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Abstract— We utilize control-theoretic tools to study the
receptivity of pre-transitional boundary layers to persistent
stochastic excitation sources. White-in-time stochastic excitation
is used to model the effect of free-stream turbulence on the
linearized Navier-Stokes dynamics. We discuss similarities and
differences resulting from local and global approaches in terms
of steady-state energy amplification of velocity fluctuations and
the underlying flow structures. While parallel flow analysis
predicts a flow response that is dominated by the principal
eigenmode of the covariance matrix, we show that global
analysis yields subordinate eigenmodes that have nearly equal
energetic contributions to that of the principal mode. We
investigate this observation and provide a possible explanation
for the disparity between the results of local and global
receptivity analysis in spatially evolving flows.

Index Terms— Boundary layers, boundary layer receptivity,
distributed systems, energy amplification, low-complexity mod-
eling, Navier-Stokes equations, spatially evolving flows.

I. INTRODUCTION

The receptivity of boundary layers to external excitation
sources, e.g., free-stream turbulence, plays an important role
in the laminar-turbulent transition process. External sources
of excitation perturb the laminar velocity field and provide
a pathway for the growth of small-amplitude perturbations
to critical levels. While nonlinear dynamical models that
are based on the Navier-Stokes (NS) equations provide
insight into receptivity mechanisms, their implementation
typically involves a large number of degrees of freedom and
it ultimately requires direct simulation. This motivates the
development of low-complexity models that are better suited
for analysis, optimization, and flow control design.

The linearized NS equations have been widely used for
modal and non-modal stability analysis of both parallel
and non-parallel flows [1], [2]. In particular, the linearized
NS equations subject to stochastic excitation have been
successfully employed to replicate structural and statistical
features of both transitional [3]–[5] and turbulent [6]–[8]
shear flows. However, most previous studies have focused
on parallel flow configurations and linearized models around
mean profiles that are invariant in two spatial directions. For
example in channel flows, translational invariance allows for
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the decoupling of the dynamical equations across streamwise
and spanwise wavenumbers via Fourier transform, resulting
in significant computational advantage.

On the other hand, in the flat-plate boundary layer, stream-
wise and wall-normal inhomogeneity require discretization
in two spatial dimensions and thus lead to models of sig-
nificantly larger sizes. As a result, modal and non-modal
analyses in spatially evolving flows are significantly more
challenging than in parallel flows. However, due to the slowly
varying nature of boundary layer flows at sufficiently large
Reynolds numbers, parallel flow assumptions have provided
the means for the development of simplified models that
capture the spatial evolution of modes within the boundary
layer [1], [9]–[11]. While this assumption offers signifi-
cant computational advantage, it does not account for the
effect of the spatially evolving base flow on the stability
of the boundary layer. Global stability analysis addresses
this issue by accounting for the spatially varying nature
of the base flow and discretizing spatially inhomogeneous
dimensions. Previously, tools from sparse linear algebra in
conjunction with iterative schemes have been employed to
conduct modal [12], [13] and non-modal [14]–[16] analyses
in spatially evolving flows.

Herein, we study the receptivity of the boundary layer
flow to exogenous excitation which we model as a persistent
white-in-time stochastic forcing entering in the immediate
vicinity of the wall. We solve the algebraic Lyapunov equa-
tion to obtain the steady-state response of the flow and
compare and contrast results obtained under the parallel flow
assumption with those of global analysis. Our simulation-free
approach enables the computationally efficient assessment of
the energy spectrum of spatially evolving flows, without rely-
ing on a particular form of inflow conditions or computation
of the full spectrum of the linearized dynamical generator.

Our presentation is organized as follows. In Section II, we
introduce the stochastically forced linearized NS equations
and describe the tools that we use to compute the steady-
state response and energy amplification of velocity fluctua-
tions. In Section III, we present results from locally parallel
and global receptivity analyses of the Blasius boundary
layer flow. In Section IV, we examined the flow structures
that are extracted from steady-state covariance matrices.
In Section V, we provide a discussion on the origin of
disparity between locally parallel and global results. Finally,
we present concluding thoughts in Section VI.
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Fig. 1. Geometry of transitional boundary layer flow with stochastic
excitation f entering in the blue shaded region.

