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Motivating applications

networks of dynamical systems flexible wing aircraft

e CHALLENGE: sensor/actuator placement



Context
e RICH HISTORY

= distributed parameter systems literature
John Burns’ talk yesterday: outstanding overview!

e LESSONS LEARNED

x importance of problem formulation
well-posedness; selection: context dependent

x optimal estimation/control
much better tool for selection than observability/controllability

= difficult to solve: nonconvex, computationally challenging
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e RICH HISTORY

= distributed parameter systems literature
John Burns’ talk yesterday: outstanding overview!

e LESSONS LEARNED

x importance of problem formulation
well-posedness; selection: context dependent

x optimal estimation/control
much better tool for selection than observability/controllability

= difficult to solve: nonconvex, computationally challenging
e WHY NOW?
% applications: networks, distributed sensor/actuator arrays

x optimization: tremendous advances during the last decade



OBJECTIVE

select a subset of available sensors/actuators
that provides

“acceptable” degradation of estimation/control quality




Selection via regularization

minimize J(K) + y9(K)
estimation/control proxy for
quality selection

v > 0 — performance vs “complexity” tradeoff

35



e TRADE-OFF CURVE

* performance vs “complexity”

performance loss

v

complexity



Minimum variance control problem

dynamics: © = Ax + Bid + Byu
objective function: .J = lim E (2" (t)Qz(t) + u(t) Ru(t))

memoryless controller: v = —Fx



Minimum variance control problem

dynamics: © = Ax + Bid + Byu
objective function: .J = lim E (2" (t)Qz(t) + u(t) Ru(t))

memoryless controller: v = —Fx

e CLOSED-LOOP VARIANCE AMPLIFICATION

J — non-convex function of F



No structural contraints

e SDP CHARACTERIZATION
. . . T
minimize trace ((Q + FTRF) X)

subject to (A — BoF) X + X (A — BoF)T + BBT = 0
X >0



No structural contraints

e SDP CHARACTERIZATION
. . . T
minimize trace ((Q + FTRF) X)

subject to (A — BoF) X + X (A — BoF)T + BBT = 0
X >0

= change of variables: FX =Y

minimize  trace (@X) + trace (RY X 'YT)

subject to (AX — ByY) + (AX — B, Y)' + BBY =0
X =0

Schur complement = SDP characterization
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e RICCATI-BASED-CHARACTERIZATION

globally optimal controller

ATP + PA — PB,R'BIP + Q =
F, =

RBTP
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e STRUCTURAL CONSTRAINTS F € S

centralized fully-decentralized localized
ok ok ok * x %
ok ok sk * * ook ok
* ok ok ok * x ok ok
ok ok ok * ko ok

GRAND CHALLENGE
convex characterization in the face of structural constraints
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difficult to establish relation between

on X andY

{ structural constraints } g { structural constraints }
an
on F
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Optimal actuator selection
e OBJECTIVE: identify row-sparse feedback gain

-
u|

=— F
[
minimize J(F) + v Z HeiTFHQ
variance row-sparsity-promoting

amplification penalty function
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e CHANGE OF VARIABLES: Y = F'X

x convex dependence of J on X and Y
* row-sparse structure preserved
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e OPTIMAL ACTUATOR SELECTION

« admits SDP characterization

minimize J(X,Y) + v Z le] Y]|2
variance row-sparsity-promoting
amplification penalty function

Polyak, Khlebnikov, Shcherbakov, ECC ’13
Miinz, Pfister, Wolfrum, IEEE TAC 14
Dhingra, Jovanovi¢, Luo, CDC 14
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Sensor selection: dual problem
e KALMAN FILTER

* minimum variance estimator

= Az 4+ L(y —9) + Bd

. . L
y = Cuzx

y=Czxr 4+ w

OBJECTIVE: minimize estimation error using a few sensors

% proxy: column sparsity of Kalman gain L
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Challenge: computational complexity

trace (RY X 'Y"T) = trace (RO)
F
=~ 0
\

worst case complexity: O ((n +m)°)
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Customized Algorithms



