Oblique transition in high-speed separated boundary layers

Mihailo Jovanović
viterbi-web.usc.edu/~mihailo/

Anubhav Dwivedi
G. S. Sidharth

Wall-bounded turbulence workshop; Newton Institute
Separated boundary layers

- **Ubiquitous in high-speed flows**
 - involve shock/boundary layer interactions (SBLI)
 - characterized by separation/reattachment shocks

![Diagram of separated boundary layer with labels: S (leading edge shock), R (reattachment shock), θ₁ (angle), θ₂ (angle), separation bubble, SBLI on double-wedge.](image-url)
Dominant flow structures

- **STEADY STREAKS NEAR REATTACHMENT**
 - precursor to turbulence

![Diagram showing steady streaks near reattachment](image)

- **Oil flow**
 \(\theta_1/\theta_2 = 2\degree/12\degree \)

- **Temperature sensitive paint**
 \(\theta_1/\theta_2 = 0\degree/15\degree \)

Dwivedi, Broslawski, Candler, Bowersox
Exp. Fluids ’17

Chuvakhov, Borovoy, Egorov, Radchenko, Olivier, Roghelia
AIAA Aviation ’20
OBJECTIVE

study the origin of reattachment streaks in separated flows
An adiabatic double-wedge

Free stream conditions

\[
\begin{align*}
M_\infty & \quad 5 \\
U_\infty & \quad 792.35 \text{ m/s} \\
p_\infty & \quad 1.22 \text{ kPa} \\
T_\infty & \quad 62.5 \text{ K} \\
U_\infty / \nu_\infty & \quad 13.6 \times 10^6 / \text{m}
\end{align*}
\]

- realistic experimental conditions

Yang, Zare-Behtash, Erdem, Contis
Exp. Therm. Fluid Sci. ’12

- 2D base flow: computed in US3D
Global stability analysis

- **Spectrum of linearization around 2D base flow**

- 2D base flow is **globally stable** (to 3D perturbations)

Sidharth, Dwivedi, Candler, Nichols, PRF ’18
Input-output analysis

\[
\frac{\partial \psi}{\partial t} = \mathcal{F}(\Psi_0 + \psi) + d
\]

Fluctuation Dynamics
(around 2D base flow \(\Psi_0 \))
Input-output analysis

\[\frac{\partial \psi}{\partial t} = F(\Psi_0 + \psi) + d \]

Fluctuation Dynamics
(around 2D base flow \(\Psi_0 \))

\(d \) – external source of momentum, mass, and energy
\(\psi \) – velocity, density, and temperature fluctuations
\(F \) – generator of compressible NS dynamics

2D base flow: \(F(\Psi_0) = 0 \)
SMALL AMPLITUDE FORCING

\[\frac{\partial \psi(x, t)}{\partial t} = \mathcal{F}(\Psi_0(x) + \psi(x, t)) + \epsilon d_1(x, t) \]

weakly-nonlinear analysis

\[\psi(x, t) = \epsilon \psi_1(x, t) + \epsilon^2 \psi_2(x, t) + \mathcal{O}(\epsilon^3) \]
\textbf{DYNAMICS AT } \mathcal{O}(\epsilon) \\
\star \text{ linearized flow equations (driven by } d_1) \\
\frac{\partial \psi_1}{\partial t} = A(\Psi_0) \psi_1 + d_1 \\
A(\Psi_0) \quad \text{-- linearized generator}
DYNAMICS AT $\mathcal{O}(\epsilon^2)$

- **linear equations**

\[
\frac{\partial \psi_2}{\partial t} = A(\Psi_0) \psi_2 + N(\psi_1)
\]

(input $N(\psi_1)$) \quad (output ψ_2)

(driven by $N(\psi_1)$)
Response to deterministic forcing

Forcing:
- **Deterministic** in x and y
- **Harmonic** in t and z

\[
d_1(x, y, z, t) = \hat{d}_1(x, y; k_z, \omega) e^{i\omega t} e^{ik_z z}
\]
Linearized Dynamics

- **steady-state response**

\[
\psi_1(x, y, z, t) = \hat{\psi}_1(x, y; k_z, \omega) e^{i\omega t} e^{ik_z z}
\]
Spatio-Temporal Frequency Response

- Operator in x and y

$$\hat{d}_1(\cdot, \cdot; k_z, \omega)$$

$$\mathcal{H}(k_z, \omega)$$

$$(i\omega I - A(k_z))^{-1}$$

$$\hat{\psi}_1(\cdot, \cdot; k_z, \omega)$$

Resolvent Analysis
Worst-case amplification

- Determined by the largest singular value

\[G(k_z, \omega) = \max \frac{\text{output energy}}{\text{input energy}} = \sigma_{max}^2(\mathcal{H}(k_z, \omega)) \]

