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Abstract

Materials processing operations such as extrusion and coating often involve the low-

inertia flow of viscoelastic fluids through straight channels. Experimental evidence sug-

gest that such flows can transition from a laminar to a disordered flow-state, resulting

in defective end-products. On the other hand, such a transition with low inertia is use-

ful for enhancing transport in microfluidic flows where good mixing is hard to achieve.

Therefore a fundamental understanding of such a transition is important.

Chapter 2 of this thesis considers external disturbances in the form of small-amplitude

localized body forces (impulses). They provide a good approximation of the external

disturbances that can be realized relatively easily in laboratory experiments. Localized

body forces are used to identify the optimal location in a channel that induces the largest

kinetic energy growth. A disturbance in the channel that generates the largest kinetic

energy growth has a high potential to trigger a transition to a disordered flow-state.

Chapter 3 presents tools to accurately resolve steep stress gradients encountered in

frequency response calculations of the linearized equations governing channel flow of a

viscoelastic fluid. Recently reported well-conditioned spectral methods in conjunction

with a reflection technique enable frequency response computations of channel flows of

viscoelastic fluids with large elasticity.

Applying the methods developed in Chapter 3 to 2D channel flow of a viscoelastic

fluid, it is found that the stress can develop large magnitudes even when the velocity

has negligible growth. A stress of large magnitude generated by small-amplitude dis-

turbances may provide a new route to a transition to a disordered flow-state observed

in recent experiments. Chapter 4 studies stress amplification and conditions in which

they become prominent.

A first step to perform direct numerical simulations (DNS) of channel flows of vis-

coelastic fluids using tools developed in Chapter 3 is to develop an algorithm for DNS

of channel flows of Newtonian fluids. Chapter 5 extends tools discussed in Chapter 3 to

perform direct numerical simulations of channel flows of a Newtonian fluid.

Analyzing transition to turbulence in viscoelastic channel flows is a challenging prob-

lem that needs a multi-facetted approach involving linear and nonlinear systems theory,

ii



robust numerical methods, and complementary experiments. We believe that this disser-

tation provides new insights into possible mechanisms that may govern the initial stages

of a transition to elastic turbulence using linear systems theory and recent numerical

methods. We further hope that the numerical methods studied in this dissertation will

open new avenues to simulate and analyze flow transition in complex fluids.
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Chapter 1

Introduction

Newtonian fluids transition from a structured and ordered (laminar) flow state to a

three-dimensional, unstructured, time-dependent (turbulent) flow state when the inertia

of the fluid is sufficiently large. In contrast, certain viscoelastic fluids transition to a

turbulent-like flow state even with negligible inertia [3, 7, 8, 9].

Figure 1.1 shows experimental observations by Groisman and Steinberg [7]. A dilute

polymer solution in a cylindrical cup was subject to shear using a rotating disk rest-

ing on its surface (Figure 1.1a). The fluid velocity was measured using laser Doppler

velocimetry. Figures 1.1b and 1.1c show the effect of placing a drop of black ink at

the center bottom of a Newtonian fluid and a dilute viscoelastic fluid respectively at

a Reynolds number of 1. We see poor mixing in the Newtonian fluid (Figure 1.1b)

after nine hours of rotation, while the dilute viscoelastic fluid (Figure 1.1c) is nearly

uniformly mixed in two minutes due to elastic turbulence.

Elastic turbulence is useful in microfluidic devices where good mixing is difficult to

achieve by other means [10]. Elastic turbulence also finds applications in implementing

microscale flow-control devices [11, 10] like nonlinear flow resistors and flow memory

devices such as flip-flops, which are analogous to their counterparts in electric circuits.

Elastic turbulence is sometimes undesired in materials processing operations like coating

and polymer processing to avoid defective end-products [12, 13]. However there is a lack

of fundamental understanding regarding the origin and the initial stages of a transition

to elastic turbulence in straight channels.

This thesis provides insight into mechanisms that may govern the initial stages of

1



2

(a)

(b) (c)

Figure 1.1: Experiments of Groisman and Steinberg [3] illustrating elastic turbulence.
(a) The experimental setup to observe a dilute polymer solution subjected to parallel
shear, where R = 38 mm, R2 = 43.6 mm and d = 10 mm. (b) The dispersion of a drop
of black ink in a Newtonian fluid and (c) in a dilute polymer solution, at a Reynolds
number (in terms of the maximum velocity and d) of 1. The Newtonian fluid shows
poor mixing after nine hours of rotation, whereas, the dilute viscoelastic solution shows
uniform mixing in two minutes.
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a transition to turbulence in viscoelastic channel flows using tools from linear systems

theory and recently developed well-conditioned spectral methods. We consider four

problems relevant to studying transition to turbulence in viscoelastic channel flows:

(a) The effects of localized body forces. (b) Development of tools to carry out linear

analysis of high-elasticity fluids in channels, (c) The effects of a persistent body force

that is localized in space and is a sinusoidal function of time, and (d) Development

of a method to perform direct numerical simulations of Newtonian channel flows that

is applicable to a broad class of spectral methods. Such a method may be useful for

simulating the nonlinear evolution of the flow of viscoelastic fluids in channels.

In the section to follow, we introduce subjects from linear systems theory and nu-

merical methods that we will use in this dissertation. This is followed by an overview

of the projects we consider.

1.1 Preliminaries

1.1.1 Stability and sensitivity

The initial stages of a transition to turbulence is studied by considering effects of small-

amplitude perturbations on a dynamical system [14, 15, 16]. This corresponds to an-

alyzing the effect of an initial condition on the linearized equations [15] governing the

system. If at the least one initial condition grows exponentially at long times, the sys-

tem is linearly unstable, and if all initial conditions asymptotically decay at long times,

the system is linearly stable [17]. A growing initial condition may actuate the system

to a new nonlinear state that is observed as turbulence.

Linear stability analysis only ascertains the long time growth or decay of initial

conditions on a system, and provides no information about growth at finite times. A

linearly stable system in which a small-amplitude perturbation grows significantly at

finite times is said to be sensitive. To understand the notions of stability and sensitivity

we repeat an example from [18]. Consider a system of coupled ordinary differential

equations (ODE) governing the dynamics of ψ1 and ψ2,

d

dt

[
ψ1

ψ2

]
=

[
λ1 0

R λ2

][
ψ1

ψ2

]
, (1.1)
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(a) (b)

Figure 1.2: Solution to (1.1) by setting λ1 = −2, λ2 = −3, and ψ1(0) = ψ2(0) = 1, (a)
R = 0, and (b) R = {5, 7, 9, 11, 13, 15, 17, 19}.

where λ1 and λ2 are the eigenvalues of this system, and R is a parameter. The solution

of system (1.1) assuming that λ1 6= λ2 is

ψ1(t) = eλ1t ψ1(0),

ψ2(t) = eλ2t ψ2(0) +
R

λ1 − λ2
(eλ1t − eλ2t)ψ1(0).

(1.2)

We see from (1.2) that if λ1, λ2 < 0, then ψ1 will decay monotonically at long times.

However, the solution for ψ2 in (1.2) has two terms: The first term eλ2t ψ2(0) would decay

exponentially, whereas the second term has a competition between two exponential

terms. We would expect that the second term also decays exponentially at long-times

as λ1, λ2 < 0. Figure 1.2b shows the solution for ψ2 by setting λ1 = −2, λ2 = −3, and

ψ1(0) = ψ2(0) = 1. Notice in Figure 1.2a that when R = 0, ψ2 decays exponentially,

whereas with an increase in R (Figure 1.2b), ψ2 first increases at finite times before it

decays at long times.

Furthermore, we observe in Figure 1.2b that the amount of finite-time amplification

increases with an increase in R. If (1.1) represents the linearized dynamics of a nonlinear

system, such a finite-time amplification as in Figure 1.2b may act as a finite-amplitude

perturbation to drive the system to a new nonlinear solution state.

Such finite-time growth (Figure 1.2b) is referred as nonmodal growth (growth that
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is not related to unstable modes, i.e., eigenvalues with positive real part). Nonmodal

amplification of exogenous disturbances plays a key role in the initial stages of a tran-

sition to turbulence in channel flows of Newtonian fluids [19, 15, 16, 14]. The role of

nonmodal amplification for a transition to elastic turbulence is not very clear, although

it is likely that viscoelastic channel flows are sensitive to small-amplitude perturba-

tions [20, 21, 22, 5, 23].

Although we considered a system of ODEs to illustrate nonmodal amplification

in Figure 1.2, the spatio-temporal evolution of the flow of a viscoelastic fluid in a chan-

nel is governed by a set of partial differential equations (PDE). In this thesis, PDEs

are reduced to ODEs in time (similar to (1.1)) by expressing spatial variations in sets

of orthogonal basis functions like the Chebyshev polynomials (i.e., using spectral meth-

ods [24, 25]). In particular, we use recently introduced well-conditioned spectral meth-

ods [26, 27] whose details can be found in Chapter 3. In the following section we briefly

introduce spectral methods and their well-conditioned variants.

1.1.2 Spectral methods and their well-conditioned variants

Spectral methods express a variable of interest in a basis of orthogonal functions such

as the Chebyshev polynomials. Consider a function u(y) ∈ Cn[−1, 1], where Cn[−1, 1]

is the set of functions defined in the domain y ∈ [−1, 1] that are differentiable n times.

The spectral expansion of u in a Chebyshev basis is given by

u(y) = u0
1

2
T0(y) + u1 T1(y) + u2 T2(y) · · ·+ uN TN (y), (1.3)

where ui are the spectral coefficients, and Ti are the ith Chebyshev polynomials of the

first kind. The Chebyshev polynomials are orthogonal with respect to an integration

weight 1/
√

1− y2 [28, 29],

2

π

∫ 1

−1

Ti(y)Tj(y)√
1− y2

dy =


0, i 6= j,

1, i = j 6= 0,

2, i = j = 0.

(1.4)
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The orthogonality relationship in (1.4) in conjunction with (1.3) yield the relation-

ship of the spectral coefficients ui in (1.3) with the function u(y),

ui =
2

π

∫ 1

−1

u(y)Ti(y)√
1− y2

dy. (1.5)

To solve the reaction-diffusion equation,

d2u

dy2
− k2u = 0, u(±1) = 0, (1.6)

the function u is expressed in a Chebyshev basis with finite N in (1.3), and substituted

in (1.6). The action of the second derivative operator in (1.6) is accounted for by using

an equation that relates the spectral coefficients of the variable and spectral coefficients

of its derivatives (Equation 10 in [28]).

Spectral methods are attractive for solutions to ODEs and PDEs as the remainder

from the Chebyshev expansion for finite N in (1.3) is of O(1/Nn−1) as N → ∞, i.e.,

the spectral coefficients decay as an algebraic power (n − 1, where n is the number of

times u is differentiable) of N [28, 29]. If a function is infinitely differentiable (n→∞),

then the decay rate of spectral coefficients is super-algebraic, i.e., faster than any finite

power of N.

The fast convergence rate of spectral methods has been leveraged extensively to

obtain solutions to ODEs and PDEs in physics and mathematics [30, 31]. For many

physically motivated problems, about 100-150 basis functions are sufficient to obtain

solutions to ODEs and PDEs that are nearly accurate to machine precision [32, 31].

However, the stress in viscoelastic fluids shows steep variations over localized regions

which necessitates using a very large number of Chebyshev polynomials (∼1000). The

conventional procedure we discussed with the reaction-diffusion equation (1.6) yields

erroneous results in a linear analysis considered here (see Chapter 3), and in [33] when

using a very large number of basis functions (∼1000).

The problem lies with using the differentiation operator that relates the spectral

coefficients of a variable (say u in (1.6)) and the spectral coefficients of its deriva-

tives [33, 26]. The differentiation operator yields ill-conditioned matrix approximations

to differential equations, and the amount of ill-conditioning increases with an increase
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in the number of basis functions.

Well-conditioned methods [28, 26, 27] avoid the differentiation operator. For ex-

ample, one way to avoid the differentiation operator is to use the integration operator

instead; we could express the highest derivative in a basis Chebyshev polynomials, i.e.,

in the case of (1.6)

d2u

dy2
= u0

1

2
T0(y) + u1 T1(y) + u2 T2(y) · · ·+ uN TN (y), (1.7)

and use the integration operator to obtain expressions for lower derivatives. The discrete

approximation obtained in this manner yields well-conditioned matrices that are suitable

to use with a large number of Chebyshev basis functions.

Apart from deriving well-conditioned matrix approximations to PDEs, these well-

conditioned spectral methods [26, 27] yield matrices that are also sparse and banded.

Sparse banded matrices are very efficient both in terms of memory requirements and

processing speed compared to dense matrices [34]. This becomes even more important

as we use a large number of Chebyshev basis functions (needed in viscoelastic channel

flows), which results in large matrices. In contrast, conventional spectral methods al-

most always produce dense-matrix approximations to PDEs [35]. With this prelude to

spectral methods, we now summarize the main topics of this thesis.

1.2 Main topics of the dissertation

1.2.1 Amplification of localized body forces in channel flows of vis-

coelastic fluids

Nonmodal amplification of distributed body forces in channel flows of viscoelastic fluids

has provided useful insights into the mechanisms that may govern the initial stages of

transition to elastic turbulence [20, 21, 22, 5, 36]. However, distributed body forces are

not easy to implement in experiments and so there is a need to examine amplification of

localized body forces. In this first project, we use the linearized governing equations to

examine such amplification in Poiseuille flow of FENE-CR fluids. We first identify the

wall-normal location at which impulsive excitations experience the largest amplification

and then analyze the kinetic energy of the fluctuations and the resulting flow structures.
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For both a Newtonian fluid at high Reynolds numbers and a viscoelastic fluid at low

Reynolds numbers, the largest amplification occurs for disturbances that are located

near the channel wall. Our analysis of the energy evolution shows that a localized

body force in the spanwise direction has the largest impact and that the streamwise

velocity component is most affected. For viscoelastic fluids we observe the development

of vortical structures away from the source of impulsive excitation. This feature is less

prominent in Newtonian fluids and it may provide a mechanism for triggering the initial

stages of transition to elastic turbulence

1.2.2 Well-conditioned ultraspherical and spectral integration meth-

ods for resolvent analysis of Newtonian and viscoelastic channel

flows

Linear analyses of hydrodynamic flow problems provide fundamental insight into the

early stages of transition to turbulence. Eigenvalues of the dynamical generator govern

temporal growth or decay of individual modes, while singular values of the frequency

response can be used to quantify the amplification of disturbances for linearly stable

flows. In this project, we revisit nonmodal analysis in inertialess 2D viscoelastic channel

flows. Nonmodal analysis reveals enormous near-wall stress gradients in plane Poiseuille

flow, and near-center stress gradients in plane Couette flow. The observed steep stress

gradients can readily be resolved using recently developed well-conditioned spectral

methods like the ultraspherical method and spectral integration method. Furthermore,

even if the method of discretization is well-conditioned, frequency response calculations

can be erroneous if singular values are computed as the eigenvalues of a composite

system consisting of the regular operator and its adjoint. To address this, we use a

feedback interconnected system to compute singular values for frequency responses.

This feedback interconnected system avoids matrix inverses and allows calculation of

frequency responses of viscoelastic channel flows at very high Weissenberg numbers

( ∼500). This method can potentially be applied to related problems involving stiff

computations such as compressible flows. Lastly, we find that for both Newtonian

and viscoelastic fluids, the Chebyshev spectral integration method has an important

advantage compared to conventional spectral methods since it does not need a staggered

grid when the governing equations are considered in primitive variables.
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1.2.3 Stress amplification in inertialess channel flows of viscoelastic

fluids

Nonmodal analysis concerns the amplification of small-amplitude perturbations on a dy-

namical system. Large amplification of small-amplitude perturbations in fluid flows can

drive the flow to a nonlinear state. In recent experiments on nearly inertialess channel

flows of viscoelastic fluids, Qin et al. (Phys. Rev. Fluids. 2:083302, 2017) observed that

the kinetic energy of the fluid first decreases along the channel length before increasing,

eventually leading to a turbulent-like flow state. To rationalize this observation, we

consider body forces that are nearly localized in space and sinusoidal functions of time.

Using well-conditioned spectral methods, we show that large magnitudes of the stress

can occur via the linearized governing equations even in the presence of weak kinetic

energy growth. This may provide a mechanism for the initial stages of the transition

observed by Qin et al.. We find that large magnitudes of the stress occur at localized re-

gions in the channel, and this is overlooked by a square-integrated amplification measure

(such as the kinetic energy) that is typically used in nonmodal analysis. Our analysis

also provides insight into the location where localized amplification is prominent in the

channel for a given temporal frequency of the body force.

