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Abstract— Carefully designed surface corrugation is a sensor-
free strategy that can reduce skin-friction drag in turbulent
flows. In contrast to the traditional approach that relies on nu-
merical simulations and experiments, we develop a model-based
framework to quantify the impact of spanwise-periodic surfaces
on the dynamics of velocity fluctuations and the resulting mean
flow. We model the effect of surface corrugation as a volume
penalization on the Navier-Stokes equations and use the statisti-
cal response of the stochastically forced linearized equations to
quantify the effect of background turbulence on skin-friction
drag. For triangular corrugations, we demonstrate that our
simulation-free approach reliably predicts drag-reducing trends
observed in high-fidelity simulations and experiments.

Index Terms— Drag reduction, sensor-free flow control,
spatially-periodic systems, spatio-temporal frequency responses,
stochastically-forced Navier-Stokes, turbulence modeling.

I. INTRODUCTION

A. Background

Carefully designed surface corrugation can decrease skin-
friction drag by more than 10% [1], [2] and has been
successfully employed in engineering applications [3], [4].
Previous numerical and experimental studies have examined
the effect of various design parameters, e.g., the shape
(triangular, T-shaped, etc.) and size of riblets, on skin-friction
drag in turbulent flows [1], [5]–[8]. Moreover, the drag-
reducing nature of corrugated surfaces has been linked to the
creation of secondary streamwise vortices at riblet tips [9] or
susceptibility to a Kelvin-Helmholtz instability [10]. While
these studies offer valuable insights, their reliance on costly
experiments and simulations has hindered the model-based
design of riblet-mounted surfaces. This motivates the devel-
opment of low-complexity models that capture the essential
physics of turbulent flows over riblets and are well-suited for
analysis, optimization, and control design.

The linearized Navier-Stokes (NS) equations capture struc-
tural and statistical features of transitional [11]–[14] and tur-
bulent [15]–[17] shear flows. An additive source of stochastic
excitation is often used to model the effect of background
disturbances and uncertainty in the linearized equations. This
approach has enabled the model-based analysis of sensor-free

Financial support from the Office of Naval Research under Award
N00014-17-1-2308 and the Air Force Office of Scientific Research
under Awards FA9550-16-1-0009 and FA9550-18-1-0422 is gratefully
acknowledged.

Wei Ran is with the Department of Aerospace and Mechanical Engi-
neering, University of Southern California, Los Angeles, CA 90089. Armin
Zare is with Department of Mechanical Engineering, University of Texas at
Dallas, Richardson, Texas 75080, USA. Mihailo R. Jovanović is with the
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strategies for suppressing turbulence via streamwise traveling
surface blowing and suction [18], [19] or transverse wall
oscillations [20], [21]. In this paper, we extend the framework
of [21] to account for the effect of spanwise-periodic surface
modification using tools from control theory. We use tur-
bulence modeling in conjunction with stochastically-forced
linearized NS equations to compute modifications to the
turbulent mean velocity and skin-friction drag in a channel
flow with corrugated walls. This is an unconventional sensor-
free boundary control problem; the goal is to quantify
the influence of the fluctuation velocity field induced by
spatially-periodic boundary conditions on the mean velocity
profile and the resulting skin-friction drag.

Receptivity of channel flow over riblets was recently
studied using theH2 norm of the linearized dynamics [22], as
well as frequency response analysis [23]. In [22], a change of
coordinates was used to translate spatially-periodic boundary
conditions into spatially-periodic differential operators and,
in [23], a volume penalization technique [24] was used to
capture the effect of riblets as a feedback term in the dynam-
ics. While we adopt the latter approach, in contrast to prior
studies, we account for dynamical interactions among fluc-
tuation harmonics in the spatially-periodic model and utilize
the linearized NS equations to provide closure in the mean
flow equations for flows over riblets. Our results capture the
drag-reducing properties of triangular riblets which are in
excellent agreement with simulations and experiments [1],
[10]. We also study the kinetic energy of velocity fluctuations
and observe a synchrony between energy suppression trends
and drag-reduction trends for riblets of various size.

