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Abstract— Compared to standard descent-based algorithms,
accelerated first-order methods for strongly convex smooth
optimization problems may exhibit large transient responses.
For quadratic problems, this phenomenon arises from the
presence of non-normal dynamics and the modes that yield an
algebraic growth in early iterations. In this paper, we employ
the framework of integral quadratic constraints to examine the
transient response of Nesterov’s accelerated method. We prove
that a bound on the largest value of the Euclidean distance
between the optimization variable and the global minimizer is
proportional to the square root of the condition number. For
problems with large condition numbers we demonstrate tight-
ness of this bound up to constant factors, thereby establishing
the merits of our approach.

Index Terms— Convex optimization, Gradient descent, In-
tegral quadratic constraints, Nesterov’s accelerated method,
Nonnormal dynamics, Transient growth.

I. INTRODUCTION

First-order optimization algorithms are commonly used
in a large variety of applications including statistics, sig-
nal and image processing, optimal control, and machine
learning [1]–[6]. Accelerated first-order algorithms achieve
a faster rate of convergence when compared to gradient
descent, while preserving low per-iteration complexity. A
large body of literature exists which investigates conver-
gence results of accelerated algorithms for various step-
sizes and acceleration parameters, including [7]–[10]. Many
recent works also study the robustness of these algorithms
under uncertainty [11]–[17], determining that acceleration
in first-order algorithms increases sensitivity to uncertainty
in gradient evaluation. In addition to sensitivity to gradient
uncertainty, accelerated first-order algorithms can exhibit
aberrant transient growth in early iterations. Unlike gradient
descent, which is a contraction mapping for strongly convex
problems with suitable stepsize [18], accelerated algorithms
are not monotonically decreasing. Accordingly, it is impor-
tant to study not only the convergence behavior in asymptotic
regimes, but also the transient behavior in non-asymptotic
regimes. This is particularly important for applications such
as ADMM and distributed optimization methods, which may
use only a few iterations of an accelerated algorithm, making
analysis of their behavior in early iterations crucial.

In this paper, we provide upper bounds on the possible
transient growth of Nesterov’s accelerated method for the
class of general strongly convex problems. Our goal is to
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establish an analytic bound for the possible magnitude of
the optimization error. We build on our previous work on
the strongly convex quadratic problems [19] where we devel-
oped tight analytical bounds on the magnitude and iteration
number of the peak of the transient response and showed
that these bounds scale with the square root of the condition
number. Similar results with extensions to the Wasserstein
distance have been recently reported in [20]. Here, we extend
our previous study to the case of general strongly convex
problems. We use linear matrix inequalities to create a bound
on the Euclidean distance between the optimization variable
and the global minimizer, which holds for all iterations. We
determine that, as in the case of quadratic problems, the
bound scales with the square root of the condition number.

Previous work on non-asymptotic bounds on Nesterov’s
accelerated method includes [21], which presents bounds on
the objective error in terms of condition number. In contrast
to our work, this reference introduces an assumption on the
initial conditions. In addition, while reference [22] presents
numeric bounds on the value of the estimated optimizer, we
provide analytical bounds on the non-asymptotic value of the
estimated optimizer.

The rest of the paper is structured as follows. In Section II,
we provide background on accelerated first-order algorithms.
In section III, we present our main result. In Section IV,
we discuss the theoretical lower bounds by focusing on
the worst-case transient growth for quadratic problems. In
Section V, we use IQCs to derive a bound on the transient
response in terms of the condition number for general prob-
lem. We offer thoughts and future direction in Section VI.

II. MOTIVATION AND BACKGROUND

Consider the unconstrained optimization problem

minimize
x

f(x) (1)

where f : Rn → R is a convex function with an L-Lipschitz
continuous gradient ∇f . This problem can be solved using
first-order methods including gradient descent

xt+1 = xt − α∇f(xt) (2a)

and Nesterov’s accelerated method

xt+2 = xt+1 + β(xt+1 − xt) −
α∇f

(
xt+1 + β(xt+1 − xt)

) (2b)

where t is the iteration index, α > 0 is the stepsize, and
β ∈ (0, 1) is the extrapolation parameter.

Let us denote the set of functions f that are m-strongly
convex and L-smooth by FLm; f ∈ FLm means that f(x) −
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m
2 ‖x‖

2 is convex and that the gradient ∇f is L-Lipschitz
continuous. In particular, for a twice continuously differen-
tiable function f with the Hessian matrix ∇2f , we have

f ∈ FLm ⇔ mI � ∇2f(x) � LI, ∀x ∈ Rn.