1.2.4 An integral reformulation of the influence-matrix algorithm for

direct numerical simulations of channel flows

Direct numerical simulations (DNS) of channel flows are useful to understand and de-

vise strategies to control the initial and intermediate stages of transition to turbu-

lence. Kleiser and Schumann’s influence-matrix algorithm is a computationally efficient

method to perform DNS of channel flows using spectral methods [24, 37, 38]. This

approach involves an influence-matrix correction step that has two defects: (a) The cor-

rection is specific to the type of spectral method used, so for a new spectral method (e.g.,

recent well-conditioned spectral integration or ultraspherical methods) the correction is

not known, (b) the correction step ensures that the velocity satisfies mass conservation

to machine precision, but compromises the accuracy of momentum conservation. We

report an integral reformulation of Kleiser and Schumann’s influence matrix algorithm.
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Our method needs no correction step, and the velocity satisfies both mass and momen-

tum conservation to an accuracy equivalent to the numerical resolution of the velocity

field.



Chapter 2

Amplification of localized body

forces in channel flows of

viscoelastic fluids

This chapter is adapted from publication [23].

2.1 Introduction

Seminal work by Groisman and Steinberg has demonstrated that dilute polymer solu-

tions can produce a turbulent-like flow state at low Reynolds numbers [7]. Such a flow

state is called elastic turbulence and it has high potential for enhancing mixing [39] and

heat transport [40] in microfluidic flows. It can also be used to produce nonlinear effects

to build microscale control devices including nonlinear flow resistors and flow memory

devices such as flip-flops analogous to those in electric circuits [11]. However, elastic

turbulence is not desired in certain industrial applications, e.g., those involving polymer

processing and coating flows [13, 41].

Elastic turbulence observed in the experiments of Groisman and Steinberg [7] is

thought to have originated from linear instability of curved streamlines to small-amplitude

11
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perturbations. Even though analysis of the linearized governing equations predicts sta-

bility of inertialess channel flows with straight streamlines [13], recent experiments sug-

gest that elastic turbulence can also occur in such flows [8, 9, 42]. This is a puzzling ob-

servation with both fundamental and technological ramifications. For example, polymer

processing operations often involve flows through straight channels and instabilities at

low Reynolds numbers are detrimental to the quality of the final products [13]. Further-

more, as indicated above, triggering elastic turbulence also finds positive applications

in microfluidic devices.

The absence of linear modal instability does not preclude the possibility that the

early stages of transition to elastic turbulence can be understood via analysis of the

linearized equations. Nonmodal analysis considers the possibility that flow fluctuations

that decay asymptotically can grow transiently and that exogenous disturbances can be

significantly amplified by the underlying dynamics [16, 15, 43, 14]. Disturbances that

experience linear nonmodal amplification can generate finite-amplitude perturbations

that may trigger nonlinear flow states and induce transition to elastic turbulence.

In refs. [20] and [21], it was demonstrated that distributed body forces can experience

significant nonmodal amplification in Couette and Poiseuille flows at low Reynolds num-

bers when viscoelastic effects are strong. This work showed that streamwise-constant

flow structures in Oldroyd-B fluids become increasingly prominent with an increase in

viscoelastic effects. This inspired Jovanović and Kumar to closely examine dynam-

ics of streamwise-constant fluctuations in weakly inertial channel flows of viscoelastic

fluids [22, 5]. Their work showed that nonmodal amplification arises from a coupling

between the base-state stresses and flow fluctuations, demonstrated the existence of a

viscoelastic analogue of the well-known inertial lift-up mechanism, and established con-

ceptual and mathematical similarities between nonmodal amplification in viscoelastic

channel flows at low Reynolds numbers and in Newtonian channel flows at high Reynolds

numbers.

The joint influence of inertia and elasticity on the evolution of streamwise-elongated

fluctuations in Couette flow of Oldroyd-B fluids was studied in ref. [44]. The response

of the linearized equation for the wall-normal vorticity in the presence of a decaying

streamwise vortex was computed and different regimes were identified based on the

relation between the solvent diffusion and polymer relaxation times. The influence of
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finite extensibility of polymer molecules on the worst-case amplification of deterministic

distributed body forces has also been examined using the FENE-CR model [36]. This

work demonstrated that even in flows with infinitely large Weissenberg numbers, the

finite extensibility of polymer molecules limits the largest achievable amplification. In

related work, the viscoelastic equivalent of the well-known Orr mechanism was studied

for both the Oldroyd-B and FENE-P models [45].

The aforementioned work has provided important insights into the linearized dy-

namics of channel flows of viscoelastic fluids in the presence of distributed body forces.

To achieve a direct correspondence between theory and experiment in the linearized

setting, one would have to induce distributed body forces without significantly altering

the mean flow, which is extremely challenging. Even if a distributed body force can

be generated in an experiment and used as a starting point for a linearized analysis,

it is still difficult to systematically segregate the different stages that lead to elastic

turbulence by the introduction of such a force.

In contrast, localized body forces can be readily approximated in experiments and

direct numerical simulations. Furthermore, flow transition arising from the introduction

of a localized body force can be dissected to demonstrate the different stages of transition

to nonlinear states. For this reason, localized body forces have been applied in many

experimental studies of transition in Newtonian fluids at high Reynolds numbers [46, 47,

48]. Moreover, in theoretical and computational studies, a localized body force can be

approximated by a spatio-temporal impulsive excitation. As demonstrated in refs. [49]

and [50] and further expanded on in ref. [15], such an analysis exemplifies dominance

of streamwise-elongated structures inside the resulting wave packet in the early stages

of disturbance amplification. Recently, localized body forces were used in viscoelastic

channel flows to study drag-reduction at high Reynolds numbers [51].

Any spatially varying and temporally distributed body force can be expressed as

a summation of impulses of different magnitudes, spatial positions, and temporal oc-

currences [52]. The impulse response therefore contains useful information for charac-

terizing responses of linear systems to exogenous excitation sources. As noted above,

previous work on Newtonian fluids has shown that by examining the influence of spatio-

temporal impulsive forcing on the linearized dynamics, several features of the early

stages of transition to turbulence in high-Reynolds-number flows of Newtonian fluids
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can be captured [49, 50, 15].

In this paper, we systematically analyze the response of the linearized dynamics of

a viscoelastic fluid in Poiseuille flow to a localized body force. We first identify the

wall-normal location at which the impulse has the largest impact on the flow. We then

analyze the evolution of the energy of velocity fluctuations arising from the point force

applied at the optimal location and demonstrate that the amplification increases with

an increase in polymer concentration and with an increase in the polymer relaxation

time. Finally, we analyze flow structures that result from the impulse and discuss their

potential role in the early stages of transition to elastic turbulence.

The remainder of our presentation is organized as follows. In § 2.2, we describe the

modeling and numerical methods employed in this work. In § 2.3, we present results

pertaining to the identification of the optimal wall-normal location of the impulsive

forcing. In § 2.4, we analyze the kinetic energy of flow fluctuations that arise from the

application of a point force at the identified optimal wall-normal location. We discuss

the resulting flow structures in § 2.5, summarize our findings in § 2.6, and relegate

background technical material to the appendices.

2.2 Problem formulation

In this section, we present the governing equations in their evolution form, the numerical

methods we use, and the way we characterize the kinetic energy of velocity fluctuations.

We use the finitely extensible nonlinear elastic Chilcott-Rallison (FENE-CR) constitu-

tive equation [53] as it accounts for the finite extensibility of polymer molecules and

exhibits a constant shear viscosity. Results obtained using the FENE-CR model thus

allows us to isolate the influence of fluid elasticity.

2.2.1 Evolution form of governing equations

We consider a dilute polymer solution of density ρ and relaxation time λ in a channel

flow whose geometry is shown in Figure 2.1. Length is scaled with the half-channel

width h, velocity with the maximum velocity in the channel U0, and time with h/U0.

Pressure is scaled with ηTU0/h, where ηT = ηp + ηs is the total shear viscosity with

ηp and ηs denoting the polymer and solvent contributions to ηT . Polymer stresses are

scaled with ηpU0/h.
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Figure 2.1: Flow geometry and the steady-state parabolic velocity profile for Poiseuille
flow.

This scaling leads to three non-dimensional groups: the viscosity ratio, β = ηs/(ηp+

ηs), the Weissenberg number, We = λU0/h, and the Reynolds number, Re = hρU0/ηT .

The viscosity ratio provides a measure of the solvent contribution to the shear viscosity,

the Weissenberg number gives the ratio of the relaxation time of the polymer to the

characteristic flow time, h/U0, and the Reynolds number is the ratio of inertial forces

to viscous forces. In addition, the elasticity number, µ = We/Re = λ/(h2ρ/ηT ), deter-

mines the ratio between the fluid relaxation time and characteristic vorticity diffusion

time.

The dimensionless momentum and continuity equations are

Re(∂tV + V ·∇V ) = −∇P + β∆V + (1− β)∇ · T , (2.1a)

∇ · V = 0, (2.1b)

where ∂t denotes a partial derivative with respect to time t, V is the velocity vector,

P is the pressure, and T is the polymer contribution to the stress tensor.

The conformation tensor is the mean of the dyadic product of the end-to-end vector

of the finitely extensible dumbbell that is the basis of the FENE-CR model. The polymer
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stress tensor T is related to the conformation tensor R by

∂tR+ V · ∇R−R · ∇V − (R · ∇V )T = −T , (2.2a)

f

We
(R− I) = T , (2.2b)

where I is the identity tensor and f quantifies the nonlinear spring interaction,

f =
L2 − 3

L2 − trace(R)
. (2.2c)

We note that R and L2 are scaled with kT/c, and k, T , and c are the Boltzmann

constant, absolute temperature, and spring constant of the dumbbells, respectively. As

L→∞, the FENE-CR model simplifies to the Oldroyd-B model. Furthermore, system

(2.1) reduces to the Navier-Stokes equations as β → 1.

The steady-state solution of system (2.1) for plane Poiseuille flow is

V̄ =
[
Ū(y) 0 0

]T
, (2.3a)

R̄ =


1 + 2 (We Ū ′(y)/f̄)2 We Ū ′(y)/f̄ 0

We Ū ′(y)/f̄ 1 0

0 0 1

 , (2.3b)

where

Ū(y) = 1− y2, f̄ =
1

2

1 +

√
1 + 8

(
We Ū ′(y)

L̄

)2
 , L̄2 = L2 − 3. (2.3c)

The steady-state velocity has the same parabolic profile as a Newtonian fluid because

of the absence of shear-thinning effects in the FENE-CR constitutive equation. There

is, however, a first normal stress difference in the FENE-CR fluid.
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The linearized equations that govern the evolution of fluctuations about the steady-

state (2.3) are given by

Re ∂tv = −∇p+ (1− β)∇ · τ + β∆v −Re(V̄ ·∇v + v ·∇V̄ ) + d, (2.4a)

∇ · v = 0, (2.4b)

∂tr = r ·∇V̄ + R̄ ·∇v + (r ·∇V̄ )T + (R̄ ·∇v)T − v ·∇R̄− V̄ ·∇r − τ ,
(2.4c)

τ =
f̄

We

(
r +

f̄(R̄− I)

L̄2
trace(r)

)
. (2.4d)

Here, v, p, r, and τ denote velocity, pressure, conformation tensor, and stress tensor

fluctuations about their respective base profiles, V̄ , P̄ , R̄, and T̄ . We denote the

components of the velocity fluctuation vector by v = [u v w ]T , where u, v, and w

represent the streamwise (x), wall-normal (y), and spanwise (z) velocities, respectively.

Although the total conformation tensor R̄+r has to be positive definite, this requirement

does not hold for r.

The body forcing d is used to excite flow fluctuations. In this work, we use an

impulsive body force,

d(x, y, z, t) = δ(x, y, z, t) ei = δ(x)δ(y)δ(z)δ(t) ei, (2.5)

where ei is a unit vector in the ith coordinate direction and δ(·) is the Dirac delta

function.

System (2.4) can be simplified by eliminating pressure and expressing the velocity

fluctuations in terms of wall-normal velocity v and vorticity η := ∂zu − ∂xw. This is

done by taking the divergence of (2.4a) to get an explicit expression for p. Substituting

this expression for p into (2.4a) yields the equation for the wall-normal velocity and the

equation for η is determined by the y-component of the curl of (2.4a). Finally, the stress

tensor can be eliminated in favor of the conformation tensor using relations (2.4c) and

(2.4d).

After the above algebraic manipulations, and after taking a Fourier transform in the
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x- and z-directions, we obtain the following evolution form for the linearized equations,

∂tψ(κ, y, t) = [ A(κ)ψ(κ, · , t) ] (y) + [ B(κ)d(κ, · , t) ] (y),

φ(κ, y, t) = [ C(κ)ψ(κ, · , t) ] (y),
(2.6)

where ψ = [ rT v η ]T is the state with r denoting the vector of the six fluctuating

components of the (symmetric) conformation tensor. The linear integro-differential

operators in the wall-normal direction A, B, and C are defined in the Appendix A and

they map the input d (i.e., the imposed forcing) to the output φ = [u v w ]T (i.e., the

vector of velocity fluctuations) through the evolution model. We define κ = (kx, kz),

where kx and kz represent the wavenumbers in the x- and z-directions. The no-slip

and no-penetration boundary conditions are applied to the wall-normal velocity and

vorticity components in (2.6),

v(κ, y = ±1, t) = ∂yv(κ, y = ±1, t) = η(κ, y = ±1, t) = 0. (2.7)

2.2.2 Numerical method

Evolution model (2.6) represents a system of integro-differential equations in y and t,

parametrized by the wavevector κ = (kx, kz). The wall-normal direction is discretized

using a Chebyshev pseudospectral technique with N collocation points to reduce (2.6)

with boundary conditions (2.7) to a system of ordinary differential equations (ODEs)

in time. All calculations are carried out using the Matlab Differentiation Matrix Suite

of Weidmann and Reddy [32].

The Fourier transform in wall-parallel directions of the body force in (2.5) is given

by

d(κ, y, t) = δ(y)δ(t) ei. (2.8)

This is because the Fourier transform of δ(x)δ(z) with respect to x and z is equal to

one for all κ = (kx, kz) (cf. (A1) in Appendix A). Since the wall-normal direction is

discretized on a finite grid of Chebyshev collocation points, we employ the following

approximation for δ(y),

δ0(y) =
1

2
√
πε

e−
(y− y0)

2

4ε , ε > 0, (2.9)



19

where y0 denotes the location of the impulse in the wall-normal direction and ε is a small

parameter. In this work, we set ε = 1/2000. We found that this value is sufficiently small

to represent an impulse as the results do not change significantly by further reducing ε.

We discuss the choice of y0 in § 2.3.

The forcing term in the evolution model (2.6) is then given by

[ B(κ)d(κ, ·, t) ] (y) = F i(κ, y) δ(t), (2.10)

where

F i(κ, y) = [ B(κ) δ0(·)ei ] (y) (2.11)

and ei is a unit vector in the ith coordinate direction with i = x, y, or z. The resulting

finite-dimensional approximation to (2.6) is then given by

ψ̇(κ, t) = A(κ)ψ(κ, t) + Fi(κ) δ(t),

φ(κ, t) = C(κ)ψ(κ, t),
(2.12)

where ψ(κ, t) and φ(κ, t) are complex-valued vectors with 8N and 3N entries, respec-

tively, A(κ) and C(κ) are the finite-dimensional approximations of the corresponding

operators in (2.6), and Fi(κ) is the discrete approximation to F i(κ, y) in (2.11).

The solution of (2.12) with zero initial conditions arising from the impulsive excita-

tion in the ith coordinate direction is given by [17],

φi(κ, t) = C(κ)

∫ t

0
eA(κ)(t−s)Fi(κ)δ(s) ds = C(κ)eA(κ)tFi(κ). (2.13)

Thus, the impulse response is directly obtained from the matrix exponential at a given

time and the inverse Fourier transform in wall-parallel directions yields a solution in

physical space.

2.2.3 Model parameters

The linearized equations (2.4) contain four parameters: the solvent contribution to

the shear viscosity, β, the amount of extensibility of the polymer molecules, L, the

Weissenberg number, We, and the Reynolds number, Re. A larger value of β implies

a smaller polymer concentration. A larger value of We implies that the fluid has a
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longer relaxation time. Due to the high computational expense of performing three-

dimensional calculations on eight state variables (see § 2.2.1), we restrict our analysis

to a limited range of parameters; our choice represents a compromise between values

used in experimental studies and the need to avoid numerical instabilities.

We present results for Re = 50, which is well within the laminar flow limits for a

Newtonian fluid. In straight channels, elastic turbulence has been reported at smaller

Reynolds numbers [9, 8]; for example, recent experiments have shown turbulent fea-

tures for Reynolds numbers between 2.5-150 (based on the half-channel width) [54].