- Fluctuations’ energy: Chu’s energy norm

\[\int_{\Omega} \left(\bar{\rho} |u'|^2 + \frac{\bar{\rho}}{\bar{\rho}^2} \rho'^2 + \frac{\bar{\rho} C_v}{T} T'^2 \right) d\Omega \]

Hanifi, Schmid, Henningson, Phys. Fluids ’96
• **Spatial Localization of Dominant Inputs/Outputs**

 * inputs: upstream of corner

 * outputs: downstream of corner
Two strongly amplified regions

- steady streaks: triggered by upstream vortical inputs

 Dwivedi, Sidharth, Nichols, Candler, Jovanović, JFM ’19

- unsteady oblique waves
Hypersonic wind-tunnels

- unsteady free-stream disturbances

Schneider, Prog. Aero. Sc. ’15

can unsteady disturbances trigger steady streaks?
Oblique Wave Forcing

\[
d(x, y, z, t) = \epsilon \left(d_{+1}(x, y) e^{i\omega t} + d_{-1}(x, y) e^{-i\omega t} \right) e^{ikzz}
\]

Linear response

\[
\Psi_0(x, y) + \epsilon \left(\psi_{+1}(x, y) e^{i\omega t} + \psi_{-1}(x, y) e^{-i\omega t} \right) e^{ikzz}
\]
Oblique Wave Forcing

\[
d(x, y, z, t) = \epsilon \left(d_{+1}(x, y) e^{i\omega t} + d_{-1}(x, y) e^{-i\omega t} \right) e^{ikzz}
\]

- weakly-nonlinear response

\[
\begin{align*}
\Psi_0(x, y) &+ \epsilon \left(\psi_{+1}(x, y) e^{i\omega t} + \psi_{-1}(x, y) e^{-i\omega t} \right) e^{ikzz} + \\
\psi_{2,0}(x, y) &+ \psi_{+2}(x, y) e^{2i\omega t} + \psi_{-2}(x, y) e^{-2i\omega t} e^{2ikzz}
\end{align*}
\]

- laminar base flow
- oblique waves
- steady streaks

Weakly-Nonlinear Response

- Unsteady upstream forcing
- $\mathcal{H}(k_z, \pm \omega)$
 - $\mathcal{O}(\epsilon)$
 - Oblique waves
- $\mathcal{H}(2k_z, 0)$
 - $\mathcal{O}(\epsilon^2)$
 - Steady streaks
Weakly nonlinear analysis

GRAPHICAL ILLUSTRATION

\[\mathcal{O}(\epsilon^0) \]

M = 5

Corner separation bubble

\[\nabla \bar{\rho} \]

\[\epsilon (d_{+1}e^{i\omega t} + d_{-1}e^{-i\omega t}) e^{ik_z z} \]

\[\mathcal{H}(k_z, \pm \omega) \]

\[\mathcal{H}(2k_z, 0) \]

\[\mathcal{O}(\epsilon^1) \]

Oblique wave response \(u' \)

\[\mathcal{O}(\epsilon^2) \]

Steady streak response \(u' \)
Steady forcing from unsteady disturbances

Steady forcing at $\mathcal{O}(\epsilon^2)$

- unsteady interactions generate steady vortical forcing
- localized downstream

in contrast to steady primary forcing
DNS with varying forcing amplitude

weakly nonlinear analysis: captures DNS results
Representation in terms of resolvent modes

\[\psi_{2,0}(x, y) = \sum_n \sigma^{(n)} \langle d^{(n)}(\mathcal{N}(\psi_{\pm 1})) \psi^{(n)}(x, y) \rangle \]

- **Gain** \((\omega = 0, 2k_z)\)
- **Projection coefficient**

\((d^{(n)}, \psi^{(n)})\) — input-output modes of \(\mathcal{H}(2k_z, 0)\)
Spatial Evolution of Reattachment Streaks

Reattachment streaks: captured by the 2nd output mode
Oblique transition

- Triggered by unsteady interactions

Dwivedi, Sidharth, Jovanović, arXiv:2111.15153
Summary

- **Streaks in high-speed separated flows**
 - robust response to **steady** and **unsteady** disturbances

- **Steady vortical excitation**
 - quadratic interactions of unsteady oblique waves
 - effective route for triggering transition

- **Physical mechanism**
 - oblique waves: curvature of separated shear layer
 - streaks: streamwise deceleration near reattachment

Dwivedi, Sidharth, Jovanović, arXiv:2111.15153
• **ACKNOWLEDGEMENTS**

 Anubhav Dwivedi
 G. S. Sidharth

• **FUNDING**

 ★ AFOSR FA9550-18-1-0422
 (Program manager: Gregg Abate)

• **CONTACT INFO**

 ★ mihailo@usc.edu

 ★ https://viterbi-web.usc.edu/~mihailo/