For f ∈ FLm, the parameters α and β can be selected
such that gradient descent and Nesterov’s accelerated method
converge to the global minimum x? of (1) at a linear rate,

‖xt − x?‖ ≤ c ρt ‖x0 − x?‖ (3)

for all t and some positive scalar c > 0, where ‖ · ‖
is the Euclidean norm. Table I provides the conventional
values of these parameters and the corresponding guaranteed
convergence rates [23]. Gradient descent achieves the con-
vergence rate ρgd =

√
1− 2/(κ+ 1), where κ := L/m is

the condition number associated with FLm. Thus, for reaching
the accuracy level ‖xt − x∗‖ ≤ ε, gradient descent requires
O(κ log(1/ε)) iterations. This dependence on the condition
number can be significantly improved using Nesterov’s ac-
celerated method which achieves the rate

ρna =

√
1 − 1/

√
κ ≤ 1 − 1/(2

√
κ)

thereby, requiring O(
√
κ log(1/ε)) iterations. This conver-

gence rate is orderwise optimal in the sense that for any
first-order algorithm, there are problem instances f ∈ FLm
for which Ω(

√
κ log (1/ε)) iterations are necessary [23,

Theorem 2.1.13].
In spite of a significant improvement in the rate of

convergence, acceleration may deteriorate performance on
finite time intervals and lead to large transient responses. In
particular, the constant c in (3) may become significantly
larger than 1 for Nesterov’s accelerated algorithm whereas
c = 1 for gradient descent because of its contractive property
for strongly convex problems.

In this paper, we study the transient growth of Nesterov’s
accelerated method by quantifying the largest ratio of the
error at all iterations to the initial error for all f ∈ FLm,

J := sup
{f ∈FL

m; t∈N; z0, z1 ∈Rn}

‖zt‖√
‖z0‖2 + ‖z1‖2

(4)

where zt := xt − x? determines the error to the optimal
solution x? at the iteration t. We establish analytical upper
and lower bounds on J and show that both of them grow
linearly with

√
κ. Our bounds are almost tight in the sense

that they differ only by a factor of 4.3 for κ � 1. In
his seminal work [23], Nesterov showed the upper bound√
κ+ 1 on J , under the assumption that the initial condition

is confined to the subspace x0 = x1. In our analysis, we
remove this assumption and establish that similar trends hold
for general initial conditions.

Notation: We write g = Ω(h) (or, equivalently, h = O(g))
to denote the existence of positive constants ci such that, for
any y > c2, the functions g and h that map R to R satisfy
g(y) ≥ c1h(y). We write g = Θ(h), or more informally

Method Parameters Linear rate

Gradient α = 1
L ρ =

√
1 − 2

κ+1

Nesterov α = 1
L , β =

√
κ− 1√
κ+1

ρ =
√

1− 1√
κ

TABLE I: Conventional values of parameters and the corre-
sponding rates for f ∈ FLm, ‖xt − x?‖ ≤ c ρt ‖x0 − x?‖,
where κ := L/m and c > 0 is a constant [23, Theo-
rems 2.1.15, 2.2.1].

g ≈ h, if both g = Ω(h) and g = O(h).

III. MAIN RESULT

Herein, we present the main result of the paper.

Theorem 1: For Nesterov’s accelerated method with pa-
rameters provided in Table I, the largest ratio of the error at
all iterations to the initial error, defined in (4), satisfies

√
2 (κ − 2

√
κ − 1)

e
√
κ

≤ J ≤
√

5κ

where κ = L/m is the condition number associated with the
set of L-smooth m-strongly convex objective functions FLm.

While we only consider parameters provide by Table I, our
framework and proof technique for Theorem 1 is general
enough to handle other values of parameters. We observe
that both upper and lower bounds grow linearly with

√
κ.

This scaling demonstrates a potential drawback of using
Nesterov’s accelerated method in scenarios with limited time
budget. To investigate the tightness of these bounds, we
examine the ratio of the upper and lower bounds which
indicates how far the upper bound may be from the true
maximum transient possible for all f ∈ FLm. As κ → ∞,
this quantity converges to e

√
5/
√

2 ≈ 4.3.