II. STOCHASTICALLY FORCED LINEARIZED MODEL

For incompressible Newtonian fluid flow, the linearized
NS equations around a two-dimensional base flow profile
ū = [U(x, y) V (x, y) 0 ]T are given by

vt = − (∇ · ū)v − (∇ · v) ū − ∇p +
1

Re0
∆v + f

0 = ∇ · v
(1)

where v = [u v w ]T is the vector of velocity fluctuations,
u, v, and w are components of the fluctuating velocity
field in the streamwise (x), wall-normal (y), and spanwise
(z) directions, p denotes pressure fluctuations, and f is an
additive zero-mean stochastic body forcing. As shown in
Fig. 1, the external excitation of the boundary layer flow can
enter in various wall-normal regions. The Reynolds number
Re0 = U∞δ0/ν is defined based on the Blasius length-
scale δ0 =

√
ν x0/U∞, in which x0 is the initial streamwise

location which denotes the distance from the leading edge,
U∞ is the free-stream velocity, and ν is the kinematic
viscosity. The local Reynolds number Re at distance x from
the reference point x0 is given by Re = Re0

√
1 + x/x0.

Velocities are non-dimensionalized by U∞, time by δ0/U∞,
and pressure by ρU2

∞, where ρ is the fluid density.
By eliminating pressure, the linearized equations (1) can

be brought to the evolution form

ϕt(x, y, kz, t) = [A(kz)ϕ(·, kz, t)](x, y) +

[B(kz) f(·, kz, t)](x, y)

v(x, y, kz, t) = [C(kz)ϕ(·, kz, t)](x, y)

(2)

where the state ϕ = [ v η ]T contains wall-normal velocity v
and vorticity η = ∂zu− ∂xw components of the fluctuation
field [1]. Here, homogeneity of the base flow in z has
allowed for the parameterization of the evolution model (2)
over various spanwise wavenumbers kz via spatial Fourier
transform. A detailed description of operators A, B, and
C in (2) can be found in [17, Appendix A]. Note that
a wall-parallel base flow assumption in the form of ū =
[U(y) 0 0 ]T allows for an additional parameterization of
the dynamics over streamwise wavenumbers kx, resulting in

ϕt(kx, y, kz, t) = [A(kx, kz)ϕ(·, kx, kz, t)](y) +

[B(kx, kz) f(·, kx, kz, t)](y)

v(kx, y, kz, t) = [C(kx, kz)ϕ(·, kx, kz, t)](y)
(3)

Finite-dimensional approximations of the operators in
Eqs. (2) and (3) in the non-homogeneous directions yields

ψ̇(t) = Aψ(t) + B f(t)

v(t) = C ψ(t)
(4)

with ψ(t) ∈ C2NxNy and v(t) ∈ C3NxNy for global
flow analysis (when the streamwise direction is non-
homogeneous), and ψ(t) ∈ C2Ny and v(t) ∈ C3Ny for
parallel flow analysis.

A. Energy amplification to stochastic excitation

In statistical steady-state, the covariance matrices of the
state and output in Eqs. (4),

X := lim
t→∞

E (ψ(t)ψ∗(t))

and
Φ := lim

t→∞
E (v(t)v∗(t))

are related as:
Φ = C X C∗. (5)

Here, E(·) is the expectation operator and the superscript ∗
denotes complex conjugate transpose. The matrix Φ contains
information about all second-order statistics of the fluctuating
velocity field, including the Reynolds stresses.

We assume that f(t) in Eq. (4) is zero-mean and white-
in-time with spatial covariance matrix W = W ∗, i.e,

〈f(t1) f∗(t2)〉 = W δ(t1 − t2) (6)

where δ is the Dirac delta function. At subcritical Reynolds
numbers, for which the dynamical generator A is stable, the
steady-state covariance X of the state ψ(t) can be deter-
mined as the solution to the algebraic Lyapunov equation

AX + X A∗ = −BWB∗. (7)

The energy amplification of stochastically-forced flow can
be computed from the solution to this equations as:

E = trace (C X C∗) (8)

To specify the wall-normal extent of forcing, we define
f := f(y)fs where fs represents white solenoidal forcing
and f(y) is a smooth filter function defined as

f(y) :=
1

π
(atan(y − y1) − atan(y − y2)) . (9)

Here, y1 and y2 determine the region in which the forcing f
will be concentrated.