We choose Re = 50 because resolving flow structures in physical space (§ 2.5) at

lower values of Re requires larger values of kx and kz, which in turn requires a larger

number of discrete Fourier modes for good resolution in physical space. Flow struc-

tures presented in § 2.5 use 512 × 512 linearly spaced grid points in the κ-plane with

{kx,min = −50, kx,max = 49.80} and {kz,min = −72, kz,max = 71.72}. Larger values of

kx and kz also require more Chebyshev collocation points to discretize the wall-normal

direction (see § 2.2.2) sufficiently to avoid numerical instabilities [55, 56], which further

increases the computational cost. Typically 120 to 150 collocation points were used,

and this was sufficient to obtain converged results.

In § 2.4 we present a parametric study for a range of Weissenberg numbers, but

we choose a representative value of We = 50 for most results presented here. This is

because we found that the amplification increases with We (see § 2.4), and We = 50

is the maximum value we could reach for grid-independent results without numerical

instabilities. Confining ourselves to We ≤ 50 fixes the upper limit of the elasticity num-

ber µ = We/Re in our simulations to µ = 1. Using larger values of the Weissenberg

number could bring out more distinctly features related to viscoelastic effects in flow

structures, but at the cost of encountering and addressing numerical instabilities. In ex-

periments concerning elastic turbulence, the Weissenberg number was varied between 20

and 1000 [54]. We note that all results presented in this work are free from any artificial

diffusion, numerical filters, or diffusion-inducing numerical schemes commonly employed

to address numerical instabilities when simulating viscoelastic channel flows [57, 58, 59].

Groisman and Steinberg [7] had β = 0.765 in curvilinear flows and refs. [8, 9] had

a value between 0.25 and 0.5 for straight-channel flows. Unless otherwise noted, we

choose β = 0.5. In modeling polymeric fluids, values of L have ranged widely, from
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about 2.5 to infinity [53]. In the limit of infinite L, the FENE-CR model reduces to the

Oldroyd-B model, which is successful in describing some features of dilute polymeric

flows but becomes less accurate at higher shear rates [60, 61]. Since finite values of L

have been shown to work better in modeling dilute polymeric flows [60, 61, 53], we set

L = 100.

2.2.4 Energy of velocity fluctuations

The integral of the kinetic energy of the velocity fluctuations in the wall-normal direction

can be evaluated using a weighted inner product of the output with itself

Ei(κ, t) :=

∫ 1

−1
v∗i (κ, y, t)vi(κ, y, t) dy = φ∗i (κ, t) Iw φi(κ, t), (2.14)

where (·)∗ denotes the complex conjugate transpose and Iw is a diagonal matrix of the

appropriate integration weights for the Chebyshev collocation points. We recall that

the subscript i denotes the input direction of the impulsive excitation, cf. (2.13).

We further perform integration over time to obtain

Ēi(κ) :=

∫ ∞
0

Ei(κ, t) dt, (2.15a)

and note that for stable systems, the solution to the algebraic Lyapunov equation [16],

A(κ)Xi(κ) +Xi(κ)A†(κ) = −Fi(κ)F †i (κ), (2.15b)

can be used to avoid explicit integration in (2.15a) and compute Ēi(κ) as

Ēi(κ) = trace (Xi(κ)C†(κ)C(κ)). (2.15c)

For a derivation of this relationship, see [16]. Here, (·)† is the finite-dimensional ap-

proximation to the adjoints of the operators that appear in (2.6) and trace (·) is the

matrix trace, i.e., the sum of its eigenvalues. Adjoints are defined with respect to a

weighted inner product that determines the kinetic energy of velocity fluctuations [16];

see Appendix B for additional details.
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In addition to the total kinetic energy, we also analyze the componentwise contri-

bution of velocities r = u, v, or w to the total kinetic energy,

Eri(κ, t) :=

∫ 1

−1
r∗i (κ, y, t) ri(κ, y, t) dy, (2.16a)

Ēri(κ) :=

∫ ∞
0

Eri(κ, t) dt, (2.16b)

where Eri and Ēri represent the energy of the velocity component r arising from the

impulsive forcing in the ith coordinate direction. We note that

Ei = Eui + Evi + Ewi,

and that Eri and Ēri can be evaluated in a similar manner as the total kinetic energy

in (2.14) and (2.15) by replacing C(κ) in (2.15c) with Cr(κ); see equation (A10) in

Appendix A.

2.3 Flow sensitivity to the location of the impulse

The location of the impulse in the (x, z)-plane is immaterial because the x- and z-

directions are translationally invariant. However, the sensitivity of the flow may vary

with the choice of the location of the impulse in the wall-normal direction. We next

examine how the sensitivity of a viscoelastic channel flow changes with the wall-normal

location of impulsive forcing. We only introduce impulses in the lower half of the channel

because the symmetry of plane Poiseuille flow implies that the same level of energy

amplification would be obtained if the impulse was introduced at the corresponding

location in the upper half of the channel.

We first calculate the kinetic energy averaged over the wall-normal direction and

time (using (2.15)) as a function of κ for different values of y0. For example, Figure

2.2 shows the kinetic energy for an impulsive excitation in the streamwise direction

(Figure 2.2a), wall-normal direction (Figure 2.2b), and spanwise direction (Figure 2.2c)

for y0 = −0.75 and Re = 50. The maximum value of the kinetic energy over all values of

kx and kz is marked by the black dots in Figure 2.2. In Figure 2.3, we examine how these

peak values depend on the location of the impulse, y0. We note that for y0 = −0.75 the
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(a) (b) (c)

Figure 2.2: Kinetic energy integrated over the wall-normal direction and time, with an
impulsive excitation located at y0 = −0.75. Plots correspond to (a) Ēx, (b) Ēy, and
(c) Ēz respectively, calculated from (2.15). Parameters used are Re = 50, We = 50,
L = 100, and β = 0.5. The maximum value of the kinetic energy is marked by the black
dots.

maximum value of the kinetic energy in Figure 2.2a occurs at (kx ≈ 10−4, kz ≈ 10−2),

in Figure 2.2b at (kx ≈ 10−1, kz ≈ 1.5), and in Figure 2.2c at (kx ≈ 10−1, kz ≈ 100).

These values change as we change y0.

Figure 2.3 shows how the largest value of kinetic energy depends on the wall-normal

location y0 of an impulsive excitation in the streamwise (Figure 2.3a), wall-normal

(Figure 2.3b), and spanwise (Figure 2.3c) direction. The relative contribution of fluid

elasticity compared to vorticity diffusion can be quantified in terms of the elasticity

number µ = We/Re. In Figure 2.3, the Newtonian fluid corresponds to µ = 0 and the

viscoelastic fluid to µ = 1; as mentioned in § 2.2.3, since we set Re = 50 and confine

our attention to We ≤ 50, in our study we have 0 ≤ µ ≤ 1.

We see that the introduction of viscoelasticity increases the kinetic energy of velocity

fluctuations for an impulsive excitation in any of the three directions. Larger amplifica-

tion of disturbances in viscoelastic fluids indicates their greater sensitivity at relatively

low values of the Reynolds number. As Figure 2.3a demonstrates, the influence of vis-

coelasticity is not as significant for an impulsive excitation in the streamwise direction.

We observe more pronounced differences between Newtonian and viscoelastic responses

for excitations in the wall-normal (Figure 2.3b) and spanwise (Figure 2.3c) directions.

The largest discrepancy between corresponding kinetic energies occurs for the impulse

in the spanwise direction (Figure 2.3c) at a location y0 = −0.75.
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(a) (b) (c)

Figure 2.3: Maximum kinetic energy induced by an impulsive excitation in the (a)
streamwise, (b) wall-normal, and (c) spanwise directions as a function of y0, calculated
using (2.15). The Newtonian fluid corresponds to µ = 0, and the viscoelastic fluid to
µ = 1 (the parameters are Re = 50, We = 50, L = 100, and β = 0.5).

Thus far we have studied the sensitivity of Newtonian and viscoelastic plane Poiseuille

flow to the wall-normal location of point forces when Re = 50. Increasing Re to larger

values shows interesting similarities between a Newtonian fluid at high Reynolds num-

bers and a viscoelastic fluid at low Reynolds numbers. Figure 2.4 shows similar plots

of the maximum kinetic energy over all kx and kz when Re = 1000. We see that the

plots for the largest kinetic energy for impulsive excitations in the wall-normal (Figure

2.4b) and spanwise (Figure 2.4c) directions are similar in shape for the Newtonian and

viscoelastic fluids. This is because inertial forces dominate over elastic forces as reflected

by the value of the elasticity numbers, µ = 0.05 (viscoelastic) and µ = 0 (Newtonian).

The plots have very different shapes for a Newtonian and a viscoelastic fluid with an

impulsive streamwise excitation (Figure 2.4a), in that the viscoelastic fluid is less en-

ergetic at high Reynolds numbers. However, the values of energy (as seen from the

y-axis) are substantially lower when compared to impulsive excitations in the spanwise

or wall-normal directions.

It is interesting to observe a similar maximum near the wall in Figure 2.4c in the

Newtonian fluid at Re = 1000 that was seen in the viscoelastic fluid at Re = 50 (the

peak located at y0 = −0.75 in Figure 2.3c). We note that this maximum was absent

in the Newtonian fluid at Re = 50 (Figure 2.3c). This indicates a striking similarity

in the nonmodal amplification of a Newtonian fluid at high Reynolds numbers and a

viscoelastic fluid at low Reynolds numbers and can be attributed to the viscoelastic
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(a) (b) (c)

Figure 2.4: Maximum energy induced by an impulsive excitation in the (a) streamwise,
(b) wall-normal, and (c) spanwise directions as a function of y0, calculated using (2.15).
The Newtonian fluid corresponds to µ = 0, and the viscoelastic fluid to µ = 0.05 (the
parameters are Re = 1000, We = 50, L = 100, and β = 0.5).

analogue of the well-known lift-up mechanism [22, 5].

The governing mechanism in Newtonian fluids that leads to nonmodal amplification

comes from the vortex-tilting effect, and can be analyzed by examining the equation for

the evolution of the wall-normal vorticity η,

∂tη = −ReU ′ ∂zv + ∆η, (2.17)

where the time is scaled with the diffusive time scale h2ρ/ηT . The second term in

(2.17) is the Laplacian operator ∆ that arises from viscous dissipation and it acts to

decrease the wall-normal vorticity. The first term is solely responsible for non-modal

amplification. The term −U ′ is the spanwise vorticity in the base flow, and ∂zv can be

interpreted as a stress which corresponds to a force in the wall-normal direction that

varies in the spanwise direction. Thus the spanwise vorticity in the base flow is forced

in the wall-normal direction so as to amplify the wall-normal vorticity [19].

For inertialess Oldroyd-B fluids, Jovanović and Kumar [5] derived the evolution

equation for the wall-normal vorticity η,

∂t ∆η = −We 1− β
β

(U ′(y)∆∂z + 2U ′′(y)∂yz) v −
1

β
∆η, (2.18)

where time is scaled with the polymer relaxation time. Note that if time is rescaled

with the convective time scale in (2.18) and the limit of a Newtonian fluid is considered,
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we recover (2.17) with Re = 0; for additional information, see [5].

For Newtonian fluids, the vortex tilting term in (2.17) vanishes in the absence of

inertia, i.e., at Re = 0. Viscoelastic fluids, however, have additional terms that can

produce a vortex-tilting-like effect even at Re = 0; cf. (2.18). The terms U ′ and U ′′ in

(2.18) come from the shear stress T12 in the base flow of the viscoelastic fluid [5].

Equations (2.17) and (2.18) suggest an underlying similarity between a Newtonian

fluid at high Reynolds numbers and a viscoelastic fluid at low Reynolds numbers. A

Newtonian fluid at high Reynolds numbers experiences amplification due to the span-

wise vorticity in the base state. Similarly, a viscoelastic fluid at low Reynolds numbers

experiences amplification due to a coupling between the polymeric stresses in the base

state and velocity fluctuations. The amount of amplification scales with the Weis-

senberg number for the inertialess viscoelastic fluid and with the Reynolds number for

the Newtonian fluid.

In this section, we have investigated the influence of the location of the impulse on

the flow. We have demonstrated that the impulse in the spanwise direction has the

maximum impact on the flow and that there is similarity in the nature of the most sen-

sitive locations between a Newtonian fluid at high Reynolds numbers and a viscoelastic

fluid at low Reynolds numbers. This similarity can be understood in terms of the well-

known lift-up mechanism and its viscoelastic analogue, as discussed by Jovanović and

Kumar [5]. In § 2.4, we examine energy of velocity fluctuations corresponding to an

impulsive excitation at y0 = −0.75 in a flow with Re = 50.

2.4 Energy evolution

In the previous section, we identified the location in the wall-normal direction where

the localized point force has the maximum impact on the flow. In this section, we

contrast the evolution of energy in viscoelastic and Newtonian fluids by introducing an

impulse at the optimal location for viscoelastic fluids. We examine the impact on the

streamwise, wall-normal, and spanwise velocity fluctuations separately and find that the

streamwise velocity is most affected. We then study changes in the energy evolution

with β (polymer concentration) and We (polymer relaxation time).

Figure 2.5 shows the kinetic energy averaged over the wall-normal direction and

time at Re = 50, calculated from (2.15). Figures 2.5a-2.5c show the kinetic energy of
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a viscoelastic fluid and Figures 2.5d-2.5f show the kinetic energy of a Newtonian fluid.

Figures 2.5a and 2.5d correspond to an impulsive forcing in the streamwise direction,

Figures 2.5b and 2.5e correspond to an impulsive excitation in the wall-normal direction,

and Figures 2.5c and 2.5f correspond to an impulsive excitation in the spanwise direction.

By observing the scales on the color bars we see that, in all cases, the kinetic energy of

velocity fluctuations in the viscoelastic fluid is higher when compared to a Newtonian

fluid. The additional energy in viscoelastic fluids comes from the elastic stresses in the

base flow which are absent in Newtonian fluids [5, 36]; see the discussion toward the

end of § 2.3 (and (2.18)).

It can be seen that there is not a significant difference in the kinetic energy for a

streamwise impulsive excitation in the viscoelastic (Figure 2.5a) and Newtonian (Figure

2.5d) fluids. For impulsive excitations in the wall-normal and spanwise directions, how-

ever, differences are significant. Impulsive excitations in the wall-normal and spanwise

directions for the viscoelastic fluid produce fluctuations that are nearly streamwise-

constant with the maximum kinetic energy near kx ≈ 10−1, kz ≈ 100 (Figures 2.5b and

2.5c). For the Newtonian fluid, the resulting fluctuations are less oblique (kx ≈ 10−4;

Figures 2.5e and 2.5f).

The spanwise impulsive excitation is amplified about six times more in viscoelastic

fluid (Figure 2.5c) than in the Newtonian fluid (Figure 2.5f). Since the impulse in the

spanwise direction induces the highest amount of energy, in what follows we only analyze

the impact of the spanwise impulsive excitation on the evolution of velocity fluctuations.

The energy can be further analyzed based on the individual contributions from the

streamwise, wall-normal, and spanwise velocities. Figure 2.6 shows the contribution

of the total kinetic energy due to the streamwise velocity (Figure 2.6a), wall-normal

velocity (Figure 2.6b), and spanwise velocity (Figure 2.6c). From the color bars, we

notice that the streamwise velocity has the largest contribution to the overall energy.

We thus conclude that the spanwise forcing has the maximum impact on the flow and

that the streamwise velocity is most affected. This observation is again similar to what

is seen for Newtonian fluids at high Reynolds numbers as investigated by Jovanović and

Bamieh [16]. The difference is that the most amplified disturbances are more oblique

(kx ≈ 10−1, kz ≈ 100) in viscoelastic fluids when compared to Newtonian fluids at

high Reynolds numbers, where the most prominent fluctuations are streamwise-constant
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β = 0.5, L = 100, µ = 1, and Re = 50 (Viscoelastic fluid):

(a) Ēx (b) Ēy (c) Ēz

µ = 0 and Re = 50 (Newtonian fluid):

(d) Ēx (e) Ēy (f) Ēz

Figure 2.5: Kinetic energy integrated over the wall-normal direction and time, with
an impulse in the direction i, calculated using (2.15). We consider a viscoelastic fluid
with an impulsive excitation in the (a) streamwise, (b) wall-normal, and (c) spanwise
directions, and a Newtonian fluid with an impulsive excitation in the (d) streamwise,
(e) wall-normal, and (f) spanwise directions. The maximum value of the kinetic energy
is marked by the black dots.

(kx ≈ 0, kz ≈ 100). The analysis presented in this section provides deeper insight into

the individual energies of each velocity component.

