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Abstract— We examine transient responses of accelerated
first-order optimization algorithms. By focusing on strongly
convex quadratic problems, we identify the presence of modes
whose algebraic growth induces large transient departure from
the optimal solution. Leveraging the tools from linear systems
theory, we explicitly quantify the transient growth caused
by these resonant interactions. Our results demonstrate that
both the time at which the transient response peaks and the
largest value of the Euclidean distance between the optimization
variable and the global minimizer are proportional to the
square root of the condition number.

Index Terms— Acceleration, convex optimization, first-order
optimization algorithms, gradient descent, Nesterov’s acceler-
ated algorithm, Polyak’s heavy-ball method, transient growth.

I. INTRODUCTION

First-order optimization algorithms are widely used in
applications that arise in statistics, signal and image pro-
cessing, control, and machine learning [1]–[6]. Acceler-
ated first-order algorithms achieve faster convergence rate
while preserving low per-iteration complexity of gradient
descent. This has motivated the analysis of convergence
under different stepsize selection rules [7]–[10]. There is
also a growing body of literature that studies robustness of
these algorithms for different types of uncertainties [11]–
[17]. These studies demonstrate that acceleration increases
sensitivity to uncertainty in gradient evaluation.

In addition to poor robustness in the face of uncertainty,
even when the exact gradient is available, accelerated algo-
rithms may exhibit undesirable transient behavior. This is in
contrast to gradient descent which is a contraction mapping
for strongly convex problems with suitable stepsize [18].
The existing results on convergence and robustness do not
capture this transient growth and fail to provide insight into
performance in non-asymptotic regimes with limited time
budgets. For example, first-order algorithms are often used
as a building block in multi-stage optimization including
ADMM [19] and distributed optimization methods [20]. In
these scenarios, variables are updated by performing only a
few iterations at each stage. This motivates an in-depth study
of the non-asymptotic behavior of first-order methods.

It is widely recognized that large transients of linear
systems can arise from the presence of resonant modal inter-
action and non-normality of dynamical generators [21]. Even
in the absence of exponentially growing normal modes these
can induce large transient responses, significantly amplify
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background disturbances, and trigger departure from nominal
operating conditions. For example, in fluid dynamics, such
mechanisms may initiate departure from laminar flows and
provide routes for transition to turbulence [22], [23].

In this paper, we examine non-asymptotic behavior of
accelerated methods for strongly convex quadratic problems.
In this case, the accelerated algorithms are linear dynamical
systems and transient responses can be explicitly quantified.
We characterize the transient behavior of two most com-
monly used accelerated algorithms: Polyak’s heavy-ball and
Nesterov’s methods. We derive analytical expressions for the
state-transition matrices and quantify the transient response
in terms of convergence rate and iteration number. We also
derive tight analytical bounds on magnitude and iteration
number of the peak of the transient response in terms of
the condition number κ and show that these quantities grow
with the square root of κ. Finally, we demonstrate how a
Lyapunov-based approach can be used to establish an upper
bound on the transient response.

Recent reference [24] studied the transient growth of
second-order systems and introduced a framework for es-
tablishing upper bounds, with a focus on real eigenvalues.
The result was applied to the heavy-ball method but was
not applicable to general quadratic problems in which the
dynamical generator may have complex eigenvalues. We
account for complex eigenvalues and generalize to Nesterov’s
accelerated algorithm. Furthermore, we provide tight upper
and lower bounds on transient responses in terms of the
condition number and identify the structure of the initial
condition that induces largest transient growth.

The paper is structured as follows. In Section II, we
provide background on the accelerated algorithms and dis-
cuss strongly convex quadratic problems. In Section III,
we examine the transient growth of accelerated methods
and provide analytical expressions and explicit bounds. In
Section IV, we utilize a Lyapunov-based approach to upper
bound the transient peak. In Section V, we offer concluding
remarks and discuss future directions.

