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Abstract— We study performance of momentum-based ac-
celerated first-order optimization algorithms in the presence
of additive white stochastic disturbances. For strongly convex
quadratic problems with a condition number κ, we determine
the best possible convergence rate of continuous-time gradient
flow dynamics of order n. We also demonstrate that additional
momentum terms do not affect the tradeoffs between conver-
gence rate and variance amplification that exist for gradient
flow dynamics with n = 2.

Index Terms— Convex optimization, Gradient descent, In-
tegral quadratic constraints, Nesterov’s accelerated method,
Nonnormal dynamics, Transient growth.

I. INTRODUCTION

Accelerated first-order optimization algorithms [1]–[4] are
the workhorse for large-scale problems [5]–[7]. Momentum-
based algorithms enjoy favorable asymptotic behavior [8]–
[12] and, for different noise models, tradeoffs between ac-
celeration and robustness have also been studied [13]–[20].
These references suggest that accelerated methods are more
sensitive to noise than gradient descent.

The connection between ordinary differential equations
and iterative optimization algorithms is also well estab-
lished [21]–[29]. Recently, a second-order continuous-time
dynamical system with constant coefficients for which a
certain implicit-explicit Euler discretization yields Nesterov’s
accelerated algorithm was introduced in [30]. For strongly
convex problems, these accelerated gradient flow dynamics
were shown to be exponentially stable with rate 1/

√
κ, where

κ is the condition number of the problem. A more recent
work [31] examined the tradeoffs between convergence rate
and robustness to additive white noise of accelerated gradient
flow dynamics and established a lower bound on the product
between steady-state variance of the error in the optimization
variable and the settling time that scales with κ2. For this
class of accelerated dynamical systems, there appears to
be a fundamental limitation between convergence rate and
variance amplification imposed by the condition number.
In addition, similar phenomena was shown to persist in
the discrete-time setting for the class of noisy two-step
momentum algorithms [31], [32]. Corroborating results for
d1iscrete-time algorithms were also presented in [33] by
examining a parameterized family of two-step momentum
algorithms that enable systematic tradeoffs between these
quantities.
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In this paper, we extend the results in [30], [31] by
considering a nth-order accelerated gradient flow dynamics
that generalizes the system presented in [30]. For strongly
convex quadratic problems, we analyze convergence proper-
ties of this system and sensitivity to additive white noise.
In particular, we establish the optimal convergence rate
ρ = κ−1/n and identify constant algorithmic parameters that
achieve the optimal rate. In addition, we derive analytical
expressions for the noise amplification in terms of the entries
of the Routh-Hurwitz table [34]. This characterization allows
us to show that the product of variance amplification J (in
the error of the optimization variable) and settling time 1/ρ
is lower bounded by κ2/(2n).

Previous work [35] obtained similar results regarding the
parameters which achieve the convergence rate ρ = κ−1/n.
We provide additional analysis of system behavior, including
extending results to the noise amplification properties of this
class of accelerated gradient flow dynamics, particularly the
trade-off between settling time and noise amplification.

The rest of the paper is structured as follows. In Section II,
we provide preliminaries and background material. In Sec-
tion III, we present our results regarding convergence rate
and steady-state variance amplification. We first determine
the optimal rate of exponential convergence ρ in terms of the
condition number κ and system order n, and show that there
exists a set of parameters which achieves this rate. Next, we
determine an analytical expression for the steady-state vari-
ance amplification in terms of Routh-Hurtwitz coefficients
and identify a lower bound on the product between variance
amplification and settling time which scales with κ2. The
Proof is given in the appendix.

II. MOTIVATION AND BACKGROUND

We consider a class of dynamical systems,

x(n)(t) +

n−1∑
k= 0

βkx
(k)(t) + αg

(
n−1∑
k= 0

γkx
(k)(t)

)
= w(t)

(1)
where x(k)(t) is the kth derivative of x with respect to time
t, g is a nonlinear function, α, βk, and γk are constant
parameters, and w is a white-noise input with

E[w(t)] = 0, E[w(t1)w(t2)] = σ2Iδ(t1 − t2) (2)

and δ(·) is the Kronecker delta. Our motivation for studying
system (1) comes from optimization. In the absence of
noise, we can use system (1) with g(x) := ∇f(x) to solve
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unconstrained optimization problems

minimize
x

f(x) (3)

where f : Rd → R is an m-strongly convex function with an
L-Lipschitz continuous gradient ∇f . Throughout the paper,
we make the following assumptions:

Assumption 1: The parameters in system (1) satisfy

β0 = 0, γ0 = 1. (4)

Assumption 1 ensures that the equilibrium points x? of
system (1) satisfy the first-order optimality conditions for (3),

g(x?) = ∇f(x?) = 0. (5)

As varying the parameter α is a matter of time-scaling, we
set α = 1/L without loss of generality, and note that, for
n = 1, system (1) simplifies to the gradient flow dynamics,

x(1)(t) + (1/L)∇f(x(t)) = w(t)

and, for n = 2, noisy accelerated gradient flow dynamics is
obtained [30],

x(2)(t) + β1x
(1)(t) + (1/L)∇f(x(t) +γ1x

(1)(t)) = w(t).

A. Quadratic optimization problems

For strongly convex quadratic optimization problems,

f(x) =
1

2
xTQx − qTx (6)

with Q ∈ Rd×d, the parameters of strong convexity and
Lipschitz continuity, m and L, are respectively determined
by the smallest and the largest eigenvalues of the Hessian
matrix Q,

mI � Q � LI

and the condition number is given by κ := L/m. In this
case, differential equation (1) with g = ∇f becomes linear,

x(n)(t) +

n−1∑
k= 0

(βkI + γkαQ)x(k)(t) = w(t) (7)

and the optimization algorithm admits an LTI state-space
representation,

ψ̇ = Aψ + Bw

z = Cψ
(8a)

where z := x− x? is the error in the optimization variable,
ψ is the state vector defined by

ψ =
[
ψT1 ψT2

]T
ψ1 := z, ψ2 :=

[
(x(1))T · · · (x(n−1))T

]T (8b)

and A, B, C and constant matrices that are partitioned
conformably with the state vector ψ,

A =

[
0 I
A21 A22

]
, B =

[
0
I

]
, C =

[
I 0

]
A21 = −(β0I + γ0αQ)

A22 =
[
−(β1I + γ1αQ) · · · −(βn−1I + γn−1αQ)

]
.

(8c)
The eigenvalue decomposition of the Hessian matrix, Q =

V ΛV T , can be utilized to bring matrices in (8) into their
block diagonal forms, where V is an orthogonal matrix of
the eigenvectors of Q and Λ is a diagonal matrix of its
eigenvalues. In particular, the change of variables,

x̂ := V Tx, ŵ := V Tw (9)

allows us to transform system (8) into a parameterized family
of d decoupled subsystems indexed by i = 1, . . . , d,

˙̂
ψi = Â(λi)ψ̂i + B̂ŵi

zi = Ĉψi
(10a)

where λi is the ith eigenvalue of the matrix Q ∈ Rd×d, ŵi
is the ith component of the vector ŵ,

Â(λ) =

[
0 I

−a0(λ) [−a1(λ) · · · − an−1(λ)]

]
B̂ =

[
0 · · · 0 1

]T
, Ĉ =

[
1 0 · · · 0

]
.

(10b)
Here,

ak(λ) := βk + γkαλ, k = {0, . . . , n− 1} (10c)

and the characteristic polynomial of Â(λ) is given by,

F (s) :=

n∑
k= 0

ak(λ)sk =

n∏
k= 1

(s − µk) (10d)

where we let an(λ) := 1 and µk are the eigenvalues of Â(λ).

B. Exponential stability

System (8) is exponentially stable in the absence of noise
if all eigenvalues of the matrix A have negative real parts,
i.e., if A is Hurwitz,

‖ψ(t)‖ = ‖eAtψ(0)‖ ≤ c e−ρt‖ψ(0)‖ (11)

and the convergence rate ρ is determined by

ρ = |max < (eig(A))| (12)

where < (eig(·)) denotes the real part of the eigenvalues of a
given matrix. From the modal decomposition (10), it can be
seen that the convergence rate of system (8) is determined
by the slowest mode of matrices Â(λ),

ρ = min
λ∈[m,L]

ρ̂(λ).

where ρ̂(λ) := |max<(eig(Â(λ)))|. Our goal is to examine
the impact of the algorithmic parameters

θ := [β1 · · · βn−1 γ1 · · · γn−1 ]
T (13)
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on the eigenvalues µk(λ) of Â(λ) and, thus, stability of the
system. Under Assumption 1 on (β0, γ0) and with α = 1/L,
the vector of parameters θ define the coefficients ak(λ)
in (10c) of the characteristic polynomial (10d).