Figure 2.7 shows the transient evolution of the kinetic energy of the streamwise

velocity fluctuation as a function of time; computations are done using (2.16a). Since

Figure 2.6 demonstrates that the streamwise velocity is most amplified, we plot only

the energy of the streamwise velocity fluctuations with kx = 10−1 and kz = 100, a

wavenumber pair which corresponds to the black dot in Figure 2.5c. In Figure 2.7a, we

see that kinetic energy increases with increasing the Weissenberg number. We also see

in Figure 2.7b an increase in energy upon increasing the polymer concentration.
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(a) Ēuz (b) Ēvz (c) Ēwz

Figure 2.6: Componentwise contributions of (a) streamwise, (b) wall-normal, and (c)
spanwise velocities to the total kinetic energy calculated from (2.16b) arising from an
impulsive spanwise forcing in a flow with Re = 50, We = 50, L = 100, and β = 0.5.

(a) Re = 50, L = 100, β = 0.5 (b) Re = 50, L = 100, We = 50

Figure 2.7: Transient evolution of kinetic energy of streamwise velocity fluctuations
arising from an impulse in the spanwise direction, Euz(κ, t) calculated from (2.16a),
in a flow with kx = 10−1 and kz = 100. Panel (a) shows the effect of increasing the
polymer relaxation time by increasing the Weissenberg number. We = 0 corresponds
to the Newtonian fluid. Panel (b) shows the effect of increasing polymer concentration,
1− β. For a Newtonian fluid, β = 1.
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Experiments on microchannel flows of viscoelastic solutions with an induced distur-

bance in the form of a cylindrical obstruction were recently reported in ref. [54]. The

Reynolds numbers were between 2.5 and 150. Flow instabilities were observed at a

localized region in the vicinity of the obstruction which became more prominent with

an increase in polymer concentration. Although we confine our attention to the class of

impulsive excitations (which are different from the excitations considered in ref. [54]),

we observe qualitative agreement in the sense that the transient energy amplification

increases as we increase the polymer concentration.

2.5 Spatio-temporal evolution of flow structures

We now examine flow structures that result from an impulsive excitation in the spanwise

direction. Flow structures in physical space provide insight into patterns that result from

a localized point force and can suggest potential mechanisms that govern the initial

stages of transition to elastic turbulence at low Reynolds numbers. Flow structures

presented here are obtained by the pseudospectral method described in § 2.2.2. Time

series of flow structures can thus be interpreted as direct numerical simulations of the

linearized FENE-CR fluid with an impulsive forcing. As described in § 2.2.2, time

stepping procedures are avoided by exploiting linearity to directly obtain flow structures

at a given time from the matrix exponential.

Figures 2.9 and 2.8 show three-dimensional isosurface plots of the streamwise velocity

resulting from an impulsive excitation in the spanwise direction (uz) at the optimal

location y0 = −0.75 for the viscoelastic fluid. Figures 2.8a, 2.8c, 2.9a and 2.9c show the

time-evolution for a viscoelastic fluid, and Figures 2.8b, 2.8d, 2.9b and 2.9d show the

time-evolution for a Newtonian fluid. As discussed in § 2.4, in Figure 2.5c we observe

that viscoelastic fluids produce more oblique structures (kx ≈ 10−1, kz ≈ 100) than

Newtonian fluids (in Figure 2.5f the streamwise-constant structures with (kx ≈ 10−4,

kz ≈ 100) are most amplified). In Figures 2.8a and 2.8c, we see that at early times, the

fluctuations in viscoelastic fluids are more oblique, showing a wavy nature in all three

directions. At later times (Figures 2.9a and 2.9c) the wave packet stretches out in the

streamwise direction and also spreads across the channel in the wall-normal direction.

In contrast, the impulse-induced wave packet in the Newtonian fluid diffuses in space

slowly (by observing the scales in the x-axis) with a slight amount of translation in the
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(a) t = 0.1, Viscoelastic (b) t = 0.1, Newtonian

(c) t = 1, Viscoelastic (d) t = 1, Newtonian

Figure 2.8: Isosurface plots of the streamwise velocity at ±uz,max/10 at Re = 50. Red
color denotes regions of high velocity and green color denotes regions of low velocity.
Panels correspond to a viscoelastic fluid at (a) 0.1, and (c) 1 time units, and a Newtonian
fluid at (b) 0.1, and (d) 1 time units, with parameters L = 100, β = 0.5 and µ = 1 for
the viscoelastic fluid.
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(a) t = 3.5, Viscoelastic (b) t = 3.5, Newtonian

(c) t = 6, Viscoelastic (d) t = 6, Newtonian

Figure 2.9: Isosurface plots of the streamwise velocity at ±uz,max/10 at Re = 50. Red
color denotes regions of high velocity and green color denotes regions of low velocity.
Panels correspond to a viscoelastic fluid at (a) 3.5, and (c) 6 time units, and a Newtonian
fluid at (b) 3.5, and (d) 6 time units, with parameters L = 100, β = 0.5 and µ = 1 for
the viscoelastic fluid.
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streamwise direction. (Videos of the time-evolution can be found in the supplementary

material.)

Flow structures can be further analyzed by examining three-dimensional stream-

tubes of the velocity fluctuation vector. Figures 2.10 and 2.11 show three-dimensional

streamtubes that originate from the plane y = 0.5 for a viscoelastic fluid and a New-

tonian fluid. The location y = 0.5 is far from the source of the impulse (y0 = −0.75).

At the location of the point force, the impulsive excitation is equivalent to an initial

condition on the wall-normal velocity and vorticity. This can be seen by considering the

general solution of a linear system of the form given in (2.12), for an initial condition

ψ0(κ) with zero forcing (Fi = 0) [17],

φi(κ, t) = C eAt ψ0(κ). (2.19)

The solution of the system with an initial condition in (2.19) and the solution with an

impulse forcing given in (2.13) are equivalent if we choose an initial condition ψ0 such

that ψ0 = Fi(κ). We note that ψ is the discrete approximation to ψ = [rT v η]T , where

rT represents the vector of the six components of the fluctuations of the (symmetric)

conformation tensor, v is the wall-normal velocity, and η is the wall-normal vorticity.

Thus, the impulsive forcing corresponds to an initial condition on the wall-normal veloc-

ity and vorticity. This initial condition produces vortical structures even in Newtonian

fluids. The interesting feature here is the evolution of vortical structures away from the

location of the point force for the viscoelastic fluid.

Figures 2.10b and 2.10d show the top and isometric views of streamtubes for a

Newtonian fluid, and Figures 2.10a and 2.10c show the top and isometric views for

a viscoelastic fluid at t = 0.1. The streamtubes for the Newtonian and viscoelastic

fluids are very similar at t = 0.1 as both the Newtonian and viscoelastic fluids have the

same initial condition, and at early times the impulse does not significantly contaminate

regions away from its source. Figures 2.11b and 2.11d show the top and isometric views

of streamtubes for a Newtonian fluid, and Figures 2.11a and 2.11c show the top and

isometric views for a viscoelastic fluid at t = 6. We see in Figure 2.11a and 2.11c that

the viscoelastic fluid generates two pairs of counter-rotating vortices at x = ±1 that

spread out in the wall-normal direction with an oblique inclination.
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In contrast, we do not find significant evolution of vortical structures in the New-

tonian fluid (Figures 2.11b and 2.11d). In fact, streamtubes for the Newtonian fluid at

t = 6 (Figures 2.11b and 2.11d) are almost the same as they were at t = 0.1 (Figure

2.10b and 2.10d) (videos of the time-evolution can be found in the supplementary ma-

terial). The time-evolution of the vortical structures observed here is therefore a unique

feature of viscoelastic fluids. Vortex breakdown is a well-known mechanism for transi-

tion to turbulence in Newtonian fluids at high Reynolds numbers [62]. Analyzing the

existence of a breakdown and corresponding transition cannot be captured by the lin-

earized dynamics and requires careful consideration of nonlinear effects. However, using

the analysis of the linearized dynamics, we find the development of vortical structures

that may be related to the initial stages of transition to elastic turbulence.

Curved streamlines are known to be unstable to small-amplitude perturbations in

viscoelastic fluids and growth of these perturbations could eventually lead to elastic

turbulence [63, 64, 65]. Here, we find that curved streamlines are generated by an

impulsive excitation. If these grow to finite-amplitude, they may also become unstable.

Recent work [8] suggests that finite-amplitude perturbations in straight-channel flows

can induce elastic turbulence. A potential reason for this transition mechanism may be

related to the generation of curved streamlines by nonmodal amplification of initially

small-amplitude disturbances.

2.6 Concluding remarks

In this work, we have examined the response of a viscoelastic fluid to localized point

forces. We analyzed the kinetic energies of the velocity fluctuations and identified an

optimal location to trigger the impulse. The impulse in the optimal location has the

maximum impact in the channel and was found to be located near the wall for the

viscoelastic fluid. Our analysis has also demonstrated that viscoelastic fluids are more

sensitive to small amplitude disturbances when compared to Newtonian fluids at low

Reynolds numbers.

Our analysis of kinetic energy showed that the impulse in the spanwise direction

has the maximum impact and that the streamwise velocity is most affected. We also

found that the amount of amplification increases with increasing elasticity (We) and by

increasing polymer concentration (1− β). These observations agree with earlier studies
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(a) t = 0.1, Viscoelastic (top view) (b) t = 0.1, Newtonian (top view)

(c) t = 0.1, Viscoelastic (d) t = 0.1, Newtonian

Figure 2.10: Three-dimensional streamtubes of the velocity fluctuation vector that
originate from the plane y = 0.5 at Re = 50 with a spanwise impulsive excitation at
y0 = −0.75. Show are (a) top view and (c) isometric view for a viscoelastic fluid and
(b) top view and (d) isometric view for a Newtonian fluid at t = 0.1. Parameters used
for the viscoelastic fluid are L = 100, β = 0.5 and µ = 1.
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(a) t = 6, Viscoelastic (top view) (b) t = 6, Newtonian (top view)

(c) t = 6, Viscoelastic (d) t = 6, Newtonian

Figure 2.11: Three-dimensional streamtubes of the velocity fluctuation vector that
originate from the plane y = 0.5 at Re = 50 with a spanwise impulsive excitation at
y0 = −0.75. Show are (a) top view and (c) isometric view for a viscoelastic fluid and
(b) top view and (d) isometric view for a Newtonian fluid at t = 6. Parameters used
for the viscoelastic fluid are L = 100, β = 0.5 and µ = 1.
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on the amplification of unstructured channel-wide disturbances [22, 5, 36]; the latter

observation is also qualitatively consistent with recent experiments [54]. The optimal

location and direction of the impulse as well as the variation of kinetic energy with

polymer concentration and relaxation time studied in this work may provide useful

guidelines for inducing elastic turbulence in microfluidic devices and other experiments

concerning elastic turbulence.

We have also shown the spatio-temporal evolution of the wave packet arising from

the impulsive excitation. We have demonstrated that the wave packet in the viscoelastic

fluid stretches in the streamwise direction. This is in contrast to its Newtonian coun-

terpart which predominantly diffuses in space as a function of time. Three-dimensional

streamtubes also revealed time-evolving vortical structures that were not as pronounced

in Newtonian fluids. We note that this feature was not observed in previous studies with

distributed channel-wide body forces [20, 21, 22, 5, 36]. These structures may provide

a mechanism for triggering the initial stages of transition to elastic turbulence in dilute

polymer solutions.

Our results may also be helpful in understanding viscoelastic channel flows that

contain a finite-sized object, where the object exerts a drag force on the fluid. Since

any spatially varying and temporally distributed force can be expressed as a summa-

tion of impulses, our results may be useful for interpreting the behavior of these more

complex flows. An examination of the nonlinear evolution of fluctuations arising from

localized point forces is the next natural step toward addressing the challenging problem

of transition to elastic turbulence in viscoelastic channel flows.

Acknowledgments

This work is supported in part by the National Science Foundation under grant number

CBET-1510654. The Minnesota Supercomputing Institute (MSI) at the University of

Minnesota is gratefully acknowledged for providing computing resources.



Chapter 3

Well-conditioned ultraspherical

and spectral integration methods

for resolvent analysis of

Newtonian and viscoelastic

channel flows

3.1 Introduction

Linear analyses in hydrodynamic flow problems provide useful information concerning

the early stages of transition to turbulence in Newtonian and viscoelastic fluids. Linear

analysis broadly has two aspects to it: one being stability at long times (asymptotic

stability), and the other being nonmodal amplification of disturbances in asymptotically

stable systems [15, 14]. Linear nonmodal analysis involves examining the amplification

of disturbances in systems governed by non-normal operators. Large nonmodal am-

plification in linearly stable systems can trigger transition to nonlinear states [15, 14].

Eigenvalues provide information about growth or decay of disturbances at long times,

while singular values of frequency responses provide information about nonmodal am-

plification of disturbances.

38
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Experimental observations of Newtonian and viscoelastic channel flows have shown

that transition to nonlinear flow states can occur when the system is linearly stable,

even when the system is well below the stability boundary. This kind of subcritical

transition to turbulence in Newtonian fluids in simple geometries like wall-bounded

channel flows was thought to have occurred solely due to nonlinear effects. However,

it has become clear over time that the initial stages to transition are related to linear

nonmodal amplification [15, 43].

Similarly, in dilute polymer solutions, transition to turbulence has been observed in

experiments at very low Reynolds numbers (Re ≈ 0.01) where the system is expected to

be linearly stable [8, 7], and it is a debated issue as to whether the initial stages of the

observed transition are related to linear nonmodal amplification [23, 8]. Understanding

and controlling transition to turbulence at low Reynolds numbers has potential applica-

tions in enhancing transport in microfluidic devices [11, 10], and in controlling defects

in polymer processing operations like extrusion [13, 41].

The linearized system governing the flow of a viscoelastic fluid in a channel generally

has an associated continuous spectrum. This requires a large number of basis functions

for good resolution [56, 66, 55] when using a spectral method. The conditioning of

matrices generated as a result of discretization using conventional spectral methods

deteriorates algebraically with an increase in the number of basis functions. For example,

the condition numbers of matrices in spectral collocation for a second-order differential

equation scale as N4, and those in the Chebyshev-Tau and Galerkin methods scale as

N2, where N is the number of basis functions [29].

Effects due to an ill-conditioned matrix will surface as erroneous results that are

sometimes grid-dependent [33, 29, 27]. Nonmodal analysis in a 2D viscoelastic channel

flow in particular is strongly sensitive to ill-conditioned matrices [33]. Such effects due

to discretization-induced ill-conditioning can be avoided by using a well-conditioned

method, like the recently introduced ultraspherical method [26] and the Chebyshev

spectral integration method [27]. Du showed that under similar conditions, the con-

dition numbers of matrices involved in the Chebyshev spectral integration and the ul-

traspherical methods scale to a constant with arbitrary N in certain second-order dif-

ferential equations, while condition numbers in conventional spectral collocation scale

algebraically with N [27].
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The ill-conditioning of a matrix is measured in terms of a condition number, and

one commonly used condition number is the ratio of the largest to the smallest singular

value, κ = σmax/σmin, where κ is the condition number [34]. Intuitively, we might expect

an operator analogue to ill-conditioning, where an operator could have singular values

that are vastly separated. We call this “ill-conditioning inherent to the operator”. If

an operator is inherently ill-conditioned, merely using a well-conditioned method for

discretization will not suffice to avoid erroneous results.

A robust method to compute frequency responses must avoid both sources of ill-

conditioning, one originating from the discretization scheme, and the other inherent

to an operator. As we already discussed, recent well-conditioned schemes can be

used to address discretization-induced ill-conditioning. To address operator-inherent

ill-conditioning, we introduce a feedback interconnected system to compute frequency

responses.

Linear analyses of the incompressible Navier-Stokes (NS) equations are often con-

ducted by converting the governing equations into an evolution form by eliminating

pressure, as boundary conditions for pressure are unknown a priori [6]. In simple ge-

ometries, the linear stability problem is then solved by using a spectral method, like the

Chebyshev collocation or the Chebyshev-Tau method [6]. Solving the same problem in

primitive variables (i.e., without eliminating pressure) needs special care, as a staggered

grid is required to avoid a spurious pressure mode [24]. We find that for Newtonian and

viscoelastic fluids, such special treatment is not needed when using Chebyshev spectral

integration, i.e., modal and nonmodal analysis can be conducted using a standard grid

without running into spurious modes.

This paper is organized as follows. In Section 3.2 we present motivating examples

that identify the need to consider well-conditioned methods in nonmodal analysis. In

Section 3.3 we discuss the numerical methods used in this work, and in Section 3.4

we show several applications. We summarize our results in Section 3.5. Background

technical details are relegated to the appendix.
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3.2 Problem formulation and motivating examples

In this section, we formulate the problem and provide examples to motivate our devel-

opments. Our approach represents an outgrowth of the framework developed in [33],

where a cascade connection of the frequency response operator and its adjoint was

utilized in nonmodal analysis of stable linear dynamical systems in which the spatial

variable belongs to a finite interval.

