
Optimal sensor selection via proximal optimization algorithms

Armin Zare and Mihailo R. Jovanović

Abstract— We consider the problem of optimal sensor selec-
tion in large-scale dynamical systems. To address the combina-
torial aspect of this problem, we use a suitable convex surrogate
for complexity. The resulting non-convex optimization problem
fits nicely into a sparsity-promoting framework for the selection
of sensors in order to gracefully degrade performance relative
to the optimal Kalman filter that uses all available sensors.
Furthermore, a standard change of variables can be used to cast
this problem as a semidefinite program (SDP). For large-scale
problems, we propose a customized proximal gradient method
that scales better than standard SDP solvers. While structural
features complicate the use of the proximal Newton method,
we investigate alternative second-order extensions using the
forward-backward quasi-Newton method.

Index Terms— Convex optimization, proximal methods, sen-
sor selection, semidefinite programming, sparsity-promoting
estimation and control, quasi-Newton methods.

I. INTRODUCTION

An important challenge in the active control of distributed
parameter systems is the judicious placement of sensors and
actuators. Due to structural constraints, this problem is often
posed as the selection of a subset of sensor and actua-
tors from a pre-specified configuration in order to achieve
a certain level of performance in terms of observability
and controllability. While the best performance is typically
achieved when using all available sensors and actuators, this
option may be infeasible from a computational or economical
standpoint. In many applications, it is inevitable that we
sacrifice performance in order to obtain a minimal set of
sensors and actuators. Selecting an optimal set of sensors
and actuators, however, can become a nontrivial task that
involves an intractable combinatorial search.

The sensor and actuator selection problem has recently
received attention, mainly due to the emergence of large-
scale applications, for example in power networks, systems
biology, and industrial cyber-physical systems. To address
the combinatorial aspect of this problem, current work has
mostly focused on employing heuristics based on two popu-
lar approaches: combinatorial greedy algorithms and convex
relaxation. Combinatorial methods mainly rely on notions of
submodularity/supermodularity in an attempt to provide near-
optimality guarantees [1]–[3]. On the other hand, convex
or non-convex methods have also been proposed for this
problem, which do not utilize greedy algorithms [4]–[10].
For linear time-invariant (LTI) systems, we focus on the latter
approach and consider the problem of selecting a subset of
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sensors in order to gracefully degrade performance relative
to the optimal Kalman filter that utilizes all available sensors.
Actuator selection for LTI systems can be similarly addressed
via the dual formulation of the sensor selection problem.

In [11], [12], a sparsity-promoting framework was in-
troduced to effectively obtain block-sparse structured feed-
back/observer gains as well as select actuators/sensors. How-
ever, this framework addresses a more general class of
problems and does not exploit a certain hidden convex-
ity of sensor/actuator selection. For the design of optimal
row-sparse feedback gains, a convex characterization was
proposed in [8]. Based on this formulation, a customized
optimization algorithm was proposed in [9] for large-scale
sensor/actuator selection. This algorithm used the Alternating
Direction Method of Multiplier (ADMM) and exploited the
problem structure to gain computational efficiency relative to
standard semidefinite programming (SDP) solvers. However,
the ADMM algorithm involves subproblems that are difficult
to solve and is thus not well-suited for large-scale systems.
Herein, we further exploit the problem structure and propose
a customized proximal gradient (PG) algorithm that scales
with the third power of the state-space dimension. We
also address the problem of ill-conditioning by employing
a second-order algorithm based on the forward-backward
quasi-Newton method [13], which has been shown to im-
prove accuracy and practical convergence properties.

Our presentation is organized as follows. In Section II, we
state the sensor selection problem and introduce the change
of variables which leads to the convex reformulation. In
Section III, we present customized algorithms for solving
this problem. In Section IV, we present results of numerical
experiments. Finally, we conclude with a summary of results
and future directions in Section V.

