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Low-complexity stochastic modeling of spatially
evolving flows

By W. Ranf, A. Zaref, M. J. P. Hack AND M. R. Jovanoviéf

Low-complexity approximations of the Navier-Stokes (NS) equations are commonly
used for analysis and control of turbulent flows. In particular, stochastically forced lin-
earized models have been successfully employed to capture structural and statistical
features observed in experiments and direct simulations. In this work, we utilize stochas-
tically forced linearized NS equations and the parabolized stability equations to study
the dynamics of flow fluctuations in transitional boundary-layers. The parabolized model
can be used to efficiently propagate statistics of stochastic disturbances into statistics of
velocity fluctuations. Our study provides insight into interactions of slowly varying base
flow with streamwise streaks and Tollmien-Schlichting waves. It also offers a systematic,
computationally efficient framework for quantifying the influence of stochastic excitation
sources (e.g., free-stream turbulence and surface roughness) on velocity fluctuations in
weakly non-parallel flows.

1. Introduction

Nonlinear dynamical models that are based on the Navier-Stokes (NS) equations typ-
ically have a large number of degrees of freedom, a property which makes them unsuit-
able for analysis, optimization, and control design. The existence of coherent structures in
wall-bounded shear flows (Smits, McKeon & Marusic 2011) has inspired the development
of data-driven techniques for reduced-order modeling of the NS equations. However, the
identified modes in nonlinear reduced-order models can be crucially altered by control
actuation and sensing, which gives rise to nontrivial challenges for model-based control
design (Noack, Morzyniski & Tadmor 2011).

In contrast, linearized models of the NS equations around mean-velocity are well-
suited for analysis and synthesis using tools of modern robust control. Linearized models
subject to stochastic excitation, have been employed to replicate structural and statistical
features of transitional Farrell & Ioannou (1993); Bamieh & Dahleh (2001); Jovanovic
& Bamieh (2005) and turbulent Hwang & Cossu (2010); Moarref & Jovanovic (2012);
Zare et al. (2016b) wall-bounded shear flows. However, most studies have focused on
parallel flow configurations in which translational invariance allows for the decoupling
of the dynamical equations across streamwise and spanwise wavenumbers. This offers
significant computational advantages for analysis, optimization, and control.

In the flat-plate boundary layer, streamwise and normal inhomogeneity lead to a tem-
poral eigenvalue problem for PDEs with two spatial variables. Previously, tools from
sparse linear algebra and iterative schemes have been employed to analyze the spec-
tra of the governing equations and provide insight into the dynamics of transitional
flows (Ehrenstein & Gallaire 2005; Akervik et al. 2008; Paredes 2014). Attempts have
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FIGURE 1: Geometry of a transitional boundary-layer flow subject to stochastic forcing.

also been made to conduct non-modal analysis of spatially evolving flows including tran-
sient growth (Akervik et al. 2008; Monokrousos et al. 2010) and resolvent analysis (Jeun,
Nichols & Jovanovic 2016). In spite of these successes, many challenges remain.

In the boundary-layer problem, the base flow is weakly non-parallel. This property can
be utilized to separate slowly from rapidly varying scales in flow fluctuations. Parabolized
Stability Equations (PSE) are obtained by neglecting the terms that scale as O(1/Re?) or
smaller (Bertolotti, Herbert & Spalart 1992; Herbert 1997). PSE respect inhomogeneity
in the streamwise direction but do not propagate information upstream, which makes
them computationally more efficient than conventional flow simulations based on the NS
equations (Hack & Moin 2015). They are thus routinely used to compute the spatial
evolution of instability modes in a wide range of engineering problems.

Despite their popularity, parabolized equations have been utilized in a rather narrow
context. We revisit the modeling of spatially evolving boundary-layer flow by examining
the utility of such models in assessing the receptivity and quantifying the sensitivity to
different types of flow disturbances. This examination lays the groundwork for a sys-
tematic, computationally efficient framework for quantifying the influence of stochastic
excitation sources on velocity fluctuations in weakly non-parallel flows.

Our report is organized as follows. In Section 2, we describe stochastically forced
linearization of the NS equations around Blasius boundary-layer flow and characterize
the structural constraints imposed on second-order statistics of the linearized equations.
In Section 3, we study the receptivity of the boundary layer to stochastic excitation
using a parallel base flow assumption. We also perform a global stability analysis on the
discretized model in two spatial directions. In Section 4, we adopt stochastic forcing to
model the effect of excitations in the PSE. We summarize our developments in Section 5.

