Optimal sensor and actuator selection in distributed systems

Mihailo Jovanović

ee.usc.edu/mihailo

joint work with

Armin Zare

Neil Dhingra

IMA Sensor Location Workshop

Motivating applications

networks of dynamical systems

flexible wing aircraft

CHALLENGE: sensor/actuator placement

Context

- Rich history
 - * distributed parameter systems literature

John Burns' talk yesterday: outstanding overview!

- LESSONS LEARNED
 - importance of problem formulation
 well-posedness; selection: context dependent
 - optimal estimation/control
 much better tool for selection than observability/controllability
 - * difficult to solve: nonconvex, computationally challenging

Context

- RICH HISTORY
 - * distributed parameter systems literature

John Burns' talk yesterday: outstanding overview!

LESSONS LEARNED

- importance of problem formulation
 well-posedness; selection: context dependent
- optimal estimation/control
 much better tool for selection than observability/controllability
- * difficult to solve: nonconvex, computationally challenging
- WHY NOW?
 - * applications: networks, distributed sensor/actuator arrays
 - ⋆ optimization: tremendous advances during the last decade

OBJECTIVE

select a subset of available sensors/actuators
that provides

"acceptable" degradation of estimation/control quality

Selection via regularization

 $\gamma>0$ - performance vs "complexity" tradeoff

• TRADE-OFF CURVE

* performance vs "complexity"

performance loss

Minimum variance control problem

dynamics:
$$\dot{x} = Ax + B_1 d + B_2 u$$

objective function:
$$J = \lim_{t \to \infty} \mathbf{E} \left(x^T(t) Q x(t) + u^T(t) R u(t) \right)$$

memoryless controller: u = -Fx

Minimum variance control problem

dynamics:
$$\dot{x} = Ax + B_1d + B_2u$$

objective function:
$$J = \lim_{t \to \infty} \mathbf{E} \left(x^T(t) Q x(t) + u^T(t) R u(t) \right)$$

memoryless controller: u = -F x

CLOSED-LOOP VARIANCE AMPLIFICATION

J - non-convex function of F

No structural contraints

SDP CHARACTERIZATION

minimize
$$\operatorname{trace}\left(\left(Q + F^{T}RF\right)X\right)$$

subject to $\left(A - B_{2}F\right)X + X(A - B_{2}F)^{T} + B_{1}B_{1}^{T} = 0$
 $X \succ 0$

No structural contraints

SDP CHARACTERIZATION

minimize
$$\operatorname{trace}\left(\left(Q + F^{T}RF\right)X\right)$$

subject to $\left(A - B_{2}F\right)X + X(A - B_{2}F)^{T} + B_{1}B_{1}^{T} = 0$
 $X \succ 0$

* change of variables: FX = Y

minimize
$$\operatorname{trace}(QX) + \operatorname{trace}(RYX^{-1}Y^{T})$$

subject to $(AX - B_{2}Y) + (AX - B_{2}Y)^{T} + B_{1}B_{1}^{T} = 0$
 $X \succ 0$

Schur complement ⇒ SDP characterization

RICCATI-BASED-CHARACTERIZATION

globally optimal controller

$$A^{T}P + PA - PB_{2}R^{-1}B_{2}^{T}P + Q = 0$$
$$F_{c} = R^{-1}B_{2}^{T}P$$

Structural constraints $F \in S$

centralized

GRAND CHALLENGE

convex characterization in the face of structural constraints

difficult to establish relation between

Optimal actuator selection

OBJECTIVE: identify row-sparse feedback gain

- Change of variables: Y := FX
 - \star convex dependence of J on X and Y
 - * row-sparse structure preserved

- OPTIMAL ACTUATOR SELECTION
 - * admits SDP characterization

Polyak, Khlebnikov, Shcherbakov, ECC '13 Münz, Pfister, Wolfrum, IEEE TAC '14 Dhingra, Jovanović, Luo, CDC '14

Sensor selection: dual problem

- KALMAN FILTER
 - * minimum variance estimator

$$\dot{\hat{x}} = A\hat{x} + L(y - \hat{y}) + Bd$$

$$\dot{y} = C\hat{x}$$

$$y = Cx + w$$

$$y$$

OBJECTIVE: minimize estimation error using a few sensors

 \star proxy: column sparsity of Kalman gain L

Challenge: computational complexity

$$\operatorname{trace}\left(RYX^{-1}Y^{T}\right) = \operatorname{trace}\left(R\Theta\right)$$

$$\Theta \qquad Y \qquad \succeq C$$

$$Y \qquad X$$

worst case complexity: $O((n+m)^6)$

Customized Algorithms

Actuator selection

minimize
$$J(X,Y) + \gamma g(Y)$$

subject to $AX - BY + W = 0$
 $X \succ 0$

$$J(X,Y) := \operatorname{trace} \left(Q X + R Y^T X^{-1} Y \right)$$

$$g(Y) := \sum_{i} \| \mathbf{e}_{i}^{T} Y \|_{2}$$

$$\mathcal{A} X := A X + X A^T$$

$$\mathcal{B} Y := B_2 Y + Y^T B_2^T$$

$$W := B_1 B_1^T$$

Customized algorithms

ALTERNATING DIRECTION METHOD OF MULTIPLIERS (ADMM)