The Routh-Hurwitz (RH) criterion provides necessary and
sufficient conditions for coefficients ak(λ) in (10c) to ensure
stability. Furthermore, by introducing the shifted character-
istic polynomial

Fρ(s) :=

n∑
k= 0

ak(λ)(s − ρ)k =

n∏
k= 1

(s − νk) (14)

we can utilize the RH criterion to determine conditions for
ρ-exponential stability. In particular, since the roots of F (s)
and Fρ(s) are related by νk = µk+ρ, F (s) is ρ-exponentially
stable (i.e., all its roots have real parts smaller than −ρ) if
and only if Fρ(s) is stable. Thus, it suffices to examine the
RH conditions on the coefficients of

Fρ(s) :=

n∑
k= 0

ãρk(λ)sk

ãρk(λ) :=

n−k∑
i= 0

an−i(λ)

(
n− i
k

)
(−ρ)(n−k−i)

(15)

where ãρn(λ) := 1.
In Section III, we determine the largest rate of convergence

for a given condition number κ and identify the vector of
parameters θ that achieves this rate.

C. Variance amplification

In addition to the convergence rate, we are also interested
in quantifying the steady-state variance of the error in the
optimization variable (variance amplification),

J := lim
t→∞

1

t

∫ t

0

E
(
‖x(τ) − x?‖2

)
dτ. (16)

For the LTI system (8), the state covariance matrix at the
steady-state is determined by

X = lim
t→∞

E
[
ψ(t)(ψ(t))T

]
(17)

where X solves the algebraic Lyapunov equation

AX + XAT = −σ2BBT . (18)

The eigenvalue decomposition of the Hessian matrix Q can
be utilized to express the variance amplification as

J = trace
(
CXCT

)
=

d∑
i= 1

Ĵ(λi) (19)

where Ĵ(λi) denotes the contribution of the ith eigenvalue
λi of Q to the variance amplification,

Ĵ(λi) := trace
(
ĈX̂(λi)Ĉ

T
)

= X̂11(λi). (20)

In Section III, we derive the expression for the 11-element
X̂11(λi) of the matrix X̂(λi) that solves,

Â(λi)X̂(λi) + X̂(λi)Â
T (λi) = −σ2B̂B̂T (21)

in terms of the coefficients of the Routh-Hurwitz table and
utilize this relation to determine lower bounds on J in terms
of the convergence rate ρ and condition number κ.

III. MAIN RESULTS

In this section, we present our main results regarding
the convergence rate and steady-state variance amplification
for the class of nth-order gradient flow dynamics described
by (7). For strongly convex quadratic problems with condi-
tion number κ, we establish the optimal rate of exponential
convergence ρ = κ−1/n and identify algorithmic parameters
that achieve this optimal rate. We also provide analytical
expressions for the modal contributions Ĵ(λ) to the variance
amplification in terms of the entries of the Routh-Hurwitz
table. We use these expressions to establish that a lower
bound on the product between the variance amplification
and the settling time scales as κ2. Our results extend the
observations made in [31] that only considered the case
n = 2 to general n and they recover the same tradeoff
between the settling time and variance amplification. Proofs
of all results are relegated to the Appendix.

Theorem 1 establishes the optimal rate of convergence and
determines parameters that achieve the optimal rate.