II. MOTIVATION AND BACKGROUND

The unconstrained optimization problem

minimize
x

f(x) (1)

where f : Rn → R is a convex function with an L-Lipschitz
continuous gradient ∇f , can be solved using variety of
techniques including the gradient descent method

xt+1 = xt − αt∇f(xt) (2a)
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Fig. 1: Error in the optimization variable for Polyak’s heavy-
ball (black) and Nesterov’s (red) methods with optimal
parameters provided in Table I applied to a strongly convex
quadratic problem with condition number κ = 103.

and its accelerated variants, namely Polyak’s heavy-ball
method

xt+2 = xt+1 + βt(xt+1 − xt) − αt∇f(xt+1) (2b)

and Nesterov’s accelerated algorithm

xt+2 = xt+1 + βt(xt+1 − xt) −
αt∇f

(
xt+1 + βt(xt+1 − xt)

)
.

(2c)

Here, t is the iteration index, αt > 0 is the stepsize, and
βt ∈ (0, 1] is the acceleration parameter.

In the absence of strong convexity, Nesterov’s accelerated
method enjoys an optimal convergence rate among first-order
algorithms. While the gradient descent with the stepsize 1/L
provides O(1/t) decay rate in the objective value,

f(xt) − f(x?) ≤ L

2t
‖x0 − x?‖2

Nesterov’s accelerated algorithm with αt = 1/L and βt =
(t− 1)/(t+ 2) yields [9],

f(xt) − f(x?) ≤ 4L

(t + 2)2
‖x0 − x?‖2

where x? is a global minimizer of f . Furthermore, when
the objective function f is not only L-smooth but also m-
strongly convex, i.e., when f(x)− m

2 ||x||
2 is convex, these

algorithms can achieve a linear convergence rate ρ < 1,

‖xt − x?‖ ≤ c ρt ‖x0 − x?‖ (3)

where c ≥ 1 is a constant. In this case, acceleration improves
the rate of convergence from O(1 − 1/κ) for gradient
descent to O(1−1/

√
κ) for Nesterov’s algorithm [25], where

κ := L/m is the condition number associated with the
function f . In spite of significant improvement in the rate
of convergence, acceleration may deteriorate performance on
finite time intervals and lead to large transient responses. In
particular, the constant c in (3) may become significantly
larger than 1 for accelerated algorithms whereas c = 1
for gradient descent because of its contractive property for

Method Parameter choice Rate

Gradient α = 2
L+m

κ−1
κ+1

Nesterov α = 4
3L+m , β =

√
3κ+1−2√
3κ+1+2

√
3κ+1−2√
3κ+1

Polyak α = 4
(
√
L+
√
m)2

, β = (
√
κ−1)2

(
√
κ+1)2

√
κ−1√
κ+1

TABLE I: Optimal parameters and the linear convergence
rate bounds for m-strongly convex quadratic objective func-
tions with L-Lipschitz gradients and κ := L/m [26].

strongly convex problems. Figure 1 shows the transient
growth of the error in the optimization variable for accel-
erated algorithms (2b) and (2c). A strongly convex quadratic
problem with κ = 103 is considered and the parameters α
and β in Table I that optimize the linear convergence rate
are used.

In this paper, we examine the transient responses of accel-
erated algorithms for strongly convex quadratic optimization.
For this class of problems, the function f in (1) is given by

f(x) =
1

2
xTQx + qTx

where Q = QT � 0 is a positive definite matrix and q ∈ Rn
is a vector. In this case, the condition number is determined
by the ratio of the largest and smallest eigenvalues of the
matrix Q, i.e., κ = λmax(Q)/λmin(Q) and the constant
values of parameters α and β provided in Table I yield
the fastest rate of convergence for all three algorithms.
Furthermore, since ∇f(x) = Qx + q, algorithms (2) are
linear time-invariant (LTI) systems and the dynamics of the
error xt − x? are governed by the state-space model

ψt+1 = Aψt (4a)
zt = C ψt (4b)

where ψt is the state, zt = xt − x? is the performance
output, and A and C are constant matrices of appropriate
dimensions. For gradient descent, we have

A = I − αQ, C = I, ψt := xt − x?

and for the accelerated methods, we can let

Polyak : A =

[
0 I
−βI (1 + β)I − αQ

]
Nesterov : A =

[
0 I

−β(I − αQ) (1 + β)(I − αQ)

]
.