2. Problem formulation

The dynamics of incompressible Newtonian fluids are governed by the Navier-Stokes
and continuity equations,

1
u = —(u-Vju — VP + R—eoAu,
0= V-u

We consider a flat-plate boundary-layer flow as presented in Figure 1, where u is the
velocity vector, P is the pressure, V is the gradient, and A = V - V is the Laplacian.
The Reynolds number is defined as Rep = Usodo/v, where dg is the initial Blasius length
scale 09 = \/v20/Uso, U is the free-stream velocity, and v is the kinematic viscosity.
Spatial coordinates are non-dimensionalized by d, velocities by U, time by d/Us, and
pressure by pU2 | where p is the fluid density.
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Linearization of the NS equations around the Blasius boundary-layer profile i =
[U(z,y) V(x,y) 0]T yields the equations that govern the dynamics of velocity fluc-
tuations v = [u v w]? and pressure fluctuations p

1
vi = —(V-a)v — (V-v)ia — Vp + — Av + d,
Reo
0 = V-v,

(2.1)

where d is an additive zero-mean stochastic body forcing. The presence of stochastic
forcing can be justified in different ways (Farrell & lIoannou 1993; Bamieh & Dahleh
2001; Jovanovic & Bamieh 2005). For our purposes, we wish to compensate for the role
of the neglected nonlinear interactions by introducing stochastic sources of excitation
that perturb the otherwise linearly developing velocity field.

After proper spatial discretization, the dynamics of velocity and pressure fluctuations
are governed by the following evolution form

'(/J(t) = Av(t) + Bd(1), (2.2)
v(t) = C(),
where 1(t) is the state and d(t) is the stochastic forcing. The matrix A is the generator of
the dynamics, the matrix C establishes a kinematic relationship between the components

of 1p and the components of v, and the matrix B specifies the way the external excitation
d affects the dynamics (Jovanovic & Bamieh 2005).

2.1. Second-order statistics and computation of energy amplification
In statistical steady-state, the covariance matrix ® = tlggo (v(t) v*(t)) of the velocity fluc-
tuation vector, and the covariance matrix X = tliglo (P (t) ™ (t)) of the state in Eq. (2.2),
are related as follows
= CXCr

where * denotes complex-conjugate-transpose. The matrix ® contains information about
all second-order statistics of the fluctuating velocity field, including the Reynolds stresses.

When the dynamical generator A is linear and stable, the steady-state covariance of

the state in Eq. (2.2) subject to zero-mean and white-in-time stochastic forcing with
covariance W = W* > 0, i.e.,

(d(t1)d*(t2)) = Wi(t — t2), (2.3)
can be determined as the solution to the standard Lyapunov equation,
AX + X A* = —BWB*. (2.4)

In Eq. (2.3), J is the Dirac delta function. The Lyapunov equation relates the statistics
of white-in-time forcing W to the state covariance X via system matrices A and B. The
energy spectrum of velocity fluctuations that obey Eq. (2.2) can be computed as

E = trace(C X C"). (2.5)

3. Local and global analysis of stochastically forced linearized NS equations

In this section, we first examine the dynamics of flow fluctuations in the stochastically
forced Blasius boundary-layer under a locally parallel base-flow assumption. This model
will be parameterized over streamwise and spanwise wavenumbers, and allows for the
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convenient assessment of the potential for amplifying T'S waves and streamwise streaks.
We then repeat the same exercise for the linearized NS equations around a spatially
evolving base flow.

3.1. Parallel Blasius boundary-layer flow subject to free-stream turbulence

We perform an input-output analysis to quantify the energy amplification of velocity
fluctuations subject to free-stream turbulence. This excitation is modeled as white-in-
time stochastic forcing into the linearized NS equations around the parallel Blasius base
flow profile, i.e., the Blasius profile evaluated at one streamwise location xy with no
dependence on the streamwise coordinate. This choice is motivated by previous studies
which show that transient growth exhibits similar trends for parallel and non-parallel
boundary-layer flows (Andersson et al. 1999; Tumin & Reshotko 2001).