Theorem 1: For strongly convex quadratic objective func-
tion f with condition number κ, under Assumption 1 regard-
ing the optimality conditions and the normalization condition
α = 1/L, the optimal rate of exponential convergence of
system (7) is given by

ρ = κ−1/n

and is achieved by parameters

γk = ρ−k
(
n− 1

k

)
, βk =

(
n

k

)
ρn−k − γkκ−1 (22)

for k = 0, . . . , n− 1.
As we demonstrate in the proof, the constraint on the

optimal rate established by Theorem 1 is imposed by

αλ =

n∏
k= 1

(−µk)

where µk are the eigenvalues of Â(λ) in (10) for all λ ∈
[m,L]. In addition, the optimal parameters are determined by
setting n− 1 eigenvalues of Â(λ) at −ρ for all λ ∈ [m,L].
This result generalizes previous works that considered the
cases n = 1 [30] and n = 2 [30], [31]. Note that
while we employ eigenvalue decomposition for analysis,
the parameters in (22) rely only on the condition number,
and eigenvalue decomposition is unnecessary for algorithm
implementation.

The next theorem presents an analytical expression for the
modal contribution to variance amplification Ĵ(λ) for all λ
in terms of the entries of the RH table; see [34].

Theorem 2: For strongly convex quadratic objective func-
tion f , under Assumption 1 regarding the optimality condi-
tions, the modal contribution Ĵ(λ) to the steady-state vari-
ance amplification of system (7) with stabilizing parameters
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θ and α = 1/L can be expressed as

Ĵ(λ) =
σ2

2a0(λ)r(λ)

where r(λ) is the first (and only) entry in the nth row of
the Routh-Hurwitz table associated with the characteristic
polynomial F (s) in (10d) of the matrix Â(λ) in (10).

As the entries of the RH table are themselves defined
in terms of the coefficients of the characteristic polyno-
mial (10d), the analytical expression we derive above pro-
vides a way to examine how the steady-state noise amplifi-
cation is determined by our choice of parameters θ. We will
use Theroem 2 to lead directly to our next result.

Theorem 3: For strongly convex quadratic objective func-
tion f , under Assumption 1 regarding the optimality condi-
tions, with stabilizing parameters θ and the normalization
condition α = 1/L, the product of the modal contribution to
the steady-state variance amplification and the settling time
Ts = 1/ρ is lower bounded by

Ĵ(λ)/ρ > σ2/(2n (αλ)2).

For the case λ = m, this simplifies to

Ĵ(m)/ρ > σ2κ2/(2n).

We observe that this lower bound is decreasing with λ and
scales as κ2 for λ = m. This is consistent with [31] where
the authors examined the case of n = 2.

Corollary 1: Under the settings of Theorem 3, we have
the lower bound

J

ρ
>

d∑
i= 1

σ2

2n (αλi)2
≥ σ2κ2

2n
+
σ2(d− 1)

2n

The proof is immediate by combining Theorem 3 with
equation (19). Based on this result, we conclude that for
systems of type (7), there is a fundamental tradeoff between
settling time and variance amplification for bounded order
n� κ.

IV. CONCLUDING REMARKS

Our results demonstrate that regardless of the number
of momentum terms in accelerated gradient flow dynamics,
the product between variance amplification (of the error in
the optimization variable) and settling time scales as κ2.
Our ongoing work focuses on examining how additional
momentum terms affect the behavior of familiar discrete time
accelerated algorithms.

APPENDIX

A. Proof of Theorem 1

The full proof is omitted due to page limitations; we
include an outline here.
Proof: We first prove that the optimal rate cannot exceed

ρ ≤ κ−
1
n . We begin by examining the best possible rate ρ(λ)

associated with the matrix Â(λ) for a fixed λ. By matching
the constant terms in (10d) of the product and summation

expressions of F (s), we can write

a0(λ) = αλ =

n∏
k=1

(−µk) (23)

Notice that the coefficient a0 is fixed with respect to λ, while
the freedom to choose βk and γk without constraints allows
for any desired placement of ak(λ) for k 6= 0. In essence,
we wish to place the real part of the largest eigenvalue as far
from the imaginary axis as possible, given that the product
of all eigenvalues is fixed. The solution to this problem is
given by

µk = −(αλ)1/n, k = 1, . . . , n (24)

which yields ρ(λ) ≤ (αλ)1/n. The result is apparent when
µk are real, and the extension to imaginary roots is straight-
forward upon noting that all roots must come in complex
conjugate pairs, whose product is real and greater than the
product of the real parts.

Then, the rate of the system (8) is upper bounded by

ρ = min
λ∈[m,L]

ρ(λ) ≤ min
λ∈[m,L]

(αλ)
1
n = (m/L)

1
n = κ−

1
n

since α = 1/L. It follows that for a fixed λ, parameters θ
can be chosen to achieve ρ ≤ κ−1/n.