B. Problem formulation

Consider a three-dimensional pressure-driven turbulent
channel flow of incompressible Newtonian fluid. In Fig. 1(a),
x, y ∈ [−1, 1], and z denote the streamwise, wall-normal,
and spanwise coordinates, respectively. The fully-developed
turbulent flow is governed by the NS equations

ut = − (u · ∇) u − ∇P +
1

Reτ
∆u

0 = ∇ · u
(1)

where u is the velocity vector, P is the pressure, ∇ is the
gradient operator, and ∆ = ∇ · ∇ is the Laplacian, and
t is time. The friction Reynolds number Reτ = uτh/ν
is defined in terms of the channel’s half-height h and the
friction velocity uτ =

√
τw/ρ, where τw is the wall-shear

stress (averaged over horizontal directions and time), ρ is the
fluid density, and ν is the kinematic viscosity. All variables
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(a) (b)

Fig. 1. (a) Fully-developed turbulent channel flow. (b) A channel with
spanwise-periodic riblets on the lower wall.

in Eqs. (1) have been non-dimensionalized: length by h,
velocity by uτ , time by h/uτ , and pressure by ρu2τ .

When the lower wall is a spanwise-periodic surface
aligned with the flow as shown in Fig. 1(b), the no-slip and
no penetration boundary conditions are given by,

u(x, y = 1, z, t) = 0, u(x, y = −1 + r(z), z, t) = 0 (2)

where r(z) represents the shape of the surface corrugation.
Solving the NS equations (1) subject to these boundary
conditions is computationally expensive. This motivates the
development of low-complexity models for analysis and
optimization purposes. The key challenge is capturing the
effect of riblets on the multi-scale nature of the turbulent
flow so that skin-friction drag is accurately predicted.

C. Paper outline

In Section II, we present the governing equations for the
turbulent mean velocity along with the turbulent viscosity
model. We also describe a procedure for determining an
approximation to the turbulent mean velocity and skin-
friction drag in the flow over riblets. In Section III, we use the
linearized NS equations to obtain second-order statistics of
velocity fluctuations in channel flow over riblets and compute
modifications to the mean velocity and skin-friction drag. In
Section IV, we demonstrate the utility of our framework in
capturing drag-reducing trends in turbulent flow over riblets.
Finally, we provide concluding remarks in Section V.

II. TURBULENT MEAN VELOCITY

As skin-friction drag depends on the gradient of the
turbulent mean velocity at the wall, the first step in our
analysis is to determine an approximation to the mean
velocity in the presence of riblets. For this purpose, we adopt
the Reynolds decomposition to split the velocity field into its
time-averaged mean and fluctuating parts as

u = ū + v, E(u) = ū, E(v) = 0

P = P̄ + p, E(P ) = P̄ , E(p) = 0.
(3)

Here, E(·) denotes the expectation operator, ū =
[U V W ]T is the vector of mean velocity components,
v = [u v w ]T is the vector of velocity fluctuations,
and p is the fluctuating pressure field around the mean P̄ .
Substituting (3) into Eqs. (1) and taking the expectation
yields the Reynolds-averaged NS equations

ūt = − (ū · ∇) ū − ∇P̄ +
1

Reτ
∆ū − ∇ ·E(vvT )

0 = ∇ · ū. (4)

The Reynolds stress tensor E(vvT ) quantifies the transport
of momentum arising from turbulent fluctuations [25], and
its value affects the solution of Eqs. (4). The fluctuation
correlations are, however, difficult to obtain because the nth
velocity moment depends on the (n+ 1)th moment (closure
problem). To overcome this, we utilize the turbulent viscosity
hypothesis [25], which considers the turbulent momentum to
be transported in the direction of mean rate of strain

E
(
vvT

)
− 1

3
tr
(
E
(
vvT

))
I = − νT

Reτ

(
∇ū + (∇ū)T

)
.