ψt :=

[
xt − x?

xt+1 − x?

]
, C =

[
I 0

]
where I is the identity matrix.

For LTI system (4), the rate of convergence is determined
by the spectral radius ρ(A) := maxi |µi(A)|, where µi are
the eigenvalues of the matrix A. For α and β in Table I
and Q � 0, ρ(A) < 1 and system (4) is stable in all three
cases. While the convergence rate is a commonly used metric
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for evaluating performance of optimization algorithms, this
quantity only determines the asymptotic behavior and it
does not provide useful insight into transient responses. We
demonstrate detrimental impact of acceleration on transient
responses by quantifying performance of accelerated algo-
rithms on finite-time intervals.

III. TRANSIENT RESPONSES OF ACCELERATED METHODS

The transient response is an important measure of perfor-
mance of optimization algorithms, for the minimizer must be
computed after a finite number of iterations. The response
of LTI system (4) with an initial state ψ0 is determined by

zt = CAtψ0 = Φ(t)ψ0.

Here, At is the state-transition matrix of system (4), i.e.,
the tth power of the matrix A, and Φ(t) := CAt is the
mapping from the initial condition ψ0 to the performance
output zt := xt−x?. At a fixed iteration t, we are interested
in quantifying the transient growth, i.e., the worst case ratio
of the energy of zt to the energy of the initial condition ψ0,

sup
ψ0 6=0

‖zt‖2
‖ψ0‖2

= sup
‖ψ0‖2 =1

‖Φ(t)ψ0‖2 = σmax(Φ(t))

where σmax(·) is the largest singular value. Furthermore, the
singular value decomposition of Φ(t) yields

zt = U(t) Σ(t)V T (t)ψ0 =

r∑
j=0

σj(t)uj(t)v
T
j (t)ψ0.

The principal right singular vector v1(t) of the matrix Φ(t)
determines the unit norm initial condition that yields the
largest response at time t. The resulting response zt is in the
direction of the principal left singular vector u1(t) and the
corresponding gain is determined by σ1(t) = σmax(Φ(t)).
In what follows, we derive analytical bounds on the largest
singular value of the matrix Φ(t).

A. Dimensionality reduction

We use the eigenvalue decomposition of Q = V ΛV T � 0,
where Λ = diag (λi) is a diagonal matrix of the eigenvalues

λ1 ≤ λ2 ≤ · · · ≤ λn (5)

and V is a unitary matrix of the eigenvectors of Q to bring
A and C in (4) into a block diagonal form,

Â = diag (Âi), Ĉ = diag (Ĉi), i = 1, . . . , n.

In particular, the unitary coordinate transformation

x̂t := V T (xt − x?) (6)

brings the state-space model for the gradient descent into a
diagonal form with

ψ̂ti = x̂ti, Âi = 1 − αλi, Ĉi = 1.

Similarly, for accelerated algorithms, change of coordi-
nates (6) in conjunction with a permutation of variables yield

Polyak : Âi =

[
0 1
−β (1 + β)− αλi

]
Nesterov : Âi =

[
0 1

−β(1− αλi) (1 + β)(1− αλi)

]
ψ̂ti =

[
x̂ti
x̂t+1
i

]
, Ĉi =

[
1 0

]
.