In total, we must select 2n−2 parameters βk, γk in order
to design the linear functions ak(λ) = βk + γkαλ for k =
0, . . . , n− 1. This amounts to placing the line segment

a(λ) := [a0(λ), · · · , an−1(λ)]T , λ ∈ [m,L]

in Rn. We begin the process of selecting these parameters
by noticing that the end point a(m) of this line segment is
fixed, as a unique set of ak(m) allows ρ(m) = κ−1/n.

This follows directly from the optimal solution (24) for
λ = m. The relationship between a(m) and eigenvalues
µk(Â(m)) shown in (10d) yields

ak(m) =

(
n

k

)
ρn−k (25)

where ρ = κ−1/n. Now that we have determined values of
ak which give the desired rate of convergence at λ = m, we
examine the conditions under which this margin of stability
is maintained as λ increases.

As stated in Section II, we will determine conditions for ρ-
exponential stability by imposing the RH stability criterion
on the coefficients of the shifted characteristic polynomial
shown in (15). We decompose the solution into two parts:
given that rate of convergence ρ is achieved at λ = m, we
will determine the slope parameters γk which ensure the
stability constraints are not violated as λ : m → L. Once
we have obtained the values of γ, we use equation (10c)
that directly determines the values of β, given that ak(m)
are designed according to (25).

B. Proof of Theorem 2
Proof: We provide a proof for the case where n is even.

The case of odd n can be proven in a similar way and is
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omitted for brevity. Recall X̂(λ) solves

Â(λ)X̂(λ) + X̂(λ)Â(λ)T = −σ2B̂B̂T .

Using the block structure of B = [0, 1]T , where 0 ∈ Rn−1,
we can define the block matrix

Ẑ(λ) := Â(λ)X̂(λ) + X̂(λ)Â(λ)T

whose entries are given by

zi,j =


xi+1,j + xj+1,i, i 6= n 6= j

xi+1,n −
∑n
k=1(ak−1xi,k), i 6= n = j

−2
∑n
k=1 ak−1xk,n, i = n = j.

Here, we have dropped the (λ) indicators for ease of reading,
and without loss of generality, set σ = 1.

We begin by noting all diagonal terms of Ẑ except the nth
must be zero, yielding

xi,i+1 = 0, i = 1, . . . , n− 1. (26a)

Due to our definitions of zi,j for the 1−1 block of Ẑ, (26a)
forces additional zero constraints. In particular, for j = i+2,

0 = zi,j = xi+1,j + xj+1,i = xi+1,i+2 + xi+3,i.

Together with (26a), this yields xi,i+3 = 0, for i =
1, . . . , n−1. Repeating this procedure for j = i+2m yields

xi,i+(2m−1) = 0, for m, i ≥ 1. (26b)

The zi,n can now be written as linear functions of xi,j

zi,n =


xi+1,n −

∑n/2−1
k= 0 a2kxi,2k+1 i odd

−
∑n/2−1
k= 0 (a2k+1xi,2(k+1)) i even

−2
∑n/2−1
k= 0 a2k+1x2(k+1),n i = n.

We observe that, for i < n, the coefficients of the zi,n
replicate the first and second rows

ae := [a0, a2, · · · , an]

ao := [a1, a3, · · · , an−1]
(27)

of the RH table associated with the characteristic polynomial
F (s) in (10d), containing even and odd coefficients ak.

After the considerations in (26), the remaining terms in
the 1− 1 block of Ẑ must also equal zero, requiring

xi,1+2m = −xi+1,1+2m−1, for m, i ≥ 1. (28)

This allows us to reduce the number of unknown xi,j to n. To
see this, note that as X̂ is symmetric, we begin with n(n+1)

2

variables xi,j . The eliminations in (26b) set n2

4 variables
to zero and the eliminations in (28) fix n(n−2)

4 variables
in terms of others, leaving n free variables. By iterating
across the matrix in a column-wise order, we can denote
the unknown variables by x̄ = [x̂1 x̂2 . . . x̂n]T such that
x̂1 := x1,1, x̂n := xn,n, and

zi,n =

{ ∑n/2
k= 0 a2k x̂(i+1)/2+k i odd∑n/2−1
k= 0 a2k+1 x̂(i/2)+1+k i even.