Actuator selection

minimize J(X,Y) + ~vg(Y)

subjectto AX — BY + W =0
X >0

J(X,Y) := trace (QX + RYTX™'Y)
g(V) = Y _llelY ]2

AX = AX + X AT
BY = ByY + YTBg
W = Ble
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Customized algorithms

e ALTERNATING DIRECTION METHOD OF MULTIPLIERS (ADMM)

Boyd et al., FnT in Machine Learning ’11

e PROXIMAL GRADIENT ALGORITHM

Parikh & Boyd, FnT in Optimization '14
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Two pillars

e AUGMENTED LAGRANGIAN
L (X, Y;A) = JX)Y) + v9(Y) + (ALVAX — BY + W) +
g||AX —BY + W3
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Two pillars

e AUGMENTED LAGRANGIAN
L (X, Y;A) = JX)Y) + v9(Y) + (ALVAX — BY + W) +
g||AX —BY + W3

e PROXIMAL OPERATOR

1
prox,, (V) := argmin g(X) + 5o [|IX - VIiE
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Xk+1 .

Yk:—i—l

Ak:+1 .

ADMM

argmin  L£,(X,Y*; AF)
X

argmin  L,(X*1Y; AF)
Y

AP 4+ p (AXF —

BY*1 + W)
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Y-update

C P
minjmize 7Y (/Y2 + §IBY — VI

h(Y)

e GROUP LASSO

Y7t = prox,,;,(Y/ — o/ Vh(Y7))
soft thresholding
ASM
/ LY = 8l (Y — o/ Vh(Y)))
K complexity per inner iteration: O(nm)
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X-update
minjmize ~trace (X Q + X~'YTRY) + LJAX — Ul
subject to X >0
e CAN FORMULATE AS SDP

* worst-case complexity O(nS)

e PROJECTED NEWTON’S METHOD

* use conjugate gradients to find the search direction
* projectonto {X | X = 0}
worst-case complexity: O(n%)
Dhingra, Jovanovic, Luo, CDC '14
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ADMM

= difficult subproblems

x slow overall convergence

ALTERNATIVE APPROACH

x invertible A: avoid dualizing the linear constraint

AX — BY + W =0
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Elimination of X

e FOR INVERTIBLE A

* matrix A doesn’t have e-values with equal positive and negative parts

X(Y) = AYBY - W)

minignize JY) + vg(Y)

subject to X (Y) > 0

J(Y) = trace (QX(Y) + RYTXHY)Y)
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Proximal gradient method

Y = prox ., (Y* — ofVJ(YF))

yakg

soft thresholding

AS
/ e] Y = & w(ef (YF — ofVI(YH)))

L
m >

complexity: O(max(n?, n*m))

26/35



e COMPLEXITY PER ITERATION

* q backtracking steps: O(¢n?)

e STOPPING CRITERION

* terminate when relative and normalized residuals are small

Goldstein, Studer, Baraniuk, arXiv:1411.3406
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Examples

28/35



Flexible Wing Aircraft

10ft

e OBJECTIVE

« detect aeroelastic instabilities
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number of sensors
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Linearized Swift-Hohenberg equation
e PDE WITH SPATIALLY PERIODIC COEFFICIENTS

Y = — Bz + D*% — ct + O, +d + u

flx) = acos(Qx)

A= —(8p +1)* — ¢l + acos(Qx)d,
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e n==064;c=

v = 0.675

—02,a=2,02=1.25
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33/35



" = Y*|r

Y*llr

Comparison with ADMM
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Remarks
CONVEX CHARACTERIZATION OF SENSOR/ACTUATOR SELECTION

Polyak, Khlebnikov, Shcherbakov, ECC 13
ALTERNATING DIRECTION METHOD OF MULTIPLIERS

Dhingra, Jovanovi¢, Luo, CDC ’14
PROXIMAL GRADIENT ALGORITHM

% elimination of X

* adaptive step-size selection

RELATION TO MINIMUM ENERGY COVARIANCE COMPLETION PROBLEM

* additional linear constraint on the covariance matrix X

Zare, Dhingra, Jovanovi¢, Georgiou, CDC ’17 (to appear)
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