3.2.1 Problem formulation

We consider linear dynamical systems whose spatio-temporal frequency response T (ω)

can be cast as,

[A(ω)φ(·)] (y) = [B(ω)d(·)] (y), (3.1a)

ξ(y) = [C(ω)φ(·)] (y), (3.1b)

[Laφ(·)](a) = [Lbφ(·)](b) = 0, (3.1c)

where ω ∈ R is the temporal frequency and y ∈ [a, b] is the spatial variable. The

state, input, and output fields are respectively denoted by φ, d, and ξ; A, B, and C
are linear differential block matrix operators of appropriate dimensions with potentially

non-constant coefficients in y; and La and Lb are linear operators that specify the

boundary conditions on φ. At any temporal frequency, we assume that the operator

A(ω) in (3.1) is invertible, thereby leading to,

T (ω) = C(ω)A−1(ω)B(ω).

While we allow a nonlinear dependence of the operators A, B, and C on ω, for systems

that can be cast as,

Dt[E φ(·, t)](y) = [F φ(·, t)](y) + [B d(·, t)](y), (3.2a)

ξ(y, t) = [C φ(·, t)](y), (3.2b)

[Laφ(·, t)](a) = [Lbφ(·, t)](b) = 0, (3.2c)
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the operator A(ω) in (3.1) depends linearly on ω, where t ∈ [0,∞) is time. In this

case, the application of the temporal Fourier transform yields the resolvent operator,

A−1(ω) = (iωE−F)−1, where i is the imaginary unit, and the operators B and C in (3.1)

do not depend on ω.

The frequency response operator T (ω) determines the steady-state response of a sta-

ble linear dynamical system to purely harmonic inputs. Namely, for d(y, t) = d̂(y, ω)eiωt,

the steady-state response is given by ξ(y, t) = ξ̂(y, ω)eiωt and T (ω) maps a spatial input

profile d̂(y, ω) into the corresponding output ξ̂(y, ω),

ξ̂(y, ω) =
[
T (ω) d̂(·, ω)

]
(y).

The singular value decomposition (SVD) of T (ω) can be used to determine the input

shapes (i.e., the left singular functions v̂i(y, ω)), the resulting responses (i.e., the right

singular functions ûi(y, ω)), and the corresponding gains (i.e., the singular values σi(ω)),

ξ̂(y, ω) =
[
T (ω) d̂(·, ω)

]
(y) =

∞∑
i= 0

σi(ω)ûi(y, ω)〈v̂i(·, ω), d̂(·, ω)〉,

where 〈·, ·〉 denotes the standard L2[a, b] inner product. SVD requires computation of

the adjoint T †(ω) of T (ω),

〈T †(ω)ξ̂, d̂〉 = 〈ξ̂, T (ω)d̂〉,

and the eigenvalue decomposition of the composite operators T (ω)T †(ω) and T †(ω)T (ω) [33,

6], [
T (ω)T †(ω)ûi(·, ω)

]
(y) = σ2

i (ω)ûi(y, ω),[
T †(ω)T (ω)v̂i(·, ω)

]
(y) = σ2

i (ω)v̂i(y, ω).

In general, T †(ω) is not determined by the complex conjugate transpose of an operator-

valued matrix T (ω) and its computation typically involves integration by parts.
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3.2.2 Reaction-diffusion equation: Ill-conditioning arising from oper-

ator

For the reaction-diffusion equation with y ∈ [−1, 1] and homogeneous Neumann bound-

ary conditions,

∂tφ(y, t) = ∂yyφ(y, t) − ε2φ(y, t) + d(y, t),

∂yφ(±1, t) = 0,
(3.3)

where ε is a real parameter, in representation (3.1) we have

A(ω) = iωI − D2 + ε2I, B = C = I.

Here, I is the identity operator, D = d/dy, and the frequency response operator is

determined by

T (ω) =
(
iωI − D2 + ε2I

)−1
. (3.4)

The dynamical generator D2 − ε2I with homogeneous Neumann boundary conditions

in (3.3) is self-adjoint and its eigen-pairs are given by [67, Example 5.4-1]

λn = −(ε2 + n2π2), φn(y) = cos (nπy) ,

λn = −(ε2 + (n+ 1
2)2π2), φn(y) = sin

(
(n+ 1

2)πy
)
,

(3.5)

where n ∈ Z. Furthermore, the singular values of the frequency response operator are

determined by

σ2
n(ω) =


1/(ω2 + (ε2 + n2 π2)2),

1/(ω2 + (ε2 + (n+ 1
2)2π2)2,

(3.6)

and the largest value of σn(ω) occurs for n = 0 and ω = 0, i.e., maxn, ω σn(ω) = σ0(0) =

1/ε2.

The separation between σ0(0) and σ1(0) increases with decrease in ε and this ill-

conditioning negatively impacts performance of standard numerical schemes. Singular
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(a) ε = 1, ω = 0 (b) ε = 10−4, ω = 0

Figure 3.1: Singular values of the frequency response operator of the reaction-diffusion
equation (3.3) obtained using Chebfun’s spectral scheme with N = 64 collocation points.
Symbols represent exact values (×) and the numerical solution resulting from the com-
posite operator T (ω)T †(ω) (◦). The principal singular value is not shown as its value
is very large compared to the remaining singular values.

value decomposition typically involves the resolvent operator and its numerical eval-

uation requires computation of the inverse of the discretized version of an operator-

valued matrix. Figure 3.1 illustrates that computations based on the composite oper-

ator T (ω)T †(ω) yield erroneous results for reaction-diffusion equation (3.3) with small

values of ε. The collocation method with 64 Chebyshev basis functions is used and

similar results are obtained even with a well-conditioned spectral integration scheme.

For ε = 10−4, σ0(0) = 108 is significantly larger than the other singular values and it

is not shown in Figure 3.1. Even though the collocation method is well-conditioned

for 64 basis functions [29], singular values resulting from spatial discretization of the

composite operator T (ω)T †(ω) have non-zero imaginary parts and their real parts sig-

nificantly deviate from the true values; see Figure 3.1b. When the composite operator

is used, increasing the number of basis functions does not fix this problem. In contrast,

for ε = 1 (Figure 3.1a), we observe a good match between analytical solutions (marked

by crosses) and singular values calculated using the composite operator T (ω)T †(ω)

(marked by circles).

In this example, since B = C = I and T †(ω)T (ω) = A−†(ω)A−1(ω) = (A(ω)A†(ω))−1,

ill-conditioning can be circumvented by computing the eigenvalues of the operator
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A(ω)A†(ω). However, in general, B and C are nonsquare block-matrix operators and

the computation of A−1(ω) and A−†(ω) cannot be avoided when a cascade connection

of T (ω) and T †(ω), shown in Figure 3.3, is used in the frequency response analysis. As

described in § 3.4.2, similar operator-induced ill-conditioning arises in strongly elastic

flows of viscoelastic fluids. In § 3.3.1 and § 3.4.1, we revisit the reaction-diffusion prob-

lem and show that the use of a feedback interconnection, shown in Figure 3.4, leads

to a computational framework that is insensitive to ill-conditioning of the underlying

operator.

3.2.3 Channel flow of viscoelastic fluids: Ill-conditioning arising from

spatial discretization

We now examine the model that governs the dynamics of infinitesimal fluctuations

around the laminar flow of a dilute polymer solution in a channel. This problem was

used in [33] to demonstrate that spectral collocation and an integral reformulation of

spectral collocation can produce significantly different results with accurate and grid-

independent results only feasible with the latter. In § 3.4.2, we show that ultraspherical

discretization offers a similar level of accuracy as spectral integration and that under

similar conditions, spectral collocation performs poorly, which is in concert with the

observations made in [33].

The linearized momentum, mass conservation, and constitutive equations for an

incompressible flow of the Oldroyd-B fluid are given by [23, 5, 20],

Re(∂tv + V ·∇v + v ·∇V ) = −∇p + β∇2v + (1− β)∇ · τ + d, (3.7a)

∇ · v = 0, (3.7b)

∂tτ + V ·∇τ + v ·∇τ = τ ·∇V + (τ ·∇V )T + T ·∇v + (T ·∇v)T +

1

We

(
∇v + ∇vT − τ

)
.

(3.7c)

Here, v, τ , and p are velocity, stress, and pressure fluctuations around the corresponding

base-flow quantities V , T , and P , respectively. The length is normalized with the

half-channel height h (see Figure 3.2 for geometry), velocity with the largest value of
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Figure 3.2: Geometry and steady-state velocity profiles in Poiseuille and Couette flows.

the steady-state velocity U0, time with h/U0, pressure with µTU0/h where µT is the

effective shear viscosity of the dilute viscoelastic solution, and the polymer stress T

with µpU0/h, where µp = µT − µs and µs is the pure-solvent viscosity. The Reynolds

number, Re = hU0ρ/µT , quantifies the ratio between the inertial and viscous forces,

where ρ is the fluid density; the Weissenberg number, We = λpU0/h, provides a measure

of the degree of elasticity in the fluid, where λp is the polymer relaxation time; and the

viscosity ratio, β = µs/µT , determines the polymer concentration in the fluid. Setting

β = 0 in (3.7) yields an upper convected Maxwell (UCM) model and for β = 1 a flow

of Newtonian fluid is recovered.

In channel flow, the steady-state velocity profile only contains the streamwise com-

ponent, i.e., V = (U(y), 0, 0), where U(y) = 1 − y2 for pressure-driven Poiseuille flow

and U(y) = y for shear-driven Couette flow. The non-zero components of the base

stress tensor are given by Txx = 2We(U ′(y))2 and Txy = Tyx = U ′(y), where the prime

denotes a derivative with respect to y. For this base flow, the streamwise and span-

wise directions are translationally invariant and the spatio-temporal Fourier transform

brings (3.7) to a two-point boundary value problem in the wall-normal coordinate y.

In the absence of inertia, we can set Re = 0 in (3.7), rescale time with We, and

examine the dynamics of 2D velocity fluctuations v = (u, v) in the streamwise/wall-

normal plane (x, y). Introducing the streamfunction φ so that the streamwise and

wall-normal velocity components are given by u = ∂yφ and v = −ikxφ and eliminating
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pressure and stress fluctuations from (3.7) brings the frequency response operator T (ω)

into the following form with D = d/dy,(
4∑

n= 0

an(y, ω)Dn

)
φ(y, ω) =

[
D −ikx

] [ dx(y, ω)

dy(y, ω)

]
,

[
u(y, ω)

v(y, ω)

]
=

[
D

−ikx

]
φ(y, ω),

φ(±1, ω) = [Dφ(·, ω)](±1) = 0,

(3.8a)

thereby implying that, in representation (3.1), we have,

A(ω) =
4∑

n= 0

an(y, ω)Dn, B =
[

D −ikx
]
, C =

[
D

−ikx

]
.

Alternatively, the components of the fluctuation stress tensor, which can play an active

role in triggering instabilities in viscoelastic fluids [60], can be selected as the output

in (3.8a),
τxx(y, ω)

τxy(y, ω)

τyy(y, ω)

 =


c11(y, ω)D2 + c12(y, ω)D + c13(y, ω)

c21(y, ω)D2 + c22(y, ω)D + c23(y, ω)

c31(y, ω)D + c32(y, ω)

φ(y, ω). (3.8b)

The expressions for functions an(y, ω) and cij(y, ω) are provided in Appendix D.

3.2.4 The linearized Navier-Stokes equations: A model in the descrip-

tor form

Setting β = 1 and rescaling pressure with Re in (3.7) yields the linearized NS equations,

∂tv + V ·∇v + v ·∇V = −∇p +
1

Re
∇2v + d, (3.9a)

∇ · v = 0. (3.9b)
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At any time t, the velocity fluctuations in (3.9) have to satisfy the algebraic constraint

given by the continuity equation (3.9b). In channel flow, the application of the Fourier

transform in x, z, and t allows us to cast (3.9) in the form given by (3.1) which is

parameterized by the wall-parallel wavenumbers (kx, kz) and the temporal frequency ω.

Using a standard procedure [6, Chapter 3], pressure can be eliminated from (3.9) to

obtain a model in the evolution form in which the state is captured by the wall-normal

velocity and vorticity fluctuations, (v, η). When the pressure is kept in the governing

equations, we deal with a model in the descriptor form in which the state is captured

by the primitive variables (u, v, w, p).

Bringing (3.9) to the evolution form has advantages and disadvantages. This trans-

formation eliminates the need to deal with pressure boundary conditions, which are

unknown, and it yields a smaller number of state variables. However, there are consid-

erable disadvantages both in Newtonian and viscoelastic fluids. As shown in [68, 69],

for the same level of accuracy, the descriptor form in channel flows of Newtonian fluids

requires a smaller number of basis functions compared to the evolution form. Further-

more, in flows of viscoelastic fluids, the transformation to the evolution form can result

in a system that is algebraically cumbersome (e.g., see Appendices in [23, 70]) and elim-

inating pressure from (3.7) requires taking higher derivatives of the stress variables and

necessitates specification of additional boundary conditions on stress fluctuations. Cer-

tain boundary conditions on stress fluctuations have been identified to produce reliable

results [55], but the physical basis of these remains unclear.

Since the boundary conditions on pressure are not known, working with the model in

the descriptor form requires use of a staggered grid for the velocity and pressure fields

in the spectral collocation method. If velocity is evaluated at Chebyshev collocation

points,

yj = cos (πj/N) , j = 0, 1, . . . , N, (3.10a)

then the pressure is evaluated at the points

yj = cos
(
π(j + 1

2)/N
)
, j = 0, 1, . . . , N − 1; (3.10b)

when using a staggered grid. A similar procedure for the Chebyshev-Tau method is



49

described in [24]. By setting j = 0 and j = N − 1 in (3.10b), pressure is not evaluated

at the boundaries, i.e., at y = ±1, and thus the need for specifying pressure boundary

conditions is avoided. We refer the reader to [71] for implementation details of the

staggered-grid formulation.

However, implementing a staggered grid can be challenging and there are well-

developed open-source codes to solve two-point boundary value problems using spectral

methods, e.g., A Matlab Differentiation Matrix Suite [32] and Chebfun [31]. Implement-

ing staggered grids in such solvers requires special treatment and the standard solvers

currently available in Chebfun do not cater to unconventional discretizations. In § 3.4.3,

we demonstrate that the Chebyshev spectral integration method does not need a stag-

gered grid when retaining the problem in the descriptor form and reinforcing algebraic

constraint (3.9b) at the boundaries, y = ±1.

In channel flow of a viscoelastic fluid, the momentum equation in (3.7) contains the

divergence of stress fluctuations and the presence of the y-derivative of τ complicates

determination of boundary conditions for the adjoint system. In § 3.3.4, we develop a

method for resolvent analysis that retains the accuracy of the descriptor formulation and

circumvents the challenge of dealing with stress boundary conditions. In our approach,

we eliminate the stress fluctuations from (3.7), while retaining the pressure, and exploit

the fact that the spectral integration method does not require a staggered grid when

pressure is kept in the governing equations. In § 3.4.3, we demonstrate that our spectral

integration implementation of the descriptor formulation provides a reliable tool for

conducting the frequency response analysis in 3D channel flow of a viscoelastic fluid

even in strongly elastic regimes.

3.3 SVD via feedback interconnection

In this section, we first summarize the standard procedure for computing the singular

value decomposition of the frequency response operator T (ω). This approach utilizes a

cascade connection of T †(ω) and T (ω), shown in Figure 3.3, and it relies on computing

inverses to determine the resolvent operator and its adjoint. Since it can suffer from

ill-conditioning, we employ an alternative method that avoids inversion [4, Theorem

1]. This method extends the standard reflection technique [72, 73, 74] to our setup
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and exploits feedback interconnection, shown in Figure 3.4, to avoid numerical errors

and guard against ill-conditioning. We close the section with a discussion of numerical

schemes that are utilized in this work.

The frequency response operator T (ω) = C(ω)A−1(ω)B(ω) in (3.1) is described by

ξ(y) = [T d(·)](y) ⇔


[Aφ(·)](y) = [B d(·)](y),

ξ(y) = [C φ(·)](y),

[Laφ(·)](a) = [Lbφ(·)](b) = 0,

(3.11a)

and the adjoint operator T †(ω) = B†(ω)A−†(ω)C†(ω) is determined by

ζ(y) = [T †g(·)](y) ⇔


[A†ψ(·)](y) = [C†g(·)](y),

ζ(y) = [B†ψ(·)](y),

[L†aψ(·)](a) = [L†bψ(·)](b) = 0,

(3.11b)

where we suppress the dependence on ω for notational convenience. The adjoint oper-

ators are defined as [75],

〈ψ,Aφ〉 =
〈
A†ψ,φ

〉
, (3.12a)

〈ψ,Bd〉 =
〈
B†ψ,d

〉
, (3.12b)

〈g, Cφ〉 =
〈
C†g,φ

〉
, (3.12c)

where the boundary conditions on L†a and L†b in (3.11b) are selected to ensure that (3.12a)

holds. The analytical approach to computing the adjoint operators typically involves

integration by parts whereas the numerical approach utilizes appropriate integration

weights to make sure that the discrete approximation of the inner products in (3.12)

holds true.