Under the assumption of a parallel base flow, translational invariance allows us to
apply Fourier transform in the plate-parallel directions, which brings the state-space
representation of the linearized NS around the Blasius boundary-layer profile at zy to

P(k,t) = Ak) (k1) + Bk)d(k,1),

vk, t) = C(k)y(k,1). (3.1)

Here, 1 = [v 1]T is the state, which contains the wall-normal velocity v and vorticity 7.
Equations (3.1) are parameterized by the spatial wavenumber pair k = (k;, k.) (see Jo-
vanovic & Bamieh (2005) for the expressions of A, B, and C'). We consider no-slip and
no-penetration boundary conditions. The receptivity to external forcing that enters in
various wall-normal locations can be evaluated by computing the energy spectrum of the
velocity fluctuations. To specify the wall-normal region in which the forcing enters, we
define d := f(y)ds where dg represents the forcing from free-stream turbulence and f(y)
is the smooth function defined as

fl) = = (atan(y — ) — atan(y — p2) (32)

Here, the parameters y; and y, determine the shape of f(y). The energy amplification
of the stochastically forced flow can be computed using the solution to the Lyapunov
equation (2.5), with W being the covariance of the filtered stochastic forcing d.

We present results obtained by computing the energy spectrum of stochastically excited
parallel Blasius boundary-layer flow with Rey = 400, i.e., the streamwise constant Blasius
profile is computed at z¢g = 400. Here, we consider a wall-normal region of L, = 25.
A solenoidal white-in-time excitation is first introduced to the region in the immediate
vicinity of the wall by choosing y; = 0 and y» = 5 in Eq. (3.2). Figure 2(a) shows that the
energy of velocity fluctuations is most amplified at low streamwise wavenumbers (k, = 0)
with a global peak at k, ~ 0.42. It is evident that the energy spectrum is dominated by
streamwise elongated flow structures, with a trace of T'S waves observed at k, =~ 0.35. As
the forcing region moves away from the wall, the amplification of streamwise elongated
structures persists while the amplification of the TS waves weakens; see Figure 2(b).
Furthermore, as the region of excitation moves away from the wall, energy amplification
becomes weaker and the peak of the energy spectrum shifts to lower values of k.. These
observations are in agreement with the global analysis of boundary layer flow but are
not reported here because of space constraints.
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FIGURE 2: Plots pf the log;((E(k)) in the Blasius boundary-layer flow with Reg = 400

subject to white-in-time stochastic excitation entering in various wall-normal regions; (a)
y1 =0, y2 =5, (b) y1 =95, y2 =10 in Eq (32)
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FI1GURE 3: Principal modes with spanwise wavenumber k, = 0.4, resulting from near-
wall excitation with y; = 0 and y» =5 in Eq. (3.2). (a) Streamwise velocity component;
(b) streamwise velocity at z = 0; (c) y-z slice of streamwise velocity (color plots) and
vorticity (contour lines) at x = 1150.

3.2. Global analysis of stochastically forced linearized NS equations

We consider the linearized NS equations around a spatially evolving Blasius boundary-
layer profile and introduce forcing at various wall-normal locations. The linearized NS
equations around the Blasius boundary-layer flow are globally stable for the particular
Reynolds number and spanwise wavenumber that we consider in this study. Thus, the
steady-state covariance of the perturbation field of the stochastically forced system (2.2)
can be obtained from the solution to the Lyapunov equation (2.4).

The computational region is a rectangular box with L, x L, = 900 x 25 and the
initial Reynolds number is set to Rey = 400. We consider the linearized dynamics in
Eq. (2.2) with state 9 = [v 7]?, homogenous Dirichlet boundary conditions on 7 and
Dirichlet/Neumann boundary conditions on v, and we also introduce sponge layers in
the streamwise direction (Nichols & Lele 2011; Mani 2012). Similar to Section 3.1, we
assume that white-in-time stochastic forcing is filtered by the function f(y) in Eq. (3.2).

Our computational experiments show that the energy amplification increases as the
region of influence for the external forcing approaches the wall. This finding suggests
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that perturbations entering in the vicinity of the wall are the most amplified. Figure 3(a)
shows the spatial structure of the streamwise component of the principal response when
white-in-time stochastic forcing enters in the vicinity of the wall (y; = 0 and yo = 5
in Eq. (3.2)). The streamwise growth of the streak structure is evident from this figure.
Figure 3(b) displays the cross section of these streamwise elongated structures at z = 0.
As Figure 3(c) demonstrates, these streaky structures are sandwiched between counter-
rotating vortical motions in the cross-stream plane; and they contain alternating regions
of fast- and slow-moving fluid that are slightly inclined to the wall.