Here, νT (y) is the turbulent eddy viscosity normalized by
kinetic energy, overline denotes averaging over horizontal
dimensions, tr(·) is the trace, and I is the identity operator.

A. Modeling surface corrugation
To account for the effect of riblets we use the volume

penalization technique proposed by Khadra et al. [24]. This
method avoids the implementation of boundary conditions
in complex geometries by modeling the effect of solid
obstructions of the flow as a spatially varying permeability
function K(x, y, z) that influences the governing equations
as an additive body force. Based on this modulation, the
mean flow equations in steady state take the following form:

0 = − (ū · ∇) ū − ∇P̄ − K−1 ū

+
1

Reτ
∇ ·
(
(1 + νT )(∇ū + (∇ū)T )

)
0 = ∇ · ū.

(5)

Within the fluid, the penalization resulting from the perme-
ability function K should have no influence on the flow, i.e.,
K → ∞, yielding back the original mean flow Eqs. (4).
On the other hand, within the riblets, the function K should
force the velocity field to zero, i.e., K → 0. To respect the
shape of the streamwise-constant surface corrugation studied
in this paper, we follow [23], [26] and consider the expansion

K−1(y, z) =
∑
m∈Z

am(y) exp(imωzz). (6)

Here, ωz is the fundamental spatial frequency of the riblets
and am(y) specifies their height. The coefficients am(y)
in (6) can be obtained from the spatial Fourier transform
of a pre-determined resistance field K−1(y, z) in the homo-
geneous direction (z). Figure 2(a) shows the resistance field
K−1 for triangular riblets with ωz = 30.

The base flow which is obtained from solving the mean
flow Eqs. (5) adopts a similar harmonic form as (6), i.e.,

ū(y, z) =
∑
m∈Z

ūm(y) exp(imωzz). (7)

Remark 1: The solution to nonlinear Eqs. (5) obtained via
Newton’s method has a single streamwise component, ū =
[U(y, z) 0 0 ]T , which significantly simplifies the form of
Eqs. (5) bringing them into a linear form.

B. Turbulent drag reduction with νT0

In order to determine the influence of surface corrugation
on drag we need robust models for turbulent viscosity νT in
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Fig. 2. (a) Resistance field K−1 based on Eq. (6) with m = −12, . . . , 12
demonstrating the shape of riblets; and (b) the streamwise mean velocity
for turbulent channel flow with Reτ = 186 over the triangular riblets with
ωz = 30 shown in (a).

Eqs. (5). Several studies have proposed expressions for νT0

that yield the turbulent mean velocity in flows over smooth
walls [27]–[29]. Following [21, Section 2.1], we use the Cess
turbulent viscosity model νT0(y) developed in [29].

In this study, we adjust the wall-normal position of riblets
so that the mean velocity profile obtained from (5) has the
same bulk, UB , as the channel flow with smooth walls, i.e.,

ωz
2π

∫ 1

−1

∫ 2π/ωz

0

U(y, z) dz dy =

∫ 1

−1
U0(y) dy = UB .

Here, U0(y) is the turbulent mean velocity profile in the
absence of riblets. In the vicinity of the solid wall, the
flow is dominated by viscosity and can be assumed to be
laminar. Thus, when the size of the riblets are small, the
grooved region in between riblets is in close proximity of the
solid surface, and can be regarded as a laminar flow regime.
Based on this, in this study, we will assume the riblets to be
small and consider the flow to be laminar below y = −1,
i.e., νT = 0 for y ≤ −1. A pseudospectral scheme with
Chebyshev polynomials [30] is applied to discrete Eqs. (5) in
the wall-normal dimension. To avoid numerical oscillations
in the solution to Eqs. (5), we divide the wall-normal extent
of the computational domain into two parts (y ≤ −1 and
−1 ≤ y ≤ 1) and use block operators [31] to discretize the
domains using Ni = 179 collocation points for y ∈ [−1, 1]
and No = 20 collocation points for y ≤ −1.

