal spectrum
of stochastic excitation sources can be identified using the
recently developed theoretical framework outlined in [8],
[32]. Such an extension of the current PFE model is a topic
for future research.

APPENDIX

The operators Ly, ,, and M, ,,, in Ly and Mp from
Eq. (6) are of the form:

I, —0,Vs 9, Up 0 i«
0 r,+o,Vg 0 Oy
Ln,O . )
0 0 r, ing
i Oy ing 0
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iaUs; 0,U; —ipU% 0
L B 0 iaU 0 0
T 0 0 iaU; 0|’
|0 0 0 0
and
i} o
Up — =2 0 0 0
Re %Ny
Mn,O = 0 UB_@ 0 . 0 )
0 0 _ 2y
B Re
0 0 0
" Us 0 0 0]
M B 0 Us 0 0
ol 0 0 Us 0]’
L0 0 0 0
UL 0 0 0]
M 0 U; 0 0
41 = . )
" 0 0 Us 0
L0 0 0 0
where
1
L= =[Oy —0® + (nB)?] + [~iw + iaUp + Vid,]
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