B. Numerical setup

We study the energy amplification of velocity fluctuations
around the Blasius boundary layer profile with Re0 = 232
and use the local Blasius length-scale as the unit length, i.e.
δ0 = 1. White-in-time stochastic forcing of unit variance
(W = I) is assumed to enter in the immediate vicinity of
the wall (y1 = 0 and y2 = 5 in Eq. (9)).

In what follows we first consider the base flow to be
parallel (cf. Eqs. (3)) and discretize the operators over a
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Fig. 2. (a) Plot of log10(E(kx, kz)) in the parallel Blasius boundary layer
flow with Re0 = 232 subject to white-in-time stochastic excitation entering
in the vicinity of the wall. The green cross corresponds to the wavenumber
pair of streaks. (b) Energy amplification of velocity fluctuations due to near-
wall forcing resulting from global flow analysis, which involves linearization
around a spatially varying Blasius profile with Re0 = 232.

wall-normal domain of Ly = 25 using a pseudospectral
discretization scheme with Ny = 100 Chebyshev collocation
points [18]. Homogenous Dirichlet boundary conditions are
imposed on wall-normal vorticity, and Dirichlet/Neumann
boundary conditions are imposed on wall-normal velocity.
We use 50 × 51 logarithmically spaced wavenumbers with
kx ∈ [10−4, 1] and kz ∈ [5 × 10−3, 10] to parameterize the
linearized NS equations in the homogeneous directions.

In contrast to the parallel flow model, the global model
based on the discretization of (2) involves a larger number of
states due to the non-homogeneous streamwise direction. We
consider Nx = 100 and Ny = 50 collocations points over
the streamwise and wall-normal domains of length Lx =
900 and Ly = 25. In both parallel and global analyses, grid
convergence has been verified by doubling the number of
points used in discretizing the differential operators.

Similar to the parallel flow setup, we enforce homogenous
Dirichlet and homogeneous Dirichlet/Neumann boundary
conditions in the wall-normal direction for η and v, re-
spectively. At the inflow, we impose homogeneous Dirichlet
boundary conditions on η, i.e., η(0, y) = 0, and homo-
geneous Dirichlet/Neumann boundary conditions on v, i.e.,
v(0, y) = vy(0, y) = 0. Finally, the outflow boundary
conditions for both state variables and the streamwise deriva-
tive of the wall-normal component (vx) are determined via
linear extrapolation [19]. Moreover, we introduce sponge
layers in the streamwise direction to mitigate the influence
of boundary conditions on the fluctuation dynamics within
the computational domain [13], [20]; see [21] for additional
details.

III. ENERGY SPECTRUM OF VELOCITY FLUCTUATIONS

We first examine energy amplification of velocity fluctua-
tions subject to stochastic forcing under the locally parallel
flow assumption. In this case, the evolution model is param-
eterized over various horizontal wavenumber pairs (kx, kz),
which reduces the computational complexity of obtaining
the energy spectrum. Figure 2(a) shows the energy spectrum
of velocity fluctuations subject to wall-attached stochastic
forcing. The energy of velocity fluctuations is most amplified
at low streamwise wavenumbers (kx ≈ 0) with a global
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Fig. 3. Contribution of various eigenvalues of the velocity covariance
matrix Φ of the Blasius boundary layer flow with Re0 = 232 subject
to wall-attached white-in-time stochastic forcing resulting from (a) parallel
flow analysis at (kx, kz) = (7× 10−3, 0.33), and (b) global flow analysis
at kz = 0.32.

peak at kz ≈ 0.25. This indicates that streamwise elongated
streaks are the dominant flow structures that result from
persistent stochastic excitation of the boundary layer flow. In
addition to streaks, the energy spectrum shown in Fig. 2(a)
also predicts the emergence of Tollmien-Schlichting (TS)
waves at kx ≈ 0.19. Both streaks and TS waves have been
previously observed in experimental studies [22].

On the other hand, the evolution model considered in
global flow analysis is only parameterized over spanwise
wavenumbers, and as a result, the corresponding Lyapunov
equations are of appreciably higher dimensionality. Fig-
ure 2(b) shows the kz-dependence of the energy amplification
for stochastic excitation entering in the immediate vicinity
of the wall. The largest energy amplification is observed for
kz = 0.32, which is again consistent with previous numerical
studies on the receptivity to free-stream turbulence [23], [24].