II. PROBLEM FORMULATION

Consider the linear time-invariant system

ẋ = Ax + B d

y = C x + η

where x(t) ∈ Cn is the state vector, y(t) ∈ Cp is the output,
d(t) and η(t) are zero-mean white stochastic processes with
covariances Ωd and Ωη , respectively, B ∈ Cn×m is the input
matrix, C ∈ Cp×n is the output matrix with n ≤ p, and
(A,C) is an observable pair. The observer

˙̂x = A x̂ + L (y − ŷ)

= A x̂ + LC (x − x̂) + Lη

provides an estimate x̂ of the state x from noisy measure-
ments y, and L is the observer gain. When A − LC is
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Hurwitz, the zero-mean estimate of x is given by x̂, and
the estimation error x̃ := x− x̂ follows the the dynamics

˙̃x = (A − LC) x̃ + B d − Lη. (1)

The Kalman filter gain L minimizes the H2 norm of x̃, i.e.,
variance amplification from process and measurement noise
to estimation error, and can be obtained by solving

minimize
L,X

trace (X B ΩdB
∗ + X LΩη L

∗)

subject to (A− LC)∗X + X(A− LC) + I = 0

X � 0.
(2)

Here, A, B, Ωd, and Ωη are problem data, while X =
X∗ ∈ Cn×n and L ∈ Cn×p are optimization variables. The
optimal solution to this problem can be obtained by solving
the observer Riccati equation arising from the corresponding
KKT conditions. In general, the optimal gain matrix L has no
particular structure (i.e., L has no zero entries) and therefore
all available measurements are used.

When the ith column of L is identically equal to zero,
the ith measurement is not used. Therefore, designing a
Kalman filter which uses a subset of the available sensors is
equivalent to designing a column-sparse Kalman gain matrix
L, which can be sought by promoting column-sparsity via
the following regularized optimization problem

minimize
L,X

trace (VdX + X LΩη L
∗) + γ

n∑
i=1

wi‖L ei‖2

subject to (A− LC)∗X + X(A− LC) + I = 0

X � 0.
(3)

Here, γ > 0 specifies the importance of sparsity, wi are
nonzero weights, ei is the ith unit vector in Rp, and Vd :=
B ΩdB

∗.

Remark 1: The dual formulation of the sensor selection
problem (3) addresses the actuator selection problem; see [9]
for additional details.

Since X is positive definite, the standard change of
variables Y := XL and the equivalence between the column-
sparsity of L and the column-sparsity of Y [8] can be utilized
to bring problem (3) into the following form

minimize
X,Y

trace
(
VdX +X−1Y ΩηY

∗)+ γ

n∑
i=1

wi‖Y ei‖2

subject to A∗X + X A − Y C − C∗Y ∗ + I = 0

X � 0,
(4)

which is SDP representable [14]. After solving this problem,
the optimal gain matrix can be recovered as L = X−1Y . The
convexity of (4) follows from the convexity of its objective
function and the convexity of the constraint set [15]. For
large-size problems that cannot be handled by general-
purpose SDP solvers, we next invoke proximal methods to

develop first- and second-order algorithms.

Remark 2: The non-convex characterization (3) can be
directly addressed by the ADMM algorithm of [12] or a
proximal gradient algorithm similar to what we present in
Section III. However, the uncovered sparsity patterns can
from what is achieved from solving the convex problem (4).

III. CUSTOMIZED ALGORITHMS

The objective function in problem (4) is composed of
a differentiable and a non-differentiable component, which
limits the utility of standard gradient descent. Problems of
this form appear in many application fields, e.g., control,
system identification, machine learning, and statistics. The
proximal gradient (PG) method generalizes gradient descent
to such composite minimization problems [16] and is most
effective when the proximal operator associated with the non-
differentiable component is easy to evaluate [17]. The global
convergence rate of the PG method is known to be sublinear
with a convergence rate of 1/k for convex problems. Similar
to other first-order methods, PG is suitable for computing
solutions with small to medium precision and suffers from
issues that arise from ill-conditioning.

Second-order generalizations of PG, namely the proximal
Newton method [18], [19], have also been proposed as a
remedy to the aforementioned issues. However, the proxi-
mal mapping that is used in these methods corresponds to
the generalized norm that is based on the Hessian of the
smooth part of the objective function. As we show next,
this distorts the structure of problem (4) and complicates the
computation of the proximal operator. Instead, we employ
a second-order algorithm based on the forward-backward
quasi-Newton method, which has been shown to improve
the accuracy and practical convergence of PG [13].

For notational compactness, we write the affine constraint
in optimization problem (4) as

A(X) − B(Y ) + I = 0 (5)

with linear operators A: Cn×n → Cn×n and B: Cn×p →
Cn×n defined as

A(X) := A∗X + X A,

B(Y ) := Y C + C∗Y ∗.