In [33], the adjoints and the corresponding boundary conditions were evaluated

analytically for arbitrary block matrix operators using the procedure described in [75,

Section 5]. We note that a similar procedure as in [33] is also used in the current Chebfun

system to compute the formal adjoint of a linear differential operator [31]. While the

method for determining formal adjoints described in [75, Section 5] and [33] can be
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T †(ω) T (ω)
d(y)g(y) = ξ(y)ζ(y) = σ2d(y)

Figure 3.3: Block diagram of a cascade connection of the operators T †(ω) and T (ω).
The composite operator, T †(ω)T (ω), can be used to compute the singular values of the
frequency response operator T (ω).

also utilized for systems in the descriptor form, determination of the adjoint boundary

conditions is subtle and requires additional attention. For the linearized NS equations

described in § 3.2.4, the method developed in [75, Section 5] yields smaller number of

boundary conditions than necessary to have a well-posed adjoint system. In § 3.3.3,

we describe how this challenge can be overcome by utilizing the governing equations to

impose additional boundary conditions in order to make the adjoint system well-posed.

The eigenvalue decomposition of the composite operator T †(ω)T (ω), whose block

diagram is shown in Figure 3.3, can be used to obtain squares of the singular values.

Detailed equations representing the composite operator can be found in [33]. Since the

composite operator involves inverses of both A and A†, computations can be prone

to ill-conditioning. In the next section, we show how to conduct the singular value

decomposition of the frequency response operator T (ω) without having to compute any

inverses.

3.3.1 The feedback interconnection

Singular values of the matrix A ∈ Cn×n are typically computed via the eigenvalue

decomposition of the matrix AA† (or A†A) [34]. Alternatively, they can be obtained

from the eigenvalues of the matrix [72, 73, 74],[
0 A

A† 0

]
.

This so-called reflection technique avoids floating-point errors associated with computing

the composite matrix AA† [72, 73, 74]. In most cases this error is not significant and

both methods should yield similar results. Since the frequency response operator and its

adjoint involve inverses of the operators A and A†, for ill-conditioned problems errors
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T †(ω) T (ω)

1

σ2
I

d(y)g(y) = ξ(y)ζ(y) = σ2d(y)

(a)

1

σ
T †(ω)

1

σ
T (ω)

d̃(y)g̃(y) = ξ̃(y)ζ̃(y) = d̃(y)

(b)

1

σ
T (ω)

1

σ
T †(ω)

d̃(y)ξ̃(y)

g̃(y) ζ̃(y)

(c)

Figure 3.4: Through a sequence of equivalent transformations, the cascade connection of
the operators T †(ω) and T (ω) shown in Figure 3.3 is cast as a feedback interconnection
of the operators (1/σ) T †(ω) and (1/σ) T (ω) [4, Theorem 1].
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associated with computing these inverses can become large [34]. In what follows, we

employ a method that is inspired by the reflection technique and provide a reformulation

that does not involve any inversions [4, Theorem 1].

Through a sequence of transformations, the composite system shown in Figure 3.3

can be brought into the feedback interconnection shown in the bottom block diagram

of Figure 3.4. This representation requires realizations of the operators (1/σ) T (ω) and

(1/σ) T †(ω) which are respectively determined by

ξ̃(y) = [ 1
σ T d̃(·)](y) ⇔


[A φ̃(·)](y) = [B d̃(·)](y),

ξ̃(y) = [ 1
σ C φ̃(·)](y),

[La φ̃(·)](a) = [Lb φ̃(·)](b) = 0,

(3.13a)

and

ζ̃(y) = [ 1
σ T
†g̃(·)](y) ⇔


[A†ψ̃(·)](y) = [C†g̃(·)](y),

ζ̃(y) = [ 1
σ B
†ψ̃(·)](y),

[L†aψ̃(·)](a) = [L†bψ̃(·)](b) = 0,

(3.13b)

The last block diagram in Figure 3.4 requires setting d̃(y) = ζ̃(y) and g̃(y) = ξ̃(y)

in (3.13), which yields

[A†ψ̃(·)](y) = [ 1
σ C
†C φ̃(·)](y), (3.14a)

[A φ̃(·)](y) = [ 1
σ BB

†ψ̃(·)](y). (3.14b)

This system can be equivalently expressed as the generalized eigenvalue problem,[
0 BB†

C†C 0

][
φ̃

ψ̃

]
= γ

[
A 0

0 A†

][
φ̃

ψ̃

]
, (3.15)

where we suppress the dependence on the spatial variable y for brevity. Eigenvalues

resulting from this approach determine the singular values in pairs of opposite signs,

i.e., γ = ±σ.

This approach offers two advantages relative to the computation of the eigenvalues

using the composite operator T †(ω)T (ω). First, it allows simultaneous computation
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of both the right and the left singular functions, i.e., φ̃(y) and ψ̃(y). The second and

more important advantage is that it does not require computation of any inverses. This

feature avoids a potential issue of ill-conditioning and allows application to systems in

the descriptor form, thereby avoiding the need for determining the evolution form repre-

sentation. Furthermore, compared to the composite operator T †(ω)T (ω), implementing

the feedback interconnected system is simpler as it avoids computing discretized oper-

ator inverses. We note that the QZ algorithm [76] can be used to solve the discretized

version of generalized eigenvalue problem (3.15).

In most cases, it is of interest to compute only the few largest singular values. Since

some eigenvalues corresponding to a generalized eigenvalue problem can be infinite,

using a sparse eigenvalue solver to compute the eigenvalues with largest real part is not

a viable option. In order to utilize sparse solvers, we search for the eigenvalues of the

smallest magnitude for[
A 0

0 A†

][
φ̃

ψ̃

]
=

1

γ

[
0 BB†

C†C 0

][
φ̃

ψ̃

]
. (3.16)

When A(ω) = iωE − F , we next describe how the procedure of this section can

be utilized to compute the H∞ norm, i.e., the smallest upper bound on the largest

singular value of the frequency response operator across temporal frequencies. For

stable linear dynamical systems, this quantity determines the L2-induced gain (i.e., the

worst-case amplification of finite energy disturbances) and it has an appealing robustness

interpretation [77, Section 4.10.2] that is closely related to the notion of pseudo-spectra

of linear operators.

Computation of the H∞ norm

The peak of the largest singular value of the frequency response operator T (ω) over all

temporal frequencies ω ∈ R determines the H∞ norm of a stable linear system,

‖ T ‖∞ := sup
ω

σmax(T (ω)). (3.17)
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When A(ω) = iωI −F , the H∞ norm can be computed to a desired accuracy using the

purely imaginary eigenvalues of the Hamiltonian operator [4, 78],

Mγ =

 F 1
γ BB

†

− 1
γ C
†C −F†

 . (3.18)

For a given ω = ω0, the formulation based on a feedback interconnection (3.15) implies

that γ is a singular value of T (ω0). The expression for Mγ given by (3.18) can be

obtained by rearranging (3.15), and a selected value of γ = γ1 is a singular value of

T (ω) if and only if Mγ1 has at least one purely imaginary eigenvalue [4, Theorem 2].

In this case, γ1 provides a lower bound on ‖ T ‖∞ and the value of γ1 can be updated

using either the bi-section algorithm [4] or the method provided in [78] to compute the

H∞ norm to a desired accuracy.

This procedure can be also extended to the problems with A(ω) = iωE − F ; e.g.,

see [79]. The algorithm involves calculation that identifies the existence of purely imag-

inary eigenvalues for a generalized eigenvalue problem with operators (Mγ ,Nγ), where,

Nγ =

 E 0

0 E†

 . (3.19)

3.3.2 Numerical approximation of spatial differential operators

Solving two-point boundary value problems via spectral methods requires expressing

the variable of interest in a global basis of orthogonal functions, e.g., the Chebyshev

polynomials. For example, in reaction-diffusion equation (3.3) the variable φ(y, t) can

be expressed as

φ(y, t) =

∞∑′

i= 0

ai(t)Ti(y),

where Tn(y) is the nth Chebyshev polynomial of the first kind, an(t) is the nth spectral

coefficient, and the prime denotes a summation with the first term halved.
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Implementation using Chebfun

Chebfun is an open-source software for spectral methods that provides various standard

discretizations [31]. We implement the feedback interconnection shown in Figure 3.4 us-

ing Chebfun in Matlab [31, 80] and explore the utility of different discretization schemes

that Chebfun offers. As a representative of an ill-conditioned discretization scheme,

we use Chebfun’s spectral collocation routine which utilizes Chebyshev polynomials

of the second kind as basis functions and goes under the name chebcolloc2. Chebfun

also provides a well-conditioned scheme based on the ultraspherical discretization. This

method expresses the kth derivative of a function in terms of a series of ultraspherical

polynomials and it goes under the name ultraS [26]. We develop a function that takes

the operators A, B, and C in (3.1) as inputs in the Chebfun syntax, and produces the

singular values and the corresponding singular functions as outputs. For systems with

A(ω) = iωE − F and nonsingular E , we also provide a function that computes the

H∞ norm (3.17) and returns the frequency at which σmax(ω) peaks using the algorithm

developed in [78]. All routines that utilize Chebfun are restricted to systems in the

evolution form.

Implementation using spectral integration suite

We develop a spectral integration suite that implements the feedback interconnected

system in Figure 3.4. The suite is based on the methods reported in [28, 27] with

minor modifications that facilitates application to a broad class of infinite-dimensional

problems and results in simple discretization matrices in Matlab and C++. As discussed

in § 3.2.4, in contrast to conventional spectral methods, the spectral integration method

is attractive because it does not require a staggered grid to deal with systems in the

descriptor form. In the remainder of this section, we provide a brief summary of our

implementation of the Chebyshev spectral integration method and relegate details to

supplementary material § H.

In the spectral integration method, the highest derivative is expressed in the ba-

sis of Chebyshev polynomials (in our case, of the first kind) and expressions for lower

derivatives are determined by integrating higher derivatives. For reaction-diffusion equa-

tion (3.3), the second derivative of φ(y) is expressed as
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D2φ(y) =

∞∑′

i= 0

φ
(2)
i Ti(y) =: tTy Φ, (3.20a)

where Φ = [φ
(2)
0 φ

(2)
1 φ

(2)
2 · · · ]T is the infinite vector of spectral coefficients and ty is

the vector of Chebyshev polynomials of the first kind Ti(y),

tTy :=
[

1
2T0(y) T1(y) T2(y) · · ·

]
.

Subsequent indefinite integration of (3.20a) yields

Dφ(y) =

N∑′

i= 0

φ
(1)
i Ti(y) + c

(φ)
1 =: tTy Φ(1) + c

(φ)
1 , (3.20b)

φ(y) =

N∑′

i= 0

φ
(0)
i Ti(y) + c

(φ)
1 y + c̃

(φ)
0 =: tTy Φ(0) + c

(φ)
1 y + c̃

(φ)
0 , (3.20c)

where c̃
(φ)
0 and c

(φ)
1 are constants of integration. The spectral coefficients of Φ(1) and

Φ(0) are related to the spectral coefficients of Φ as

Φ(1) = J Φ, Φ(0) = J2Φ, (3.21)

where J is given by,

J :=



0 1
2 0 · · ·

1
2 0 −1

2 0 · · ·
0 1

4 0 −1
4 0 · · ·

0 0 1
6 0 −1

6 0 · · ·
...

...
. . .

. . .
. . .


. (3.22)

The first row of the integration operator J we use in (3.22) is different from what is

used in [27, Section 4] and [28, Eq. (12)], and its derivation is provided in supplementary

material § H. In contrast to [28, 27] where the first row of J is full, our representation

for J in (3.22) is given by a banded tri-diagonal matrix.
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From the above, we can express φ(y), Dφ(y), and D2φ(y) and as

φ(y) = tTy (J2Φ + R2c
(φ)), (3.23a)

Dφ(y) = tTy (J1Φ + R1c
(φ)), (3.23b)

D2φ(y) = tTy (J0Φ + R0c
(φ)), (3.23c)

where Ri are matrices that account for the constants of integration in a basis of Cheby-

shev polynomials, c(φ) := [ c
(φ)
0 c

(φ)
1 ]T , and c

(φ)
0 = 2 c̃

(φ)
0 .

The feedback interconnection that is used to compute the frequency response of (3.3)

is given by (see (3.15)),[
0 I

I 0

][
φ(y)

ψ(y)

]
= γ

[
(iω + ε2)I − D2 0

0 (−iω + ε2)I − D2

][
φ(y)

ψ(y)

]
,

(3.24a)

with boundary conditions
Q(+1,D) 0

Q(−1,D) 0

0 Q(+1,D)

0 Q(−1,D)


[
φ(y)

ψ(y)

]
= 0, (3.24b)

where Q(a, L) evaluates the action of the linear operator L on a variable at a point

y = a. In particular, (3.24b) specifies homogeneous Neumann boundary conditions at

y = ±1.

For the reaction-diffusion equation, the infinite-dimensional representation of the

system shown in Figure 3.4 is obtained by combining (3.23) with (3.24a) and equating
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terms that correspond to the same basis functions,

[
0 0 J2 R2

J2 R2 0 0

]
︸ ︷︷ ︸

E


Φ

c(φ)

Ψ

c(ψ)


︸ ︷︷ ︸

v

=

γ


(iω + ε2)J2 − I 0

(iω + ε2)R2 − R0 0

0 (−iω + ε2)J2 − I

0 (−iω + ε2)R2 − R0


T

︸ ︷︷ ︸
F


Φ

c(φ)

Ψ

c(ψ)


︸ ︷︷ ︸

v

,

⇒ E v = γ F v. (3.25a)

Similarly, substitution of (3.23) to (3.24b) yields the representation of boundary condi-

tions, 
tT+1 J tT+1 R1 0 0

tT−1 J tT−1 R1 0 0

0 0 tT+1 J tT+1 R1

0 0 tT−1 J tT−1 R1


︸ ︷︷ ︸

M


Φ

c(φ)

Ψ

c(ψ)

 = 0. (3.25b)

Thus, in the generalized eigenvalue problem (3.25a) only the eigenfunctions that belong

to the null-space of the operator in (3.25b) are acceptable and the system of equa-

tions (S1-23) can be written as,

E v = γ F v,

M v = 0.
(3.26)
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The finite-dimensional approximation of (3.26) is derived by utilizing a projection op-

erator for the spectral coefficients

P = [ IN+1 0 ] , (3.27)

where P has N+1 rows and an infinite number of columns. This yields a representation

of (3.25) for the first N + 1 spectral coefficients and the QR factorization or SVD

of the matrix approximation of the operator in (3.25b) can be used to parameterize

the null-space and obtain the eigenfunctions that satisfy the boundary conditions (see

supplementary material § H for details) [81]. For example, the SVD of a full-row-rank

fat-matrix M of size m× n (m < n) in (3.25b) yields matrices U, Σ, and V such that

M v = UΣV† v = 0, (3.28)

⇒ M v = U
[

Σ1 0
] V†1

V†2

 v = 0. (3.29)

From (3.29), any v such that

v = V2 u, (3.30)

will satisfy (3.28), where u is the vector that parametrizes the null-space (V2 in (3.30))

of M [82]. Substituting (3.30) in (3.25a) yields the final generalized eigenvalue problem,

(E V2) u = γ (F V2) u, (3.31)

which yields the singular values as γ = ±σ, and u.

Finite-dimensional approximations of more complex systems, e.g., the linearized NS

equations (3.9) and the equations governing channel flow of a viscoelastic fluid (3.8a), are

derived using a similar procedure to the one described in this section. Additional care

is required to account for spatially varying coefficients and for the presence of a static-

in-time constraint that arises from the continuity equation. An in-depth discussion of

our implementation of spectral integration in both C++ and Matlab is provided in the

supplementary material § H. Finally, we solve a generalized eigenvalue problem resulting

from the finite-dimensional approximation to (3.15) using the sparse eigenvalue solver,

eigs in Matlab, and LAPACK’s zggev routine in C++.
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As discussed in § 3.3.1, the feedback interconnection in Figure 3.4 can be used for

systems in the descriptor form and the spectral integration method does not require a

staggered grid when pressure is retained in the governing equations. We next describe

how we handle pressure boundary conditions in the spectral integration method for

channel flows of incompressible Newtonian and viscoelastic fluids.