4. Stochastically forced linear parabolized stability equations

Global stability analysis and direct numerical simulation of spatially evolving flows are
prohibitively expensive for analysis and control purposes. On the other hand, parallel flow
analysis may not be able to capture the full complexity of the spatially evolving base flow.
In order to refine results from parallel flow analysis, we exploit a previously developed
framework for the modeling of flow fluctuations in flat-plate boundary-layers using the
PSE. In this section, we study the stochastically forced PSE in which nonlinear terms are
replaced by a stochastic forcing term. A spatially evolving Blasius boundary-layer profile
is considered as the base flow. The PSE can be used to efficiently advance the velocity
profile downstream via a marching procedure. This also allows us to march covariance
matrices downstream in a computationally efficient manner. We next provide a brief
overview of the stochastically forced linear parabolized stability equations. Additional
details regarding the PSE can be found in Bertolotti et al. (1992); Herbert (1994).

4.1. Linear PSE

In weakly non-parallel flows, e.g., the pre-transitional boundary-layer flow, flow fluctu-
ations can be separated into slowly and rapidly varying components (Bertolotti et al.
1992). This is achieved by considering the following ansatz for the fluctuation field
q=[u v w p]TinEq. (2.1),
Q(x’ y? Z? t) = q(x’ y) X(x7 Z? t)’ z
K@zt) = ep(06) + ik —iwr), 06) = [ aQd
o

where q(z,y) and x(z, z,t) are the shape and phase functions, k, and w are the spanwise
wavenumber and temporal frequency, and «(z) is the streamwise varying generalization of
the wavenumber (Bertolotti et al. 1992). The ambiguity arising from the streamwise vari-
ation of both q and « is resolved by imposing the condition ny q*q. dy = 0 (Bertolotti

et al. 1992). The PSE approximation assumes the streamwise variation of q and « as
sufficiently small to neglect quz, iz, @xq., and their higher order derivates with respect
to x. The stochastically forced linear PSE thus take the form

Lq+ Mq, + a, Nq = d, (4.1)

where expressions for matrices L, M and N can be found in Herbert (1994).
In what follows, we use the PSE to propagate the spatially evolving state covariance,

X(z) = (a(z)q"(2)),
via the discretized Lyapunov equation

Xit1 = A1 Xp Af 1 + BQp1 B (4.2)
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FIGURE 4: Amplitude of TS waves at w = 0.0344 in a flat-plate boundary layer flow;
nonlinear PSE (solid), linear PSE without forcing (dashed), linear PSE with white forcing
(A), and linear PSE with colored forcing designed using the procedure explained in
Section 4.2 (O).

Here, (-) is the expectation operator over various realizations of stochastic forcing, the
subscript k identifies the streamwise location, and {2 represents the covariance of the
white stochastic disturbance d. The dynamical matrix A and the input matrix B result
from a rearrangement of the stochastically forced linear PSE in Eq. (4.1) with a constant
streamwise wavenumber «,

These equations provide a good approximation of perturbations with slowly varying
streamwise wavenumbers Towne (2016). The streamwise dependence of our equations
follows from the dependence of the state q, and matrices L and M on the streamwise
location xj. Propagation of the state covariance Xj using Eq. (4.2) offers significant
computational advantage over computation of the covariance from the ensemble average
of many stochastic simulations.

We next consider the streamwise evolution of a two-dimensional T'S wave and compare
results obtained using the stochastically forced linear PSE, the linear PSE, and the
nonlinear PSE. This case study was considered in Bertolotti et al. (1992) to demonstrate
the shortcomings of linear PSE compared to nonlinear PSE.