In order to bring problem (4) into a form that is accessible
to the standard PG method, we eliminate the variable X . For
any Y , there is a unique X that solves Eq. (5) if and only
if λi + λ̄j 6= 0 for all i and j, where λ1, λ2, . . . , λn are
eigenvalues of the matrix A [20]. Herein, we assume that
λi + λ̄j 6= 0 which allows us to express the variable X as a
linear function of Y ,

X(Y ) = A−1 (B(Y ) − I) , (6)

and restate problem (4) as

minimize
Y

f(Y ) + γ g(Y )

subject to X(Y ) � 0.
(7)

6515



Here,

f(Y ) := trace
(
VdX(Y ) + X−1(Y )Y Ωη Y

∗) (8a)

g(Y ) :=

n∑
i=1

wi ‖Y ei‖2. (8b)

Optimization problem (7) is convex because it is equivalent
to (4) constrained to the affine subspace defined by (6).

A. Proximal Newton-type methods
Proximal Newton-type methods consider a local quadratic

approximation to model the curvature of function f(Y ) at
each iteration k, i.e.,

Y k+1 := argmin
Y

f(Y k) +
〈
∇f(Y k), Y − Y k

〉
+

1

2
‖Y − Y k‖2Hk

+ γ g(Y ),

where 〈·, ·〉 denotes the standard inner product 〈M1,M2〉 :=
trace(M∗

1M2), and ‖ · ‖H is the generalized norm ‖V ‖H :=
trace(V ∗H(V )). In the case of vector optimization, H is
a symmetric positive-definite matrix that approximates the
Hessian of f . When the variables are matrices, however, the
Hessian denotes a linear operator H: Cn×p → Cn×p.

A proximal Newton-type algorithm for solving prob-
lem (7) takes the following form:

Y k+1 := proxHk

βkg

(
Y k − αkH

−1
k ∇f(Y k)

)
, (9)

where βk = αkγ, αk > 0 is the step-size, and proxHβg(·) is
the scaled proximal operator associated with the nonsmooth
function g

proxHβg(V ) := argmin
Y

g(Y ) +
1

2β
‖Y − V ‖2H . (10)

This method has been successfully used for generalized
sparse linear modeling [21] and sparse inverse covariance
estimation [22]. In general, unless Hk has a very particular
structure (e.g., diagonal or banded), computing the proxi-
mal mapping in (9) can become significantly involved and
requires an inner iterative procedure. Moreover, for large
problems, computing the Hessian is prohibitive. Neverthe-
less, there have been efforts to utilize quasi-Newton schemes
to approximate the Hessian [19], [23].

In the sensor selection problem (7), the Hessian of the
function f can be expressed analytically. However, the
complexity of computing the corresponding scaled proximal
mapping prohibits the efficient implementation of the Prox-
imal Newton method for sensor selection. We next present
the PG method, which is a special case of (9) when Hk

is the identity operator. This allows for the separation of
problem (10) over various columns of Y , and subsequently
leads to a closed-form expression for the update (9).

B. Proximal gradient method
The PG method for solving problem (7) is given by

Y k+1 := proxβkg

(
Y k − αk∇f(Y k)

)
, (11)

where Y k denotes the kth iterate of the algorithm, βk =
αkγ, αk > 0 is the step-size, and proxβg(·) is the proximal

operator

proxβg(V ) := argmin
Y

g(Y ) +
1

2β
‖Y − V ‖2F , (12)

with ‖·‖F being the Frobenius norm. This proximal operator
is determined by the soft-thresholding operator which acts on
the rows of matrix V ,

Sβ(V ei) =

{
(1 − β/‖V ei‖2)V ei, ‖V ei‖2 > β wi

0, ‖V ei‖2 ≤ β wi.

(13)

Note that step (11) results from a local quadratic approxi-
mation of f at iteration k, i.e.,

Y k+1 := argmin
Y

f(Y k) +
〈
∇f(Y k), Y − Y k

〉
+

1

2αk
‖Y − Y k‖2F + γ g(Y ),

(14)

followed by a completion of squares that brings the problem
into the form of (12). From (14) it is clear that PG is a special
case of proximal Newton-type methods when Hk is the
scaled identity operator, Hk = (1/αk)I . The expression for
the gradient of f(Y ) used in (11) is provided in Appendix A.