The rest of the paper is devoted to proving Theorem 1.
Our lower bounds are obtained by restricting the set FLm to
the class of strongly convex quadratic problems, which we
describe next. In Section V, we utilize linear matrix inequal-
ities to establish upper bounds for general strongly convex
problems with Lipschitz continuous objective functions.

IV. A LOWER BOUND: QUADRATIC PROBLEMS

For quadratic objective functions,

f(x) =
1

2
(x − x?)TQ(x − x?)

where Q = QT � 0 is a positive definite matrix, the
algorithms in (2) are linear time-invariant (LTI) systems and
the dynamics of the error zt := xt−x? can be described by
state-space models of the form

ψt+1 = Aψt (5a)
zt = C ψt. (5b)

Here, ψt is the state, and A, C are constant matrices of
appropriate dimensions. For example, we can select ψt = zt
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for gradient descent and ψt :=
[

(zt)T (zt+1)T
]T

for
Nesterov’s accelerated method. These choices of the state
variable ψt, respectively, correspond to A = I−αQ, C = I
for gradient descent, and

A =

[
0 I

−β(I − αQ) (1 + β)(I − αQ)

]
, C =

[
I 0

]
for Nesterov’s accelerated method.

The linearity of the underlying dynamics allows us to fully
characterize the transient growth in terms of the eigenval-
ues/vectors of the matrix A. In particular, the response of
LTI system (5) with an initial state ψ0 is determined by

zt = CAtψ0 = Φ(t)ψ0.

Here, At is the state-transition matrix of system (5), i.e.,
the tth power of the matrix A, and Φ(t) := CAt is the
mapping from the initial condition ψ0 to the performance
output zt = xt − x?. The rate of convergence of system (5)
is determined by the spectral radius of the matrix A, i.e.,

ρ(A) := max
i
|µi(A)|

where µi are the eigenvalues of the matrix A.

The fastest convergence rate is achieved by optimizing
the spectral radius over α and β. The optimal values of
these parameters and the corresponding convergence rates
ρ < 1 are provided in Table II. This commonly used metric
for evaluating performance of optimization algorithms only
determines the asymptotic behavior and it does not provide
insights into transient responses. To study the performance
of Nesterov’s accelerated method on finite-time intervals, we
can quantify the transient growth, i.e., the worst-case ratio
of the energy of zt to the energy of the initial condition ψ0.
For quadratic objective functions, this quantity is determined
by the largest singular value of the matrix Φ(t)

sup
ψ0 6=0

‖zt‖
‖ψ0‖

= sup
‖ψ0‖=1

‖Φ(t)ψ0‖ = σmax(Φ(t)).

While for general matrices A and C the analytical calculation
of σmax(Φ(t)) is challenging, for the first-order algorithms
in (2), the underlying structure allows us to use a unitary
transformation to express the dynamics via n decoupled
dynamical systems that are parameterized by α, β, and the
eigenvalues of the matrix Q. This decomposition can then
be used to obtain an analytical expression for both At and
Φ(t). This approach was recently utilized in [19] to prove
the following result.

Theorem 2: For Nesterov’s accelerated algorithm with the
parameters provided in Tables I and II, and the rate of
convergence ρ ∈ [1/e, 1), we have

−
√

2ρ

e log ρ
≤ max

t
σmax(Φ(t)) ≤ −

√
2

e ρ log ρ
.

Combining this result with the explicit value of ρ provided
in Table II, we obtain upper and lower bounds in terms of

Method Parameter choice Rate

Gradient α = 2
L+m

κ−1
κ+1

Nesterov α = 4
3L+m β =

√
3κ+1−2√
3κ+1+2

√
3κ+1−2√
3κ+1

TABLE II: Optimal parameters and the linear convergence
rate bounds for m-strongly convex quadratic objective func-
tions with L-Lipschitz gradients and κ := L/m.

the condition number
√

3κ+ 1− 2√
2 e

≤ max
t

σmax(Φ(t)) ≤
√

3κ+ 1√
2 e

.

We can also obtain similar upper and lower bounds on
maxt σmax(Φ(t)) for the values of α and β in Table I. In
this case, the rate of convergence for quadratic problems is
given by ρ = 1− 1/

√
κ; see [24] for a proof. This yields

√
2(κ− 2

√
κ− 1)

e
√
κ

≤ max
t

σmax(Φ(t)) ≤
√

2κ

e (
√
κ− 1)

and, in both cases, the upper and lower bounds scale as
√
κ

for κ� 1.
Since the quadratic objective functions with Q � 0 are

strongly convex and smooth, the lower bound established in
this section holds for J defined in (4) that corresponds to
the set FLm. This completes the proof of our lower bound
presented in Theorem 1. However, the above derived upper
bound does not carry over to the general case. We next
describe a method based on linear matrix inequalities that
we utilize to determine the upper bound on J in (4).