We impose no-slip boundary conditions (2) on the upper
wall of the channel. The adopted volume penalization method
automatically enforces immersed boundary conditions on
the non-smooth lower wall without the need for additional
boundary conditions. The boundary conditions at the inter-
section of the aforementioned wall-normal regimes (y = −1)
enforce smoothness of all physical quantities

ū(y = −1+, z) = ū(y = −1−, z)

dū

dy
(y = −1+, z) =

dū

dy
(y = −1−, z)

(8)

where y = −1+ denotes the lower boundary point at y =
−1 for the domain over y ∈ [−1, 1] and y = −1− is the
upper boundary point for the domain over y ≤ −1.

We solve Eqs. (5) with νT0 and pressure gradient P̄x = −1
for m = −12, . . . , 12. Figure 2(b) shows the mean velocity
of a turbulent channel flow with Reτ = 186 over triangular
riblets with ωz = 30. The slope of the mean velocity at the

∆
D

(%
)

ωz

Fig. 3. Drag reduction in a turbulent channel flow with Reτ = 186 over
triangular riblets with various spanwise frequencies ωz .

lower wall determines the skin-friction drag

D =
ωz
2π

∫ 2π/ωz

0

dU

dy
(y = −1, z) dz.

The drag reduction rate can thus be computed as

∆D := (D − D0) /D0 (9)

where D0 denotes the slope of the mean velocity at the lower
wall of a smooth channel (without riblets). Figure 3 shows
the percentage of drag reduction obtained using νT0 for a
turbulent channel flow with Reτ = 186. Clearly the amount
of drag reduction is significantly over-predicted relative to
the rates reported in numerical and experimental studies (∼
10%). In the next section, we extend the framework proposed
in [21] to account for the effect of velocity fluctuations and
obtain corrections to the turbulent viscosity νT0.

III. DYNAMICS OF VELOCITY FLUCTUATIONS

In this section, we examine the dynamics of fluctuations
around the turbulent mean velocity profile determined in
Section II. The second-order statistics of velocity fluctuations
obtained using the stochastically forced linearized equations
around ū are used to compute corrections to the turbulent
viscosity and mean flow profiles. Our model-based frame-
work for studying the effect of surface corrugation involves
the following steps:

1) The turbulent mean velocity is obtained from Eqs. (5),
where closure is achieved using the turbulent viscosity
νT0 for the channel flow with smooth walls.

2) [Section III-D] The stochastically forced linearized NS
equations around the mean flow obtained in step 1
are used to compute the second-order statistics of the
fluctuating velocity field and correct νT0.

3) The modified turbulent viscosity is used to correct the
mean velocity and compute skin-friction drag.

A. Model equation for νT
As mentioned in Section II, νT0 is not an accurate

eddy-viscosity model for the channel flow with corrugated
surfaces. The challenge stems from connecting νT to the
second-order statistics of velocity fluctuations. For this pur-
pose, herein, we follow [21] in using the model equation [32]

νT (y) = cRe2τ
k2(y)

ε(y)
(10)

5920



where c = 0.09, k is turbulent kinetic energy, and ε is
its rate of dissipation. Wall-normal profiles for k and ε
can be obtained by averaging the second-order statistics of
velocity fluctuations over the horizontal dimensions; see [21,
Section 2.3] for details. We next demonstrate how second-
order statistics of the fluctuation field can be computed using
the stochastically forced linearized NS dynamics.

B. Linearized NS equations

The dynamics of velocity v = [u v w ]T and pressure
p fluctuations around ū = [U(y, z) 0 0 ]T are governed by
the linearized NS and continuity equations:

vt = − (∇ · ū)v − (∇ · v) ū − ∇p − K−1v

+
1

Reτ
∇ ·
(
(1 + νT )(∇u + (∇u)T )

)
+ f

0 = ∇ · v. (11)

Here, f is a zero-mean white-in-time stochastic forcing. Note
that the solution to Eqs. (11) adopts a similar harmonic struc-
ture as coefficients K−1 and ū. Following [18], application
of the Fourier transform brings the set of spatially periodic
PDEs (11) into the evolution form