(7)
Since both V and the permutation matrix are unitary, they
preserve the 2-norm. It is thus easy to verify that

σmax(Φ(t)) = σmax(ĈÂt) = max
i

σmax(Φ̂i(t)) (8)

where Φ̂i(t) := ĈiÂ
t
i and the second equality follows from

the block-diagonal structure of the matrices Â and Ĉ.
Each block Âi can be analyzed separately, reducing the

dimensionality of the problem. It is worth noting that the
matrices Âi in (7) are non-normal for accelerated methods.
As we illustrate next, this non-normality can cause transient
growth before eventual decay even in the absence of resonant
modes.

B. An example

Let us consider a second-order system[
ψt+1
1

ψt+1
2

]
=

[
µ1 γ
0 µ2

] [
ψt1
ψt2

]
where µ1, µ2, and γ are the real numbers. For µ1 6= µ2, the
solution is given by

ψt1 = µt1 ψ
0
1 +

γ

µ2 − µ1
(µt2 − µt1)ψ0

2

ψt2 = µt2 ψ
0
2

and both states asymptotically decay to zero at a linear rate
if |µi| < 1. While ψt2 monotonically decays to zero, ψt1
experiences transient growth because of the interaction of
two geometrically decaying modes µ1 and µ2. This growth
is caused by the non-normality of the dynamical generator,
i.e., the coupling from the second state to the first state and it
increases linearly with the increase in parameter γ. We note
that it occurs even in the absence of resonant interactions
(i.e., µ1 = µ2) or near resonances (i.e., µ1 ≈ µ2). For
repeated eigenvalues, i.e., µ = µ1 = µ2, we have

ψt1 = µt ψ0
1 + γ t µt−1 ψ0

2

ψt2 = µt ψ0
2

and the transient growth arises from the increasing term t
that initially dominates the decaying mode µt−1.

C. State-transition matrices

As discussed in the previous section, the state-space rep-
resentation of accelerated algorithms can be brought into a
block-diagonal form of n decoupled second-order systems,

ψ̂t+1
i = Âi ψ̂

t
i

ẑti = Ĉi ψ̂
t
i .
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The matrices Âi and Ĉi are given by

Âi =

[
0 1
ai bi

]
, Ĉi =

[
1 0

]
where (ai = −β; bi = (1 + β) − αλi) for the heavy-ball
method and (ai = −β(1−αλi); bi = (1 + β)(1−αλi)) for
Nesterov’s method. The characteristic polynomial of Âi is

det(sI − Âi) = s2 − bis − ai = (s− µ1i)(s− µ2i)

and Âi can be represented in terms of its eigenvalues as

Âi =

[
0 1

−µ1iµ2i µ1i + µ2i

]
.

Next lemma allows us to determine explicit expression for
Âti. This result can be obtained using eigenvalue/Jordan
decomposition.

Lemma 1: Let µ1 and µ2 be the eigenvalues of the matrix

M =

[
0 1

−µ1µ2 µ1 + µ2

]
. (9)

For any positive integer t, the matrix M t is determined by

M t =
1

µ2 − µ1

[
µ1µ2(µt−11 − µt−12 ) µt2 − µt1
µ1µ2(µt1 − µt2) µt+1

2 − µt+1
1

]
which for µ := µ1 = µ2 simplifies to

M t =

[
(1− t)µt t µt−1

−t µt+1 (t+ 1)µt

]
.

The explicit expressions in Lemma 1 allow us to obtain a
tight upper bound on the norm of the first row of matrix M
given by (9) in terms of the spectral radius of M .

Lemma 2: The matrix M in (9) satisfies

‖
[

1 0
]
M t‖22 ≤ (t− 1)2ρ2t + t2ρ2t−2 (10)

where ρ is the spectral radius of M . Moreover, (10) becomes
equality if M has repeated eigenvalues.

Proof: Using Lemma 1, we can represent the first row
of the matrix M t in terms of the eigenvalues µ1, µ2 of M ,

[
1 0

]
M t =

[
−
t−2∑
i=0

µi+1
1 µt−1−i2

t−1∑
i=0

µi1µ
t−1−i
2

]
.