V. AN UPPER BOUND: LINEAR MATRIX INEQUALITIES

For the class FLm of m-strongly convex objective functions
with L-Lipschitz continuous gradients, algorithms in (2) are
invariant under translation, i.e., if we let x̃ := x − x̄ and
g(x̃) := f(x̃+ x̄), then (2b), for example, satisfies

x̃t+2 = x̃t+1 + β(x̃t+1 − x̃t) −
α∇g

(
x̃t+1 + β(x̃t+1 − x̃t)

)
.

Thus, in what follows, without loss of generality, we assume
that x? = 0 is the unique minimizer of (1) and f(x?) = 0.

We present a general framework based on Linear Matrix
Inequalities (LMIs) that allows us to obtain non-asymptotic
bounds on the error. This framework combines certain
Integral Quadratic Constraints (IQCs) [25] and Lyapunov
functions of the form

V (ψ) = ψTXψ + f(Cψ) (6)

which consists of a standard quadratic function of the state ψ,
where X is a positive semidefinite matrix and the objective
function evaluated at Cψ. The IQC framework provides a
convex control-theoretic approach to analyzing optimization
algorithms [24] and it was employed to study convergence
and robustness of the first-order algorithms [12]–[15], [22],
[26], [27]. This type of generalized Lyapunov functions was
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introduced in [22], [28] and used to study convergence of op-
timization algorithms for non-strongly convex problems. For
Nesterov’s accelerated algorithm (2b), we next demonstrate
that this approach yields orderwise-tight analytical upper
bounds on the norm of the error in the iterates.

For f ∈ FLm, the nonlinear mapping ∆: Rn → Rn

∆(y) := ∇f(y) − my

satisfies the quadratic inequality [24, Lemma 6][
y − y0

∆(y) − ∆(y0)

]T
Π

[
y − y0

∆(y) − ∆(y0)

]
≥ 0 (7)

for all y, y0 ∈ Rn, where the matrix Π is given by

Π :=

[
0 (L − m)I

(L − m)I −2I

]
. (8)

Nesterov’s accelerated algorithm (2) admits a time-invariant
state-space form

ψt+1 = Aψt + Buu
t[

zt

yt

]
=

[
Cz
Cy

]
ψt

ut = ∆(yt)

(9a)

that contains a feedback interconnection of linear and non-
linear components. Figure 1 illustrates the block diagram of
system (9a), where ψt is the state, zt is the performance
output, and ut is the output of the nonlinear term ∆(yt). In
particular, if we let

ψt :=

[
xt

xt+1

]
, zt := xt, yt := −βxt + (1 + β)xt+1

and define the corresponding matrices as

A =

[
0 I

−β(1− αm)I (1 + β)(1− αm)I

]
,

Bu =

[
0
−α I

]
,

Cz =
[
I 0

]
, Cy =

[
−β I (1 + β)I

]
(9b)

then (9a) represents Nesterov’s method (2b).

∆

LTI system ut

yt

zt

Fig. 1: Block diagram of system (9a).

We next demonstrate how property (7) of the nonlinear
mapping ∆ in conjunction with a suitable Lyapunov function
of the form (6) allow us to obtain upper bounds on ‖zt‖.

Lemma 1: Let the matrix M(m,L;α, β) be defined as

M := NT
1

[
LI I
I 0

]
N1 + NT

2

[
−mI I
I 0

]
N2

where

N1 :=

[
αmβ I −αm(1 + β) I −α I
−mβ I m(1 + β) I I

]
,

N2 :=

[
−β I β I 0
−mβ I m(1 + β) I I

]
.

Consider state-space model (9) for algorithm (2b) and let Π
be given by (8). Then, for any positive semidefinite matrix
X and nonnegative scalars λ1 and λ2 that satisfy[

ATX A−X ATX Bu
BTu X A BTu X Bu

]
+

λ1

[
CTy 0
0 I

]
Π

[
Cy 0
0 I

]
+ λ2M � 0 (10)

for all t ≥ 1 the transient growth is upper bounded by

‖xt‖2 ≤ λmax(X)‖x0‖2 + (λmax(X) + Lλ2) ‖x1‖2

λmin(X) +mλ2
.