∂tψθ(y, kx, t) = Aθ(kx)ψθ(y, kx, t) + fθ(y, kx, t),

vθ(y, kx, t) = Cθ(kx)ψθ(y, kx, t) (12)

where the state ψ = [ v η ]T contains wall-normal velocity
v and vorticity η = ∂zu − ∂xw. At the upper-wall of
the channel, homogenous Dirichlet boundary conditions are
imposed on η, while homogeneous Dirichlet and Neumann
boundary conditions are imposed on v. Similar to the mean
flow equations (5), the boundary conditions at the corrugated
surface are automatically satisfied via volume penalization.

In Eqs. (12), ψθ, vθ, and fθ are bi-infinite column vectors
parameterized by the spanwise wavenumber offset θ ∈
[0, ωz/2) and the streamwise wavenumber kx. For example,
ψθ(y, kx, t) = col{ψ(θn, y, kx, t)}n∈Z, where θn = nωz+θ
for various harmonics nωz . Furthermore, for each θ and kx,
Aθ(kx) and Cθ(kx) are bi-infinite matrices whose elements
are integro-differential operators in y; see Appendix A.

C. Second-order statistics of velocity fluctuations

The linearized dynamics (12) are driven by zero-mean
white-in-time stochastic forcing f with second-order statistics

E (fθ(·, kx, t1)⊗ fθ(·, kx, t2)) = Mθ(kx) δ(t1 − t2). (13)

Here, δ is the Dirac delta function, ⊗ denotes the tensor
product, and Mθ(kx) is the spatial spectral-density of forc-
ing. Following [21, Section 3.1], we select M so that the
energy spectrum of velocity fluctuations v matches that of a
turbulent channel flow with smooth walls.

The steady-state autocorrelation operator of ψθ can be
determined from the solution to the Lyapunov equation

Aθ(kx)Xθ(kx) + Xθ(kx)A†
θ(kx) = −Mθ(kx)

where † denotes the adjoint of an operator which should be
determined with respect to the appropriate inner product [13].

The solution Xθ has a similar bi-infinite structure as Aθ in
which the (i, j)th block is the correlation matrix associated
with the ith and jth harmonics of the state ψθ. Due to lin-
earity of the dynamics, autocorrelation matrices Xd(kx, θn),
which represent the elements on the main diagonal of Xθ

can be decomposed as

Xd(kx, θn) = X0(kx, θn) + Xc(kx, θn) (14)

where X0 and Xc are autocorrelations of velocity fluctua-
tions in the channel with smooth walls and the modification
resulting from inclusion of surface corrugation, respectively.
Finally, we note that the energy spectrum is given by

E(kx, θ) = tr (Xθ(kx)) =
∑
n∈Z

tr (Xd(kx, θn)) .

D. Correction to turbulent viscosity νT

According to Eq. (10), the turbulent viscosity νT is deter-
mined by second-order statistics of the velocity fluctuations.
These statistics can be obtained from the autocorrelation
operator Xd in (14). Following Eq. (14), the kinetic energy
k and its rate of dissipation ε can also be decomposed as

k = k0 + kc, ε = ε0 + εc (15)

where the subscript 0 denotes quantities in the channel flow
without surface corrugation, and the subscript c quantifies
the influence of fluctuations in the flow over the corrugated
surface. While k0 and ε0 can be extracted from the result
of numerical simulations of turbulent channel flows with
smooth walls, corrections kc and εc can be determined from
second-order statistics in Xc(kx, θn); see [21, Appendix D]
for details. Substituting k and ε from (15) into (10) and
application of the Neumann series expansion yields

νT = νT0 + νTc (16)

with

νTc = νT0

((
1 +

kc
k0

)2(
1 − εc

ε0
+
( εc
ε0

)2) − 1

)
as the correction to turbulent viscosity νT0. The influence of
fluctuations on the turbulent mean velocity (and consequently
drag) can be obtained by substituting νT from (16) and
solving Eqs. (5). Additional details on computing Uc are
omitted for brevity; see [21, Appendix E] for details.