While the energy amplification reported in Fig. 2 is
determined by summation over all eigenvalues of the output
covariance matrix Φ (cf. (8)), it is also instructive to examine
the contribution of individual eigenmodes. Figure 3(a) shows
the contribution of the first 8 eigenvalues of Φ resulting from
parallel flow analysis at (kx, kz) = (7 × 10−3, 0.33) (green
cross in Fig. 2(a)). The principal mode which corresponds
to the largest eigenvalue, contains approximately 93% of
the total energy. Figure 3(b) shows the contribution of the
first 50 eigenvalues of the output velocity covariance matrix
Φ resulting from global flow analysis at kz = 0.32 (peak
of the energy curve in Fig. 2(b)). Here, we observe that
in contrast to the parallel flow analysis, other eigenvalues
play a more prominent role. This implies that in global
analysis the principal eigenmode of Φ cannot represent the
full complexity of the spatially evolving flow. We expand on
this aspect in the following sections.

IV. FLOW STRUCTURES EXTRACTED FROM THE
STEADY-STATE COVARIANCE MATRIX

In this section, we examine the flow structures that can be
extracted from various eigenmodes of Φ in Eq. 5, with X
computed from Eq. (7). In both locally parallel and global
flow analyses, symmetries in the homogeneous directions can
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Fig. 4. Flow structures resulting from excitation of the boundary layer flow
with Re0 = 232 in the immediate vicinity of the wall extracted from the
principal modes of the steady-state covariance matrix; (a,b) parallel flow
analysis at (kx, kz) = (7 × 10−3, 0.33); (c,d) global flow analysis at
kz = 0.32. (a) Streamwise velocity at z = 0. (b) y-z slice of streamwise
velocity (colors) and vorticity (contour lines) at x = 500 corresponding
to the cross-plane slice indicated by the dashed line in (a). (c) Streamwise
velocity at z = 0. (d) y-z slice of streamwise velocity (colors) and vorticity
(contour lines) at x = 750 corresponding to the dashed line in (c).

be exploited to reconstruct flow structures and study their
spatial extent; see [8, Eq. (5.4)].

As mentioned in the previous section, parallel flow anal-
ysis of the stochastically forced boundary layer flow pre-
dicts the dominant amplification of streamwise elongated
flow structures. Figures 4(a) and 4(b) show the streamwise
component of such flow structures corresponding to the
principal eigenmode of the steady-state covariance matrix
with (kx, kz) = (7×10−3, 0.33). As shown in these figures,
the streamwise elongated structures are situated between
counter-rotating vortical motions in the cross-stream plane
and contain alternating regions of fast- and slow-moving
fluid, which are slightly inclined (and detached) relative
to the wall. Even though these structures do not capture
the full complexity of transitional flow, such alignment of
counter-rotating vortices and streaks is closely related to
the lift-up mechanism and the generation of streamwise
elongated streaks that are studied via optimal growth analysis
of boundary layer flow [24]–[27].

Although the principal eigenmode of Φ from global flow
analysis cannot represent the full complexity of the spa-
tially evolving flow, we examine its corresponding spatial
structure to provide a comparison with the result of parallel
flow analysis. Figure 4(c) shows the streamwise elongated
structures of the streamwise component of the principal
eigenmode of Φ resulting from near-wall stochastic forcing
of the boundary layer flow with kz = 0.32. The streamwise
growth of the streaks can be observed. The cross-plane view
of Fig. 4(d) shows that the resulting streaky structures are
situated between counter-rotating vortical motions in the
cross-stream plane and they contain alternating regions of
fast- and slow-moving fluid that are slightly inclined to
the wall. The similarity between the result of locally parallel
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Fig. 5. Streamwise velocity at z = 0 corresponding to the first six
eigenmodes of the steady-state covariance matrix Φ resulting from near-wall
excitation of the boundary layer flow with Re0 = 232 and at kz = 0.32;
(a) j = 1, (b) j = 2, (c) j = 3, (d) j = 4, (e) j = 5, and (f) j = 6 where
j corresponds to ordering in Fig. 3(b).

and global analyses is evident from the colorplots of Fig. 4.