At each iteration of PG, we determine the step-size αk
via an adaptive Barzilai-Borwein step-size selection [24]
to ensure sufficient descent and positive definiteness of
X(Y k+1); see [16, Theorem 3.1] for details. We terminate
the algorithm when the fixed-point residual of the proximal
mapping

Rαk
(Y k) :=

1

αk

(
Y k − proxβkg

(Y k − αk∇f(Y k))
)

(15)

is small enough.
We next follow the developments of [13] to solve prob-

lem (7) using the forward-backward quasi-Newton method.
This method allows us to incorporate second-order informa-
tion in the computation of our updates.

C. Forward-backward quasi-Newton method

The forward backward method of [13] can be viewed
as a (variable-metric) gradient-based method for minimizing
the forward-backward envelope (FBE). The FBE serves as
a continuously differentiable, exact penalty function for the
original nonsmooth optimization problem.

The FBE of the objective function in problem (7)

ϕ(Y ) = f(Y ) + γ g(Y )

is given by

ϕα(Y ) := inf
V

f(Y ) + 〈∇f(Y ), V − Y 〉 +

1

2α
‖V − Y ‖2F + γ g(V )

= f(Y ) − α

2
‖∇f(Y )‖2F + Mβg (Y − α∇f(Y )),

where β = αγ, and Mβg is the Moreau envelope associated
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with the proximal operator of function g [17], i.e.,

Mβg(Y ) := inf
V

g(V ) +
1

2β
‖Y − V ‖2F .

The Moreau envelope is a continuously differentiable func-
tion, even though g is not, and its gradient is given by

∇Mβg(Y ) =
1

α

(
Y − proxβg(Y )

)
.

The FBE ϕα characterizes a partially linearized variant of
the objective function ϕ on the manifold that corresponding
to explicit minimization over the variable in the nonsmooth
term g. The FBE is also continuously differentiable and its
gradient is given by

∇ϕα(Y ) = Rα(Y ) − α∇2f(Y,Rα(Y )), (16)

where Rα(Y ) is defined in Eq. (15).
The MINFBE algorithm [13, Algorithm 1] for solving

problem (7) follows a sequence of iterations in which the
FBE is minimized,

W k+1 := Y k + τk ∆Y k (17a)

Y k+1 := proxβkg

(
W k+1 + αk∇f(W k+1)

)
(17b)

where ∆Y k is chosen such that〈
∆Y k,∇ϕαk

(Y k)
〉
≤ 0.

In (17a) and (17b), the step-size αk is initialized via an
adaptive Barzilai-Borwein step-size selection technique and
τk is initialized with 1. These step-sizes are then adjusted
through backtracking to satisfy

ϕαk
(W k) ≤ ϕαk

(Y k) (18a)

f(Y k+1) > f(Y k) − αk
〈
∇f(Y k), Rαk

(Y k)
〉

+

(1− ζ)αk
2

‖Rαk
(Y k)‖2F , (18b)

respectively, and to maintain X(Y k+1) � 0. The algorithm
terminates when the fixed-point residual Rαk

(Y k) is small
enough. When f is convex, this method enjoys the same
sublinear converge rate as the proximal gradient method;
see [13] for additional details.

Since the Moreau envelope is continuously differentiable,
gradient-based methods can be used to minimize the FBE.
Herein, we employ the limited-memory Broyden-Fletcher-
Goldfarb-Shanno (L-BFGS) method highlighted in [25, Al-
gorithm 7.4] to estimate the Hessian inverse of ϕα and to
compute the descent direction as ∆Y k = −H−1

k (∇ϕαk
).

Our computational experiments show that this approach
results in satisfactory performance for modest values of m
(between 5-20). The expression for the Hessian ∇2f(Y, Ỹ )
that is necessary for computing the gradient of the FBE in
Eq. (16) is provided in Appendix B.

While BFGS is guaranteed to converge for convex func-
tions with Lipschitz continuous gradients [26], L-BFGS
requires strong convexity for guaranteed convergence [13].
Furthermore, the L-BFGS method can converge slowly for

ill-conditioned problems in which the Hessian contains a
wide distribution of eigenvalues [25]. An alternative ap-
proach would be to consider Hessian-free Newton methods
in which the descent direction −H−1

k (∇ϕαk
) are computed

directly via conjugate-gradient-based schemes. Implementa-
tion of such techniques is a subject of ongoing work.