Now, we can use the triangle inequality to write

|
t−2∑
i=0

µi+1
1 µt−1−i2 | ≤

t−2∑
i=0

|µi+1
1 µt−1−i2 | ≤

t−2∑
i=0

ρt ≤(t− 1)ρt

|
t−1∑
i=0

µi1µ
t−1−i
2 | ≤

t−1∑
i=0

|µi1µt−1−i2 | ≤
t−1∑
i=0

ρt−1 ≤ tρt−1.

For repeated eigenvalues, ρ = |µ| = |µ1| = |µ2| and these
inequalities become equalities.

D. Transient growth analysis

We next use Lemma 2 to establish analytical expression
for the largest singular value of the matrix Φ(t) = CAt asso-

ciated with Polyak’s and Nesterov’s accelerated algorithms.

Theorem 1: For accelerated algorithms, the largest singu-
lar value of the matrix Φ(t) := CAt satisfies

σ2
max(Φ(t)) ≤ (t− 1)2ρ2t + t2ρ2(t−1) (11)

where ρ is the corresponding rate of convergence which only
depends on the condition number κ. Moreover, (11) becomes
equality for the optimal parameters provided in Table I.

Proof: Let µ1i and µ2i be the eigenvalues of the matrix
Âi with the spectral radius ρ̂i = max {|µ1i|, |µ2i|}. We can
use Lemma 2 with M := Âi for each i to obtain

σ2
max(Φ(t)) = max

i
σ2
max(

[
1 0

]
Âti)

≤ max
i

(t− 1)2ρ̂2ti + t2ρ̂2t−2i

≤ (t− 1)2ρ2t + t2ρ2t−2 (12)

where ρ is the spectral radius of the matrix A. Here, the
equality follows from (8), the first inequality follows from
Lemma 2, and the third inequality is a consequence of

ρ = max
i

ρ̂i.

For the parameters in Table I, it can be shown that Â1 and
Ân, that correspond to the smallest and largest eigenvalues
of Q, i.e., λ1 = m and λn = L, respectively, have the largest
spectral radius [15, Eq. (64)],

ρ = ρ̂1 = ρ̂n ≥ ρ̂i, i = 2, . . . , n− 1. (13)

Furthermore, it is straightforward to verify that the matrix
Â1 has repeated eigenvalues. Thus, we can write

σ2
max(Φ(t)) = max

i
σ2
max(

[
1 0

]
Âti)

≥ σ2
max(

[
1 0

]
Ât1) = (t− 1)2ρ̂2t1 + t2ρ̂2t−21

= (t− 1)2ρ2t + t2ρ2t−2. (14)

Here, the second inequality follows from Lemma 2 applied to
M := Â1 and the last inequality follows from (13). Finally,
combining (12) and (14) completes the proof.

Theorem 1 highlights the source of disparity between the
long and short term behavior of the state-transition matrix. In
particular, while the geometric decay of ρt drives Φ(t) to 0
as t→∞, early stages are dominated by the algebraic term
which induces a transient growth. We next use this result to
provide tight bounds on the time tmax at which the largest
transient response takes place and the corresponding peak
value σmax(Φ(tmax)). Even though the explicit expressions
for these two quantities can be derived, our tight upper and
lower bounds are more informative and easier to interpret.

Theorem 2: For accelerated algorithms with the param-
eters provided in Table I and ρ ∈ [1/e, 1), the time at
which the largest transient response takes place tmax :=
argmaxt σmax(Φ(t)) and the corresponding peak value
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σmax(Φ(tmax)) := maxt σmax(Φ(t)) satisfy

− 1

log ρ
≤ tmax ≤ −

1

log ρ
+ 1

−
√

2ρ

e log ρ
≤ σmax(Φ(tmax)) ≤ −

√
2

e ρ log ρ
.