Suboptimal modes in global flow analysis

We proceed to examine the spatial structure of less en-
ergetic eigenmodes of Φ resulting from near-wall stochastic
excitation of the boundary layer flow. As shown in Fig. 3(b),
the first six eigenmodes respectively contain 8.9%, 7.3%,
6.1%, 5.3%, 4.6%, and 4.0% of the total energy of the
flow. We again use the streamwise velocity component to
study the spatial structure of the corresponding eigenmodes.
As shown in Fig. 5(b), while the principal mode consists
of a single streamwise-elongated streak, the second mode
is comprised of two shorter high- and low-speed streaks.
Similarly, the third and fourth modes respectively contain
three and four streaks. These streaks become weaker and
shorter in the streamwise direction and have alternating
contributions to the velocity field; see Figs. 5(c) and 5(d).
As the mode number increases, the streamwise extent of
these structures further reduces. Moreover, they appear at
an earlier streamwise location, and their peak value moves
closer to the leading edge. This breakup into shorter streaks
for higher modes is reminiscent of the dominant modes
that are identified in parallel flow analysis for increasingly
larger streamwise wavenumbers and at various streamwise
locations (or Reynolds numbers). The fundamental spatial
frequencies that are extracted from the streamwise variation
of the eigenmodes of Φ using spatial Fourier transform in x
(cf. Fig. 5) provide information about the streamwise length-
scales of flow structures; see [17] for additional information.

V. DISCUSSION

In this section, we seek an explanation for the differences
between the results of locally parallel and global receptivity
analyses. We first investigate the influence of a spatially
evolving base flow on the steady-state response obtained
from solving Eq. (7). For this purpose, we consider lineariza-
tion around a parallel (streamwise invariant) boundary layer
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Fig. 6. The first 50 eigenvalues of the covariance matrix Φ corresponding
to the dynamics (2) linearized around a parallel (red crosses) and spatially
evolving (blue circles) Blasius boundary layer profile. Here, Re0 = 232
and the spanwise wavenumber is kz = 0.32. (a) Energetic contributions;
(b) amplitudes.
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Fig. 7. Streamwise velocity at z = 0 corresponding to the first four
eigenmodes of the steady-state covariance matrix Φ resulting from near-
wall excitation of fluctuation dynamics (2) linearized around the parallel
base flow at Re0 = 232 with kz = 0.32; (a) j = 1, (b) j = 2, (c) j = 3,
(d) j = 4 where j corresponds to ordering in Fig. 6.

flow, but do not exploit the homogeneity of the dynamics in x
and discretize the operators in the streamwise direction in the
same way as in the wall-normal direction. Figure 6 illustrates
the arrangement of eigenvalues of the covariance matrix Φ
resulting from linearization around parallel and non-parallel
base flow profiles. As shown in Fig. 6(a), when the base flow
is assumed to be parallel, the primary eigenvalues retains a
more significant portion of the total energy. Furthermore,
Fig. 6(b) demonstrates how spatial evolution of the base
flow can lead to increased energy amplification across all
eigenmodes of the covariance matrix. On the other hand, as
shown in Fig. 7, spatial visualization of various eigenmodes
of Φ uncovers similar periodic flow structures to that of
linearizing around a spatially evolving base flow (cf. Fig. 5).
While the spatial evolution of the base flow plays an impor-
tant role in distributing energy across various eigenmodes,
it appears to have little effect on the shape of the amplified
flow structures. Finally, we note that even in the presence
of a spatially invariant base flow, spatial discretization of the
streamwise dimension results in a full-rank covariance matrix
Φ. This is in contrast to the result of parallel flow analysis
(cf. Fig. 3(a)). We next provide an illustrative example to
gain insight into the significance of subordinate eigenmodes
of the covariance matrix resulting from spatial discretization
of non-homogeneous directions.

An example: 2D diffusion equation

Consider a stochastically forced 2D diffusion equation

ξt = (∂xx + ∂yy) ξ + f (10)

in which Dirichlet boundary conditions are imposed on the
state ξ in both x and y directions and the size of the domain
is given by Lx and Ly . The eigenvalues of the dynamical
generator in (10) are

λm,n = −
(
(mπ/Lx)2 + (nπ/Ly)2

)
; m,n ∈ Z+

and the corresponding eigenfunctions are sinusoids that
include m/2 and n/2 periods in x and y directions, re-
spectively. When the stochastic forcing is white-in-time with
spatial covariance W = I , the steady-state covariance matrix
Ξ = limt→∞E (ξ(t) ξ∗(t)) can be expressed via the integral
representation,

Ξ =

∫ ∞
0

eAtW eA
∗t dt

where eAt is the strongly-continuous semi-group generated
by A := ∂xx + ∂yy with proper boundary conditions. Since
A is normal, the expression for Ξ can be simplified to

Ξ = Gdiag{− 1

2λm,n
}G∗ (11)

where G contains orthonormal eigenfunctions of A that are
weighted according to the eigenvalues −1/(2λm,n).