D. Computational complexity
Computation of the gradient of f involves computation

of the matrix X from Y based on (6), a matrix inversion,
and solution to the Lyapunov equation, which each take
O(n3) operations, as well as an O(n2p) matrix-matrix
multiplication. In addition, the proximal operator for the
function g amounts to computing the 2-norm of all p columns
of a matrix with n rows, which takes O(np) operations.
These steps are embedded within an iterative backtracking
procedure for selecting the step-size α. Thus, if the step-size
selection takes q1 inner iterations the total computation cost
for a single iteration of the PG algorithm is O(q1n

3). On
the other hand, the forward-backward quasi-Newton method
MINFBE involves an additional iterative backtracking pro-
cedure for selecting the step-size τ that can take q2 inner
iterations and computation of the Hessian of f that involves
2 solutions to the Lyapunov equation, each requiring O(n3)
operations. Therefore, implementation of MINFBE takes
O(q1q2n

3) operations per iteration. In contrast, the worst-
case complexity of standard SDP solvers is O(n6).

Remark 3: As aforementioned, if the spectrum of A has
mirroring eigenvalues, i.e., λi + λ̄j = 0 for some i and j,
the variable X cannot be uniquely expresses as a linear
function of Y . While dualizing the relation between X and
Y would avoid this issue, it would come at the cost of slower
convergence resulting from higher computational complexity,
e.g., O(n5) per iteration in the case of the ADMM algorithm
of [9]. Section IV includes a comparison with this algorithm.

IV. AN EXAMPLE

We use a mass-spring-damper (MSD) system with N
masses to compare the performance of various optimization
algorithms for sensor selection. After setting all masses,
spring and damping constants to unity, the dynamics of
the position and velocity of masses are governed by the
following state-space representation

ẋ = Ax + B d

where the state vector x = [ pT vT ]T contains the posi-
tions and velocity of masses, d represents a zero-mean unit
variance white process. The input and state matrices are

A =

[
O I
−T −I

]
, B =

[
0
I

]
where O and I are zero and identity matrices of suitable
size, and T is a Toeplitz matrix with 2 on the main diagonal
and −1 on the first super- and sub-diagonals. Here, possible
sensor measurements are the position and velocity of masses.

For C = I , Vd = I , and Ωη = 10I , we solve the
sensor selection problem (4) for N = 10, 20, 30, 40 and
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TABLE I
COMPARISON OF DIFFERENT ALGORITHMS (IN SECONDS) FOR

DIFFERENT NUMBER OF STATES n AND γ = 10.

n CVX PG MINFBE ADMM
20 3 0.1 1.29 7.7

40 12 0.8 43 49.7

60 83.4 3.1 81.8 126.8

80 295 11.2 124.6 216.5

100 971 41.2 274.6 456.9

‖Y
k
−
Y

?
‖ F
/
‖Y

?
‖ F

iteration solve time (sec)
(a) (b)

Fig. 1. Convergence curves showing performance of PG (−), MINFBE
(#), and ADMM (−−) versus (a) the number of outer iterations; and (b)
solve times for N = 30 masses and γ = 10. Here, Y ? is the optimal value
for Y computed using CVX.

50 masses (n = 2N states) and for various values of the
regularization parameter γ. For γ = 10, Table I compares
the proposed PG and MINFBE algorithms against CVX [27]
and the ADMM of [9]. The algorithms were initialized
with Y 0 = XcLc, where Lc and Xc solve the observer
Riccati equation specifying the optimal Kalman filter that
uses all output measurements. This choice guarantees that
X(Y 0) � 0. All algorithms were implemented in MATLAB
and executed on a 2.9 GHz Intel Core i5 processor with 16
GB RAM. They terminate when an iterate achieves a certain
distance from optimality, i.e., ‖Xk − X?‖F /‖X?‖F < ε
and ‖Y k − Y ?‖F /‖Y ?‖F < ε. The choice of ε = 10−3

guarantees that the value of the objective is within 0.01%
of optimality. Clearly PG outperforms all other methods.
Figure 1 shows convergence curves of PG, MINFBE, and
ADMM for N = 30 masses and γ = 10.

From the convergence plots of Fig. 1 it is evident that
compared to PG, MINFBE takes fewer iterations but sig-
nificantly more computational time to reach the same level
of accuracy. Even though the MINFBE method converges,
its poor performance can be an indication that the descent
direction computed via BFGS or L-BFGS are not reasonable
approximations of the Newton descent direction.