Proof: Let a(t) := tρt. Then, Theorem 1 implies

σ2
max(Φ(t)) = ρ2a2(t− 1) + ρ−2a2(t). (15)

For ρ ∈ [1/e, 1), we have maxt a(t) = −1/(e log ρ) and the
maximum takes place at tmax = −1/ log ρ ≥ 1. Moreover,
the terms on the right-hand side of (15) satisfy

ρ2a2(t− 1) ≤ ρ−2a2(t)

for all t ≥ 1, which implies

2ρ2a2(t− 1) ≤ σ2
max(Φ(t)) ≤ 2ρ−2a2(t). (16)

Substituting for a(t) and a(t − 1) in (16) using their
maximum values −1/(e log ρ) establishes the bounds on
maxt σmax(Φ(t)). Regarding the time at which maximum
occurs, it is straightforward to verify that dσmax(Φ(t))/dt
is positive at t = −1/ log ρ and negative at t = 1− 1/ log ρ.
Moreover, it can be shown that the function σmax(Φ(t)) has
only one critical point for t ≥ 1 and that this critical point is
a maximizer. Based on these observations, we conclude that
the maximizer must lie between −1/ log ρ and 1− 1/ log ρ.
This completes the proof.

For accelerated algorithms with parameters provided in
Table I, Theorem 2 can be used to determine the location of
the transient peak in terms of condition number κ. Since for
Polyak’s heavy-ball method, ρ = 1 − 2/(

√
κ+ 1) and for

Nesterov’s accelerated algorithm, ρ = 1− 2/(
√

3κ+ 1), the
Mercator series log(1 + x) =

∑∞
i=1

(−1)i−1

i xi, |x| < 1
in conjunction with Theorem 2 can be used to establish that
both tmax and σmax(Φ(tmax)) scale as

√
κ for κ� 1.

Proposition 1: For accelerated algorithms with the pa-
rameters provided in Table I and the condition number
κ � 1, the time at which the largest transient response
takes place tmax := argmaxt σmax(Φ(t)) and the peak value
σmax(Φ(tmax)) := maxt σmax(Φ(t)) satisfy
(i) Polyak’s heavy-ball method

(
√
κ+ 1)/2 ≤ tmax ≤ (

√
κ+ 3)/2

√
κ− 1√

2 e
≤ σmax(Φ(tmax)) ≤

√
κ+ 1√

2 e

(ii) Nesterov’s accelerated method
√

3κ+ 1

2
≤ tmax ≤

√
3κ+ 1 + 2

2√
3κ+ 1− 2√

2 e
≤ σmax(Φ(tmax)) ≤

√
3κ+ 1√

2 e
.

Remark 1: The initial condition that leads to the largest
transient growth on a fixed time interval is determined by

ψ̂0
i =

1

σmax(Φ(t))

[
(1− t) ρt
t ρt−1

]
.

σ
i(

Φ
(t

))

iteration number t iteration number t

(a) Polyak’s method (b) Nesterov’s method

Fig. 2: Singular values of the matrix Φ(t) := CAt for
Polyak’s and Nesterov’s methods for a strongly convex
quadratic problem with a Toeplitz matrix Q ∈ R100×100.

For accelerated algorithms with the parameters in Table I and
κ� 1, the initial condition that induces the largest response
is approximately given by

ψ̂0
i ≈

1

σmax(Φ(tmax))

[
−tmax ρ

tmax

tmax ρ
tmax

]
where bounds on tmax and σmax(Φ(tmax)) are established in
Proposition 1. Thus, for large condition numbers, the worst
case initial condition for the second part of the state points
in the opposite direction relative to the first state component.

An example: For a strongly convex quadratic problem in
which Q ∈ R100×100 is the Toeplitz matrix with the first
row determined by [ 2 − 1 0 · · · 0 ], Fig. 2 shows the
singular values of the matrix Φ(t) = CAt for accelerated
algorithms with parameters provided in Table I. In addition
to the principal right singular vector which generates the
largest transient response, many other singular vectors expe-
rience significant growth. This demonstrates that apart from
resonant interactions that arise from repeated eigenvalues
of the underlying dynamical generators, many other initial
conditions can grow significantly on finite time intervals.