3.3.3 Boundary conditions for linearized NS equations in the descrip-

tor form

Boundary conditions for the frequency response operator

For the linearized NS in the descriptor form, the boundary conditions on pressure

are unknown and it is necessary to impose additional constraints to guarantee well-

posedness. These additional boundary conditions do not need to be imposed on pres-

sure fluctuations [74]. In particular, the no-slip and no-penetration conditions at the

walls, v(±1) = 0, can be used in conjunction with continuity equation (3.9b) (i.e.,

ikxu(y) + Dv(y) + ikzw(y) = 0 after the Fourier transform in the wall-parallel direc-

tions has been utilized) to obtain two additional constraints, [Dv(·)](±1) = 0. Thus, the

velocity fluctuations in the descriptor formulation of the NS equations have to satisfy

eight boundary conditions,

u(±1) = v(±1) = w(±1) = [Dv(·)](±1) = 0. (3.32)

As mentioned earlier, the number of integration constants has to be equal to the number

of (linearly independent) constraints for the spectral integration method to ensure well-

posed numerical implementation. Since D2v and Dp appear in (3.9), expressing them

in terms of Chebyshev polynomials and integrating would give one integration constant

less than the number of boundary conditions. A well-posed formulation can be obtained

by expressing the second derivative of the pressure in a basis of Chebyshev polynomials,

D2p(y) =

N∑′

i= 0

p
(2)
i Ti(y). (3.33)



62

Subsequent integration (as in (3.20b) and (3.20c)) yields two additional integration

constants which can be used to account for [Dv(·)](±1) = 0. Such a treatment for

pressure is not uncommon in numerical approximations of the linearized NS equations;

for example, two homogeneous Neumann boundary conditions on pressure have been

used for modal analysis of the formulation in primitive variables [83, 84, 69].

While conventional spectral methods (e.g., the Chebyshev-tau and collocation meth-

ods) require different numbers of basis functions for pressure and velocity fluctuations

(i.e., a staggered grid) to avoid spurious modes [24, 29], we express velocity and pressure

using an equal number of basis functions, i.e., N+1. Moreover, the additional Neumann

boundary conditions on wall-normal velocity fluctuations simply result from imposing

the no-slip and no-penetration conditions at the walls, v(±1), on the continuity equa-

tion (3.9b). The same process of deriving linearly independent boundary conditions to

make a spectral collocation method well-posed was previously used in pipe flow [68].

We note that, in contrast to the spectral integration method, the spectral collocation

technique still requires a staggered grid [68].

In summary, we augment the linearized NS equations (3.9) with boundary condi-

tions (3.32). In § 3.4.3, we demonstrate that these boundary conditions produce the

correct eigenvalues for the formulation in primitive variables (i.e., the descriptor form

characterization of the linearized NS equations) without a staggered grid.

Boundary conditions for the adjoint system

For the NS equations linearized around the base flow (U(y), 0, 0), application of the

Fourier transform in t, x, and z on (3.9) yields the operators A, B, and C in (3.11a),
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A =


i(ω + kxU)− ∆

Re U ′(y) 0 ikx

0 i(ω + kxU)− ∆
Re 0 D

0 0 i(ω + kxU)− ∆
Re ikz

ikx D ikz 0

 ,

B =


I 0 0

0 I 0

0 0 I

0 0 0

 , C =


I 0 0 0

0 I 0 0

0 0 I 0

 ,
(3.34)

where ∆ := D2−(k2
x+k2

z)I. The operators A and C act on the vector of flow fluctuations

in primitive variables, i.e., φ = [u v w p ]T in (3.11a); the operator B acts on the vector

of forcing fluctuations, d = [ dx dy dz ]T ; and the output is determined by the velocity

fluctuation vector, ξ = v = [u v w ]T . Following [75, Section 5], we can obtain the

adjoint operators A†, B†, and C† in (3.11b),

A† =


−i(ω + kxU)− ∆

Re 0 0 −ikx
U ′(y) −i(ω + kxU)− ∆

Re 0 −D
0 0 −i(ω + kxU)− ∆

Re −ikz
−ikx −D −ikz 0

 ,

B† =


I 0 0 0

0 I 0 0

0 0 I 0

 , C =


I 0 0

0 I 0

0 0 I

0 0 0

 ,
(3.35)

and show that the adjoint variables ψ = [ û v̂ ŵ p̂ ]T in (3.11b) satisfy û(±1) = v̂(±1) =

ŵ(±1) = 0. Furthermore, evaluation of the last row in [A†ψ(·)](y) = [C†g(·)](y) at the

walls yields two additional boundary conditions Dv̂(±1) = 0. Thus, for the linearized

NS equations in the descriptor form we impose the following boundary conditions on

the adjoint of the frequency response operator,

û(±1) = v̂(±1) = ŵ(±1) = [Dv̂(·)](±1) = 0, (3.36)
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on the components of the vector ψ = [ û v̂ ŵ p̂ ]T in (3.11b). In § 3.4.3, we demonstrate

that the spectral integration method with boundary conditions (3.32) on the frequency

response operator along with the adjoint boundary conditions (3.36) can be used to

correctly compute the resolvent norm for the linearized NS equations in the descriptor

form. We next show how this formulation can be extended to viscoelastic fluids.

3.3.4 Frequency response analysis of 3D channel flow of a viscoelastic

fluid

The flow of a viscoelastic fluid in a channel is governed by equations (3.7c) that account

for the memory (time-dependent variation) of the stress in the fluid. As the stress has

no boundary conditions specified, it is favorable to transform (3.7) in a manner that

the stress is eliminated, and to retain as state variables quantities whose boundary

conditions are known, i.e., the velocity and pressure (as discussed in § 3.3.3, velocity

boundary conditions derived from the continuity equation account for pressure boundary

conditions). After a spatio-temporal Fourier transform, the stress can be expressed in

terms of the velocity as,

τ (y) = [V v(·)](y), (3.37)

The process to obtain V is relegated to Appendix D. After eliminating the stress, there

are two approaches to compute the frequency responses and these will be discussed in

the following subsections.

The descriptor formulation with the stress eliminated

In this approach, we derive a system equivalent to (3.7) by using (3.37) to eliminate

the stress variables. This results in a system of equations with state variables φ̃ =

[u v w p ]T in the representation in (3.11a). The operators A, B, and C in (3.11a) for

this system is given in Appendix D.2. The regular and adjoint boundary conditions for

this system are the same as that for linearized NS equations, i.e., (3.32) and (3.36). In

this paper the term “descriptor form” for the viscoelastic system always refers to the

descriptor form with the stress eliminated.
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The evolution form model

Once the stress is eliminated using the process discussed in § 3.3.4, the pressure can

further be eliminated to bring the 3D viscoelastic system to a form where the state

variables are φ̃ = [ v η ]T , where (η := i kzu − i kxw) [16, 6, 14]. As the pressure is

eliminated, this system is now in the evolution form, and the standard process discussed

in [75, Section 5] can be used to calculate the adjoint boundary conditions. The system

representation (3.11a) of this form is given in Appendix D.1. In this paper the evolution

form for a viscoelastic system always refers to the evolution form where the stress is

eliminated.

3.4 Computational examples

In this section, we provide examples to demonstrate the merits and the effectiveness

of the developed framework. For the reaction-diffusion equation, we show that the

computations based on a feedback interconnection shown in Figure 3.4 are insensitive

to the operator-induced ill-conditioning discussed in § 3.2.2. We next apply this feedback

interconnection to the 2D viscoelastic system in the evolution form (3.8a) and show that

our approach provides robust result over a much wider range of flow elasticities than

the approach based on a cascade connection shown in Figure 3.3. Finally, we use the

feedback interconnected system in conjunction with the spectral integration method to

compute frequency responses of systems in the descriptor form.

3.4.1 Reaction-diffusion equation

As demonstrated in § 3.2.2, the singular value decomposition of the operator T (ω)T †(ω)

is ill-conditioned for small values of ε in (3.3). We revisit this example using the feedback

interconnection shown in Figure 3.4. Figure 3.5 shows the first twenty singular values

of the frequency response operator for reaction-diffusion equation (3.3) with ε = 10−4.

While the values computed using the feedback connection (marked by circles) agree

with the analytical solution (marked by crosses), the singular values resulting from the

cascade connection (marked by diamonds) are erroneous. This mismatch arises from

ill-conditioning of the operator T (ω)T †(ω) and has nothing to do with the spatial dis-

cretization. It turns out that increasing N does not improve computations resulting
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Figure 3.5: Singular values of the frequency response operator for reaction-diffusion
equation (3.3) with ε = 10−4 and ω = 0 resulting from the use of Chebfun’s spectral
collocation scheme with N = 64. Symbols represent analytical solution (×), and the
computations based on the feedback interconnection shown in Figure 3.4 (◦) and the
cascade connection shown in Figure 3.3 (♦). The principal singular value (corresponding
to i = 0) is not shown as its value is significantly larger than the remaining singular
values.

from the cascade connection shown in Figure 3.3. Furthermore, the spectral integra-

tion method applied on the cascade connection also produces erroneous results (not

shown). This observation was made using both our implementation of the spectral in-

tegration method and implementation developed in [33]. Since the error is induced by

ill-conditioning of the operator T (ω)T †(ω), we expect that the ultraspherical discretiza-

tion of the cascade connection would also yield erroneous results.

3.4.2 2D viscoelastic channel flow

As a second application, we consider 2D channel flow of an Oldroyd-B fluid described

in § 3.2.3. In contrast to operator-induced ill-conditioning, discretization-induced errors

can be alleviated by employing a well-conditioned discretization scheme, e.g., the ultra-

spherical and spectral integration schemes discussed in § 3.3. In conventional spectral

methods (e.g., Chebyshev collocation method), discretization matrices become increas-

ingly ill-conditioned with an increase in the number of basis functions. Viscoelastic

channel flow requires a large number of basis functions for good resolution and provides

an excellent benchmark for studying effects that arise from both discretization- and
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operator-induced ill-conditioning.

The frequency response operator T (ω) for 2D channel flow of an Oldroyd-B fluid

is described by (3.8a) and numerical implementation requires a large number of ba-

sis functions (about 4000) for good resolution in a flow with moderate Weissenberg

numbers (We ∼ 50). In strongly elastic flows (with We ∼ 500), an operator-induced

ill-conditioning, similar to the one discussed § 3.4.1, also arises. The discrete eigenval-

ues in a 2D flow scale as 1/We [56] and, at large We, the cascade connection shown

in Figure 3.3 is prone to ill-conditioning because of the inversions in T (ω)T †(ω). At

high elasticities, only the feedback connection in Figure 3.4 produces reliable results

and all calculations in this section are based on it.

Velocity output

We employ spectral collocation, ultraspherical discretization, and spectral integration

methods to compute singular values of the frequency response operator (3.8a), with the

velocity as the output, in 2D Couette flow of an Oldroyd-B fluid. In Figure 3.6, we

show the largest singular value as a function of We for Re = 0, β = 0.5, kx = 1, and

ω = 0. Calculations are performed using 479 (marked by circles) and 511 (marked by

crosses) basis functions. Figures 3.6a and 3.6b demonstrate that the ultraspherical and

spectral integration methods produce grid-independent results. In contrast, Figure 3.6c

illustrates that the spectral collocation method produces grid-dependent results.

In [33], the performance of spectral integration and spectral collocation methods was

compared using the same example. As in our study, it was observed that the collocation

method produces unreliable, grid-dependent results, and that the spectral integration

method yields reliable, grid-independent results. We find that the method based on

ultraspherical discretization performs on par with the spectral integration method and

that it produces grid-independent results for 2D Couette flow of an Oldroyd-B fluid

with moderate We.

Stress output

When the stress fluctuations are selected as the output, we use the Chebfun’s ultras-

pherical discretization in Matlab for the frequency response analysis. The computations

are verified using our spectral integration method (not reported here). Among other
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(a) Ultraspherical (b) Spectral integration (c) Spectral collocation

Figure 3.6: Principal singular values of the frequency response operator (3.8a) for
inertialess 2D Couette flow of an Oldroyd-B fluid with β = 0.5, kx = 1, and ω = 0 as a
function of fluid elasticity, We, resulting from the use of (a) ultraspherical; (b) spectral
integration; and (c) spectral collocation methods. The velocity fluctuations are selected
as the output and symbols represent N = 479 (◦) and N = 511 (×).

features, Chebfun offers the automatic collocation technique which increases the number

of basis functions until the solution reaches machine precision [31].

The left singular functions associated with the largest singular value for the stress

output reveal why these computations require a large number of basis functions. Fig-

ure 3.7 shows the principal left singular function of the first normal stress component,

τxx, in inertialess 2D Couette flow with We = 40, β = 0.5, ω = 0, and kx = 1. Fig-

ure 3.7a illustrates τxx over the entire domain y ∈ [−1, 1], and Figure 3.7b shows τxx

in the region where the highest values are achieved (near the center of the channel). In

spite of large peak magnitudes, the left singular function is smooth and well-resolved.

In contrast to the Couette flow computations, which require around 4000 basis func-

tions, the computations for Poiseuille flow were resolved to machine precision with

around 1000 basis functions. Figure 3.8 shows the principal left singular function for the

stress output in Poiseuille flow that is obtained under the same conditions as Figure 3.7

for Couette flow (Re = 0, We = 40, β = 0.5, kx = 1, and, ω = 0). While in Couette

flow the stress shows a steep variation near the channel center (see Figure 3.7a), in

Poiseuille flow the steep variation occurs near the walls (see Figure 3.8a). Since interpo-

lations based on Chebyshev polynomials utilize points that are more densely populated

near the ends of the domain, sharp variations in Poiseuille flows can be resolved with a

smaller number of basis functions than sharp variations in Couette flow.
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(a) (b)

Figure 3.7: The left singular function associated with the principal singular value
σmax = 14.936 of inertialess 2D Couette flow of an Oldroyd-B fluid with We = 40,
kx = 1, ω = 0, and β = 0.5. The first normal stress component, τxx, (a) in the whole
domain, y ∈ [−1, 1]; and (b) near y = 0 is shown. The stress fluctuations are selected
as the output and the lines correspond to Re(τxx) (-), and Im(τxx) (- -).

(a) (b)

Figure 3.8: The left singular function associated with the principal singular value
σmax = 6.184 of inertialess 2D Poiseuille flow of an Oldroyd-B fluid with We = 40,
kx = 1, ω = 0 and β = 0.5. The first normal stress component, τxx, (a) in the whole
domain, y ∈ [−1, 1]; and (b) near y = 1 is shown. The stress fluctuations are selected
as the output and the lines correspond to Re(τxx) (-), and Im(τxx) (- -).
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(a) (b)

σ0 = 5.98

Figure 3.9: The left singular function associated with the principal singular value
σmax = 5.98 of inertialess 2D Poiseuille flow of an Oldroyd-B fluid with We = 500,
kx = 1, ω = 0, and β = 0.5. The first normal stress component, τxx, (a) in the whole
domain, y ∈ [−1, 1]; and (b) near y = 1 is shown. The stress fluctuations are selected
as the output and the lines correspond to Re(τxx) (-), and Im(τxx) (- -).

Finally, we consider inertialess 2D Poiseuille flow with high elasticity (We = 500),

β = 0.5, ω = 0, and kx = 1. A well-resolved computation based on the feedback

interconnection shown in Figure 3.4 requires around 15000 basis functions. We also

used our implementation of the spectral integration method (described in § 3.3) as well

as the spectral integration code developed in [33] to verify that the approach based on

a cascade connection shown in Figure 3.3 fails to produce reliable results. The principal

left singular function corresponding to τxx is shown in Figure 3.9. As expected, steep

variations near y = ±1 are observed with the peak value of around 1000. Figure 3.9b

shows a close-up of Figure 3.9a near y = 1 and demonstrates that the most amplified

output direction is well-resolved even though the variation in τxx is spanning three

orders in magnitude within the region of width 10−3 in y ∈ [−1, 1].
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3.4.3 Frequency response analysis of systems in the descriptor form

In the previous section we showed that the ultrapsherical method and the spectral

integration methods produce reliable results for resolvent norm calculations of 2D vis-

coelastic fluids in the evolution form. We next utilize the formulation based on the

feedback interconnection shown in Figure 3.4 in conjunction with the spectral inte-

gration method for frequency response analysis of systems in the descriptor form. We

examine the linearized NS equations presented in § 3.2.4 and the 3D flow of an Oldroyd-

B fluid with the stress fluctuations eliminated (see § 3.3.4). As discussed in § 3.2.4, for

incompressible flows in the descriptor form, conventional spectral methods require a

staggered grid which may be difficult to implement in generic solvers like Chebfun [31].

Our spectral integration method overcomes this challenge by reinforcing the algebraic

constraint (3.9b) at the walls; see § 3.3.3.