Combining the above expressions with 2zn,n = −1 and
z1,n, . . . , zn−1,n = 0 brings us to

āTi x̄ = yi (29a)

where we let y1 := −1/2, yi := 0 for i = 1, . . . , n, and

āTi =

{ [
0(n−i+1)/2 ao 0(i−1)/2

]
i odd[

0(n−i)/2 ae 0(i−2)/2

]
i even.

(29b)

Here, the zero vector 0k ∈ Rk, and ao and ae are given
by (27).

We next use the same technique of polynomial quotients
and remainders that is used to derive the RH coefficients to
recursively generate linear equations of the form (29a) that
have fewer non-zero coefficients and ultimately obtain the
value of

Ĵ(λ) = trace(ĈX̂(λ)ĈT ) = x̂1. (30)

Based on the coefficients given in the third row of the RH
table as seen in [34], we are motivated to define

b̄i := ā2i −
an
an−1

ā2i−1 i = 1, . . . , n/2.

Note that the vectors b̄i are of the same structure as those
in (29b) except they have n/2 non-zero entries that constitute
the 3rd row of the RH table. In addition, combining (29b)
and the definition of b̄i yields

b̄Ti x̄ =

{
0 i = 1, . . . , n/2− 1
(−1)na0/(2a1) i = n/2

We continue this procedure to recover all rows of the RH
array. To generalize to any system of size n, let

qk :=
f̄k−2

1 (n− k + 2)

f̄k−1
1 (n− k + 2)

, f̄ki := f̄k−2
i+1 − q

kf̄k−1
i

(31a)

initialized with

f̄1
i = ā2(i−1), f̄2

i = ā2i−1 (31b)

where in f̄ki (·), the superscript k denotes the recursion index,
the subscript i ranges from 1 to b(n − k + 2)/2c, and the
argument denotes the entry number. It is easy to verify that
the vectors f̄ki are of the same structure as those in (29b)
except they have b(n − k + 2)/2c non-zero entries that
constitute the kth row of the RH table. The subscript i
indicates the position of the non-zero entries in the vector.

It is now straightforward to show that

(f̄ki )T x̄ =

{
0 i 6= 1

(−1)k an
2f̄k−1

1 (1)
i = 1

(32)

At iteration k = n + 1, we are left with a single vector
f̄n+1

1 with a single non-zero element f̄n+1
1 (1) in the first

position. This allows us to solve for x̂1 and obtain

(f̄n+1
1 )T x̄ = f̄n+1

1 (1) x̂1 =
an

2f̄n1 (2)
(33)

which yields x̂1 = an/(2f̄
n
1 (2)f̄n+1

1 (1)). By construction,
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f̄n1 (2) and f̄n+1
1 (1) are the last two terms in the first column,

in addition to f̄n1 (2) =: r being the first (and only) entry in
the nth row of the RH table. It is now easy to verify that
the last term f̄n+1

1 (1) is given by a0. Combining this with
an = 1 and (30) completes the proof.

C. Proof of Theorem 3

Proof: By Theorem 2, Ĵ(λ) = σ2/(2r(λ)a0(λ)).
According to the definition given in (31a), we can write

r(λ) = f̄n1 (2) = f̄n−2
2 (2)− qnf̄n−1

1 (2) < f̄n−2
2 (2)

leading to the general chain of inequalities

r(λ) = f̄n1 (2) ≤ f̄n−2
2 (2) ≤ . . . ≤ f̄2

n/2(2) = a1(λ)

which follows from positivity of qk and positivity of the term
fki (2) = a0(λ) at i = b(n− k+ 2)/2c. Thus, we obtain that

Ĵ(λ) ≥ σ2/(2a1(λ)a0(λ)). (34a)

According to (10d), it is easy to verify that

a0(λ) =

n∏
k= 1

(−µk), a1(λ) = a0(λ)

n∑
k= 1

−1/µk.

(34b)

In addition, from <(−µk) ≥ ρ, it follows that
n∑

k= 1

−1/µk ≤ n/ρ. (34c)

Combining αλ = a0(λ) with (34a), (34b), and (34c) com-
pletes the proof.
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