(11)
Proof: See Appendix A.

Lemma 1 exploits the Lyapunv function candidate
V (ψ) := ψTXψ + λ2f([ 0 I ]ψ) to show that the state of
the algorithm ψt is confined in the sublevel set

{ψ ∈ R2n | V (ψ) ≤ V (ψ0)}.

associated with V (ψ0). To provide insight into this result,
let us consider the special case with λ2 = 0. In this case,
the resulting upper bound on ‖xt‖2 is determined by the
condition number of the matrix X , which is a standard
result for quadratic Lyapunov functions [19]. The bound in
Lemma 1 also leads to the following corollary.

Corollary 1: In the setting of Lemma 1, for any t ≥ 1,

‖xt‖2 ≤ (cond(X) + κ)
(
‖x0‖2 + ‖x1‖2

)
.

We can solve LMI (10) in Lemma 1 both numerically and
analytically to establish an upper bound on J defined in (4).
In particular, expression (11) allows us to write

J2 ≤

sup
‖x0‖2 + ‖x1‖2≤ 1

λmax(X)‖x0‖2 + (λmax(X) + Lλ2) ‖x1‖2

λmin(X) +mλ2

=
λmax(X) + Lλ2
λmin(X) + mλ2

.

Thus, we can obtain an upper bound on J by solving

minimize
X,λ1, λ2

λmax(X) + Lλ2
λmin(X) + mλ2

subject to LMI (10), X � 0, λ1 ≥ 0, λ2 ≥ 0.

(12)

Even though the objective function in (12) is nonconvex, we
can still find a feasible point which allows us to establish
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‖xt‖ = Ω(
√
κ), which is of the same order as theoretical

lower bound in Section IV.

Theorem 3: Nesterov’s accelerated method with parame-
ters provided in Table I satisfies

‖xt‖2 ≤ 4κ‖x0‖2 + 5κ‖x1‖2. (13)

Proof: See Appendix B.

Our upper bound in Theorem 1 is a direct consequence of
Theorem 3. In particular, the largest coefficient on the right
hand side of Eq. (13) provides an upper bound on the quan-
tity of interest J , which completes the proof of Theorem 1.

VI. CONCLUDING REMARKS

We have examined the transient response of Nesterov’s
accelerated method for strongly convex optimization prob-
lems. The framework of integral quadratic constraints was
utilized to establish that an upper bound on the largest
value of the Euclidean distance between the optimization
variable and the global minimizer is proportional to the
square root of the condition number. Unlike gradient de-
scent which is always contractive, our analysis reveals that
there are always quadratic problem instances for which
the accelerated method generates a large transient response
that meets our theoretical upper bound up to a constant
factor. Future directions include extending our analysis to
nonsmooth accelerated methods and devising algorithms that
balance acceleration with quality of transient responses.

APPENDIX

A. Proof of Lemma 1

In order to prove Lemma 1, we present a technical lemma
which along the lines of results of [22] provides us with an
upper bound on the difference between the objective value
at two consecutive iterations.

Lemma 2: Let f ∈ FLm and κ := L/m. Then, Nesterov’s
accelerated method, with the notation introduced in Sec-
tion V, satisfies

f(xt+2) − f(xt+1) ≤ 1

2

[
ψt

ut

]T
M

[
ψt

ut

]
where N1 and N2 are defined in Lemma 1.

Proof: For any f ∈ FLm, by the L-Lipschitz continuity
of the gradient ∇f , we have

f(xt+2) − f(yt) ≤

1

2

[
xt+2 − yt

∇f(yt)

]T [
LI I
I 0

] [
xt+2 − yt

∇f(yt)

]
(14a)

and by the m-strong convexity of f , we have

f(yt) − f(xt+1) ≤

1

2

[
yt − xt+1

∇f(yt)

]T [ −mI I
I 0

] [
yt − xt+1

∇f(yt)

]
. (14b)

Moreover, the state and output equations in (9) lead to[
xt+2 − yt

∇f(yt)

]
= N1

[
ψt

ut

]
, (15a)

[
yt − xt+1

∇f(yt)

]
= N2

[
ψt

ut

]
. (15b)

Adding inequalities (14a) and (14b) in conjunction with (15)
completes the proof.