We emulate a boundary layer configuration, by considering
a stretched spatial domain with Lx = 20 and Ly = 2
and use 50 Chebyshev collocation points to discretize in y.
Figure 8 shows the energy distribution of various eigenmodes
of the covariance matrix Ξ for two instances that differ
in the application of Fourier transform in the x. When
the equations are parameterized over wavenumbers kx, the
covariance matrix Ξ retains a dominant principal mode
(Fig. 8(a)). For kx = π/20, the eigenvalues of Ξ are given by
1
2

(
(π/20)2 + (nπ/2)2

)−1
, and they decrease at an approxi-

mate rate of 1/(nπ)2, thereby resulting in the dominance of
the principal eigenmode. In contrast, when the homogeneity
in x is not exploited, a global approach, which discretizes
the x dimension in the same way as y, results in a covariance
matrix Ξ that is not low-rank (Fig. 8(b)). This approach
yields eigenvalues of the form 1

2

(
(mπ/20)2 + (nπ/2)2

)−1
.

Because of the stretched domain (Lx � Ly), the eigenvalues
initially decrease more gradually as their ordering in m
precedes n. To illustrate the ordering of eigenfunctions,
Fig. 9 shows the spatial structure of the 17th mode (m = 17,
n = 1), which precedes the 18th mode (m = 1, n = 2).
The eigenvalues corresponding to these modes are marked
by red circles in Fig. 8(b). The first 17 modes are sinusoids
that include 1/2 period in y and respectively 1/2, · · ·, 17/2
periods in x.

Remark 1: In boundary layer flow, the dynamical gener-
ator of the linearized NS equations (4) is non-normal, and
as a result, the covariance matrix Φ cannot be expressed in
a form similar to Eq. (11). Nevertheless, the eigenmodes of
Φ inherit a periodic structure from a (non-trivially) weighted
combination of spatially periodic eigenmodes of dynamical
generator A. Furthermore, similar to the diffusion equation,
the spatial domain that contains the shear of the boundary
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Fig. 8. Contribution of the first 50 eigenvalues of the covariance matrix Ξ
resulting from (a) parameterization in the x direction (kx = π/20), and (b)
without parameterization in the x direction (global approach). Red circles
mark the 17th and 18th eigenvalues.
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Fig. 9. The spatial structure of the 17th (a) and 18th (b) eigenfunctions
of Ξ from a global approach that does not account for the homogeneity in
x to parameterize the dynamics across Fourier modes.

layer flow is stretched in the streamwise direction (Lx � Ly)
resulting in a gradually degrading eigenspectrum in Φ. A
rigorous mathematical explanation requires further scrutiny
and it is a topic of our ongoing research.

VI. CONCLUDING REMARKS

We study the energy amplification of Blasius boundary
layer flow subject to white-in-time stochastic forcing us-
ing the linearized NS equations. The dynamics of flow
fluctuations are captured by models that arise from locally
parallel and global perspectives and energy amplification is
quantified using the variance of the steady-state response
from the algebraic Lyapunov equation. Our findings demon-
strate good agreement between the results obtained from
parallel and global flow models. The outcome establishes the
efficacy of using parallel flow assumptions in the receptivity
analysis of boundary layer flows, especially when it is
desired to evaluate the energetic contribution of individual
streamwise scales. We also examine structural differences
between steady-state covariance matrices that result from
local and global analyses. We provide an explanation for
the origin of such disparity using the 2D diffusion equation.
Our ongoing effort is directed at finding a mathematically
rigorous explanation for the cascade of periodic structures
and their ordering across the spectrum of the steady-state
velocity covariance matrix.
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mode interactions in boundary layer flows via Parabolized Floquet
Equations,” Phys. Rev. Fluids, vol. 4, no. 2, p. 023901, February 2019.

[12] U. Ehrenstein and F. Gallaire, “On two-dimensional temporal modes
in spatially evolving open flows: the flat-plate boundary layer,” J. Fluid
Mech., vol. 536, pp. 209–218, 2005.

[13] J. W. Nichols and S. K. Lele, “Global modes and transient response
of a cold supersonic jet,” J. Fluid Mech., vol. 669, pp. 225–241, 2011.
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