For N = 30 masses, Fig. 2(a) shows the number of
retained sensors as a function of γ and Fig. 2(b) shows the
percentage of performance degradation as a function of the

nu
m

be
r

of
se

ns
or

s

γ
(a)

(f
−

f c
)/
f c
(%

)

number of sensors
(b)

Fig. 2. (a) Number of retained sensors as a function of the sparsity-
promoting parameter γ; and (b) performance loss vs the number of retained
sensors for the MSD with N = 30 masses. Here, fc(Y ) denotes the
performance index in Eq. (8a) when all sensors are available (γ = 0).

‖Y
e i
‖ 2

i

Fig. 3. Column norms of the solution of problems (4) (∗) and (3) (#) for
the MSD system with N = 30 masses and γ = 10. The index i denotes
the column number.

number of retained sensors. In problem (4), as γ increases
sensors are dropped and the performance degrades relative
to when all sensors are made available (γ = 0). For example
Fig. 2(b) shows that by dropping 2 velocity sensors the
performance degrades by 7.9% and that by dropping the
remaining 28 velocity sensors the performance degradation
only increases by another 0.6%. On the other hand, this
figure illustrates the importance of position measurements;
dropping half of the sensors dedicated to the position of
masses results in a 54% performance loss. Finally, for N =
30 masses and γ = 10, Fig. 3 illustrates how the solution to
the convex formulation of the sensor selection problem (4)
can differ from that of the non-convex formulation (3).

V. CONCLUDING REMARKS

We provide customized algorithms for the convex char-
acterization of the sensor selection problem in LTI systems.
By exploiting the problem structure and implicitly handling
the structural constraint on observability gramians and filter
gains, we bring the problem into a form that is accessible to
the proximal gradient method. We also employ the forward-
backward quasi-Newton method, which utilizes second-order
information to improve performance. Our numerical exper-
iments demonstrate that the proximal gradient algorithm
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outperforms the forward-backward quasi-Newton method,
as well as a previously developed splitting method based
on ADMM. Due to the importance of addressing the issue
of ill-conditioning in the broader context of nonsmooth
composite optimization (especially in the statistical modeling
of complex dynamical systems [28]) our ongoing effort is
directed towards improving the performance of the proposed
second-order method via direct computation of the Newton
direction. An alternative approach would also be to consider
second-order primal-dual methods [29].

APPENDIX

A. Gradient of f(Y ) in Eq. (11)

To find ∇f(Y ) in (11), we expand f(Y + ε Ỹ ) around
Y for the variation εỸ , and collect terms of O(ε). We also
account for the variation of X as a result of the variation of
Y from

(X + ε X̃)−1 = X−1 − εX−1X̃ X−1 + O(ε2),

and the linear dependence of X̃ on Ỹ , i.e.,

X̃ = A−1(B(Ỹ )).

Thus, at the kth iteration, the gradient of f with respect to
Y can be computed as is given by

∇f(Y k) = 2X−1Y k Ωη − 2 (W2 − W1)C∗,

where W1 and W2 are solutions to the following Lyapunov
equations

AW1 + W1A
∗ + X−1Y k Ωη Y

k∗X−1 = 0

AW2 + W2A
∗ + Vd = 0

Here, X−1 denotes the inverse of X(Y k).

B. Hessian of f(Y ) in Eq. (16)

To find ∇2f(Y, Ỹ ) in (16), we expand ∇f(Y + ε Ỹ )
around Y for the variation Ỹ , and collect terms of O(ε).
At the kth iteration we have

∇2f(Y k, Ỹ ) = 2 (X−1Ỹ−X−1W3X
−1Y k) Ωη + 2 W̃1C

∗,

where W̃1 and W3 are solutions to the following Lyapunov
equations

0 = A∗W3 + W3A − Ỹ C − C∗Ỹ ∗

0 = AW̃1 + W̃1A
∗ + X−1Ỹ k Ωη Y

k∗X−1 +

X−1Y k Ωη Ỹ
k∗X−1 −X−1W3X

−1Y k Ωη Y
k∗X−1

−X−1Y k Ωη Y
k∗X−1W3X

−1

Here, X−1 denotes the inverse of X(Y k).
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order primal-dual method for nonsmooth convex composite opti-
mization,” IEEE Trans. Automat. Control, 2017, submitted; also
arXiv:1709.01610.

6519