Boyd et al., FnT in Machine Learning '11

PROXIMAL GRADIENT ALGORITHM

Parikh & Boyd, FnT in Optimization '14

Two pillars

AUGMENTED LAGRANGIAN

$$\mathcal{L}_{\underline{\rho}}(X,Y;\Lambda) \; := \; J(X,Y) \; + \; \gamma \, g(Y) \; + \; \langle \Lambda, \mathcal{A} \, X \; - \; \mathcal{B} \, Y \; + \; W \rangle \; + \\ \frac{\rho}{2} \, \|\mathcal{A} \, X \; - \; \mathcal{B} \, Y \; + \; W\|_F^2$$

Two pillars

AUGMENTED LAGRANGIAN

$$\mathcal{L}_{\rho}(X,Y;\Lambda) \; := \; J(X,Y) \; + \; \gamma \, g(Y) \; + \; \langle \Lambda, \mathcal{A} \, X \; - \; \mathcal{B} \, Y \; + \; W \rangle \; + \\ \frac{\rho}{2} \, \|\mathcal{A} \, X \; - \; \mathcal{B} \, Y \; + \; W\|_F^2$$

PROXIMAL OPERATOR

$$\mathbf{prox}_{\mu g}(V) := \underset{X}{\operatorname{argmin}} g(X) + \frac{1}{2\mu} \|X - V\|_F^2$$

ADMM

$$X^{k+1} := \underset{X}{\operatorname{argmin}} \ \mathcal{L}_{\rho}(X, Y^{k}; \Lambda^{k})$$

$$Y^{k+1} := \underset{Y}{\operatorname{argmin}} \ \mathcal{L}_{\rho}(X^{k+1}, Y; \Lambda^{k})$$

$$\Lambda^{k+1} := \Lambda^{k} + \rho \left(\mathcal{A} X^{k+1} - \mathcal{B} Y^{k+1} + W \right)$$

Y-update

$$\underset{Y}{\text{minimize}} \ \gamma \sum \|\mathbf{e}_{i}^{T}Y\|_{2} + \underbrace{\frac{\rho}{2} \|\mathcal{B}Y - V\|_{F}^{2}}_{h(Y)}$$

GROUP LASSO

$$Y^{j+1} = \mathbf{prox}_{\gamma \alpha^j g}(Y^j - \alpha^j \nabla h(Y^j))$$

$$\mathbf{e}_{i}^{T} Y^{j+1} = \mathcal{S}_{\gamma \alpha^{j}} (\mathbf{e}_{i}^{T} (Y^{j} - \alpha^{j} \nabla h(Y^{j})))$$

complexity per inner iteration: O(nm)

X-update

minimize trace
$$(XQ + X^{-1}Y^TRY) + \frac{\rho}{2} \|AX - U\|_F^2$$

subject to $X > 0$

- CAN FORMULATE AS SDP
 - * worst-case complexity $O(n^6)$
- Projected Newton's method
 - * use conjugate gradients to find the search direction
 - \star project onto $\{X \mid X \succ 0\}$

worst-case complexity: $O(n^5)$

Dhingra, Jovanović, Luo, CDC '14

ADMM

- * difficult subproblems
- * slow overall convergence

ALTERNATIVE APPROACH

* invertible A: avoid dualizing the linear constraint

$$AX - BY + W = 0$$

Elimination of X

- FOR INVERTIBLE A
 - \star matrix A doesn't have e-values with equal positive and negative parts

$$X(Y) = \mathcal{A}^{-1}(\mathcal{B}Y - W)$$

minimize
$$J(Y) + \gamma g(Y)$$

subject to $X(Y) \succ 0$

$$J(Y) := \operatorname{trace} (QX(Y) + RY^T X^{-1}(Y)Y)$$

Proximal gradient method

$$Y^{k+1} \; := \; \mathbf{prox}_{\gamma\alpha^kg} \big(Y^k \, - \, \alpha^k \nabla J(Y^k)\big)$$

$$\mathbf{e}_i^T Y^{k+1} = \mathcal{S}_{\gamma \alpha^k} (\mathbf{e}_i^T (Y^k - \alpha^k \nabla J(Y^k)))$$

complexity: $O(\max(n^3, n^2m))$

COMPLEXITY PER ITERATION

 $\star q$ backtracking steps: $O(q n^3)$

STOPPING CRITERION

* terminate when relative and normalized residuals are small

Goldstein, Studer, Baraniuk, arXiv:1411.3406

Examples

Flexible Wing Aircraft

- OBJECTIVE
 - * detect aeroelastic instabilities

using half the sensors: degrades performance by $\approx 20\%$

Linearized Swift-Hohenberg equation

PDE with spatially periodic coefficients

$$\partial_t \psi = -(\partial_{xx} + I)^2 \psi - c \psi + f \partial_x \psi + d + u$$
$$f(x) = \alpha \cos(\Omega x)$$

where

$$A = -(\partial_{xx} + I)^2 - cI + \alpha \cos(\Omega x) \partial_x$$

• n = 64; c = -0.2, $\alpha = 2$, $\Omega = 1.25$

Structure of optimal controller

• n = 64; c = -0.2, $\alpha = 2$, $\Omega = 1.25$

24.8% performance degradation

Comparison with ADMM

- Proximal gradient
- ADMM

Remarks

CONVEX CHARACTERIZATION OF SENSOR/ACTUATOR SELECTION

Polyak, Khlebnikov, Shcherbakov, ECC '13

ALTERNATING DIRECTION METHOD OF MULTIPLIERS

Dhingra, Jovanović, Luo, CDC '14

- PROXIMAL GRADIENT ALGORITHM
 - \star elimination of X
 - * adaptive step-size selection
- Relation to minimum energy covariance completion problem
 - \star additional linear constraint on the covariance matrix X

Zare, Dhingra, Jovanović, Georgiou, CDC '17 (to appear)