4.2. Streamwise evolution of a two-dimensional T'S wave

We study the streamwise evolution of a two-dimensional TS wave (k, = 0) with an initial
amplitude of 2.5 x 10~2 and the non-dimensional frequency w = 0.0344. All computations
are initialized at zo = 400, with the streamwise wavenumber « and shape function
corresponding to the TS-mode, which results from the spatial Orr-Sommerfeld/Squire
problem at xg. The initial Reynolds number is 400 and the computational domain is
L, x L, = 2400 x 60 with homogenous Dirichlet boundary conditions applied in the
wall-normal direction. We have conducted 400 simulations of stochastically forced linear
PSE in Eq. (4.1), with different realizations of white stochastic forcing. As described
in Section 3.1, we filter the stochastic forcing using the function f(y) in Eq. (3.2) with
y1 = 0 and y» = 10. The resulting velocity profiles and covariances are compared with the
result of linear and nonlinear PSE under the same parameter space and initial conditions.
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FIGURE 5: Velocity covariance matrices at x = 2800 resulting from simulation of the
nonlinear PSE (a, ¢) and from propagation of the discrete Lyapunov equation (4.2) (b,
d) in Blasius boundary-layer flow with TS mode initialization. (a, b) The streamwise
correlation Xy, and (¢, d) the streamwise/wall-normal cross correlation matrix X,,,.

Figure 4 shows the peak amplitude of the streamwise velocity component of the TS
wave. Relative to nonlinear PSE, linear PSE with and without white stochastic forcing
yields inaccurate predictions of the streamwise location of the peak. Figure 5 shows the
streamwise covariances and the streamwise/wall-normal cross-correlation matrices at the
outflow (x = 2800), which result from simulation of nonlinear PSE and propagation of
Eq. (4.2). The outflow velocity covariances from white stochastically forced linear PSE
capture the essential trends observed in the results from nonlinear PSE. However, it is not
feasible to exactly match velocity correlations and growth trends with white stochastic
excitation of the linear PSE. Thus it is necessary to use colored stochastic forcing. As an
example, we consider a forcing field which is correlated in the streamwise direction but
uncorrelated in the wall-normal direction. This allows us to better predict the location of
the peak amplitude in Figure 4. To obtain this colored forcing, we first use X and Xy 1
resulting from nonlinear PSE to compute the covariance Zj, := B, B*. This covariance
corresponds to a spatially correlated process in the streamwise direction and is thus not
necessarily positive semi-definite. We then project these forcing correlations onto the
positive-definite cone to achieve uncorrelated noise in the wall-normal direction. The
result of incorporating this colored (in the streamwise direction) forcing is also shown in
Figure 4. Clearly, the peak amplitude resulting from this model matches the curve from
nonlinear PSE simulations.

To further evaluate the performance of this model, we examine the error in matching
the full state covariance matrix X and the amplitude of the streamwise velocity profile
|u| as a function of the streamwise location x; see Figure 6(a). Although we are able to
reliably approximate the location of the peak, exact amplitudes and velocity covariances
cannot be achieved. Figures 6(b) and 6(c) show the amplitude of the streamwise velocity
|u| at the location with highest error (z = 1840) and the outflow (z = 2800), respectively.
While the profiles perfectly match for y < 30, the profiles resulting from linear PSE with
colored forcing experience significant deviations in the outer flow.

5. Concluding remarks

In the present study, we have utilized stochastically forced linearized NS equations and
stochastically forced linear PSE to study the dynamics of flow fluctuations in the Blasius
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FIGURE 6: (a) Relative error in matching the amplitude of streamwise velocity (solid)
and in matching the state covariance X (x) (dashed) using the linear PSE with colored
forcing in the spatial evolution of a 2-D TS wave at w = 0.0344; the amplitude of the
streamwise component of TS waves at (a) z = 1840 and (b) z = 2800, resulting from
nonlinear PSE (solid) and linear PSE with colored forcing (dashed).

boundary-layer. In particular, we have examined the receptivity of the spatially evolving
Blasius boundary-layer flow to free-stream disturbances which we model as stochastic
excitations that enter at specific wall-normal locations. We also incorporate stochastic
forcing into the linear PSE to study the streamwise evolution of TS waves. While white
stochastic excitation is unable to improve predictions relative to the conventional linear
PSE, we achieve better predictions of transient peaks using colored forcing. The predictive
power of our approach can be further improved by utilizing recently developed theoretical
framework for identifying spatio-temporal spectrum of stochastic excitation sources (Zare
et al. 2016a,b). The problem of employing such a framework in order to recover partially
observed statistical signatures of spatially evolving flows via low-complexity stochastic
models will be studied in our future work.
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