IV. RESULTS

We study the effect of triangular surface corrugation on
the skin-friction drag and kinetic energy of turbulent channel
flow with Reτ = 186. The ratio between the height h and
spacing s = 2π/ωz of riblets is assumed to be fixed (h/s =
0.36). Second-order statistics of the flow without riblets are
provided by high-fidelity simulations [33], [34] and are used
to obtain the turbulent energy spectrum of stochastic forcing
f in Eq. (13) and to compute the kinetic energy profile k0(y)
from which ε0(y) is obtained as ε0 = cRe2τk

2
0/νT0. We

use 199 Chebyshev collocation points to discretize the wall-
normal dimension (Ni = 179, No = 20). For the horizontal
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Fig. 4. (a) Normalized turbulent drag reduction (ml is the slope of the
drag reduction curve at small l+g ) and (b) kinetic energy suppression in a
channel flow with Reτ = 186 over triangular riblets of various size. The
shaded area is the envelope of experimental and numerical results [1], [10].

(a) (b)

k
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θ θ

Fig. 5. (a) Premultiplied energy spectrum kxE0(kx, θ) from numerical
simulations of a turbulent channel flow with Reτ = 186 [33]; and (b)
correction to the energy spectrum resulting from second-order statistics
Xc(kx, θn) for flow over triangular riblets with ωz = 50 (l+g = 9.9).

dimensions, we parameterize Eqs. (12) using 48 streamwise
Fourier wavenumbers (0.03 < kx < 40) and θn = nωz + θ
with ωz = {30, 35, 40, 45, 50, 60, 80, 100, 160}, respec-
tively. To capture triangular riblets, we use Eq. (6) with 25
harmonics (m = −12, . . . , 12).

We quantify the size of riblets using the obstruction area
defined in inner units l+g :=

√
h+s+/2, with h+ and s+

being the height and spacing in inner viscous units (h+ =
Reτh and s+ = Reτs). For triangular riblets of various size,
Fig. 4(a) shows drag reduction ∆D (Eq. 9) normalized by
its slope ml at small l+g . It is clear that small-size riblets
can indeed yield a decrease in turbulent drag. We observe
good agreement in capturing the overall trend and the riblet
size corresponding to maximum drag reduction from the
experiments of [1] and the numerical simulations of [8], [10].
Figure 4(b) shows the turbulent kinetic energy suppression

∆E :=
(
Ē − E0

)
/E0

due to triangular riblets of various size. Here, Ē and E0

denote the kinetic energy of velocity fluctuations in the
presence and absence of riblets, respectively, which can be
computed by integrating the energy spectrum E(kx, θ) over
all horizontal wavenumbers kx and θn. Interestingly, we
observe a very similar trend for ∆E as a function of l+g
to that of ∆D, which suggests that the kinetic energy of
velocity fluctuations can be used as a surrogate for predicting
the effect of surface corrugation on skin-friction drag.

Figure 5 compares the energy spectrum of turbulent chan-
nel flow with smooth walls and the change to the energy
spectrum due to riblets. The energy spectra are premultiplied
by the logarithmically scaled streamwise wavenumber so that
the areas under the plots are equal to the total energy of fluc-

tuations. Note that in the spanwise direction, which involves
the parameterization θn = nωz + θ, we have integrated the
energy spectrum over all n. As shown in Fig. 5(a), the peak
of the energy spectrum happen at (kx, θ) = (2.2, 3.1). On the
other hand, Fig. 5(b) shows that riblets with ωz = 50 reduce
the energy at longer streamwise wavelengths (smaller kx)
and increase the energy at shorter ones; the largest energy
amplification and suppression occur at (kx, θ) = (5.5, 4.1)
and (kx, θ) = (0.4, 4.1), respectively. These figures provide
evidence that the analysis of a spatially periodic system such
as the one described in this paper cannot be limited to a
single horizontal wavenumber pair associated with the peak
of the energy spectrum or the dominant near-wall structures
(cf. [23]). Similar conclusions were drawn in the analysis of
channel flow subject to transverse wall oscillations [21].