We are now ready to prove Lemma 1. It is straightforward
to verify that [

yt

ut

]
=

[
Cy 0
0 I

]
ηt

where ηt := [ (ψt)T (ut)T ]T . Combining this equation and
inequality (7) yields the quadratic inequality

(ηt)T
[
CTy 0
0 I

]
Π

[
Cy 0
0 I

]
ηt ≥ 0. (16)

We can now pre and post multiply LMI (10) by (ηt)T and
ηt, respectively, to obtain

0 ≥ (ηt)T
[
ATX A−X ATX Bu
BTu X A BTu X Bu

]
ηt + λ2(ηt)TMηt

+ λ1 (ηt)T
[
CTy 0
0 I

]
Π

[
Cy 0
0 I

]
ηt

≥ (ηt)T
[
ATX A−X ATX Bu
BTu X A BTu X Bu

]
ηt + λ2(ηt)TMηt

where the second inequality follows from (16) . Rearranging
terms yields

0 ≤ V̂ (ψt) − V̂ (ψt+1) − λ2(ηt)TM ηt (17)

where V̂ (ψ) := ψTXψ is a positive semidefinite function.
Also, Lemma 2 implies

−(ηt)TM ηt ≤ 2
(
f(xt+1) − f(xt+2)

)
. (18)

Combining inequalities (17) and (18) yields

V̂ (ψt+1) + 2λ2f(xt+2) ≤ V̂ (ψt) + 2λ2f(xt+1).

Thus, using induction, we obtain the uniform upper bound

V̂ (ψt) + 2λ2f(xt+1) ≤ V̂ (ψ0) + 2λ2f(x1). (19)

We can bound the function V̂ using the smallest and largest
eigenvalues of X ,

λmin(X)‖ψ‖2 ≤ V̂ (ψ) ≤ λmax‖ψ‖2. (20a)

We can also bound the objective function with parameters of
Lipschitz continuity L and strong convexity m,

m‖x‖2 ≤ 2f(x) ≤ L‖x‖2. (20b)

Finally, combining (19) and (20) yields

λmin(X)‖ψt‖2 + mλ2‖xt+1‖2

≤ λmax(X)‖ψ0‖2 + Lλ2‖x1‖2.
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Rearranging terms and noting that ‖xt+1‖ ≤ ‖ψt‖ completes
the proof.

B. Proof of Theorem 3

The proof works by finding a feasible solution for λ1, λ2
and X in terms of problem condition number κ. Let us define

X :=

[
x1I x0I
x0I x2I

]
x0 := −Lλ2, x1 := Lλ2p1(

√
κ)

x2 := L2λ1 + Lλ2, λ1 := λ2p2(
√
κ)/m

(21)

where the rational functions

p1(r) :=
2r3 − 4r2 + 3r − 1

2r3

p2(r) :=
4r2 − 3r + 1

2r5 − 4r4 + 4r2 − 2r

are nonnegative for r ≥ 1. This yields

det(X) =
(Lλ2)2(12κ

3
2 − 17κ+ 9κ

1
2 − 2)

4κ
3
2 (κ

1
2 − 1)2(κ

1
2 + 1)

It is straightforward to verify that both x1 and det(X) are
nonnegative for κ ≥ 1. Thus, by Schur complement, we
obtain X � 0 and the left-hand-side of LMI becomes

−λ1

 0 0 0

0 m2(2κ− 1)I 0

0 0 I

 � 0.

Thus, the choice of (λ1, λ2, X) in (21) satisfies the condi-
tions of Lemma 1. Hence, we obtain

‖xt‖2 ≤ λmax(X)‖x0‖2 + (λmax(X) + Lλ2) ‖x1‖2

λmin(X) +mλ2

≤ w‖x0‖2 + (w + κ)‖x1‖2 (22)

where w := (|x0| + |x1| + |x2|)/(mλ2). Here, the first
inequality follows from Lemma 1 and the second inequality
is obtained using λmin(X) ≥ 0, λmax(X) ≤ |x0| + |x1| +
|x2|. Using (21), we can upper bound w as

w =
|x0| + |x1| + |x2|

mλ2

= κ
(
2 + p1(

√
κ) + κ p2(

√
κ)
)
≤ 4κ (23)

The above inequality uses the fact that p1(
√
κ) ≤ 1 and

κp2(
√
κ) ≤ 1 for all κ ≥ 4. Combining (22) and (23)

competes the proof.
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