IV. LYAPUNOV APPROACH FOR BOUNDING σmax(At)

Quadratic Lyapunov functions can be used as an effective
means to analyze the largest singular value of the state-
transition matrix. If a positive definite matrix P satisfies

APAT − P � 0 (17)

then the following bound on the largest singular value of At

σ2
max(At) ≤ λmax(P )/λmin(P )

holds for all t ≥ 1. To see this, let us define the LTI system
ψt+1 = ATψt with an initial condition ψ0 and consider the
Lyapunov function candidate V (ψ) = ψTP ψ. It is easy to
verify that under (17), the sequence V (ψt) is non-increasing,

V (ψt) ≤ V (ψt−1) ≤ · · · ≤ V (ψ0). (18)

Moreover, since P � 0, for all ψ we have

λmin(P ) ‖ψ‖22 ≤ V (ψ) ≤ λmax(P ) ‖ψ‖22
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which in conjunction with (18) yield

‖ψt‖22 ≤
λmax(P )

λmin(P )
‖ψ0‖22.

Thus, the state-transition matrix satisfies

σ2
max(At) = σ2

max((AT )t) = sup
ψ0 6=0

‖ψt‖22
‖ψ0‖22

≤ λmax(P )

λmin(P )
.

Next, we specialize this result to the accelerated methods.

A. Application to accelerated methods

Herein, we employ the Lyapunov-based method to obtain
bounds on the largest singular value of the state-transition
matrix of the accelerated algorithms. The next lemma pro-
vides a solution to the Lyapunov inequality (17) associated
with the matrices Âi.

Lemma 3: Consider the matrices

M =

[
0 1
a b

]
, P =

[
1 b/(1− a)

b/(1− a) 1

]
(19)

and let the spectral radius of M be strictly smaller than 1.
Then, P � 0 and MPMT − P � 0.

The proof of Lemma 3 exploits the Schur complement.
We omit it due to page limitations.

We can now use Lemma 3 to establish a bound on
σ2
max(M t). In particular, the eigenvalues of P in (19) are

given by 1 ± b/(1− a). Thus, by Lemma 3 we have

σ2
max(M t) ≤ λmax(P )

λmin(P )
= max

{
γ, γ−1

}
where γ := (1− a+ b)/(1− a− b) is the ratio between
the eigenvalues of the matrix P .

The next proposition, builds on this result and derives
bounds on the state-transition matrix of accelerated methods.

Proposition 2: For the parameters provided in Table I and
κ� 1, the state-transition matrix is upper bounded by

Polyak : σmax(At) ≤
√
κ

Nesterov : σmax(At) ≤
√

3κ− 1 − 1.

While Proposition 2 provides only upper bounds on the
norm of the state transition matrix, the lower bounds estab-
lished in Proposition 1 imply that the upper bounds provided
by this proposition are tight. In particular, this implies that,
for both algorithms, the peak magnitude of σ2

max(At) scales
linearly with the condition number κ.

V. CONCLUDING REMARKS

We have utilized a Lyapunov-based approach and spectral
analysis to explicitly quantify and bound transient responses
of accelerated methods for strongly convex quadratic prob-
lems. Our results demonstrate that the transient growth is
caused by resonant interaction in the underlying dynamical
generators, and that the largest transient peak scales as the
square root of the condition number.
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amplification of accelerated first-order algorithms for strongly convex
quadratic optimization problems,” in Proceedings of the 57th IEEE
Conference on Decision and Control, Miami, FL, 2018, pp. 5753–
5758.

[14] H. Mohammadi, M. Razaviyayn, and M. R. Jovanović, “Performance
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