V. CONCLUSION

We have developed a model-based framework for studying
the effect of surface corrugation on skin-friction drag in
turbulent channel flows. The influence of the corrugated
surface is captured via a volume penalization technique.
Our simulation-free approach is based on the utility of
stochastically forced linearized equations in modeling the
dynamics of velocity fluctuation and correcting turbulence
models that capture the effect of background turbulence
on the mean flow and skin-friction drag. For a turbulent
channel flow with lower-wall spanwise-periodic triangular
corrugation, we capture drag-reducing trends and optimal
riblet sizes (producing maximum drag reduction) that have
been previously reported in experimental and numerical
studies. We also investigate the dependence of the turbulent
kinetic energy of velocity fluctuations on the riblets’ size
and demonstrate very similar trends to what we observe
for drag reduction. Our approach paves the way for an in-
depth analysis of the underlying physical mechanisms that
are responsible for drag reduction and energy suppression as
well as the optimal design of riblet-mounted surfaces.

APPENDIX

A. Matrix operators Aθ and Cθ in Eqs. (12)

The generator Aθ has a bi-infinite structure of the form

Aθ :=


. . .

...
...

... . .
.

· · · An−1,0 An−1,+1 An−1,+2 · · ·
· · · An,−1 An,0 An,+1 · · ·
· · · An+1,−2 An+1,−1 An+1,0 · · ·

. .
. ...

...
...

. . .


where the off-diagonal term An,m denotes the influence of
the (n+m)th harmonic ψn+m on the dynamics of the nth
harmonic ψn. Each An,m contains four operators,

An,m =

[
An,m,1,1 An,m,1,2
An,m,2,1 An,m,2,2

]
.

For m = 0, we have

An,0,1,1 = ∆−1
n

[
(1 + νT )∆2

n + ν′′T (∂2
y + k2n) +

2ν′T
Reτ

]
+ Γn,0,1,1,

5922



An,0,1,2 = Γn,0,1,2,

An,0,2,1 = Γn,0,2,1,

An,0,2,2 = ∆−1
n

[
(1 + νT )∆n +

ν′T
Reτ

]
+ Γn,0,2,2

with k2n = k2x + θ2n, and for m 6= 0, we have

An,m,1,1 = Γn,m,1,1, An,m,1,2 = Γn,m,1,2,

An,m,2,1 = Γn,m,2,1, An,m,2,2 = Γn,m,2,2

where

Γn,m,1,1 = ∆−1
n

[
2 imkx ωz

θn+m
k2n+m

(U ′−m∂y + U−m∂yy)

+ ikx (U ′′−m − U−m∆n+m) − a−m∆n+m

+ ikx(mωz)
2U−m − 2mkxωzθn+mU−m

+mωz(mωz − 2 θn+m)a−m − a′−m∂y

+ mωz
θn+m
k2n+m

(a′−m∂y + a−m∂yy)

]

Γn,m,1,2 = ∆−1
n

[
2

imk2x ωz
k2n+m

(U ′−m + U−m∂y)

+
mkx ωz
k2n+m

(a′−m + a−m∂y)

]
Γn,m,2,1 = imωz (U ′−m − U−m∂y) − iθn+mU

′
−m

+

[
i(mωz)

2 θn+m
k2n+m

U ′−m − mkx ωz
k2n+m

a−m

]
∂y

Γn,m,2,2 =
[(mωz
kn+m

)2 − 1
]
ikxU−m +

[
mωz

θn+m
k2n+m

− 1
]
a−m

Here, θn+m = (n + m)ωz + θ, k2n+m = k2x + θ2n+m, and
∆n+m = ∂yy − k2n+m. The operator Cθ is of the form

Cθ = diag { · · · , Cn−1 , Cn , Cn+1 , · · · }

where

Cn =
1

k2n

 ikx ∂y −i θn

k2n 0

i θn ∂y ikx

 .
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