Channel flow of a Newtonian fluid

We first examine the linearized NS equations in Poiseuille flow; see (3.9) and Figure 3.2

for geometry. Modal analysis considers temporal growth or decay of infinitesimal fluc-

tuations around the parabolic velocity profile U(y) = 1 − y2. For Re = 2000, the

linearized NS equations are stable [6] and Figure 3.10a shows the spectrum of the flow

with kx = kz = 1. The results are obtained using the spectral integration method with

255 basis functions. Figure 3.10a shows that all eigenvalues are in the left-half of the

complex plane and demonstrates the absence of spurious modes. We note that the com-

putations based on the evolution form model (crosses) and the descriptor formulation

(circles) agree with each other and with the results reported in the literature.

Figure 3.10b shows the dependence on the temporal frequency of the two largest

singular values of the frequency response operator. For the principal singular value,

the evolution form model results are marked by crosses and the descriptor formulation

results are marked by circles. For the second largest singular value, the evolution form

model results are marked by triangles and the descriptor formulation results are marked

by inverted triangles. We observe excellent agreement in both cases.
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(a) Modal (b) Nonmodal

Figure 3.10: The linearized NS equations in Poiseuille flow with Re = 2000 and kx =
kz = 1. The spectral integration method with N = 255 basis functions is used. (a)
Spectrum resulting from the use of the evolution form model (×) and the descriptor
formulation (◦); and (b) two largest singular values of the frequency response operator
(evolution form (×) and descriptor formulation (◦) results for σmax; evolution form (4)
and descriptor formulation (5) results for the second largest singular value).

(a) (b)

Figure 3.11: (a) Real; and (b) imaginary parts of the principal singular value in in-
ertialess Couette flow of an Oldroyd-B fluid with β = 0.5, kx = kz = 1, and ω = 0.
The velocity fluctuations are selected as the output and the results are obtained using
the descriptor formulation (×) that eliminates stresses (see § 3.3.4) with N = 383 basis
functions and the evolution form model (◦) (see § 3.3.4) with N = 1000 basis functions.
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(a) (b)

Figure 3.12: (a) Real; and (b) imaginary parts of the principal singular value in iner-
tialess Couette flow of an Oldroyd-B fluid with β = 0.5, kx = kz = 1, and ω = 0. The
first normal stress component, τxx, is selected as the output and the results are obtained
using the descriptor formulations that eliminates stresses (see § 3.3.4) with N = 863
basis functions.

Channel flow of an Oldroyd-B fluid

Figure 3.11a demonstrates the agreement between the singular values obtained using

the descriptor formulation (×) with N = 383 basis functions and the evolution model

formulation (◦) with N = 1000 basis functions. For inertialess Couette flow of an

Oldroyd-B fluid with β = 0.5, kx = kz = 1, and ω = 0, the velocity fluctuations are

selected as the output and the influence of fluid elasticity We on the principal singular

value is shown. Although the imaginary part of a computed singular value is zero

in theory, the value of the imaginary part depends on the accuracy of the numerical

method, and a smaller imaginary part indicates higher accuracy. Figure 3.11b displays

the imaginary part of the principal singular value and we observe that the average

imaginary part from the descriptor form with N = 383 is ∼ 10−15 (dashed line), and

that from the evolution form with N = 1000 is ∼ 10−10 (dashed dotted line). This

demonstrates the higher accuracy of the computations from the descriptor form.

Figure 3.12a shows the principal singular value of inertialess Couette flow of an

Oldroyd-B fluid with β = 0.5, kx = kz = 1, and ω = 0, as a function of We. The

first normal stress component, τxx, is selected as the output and the computations are
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(a) (b)

Figure 3.13: The left singular function corresponding to the principal singular value
σmax = 7.434 in inertialess Poiseuille flow of an Oldroyd-B fluid with We = 10, β = 0.5,
kx = kz = 1, and ω = 0. The first normal stress component, τxx, is selected as the
output and the results are obtained using the descriptor formulations that eliminates
stresses with N = 863 basis functions. The lines correspond to Re(τxx) (-) and Im(τxx)
(- -) and the results (a) in the entire domain, y ∈ [−1, 1]; and (b) near y = 1, are shown.

obtained using the descriptor formulation with N = 863 basis functions. The principal

singular value increases with fluid elasticity but it appears to saturate at large values of

We. For fixed N , Figure 3.12b demonstrates that the imaginary part of the principal

singular value becomes larger with an increase in We. We further observe that for

We > 20, the accuracy of the computed singular values does not improve with a further

increase in N beyond certain value (≈ 863) and that the frequency response analysis of

plane Poiseuille flow with stress as the output shows similar trends (not shown).

Figure 3.13 illustrates the principal left singular function for inertialess Poiseuille

flow with We = 10, β = 0.5, kx = kz = 1, and ω = 0. The first normal stress

component, τxx, is selected as the output and the descriptor formulation is used in our

computations. As in 2D flow, we observe sharp stress gradients near the walls.
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3.5 Concluding remarks

In this paper, we explore the merits of recently developed well-conditioned ultraspher-

ical and spectral integration methods for nonmodal analysis of channel flows of New-

tonian and viscoelastic. We develop a framework for resolvent analysis that is based

on a feedback interconnection of the frequency response operator with its adjoint and

demonstrate its advantages over the standard formulation that utilizes a cascade con-

nection. For ill-conditioned problems, we show that a combination of the formulation

based on this feedback interconnection with well-conditioned ultraspherical and spectral

integration methods can be used to overcome limitations of standard spectral colloca-

tion techniques. In particular, we demonstrate that our approach provides robust results

in channels flows of Oldroyd-B fluids with high elasticity and show that the spectral

integration method does not require a staggered grid for modal or nonmodal analysis

of channel flows of incompressible fluids in descriptor form. This facilitates analysis of

relevant flow physics in strongly elastic regimes and enables computations using the for-

mulation with primitive variables. For a given number of basis functions, we show that

the computations resulting from the descriptor formulation are more accurate than the

computations based on the evolution form model. Even though we focus on nonmodal

analysis of channel flows of Newtonian and viscoelastic fluids, the developed framework

is general enough to find use for a variety of problems in fluid mechanics and beyond.
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Chapter 4

Stress amplification in inertialess

channel flows of viscoelastic fluids

4.1 Introduction

A Newtonian fluid transitions from a laminar to a turbulent flow state when its inertia is

sufficiently large, whereas certain viscoelastic fluids move to a turbulent-like flow state

even with negligible inertia [7, 3, 8, 9]. This turbulent-like flow state [8, 9] (elastic

turbulence) occurs due to the predominance of elastic forces compared to viscous forces

in the fluid. Elastic turbulence has potential applications in enhancing transport [39]

in systems with weak inertia, e.g., in drug delivery systems, medical diagnostic devices,

and high heat-flux integrated circuits [85]. In contrast, elasticity-driven instabilities

in polymer processing operations like extrusion are detrimental to the quality of final

products [13, 41]. Therefore, it is important to understand and control the initial stages

of elastic turbulence.

4.1.1 Experimental observations on elastic turbulence

This paper is motivated by recent experimental observations on elastic turbulence in

straight channels by Pan et al. [8] and Qin et al. [9]. They examined the flow of a

viscoelastic fluid in a channel of length 3 cm and cross-section 90µm × 100µm with a

Reynolds number of ∼0.01. They [8, 9] used an array of cylinders (diameter ∼ 50µm)
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in the entry region of the channel to perturb the flow, and the flow was visualized using

dye-advection experiments and tracked using velocimetry. Qin et al. (Figure 3, inset,

in [9]) observe that the steady-state kinetic energy of the fluid first decreases along the

channel length before increasing, leading to elastic turbulence. In this paper we try to

understand potential linear mechanisms that may explain this phenomenon.

We consider the 2D linearized model for flow of an Oldroyd-B fluid in a channel,

and analyze effects of a body force which is a sinusoidal function of time and is nearly

localized in space. We show that conditions exist where the steady-state stress is sig-

nificantly amplified while the kinetic energy is relatively weak. Elastic turbulence [8, 9]

was triggered using a different body force in channels, i.e., the drag force of cylindrical

obstructions. The cylindrical obstructions exert a drag force on the fluid, and in turn

the fluid experiences a persistent body force that is localized in space.

The velocity field generated downstream of a single cylinder is a periodic function

of time (Figure 19c in [86]) that is generated by an instability associated with the

flow around a cylinder. At sufficiently low Reynolds numbers in Newtonian fluids, this

instability decays along the channel length due to strong viscous forces [86]. Pan et

al. [8] observe similar behavior for viscoelastic channel flow. However, the instability

evolves to a nonlinear flow state when more than one cylinder is used [8].

Assuming that the instability generated by the cylinders acts as a persistent small-

amplitude perturbation, and that the resultant quasi-steady velocity is approximately

a sinusoidal function of time (Figure 19c, [86]), then an equivalent body force that can

generate this sinusoidal velocity will be a sinusoidal function of time as well. This is

because for a linear flow system, a sinusoidal body force of a particular frequency results

in a sinusoidal quasi-steady velocity (or stress) field of the same frequency [87, 6].

We will see in § 4.4 that the body forces we impose are similarly persistent and

periodic functions of time, and are nearly localized in space, although they are not the

same as that generated by finite-sized objects such as cylinders. We use this simplified

model to explore possible mechanisms that may explain the observations by Qin et al.

(Figure 3, inset, in [9]) of decreasing kinetic energy along the channel length, followed

by an increase further downstream.
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4.1.2 Linear analysis

Linear analysis concerns the evolution of small-amplitude perturbations on a dynamical

system about a stationary (i.e., time-invariant) steady-state. Modal analysis considers

the long-time growth (linearly unstable) or decay (asymptotically stable) of a small-

amplitude perturbation on a dynamical system [17, 88]. A growing perturbation can

trigger a nonlinear flow state that may result in a transition to elastic turbulence. Prior

works on modal stability suggest that channel flow of a viscoelastic fluid is linearly

stable under conditions of elastic turbulence [13]. Hence, the initial stages of elastic

turbulence [8, 9] are unlikely to be related to modal instability.

However, even if a system governing the flow of a fluid in a channel is linearly stable,

a persistent small-amplitude body force that is localized in space (e.g., the drag force

exerted by the cylindrical obstructions in the experiments by Qin et al. [9]) may result

in a velocity or stress that is significantly amplified. Finite-amplitude perturbations

are known to be unstable [41, 89] in viscoelastic channel flows, and a velocity or stress

perturbation that is significantly amplified may act as a finite-amplitude initial condition

to trigger a nonlinear flow-state (observed as elastic turbulence).

Nonmodal analysis examines the amount of amplification of small-amplitude per-

turbations on a dynamical system [6, 43, 16, 14]. The amplification in nonmodal anal-

ysis is typically measured with quantities that are square-integrated along the channel

width [14, 16, 90, 6], e.g., the square-integration of the velocity gives the kinetic energy

in the channel [14, 16, 90]. Previous studies reveal that viscoelastic channel flows have

large nonmodal amplification under conditions of elastic turbulence, and the amount of

nonmodal amplification increases with an increase in the amount of polymer elasticity

or concentration [20, 21, 22, 5, 36, 23].

Hence, one possible mechanism for the initial stages of transition to elastic turbu-

lence [8, 9] in the absence of linear instability [13] is that small-amplitude perturbations

undergo significant nonmodal amplification, and they act as finite-amplitude pertur-

bations. As finite-amplitude perturbations are unstable [89, 41], they may trigger a

nonlinear flow state, i.e., elastic turbulence.

However, in their experiments on elastic turbulence, Pan et al. [8] observe that the

disturbance induced by a single cylinder in the entry region merely decays without any

sign of amplification. Furthermore, they observe that a transition to elastic turbulence
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(a) α = 0.01 (b) α = 0.005

Figure 4.1: The Gaussian function (4.1) with (a) α = 0.01, and (b) α = 0.005.

needs more than one cylinder in the entry region, suggesting that the perturbation needs

to be relatively strong to induce a transition.

From the perspective of nonmodal theory [6, 43], one might expect an initial condi-

tion of the velocity induced by the cylinders to grow along the channel length, and then

trigger a nonlinear flow state [43, 6] at large channel lengths. As noted previously, Qin

et al. (Figure 3, inset in [9]) report that the kinetic energy of the flow initially decreases

along the channel length, and then increases later on.

The authors of Refs. [8, 9] therefore conclude that the initial stages of elastic tur-

bulence are unlikely to be related to a linear (modal or nonmodal growth) mechanism,

and are likely to be related to finite-amplitude effects. As mentioned before, nonmodal

analysis measures amplification in terms of quantities that are square-integrated along

the width of the channel [16, 90, 6]. However, this measure may be misleading in vis-

coelastic fluids, where the stress can be significantly amplified at a localized region in

the channel. We note that other studies on flows viscoelastic fluids have shown that the

stress can be highly localized [91, 66].

4.1.3 Localized amplification

As noted above, nonmodal analysis quantifies amplification in terms of a square-integrated

measure [90, 16, 6] such as the kinetic energy. To understand why a square-integrated
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measure is not apt for functions that are locally amplified in a small region, let us con-

sider a function [23, 52] whose square yields the Gaussian function with a small standard

deviation, α,

g2(y) =
1

2
√
πα

e−
y2

4α . (4.1)

The Gaussian function (4.1) has a property that its peak value increases with a decrease

in α (Figure 4.1). In Figure 4.1a, when α = 0.01, the peak value of the Gaussian

function (4.1) is about ∼3, whereas in Figure 4.1b, when α = 0.005, the peak value is

about ∼12.

However, no matter how large the peak value of the Gaussian function is (i.e., no

matter how small α is) in (4.1), its integration always yields a unit magnitude, i.e.,∫ ∞
−∞

g2(y) dy = 1. (4.2)

The square-integrated measure in (4.2) does not weight the large magnitude of the Gaus-

sian function in Figure 4.1b over a small region that distinguishes it from Figure 4.1a.

Similarly, if the stress in the channel has a large magnitude over a small region in the

channel, the square-integrated measure used in nonmodal analysis is likely to overlook

its sheer magnitude in that region.

In this paper, we consider a linear mechanism motivated by this argument. We

examine the stress that results from a persistent small-amplitude body force that is

localized in space (which is similar to the drag force exerted by finite-sized objects such

cylinders used in experiments [8, 9]). The idea is that the stress can be significantly

amplified in a small (localized) region in the channel, while the velocity (or kinetic

energy) amplification is much weaker for such forces. The large and localized stress may

act as a finite-amplitude perturbation that can trigger a nonlinear flow-state [41, 89]

such as elastic turbulence.

This paper is organized as follows. In § 4.2 we present the problem formulation,

and in § 4.3 we discuss the numerical methods used. In § 4.4 we compare localized and

square-integrated amplification of the stress in inertialess channel flows of viscoelastic

fluids. In § 4.5 we discuss mechanisms that contribute to localized amplification of

the stress. We summarize our findings in § 4.6, and relegate technical details to the

appendix.
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Figure 4.2: Flow geometry and the steady-state velocity profile for plane Poiseuille
flow.

4.2 Problem formulation

4.2.1 Governing equations

We consider inertialess pressure-driven flow of an Oldroyd-B fluid between two parallel

planes separated by a distance 2h (Figure 4.2) as related experiments use a pressure-

driven flow [8, 9]. We present the governing equations by scaling length with h, velocity

with the maximum velocity under steady laminar conditions, U0, and time with h/U0.

Pressure is scaled with µTU0/h, where µT is the effective shear viscosity of the fluid,

and the polymer stress with µpU0/h, where µp = µT −µs and µs is the solvent viscosity.

Two non-dimensional groups result from this scaling that characterize the material

properties of the fluid: the viscosity ratio, β = µs/µT , which gives the ratio between the

solvent to the total viscosity, and the Weissenberg number We = λpU0/h, which gives

the ratio between the relaxation time λp of the polymer to the characteristic flow time

h/U0.

Equations governing the flow of a viscoelastic fluid come from momentum and mass

conservation for an incompressible fluid [60, 61]

−∇P + β∇2V + ( 1− β )∇ · T + D = 0, (4.3a)

∇ · V = 0, (4.3b)
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where V = [U V W ]T is the velocity vector, T is the polymer stress tensor, P is the

pressure, and D is the body force. We use the Oldroyd-B constitutive equation for the

polymer stress tensor,

∂tT + V ·∇T − T ·∇V − (T ·∇V )T = − 1

We
T +

1

We

(
∇V + ∇V T

)
. (4.3c)

The steady-state velocity and nonzero components of the stress are given by,

V̄ = [ Ū(y) 0 0 ]T , T̄xx = 2We Ū ′(y)2, T̄xy = T̄yx = Ū ′(y), (4.4)

where Ū(y) = 1− y2 for plane Poiseuille flow (see Figure 4.2), and the prime refers to a

derivative with respect to y. We consider the dynamics of fluctuations about the steady-

state (4.4) using a base-fluctuation decomposition in (4.3), V = V̄ + v, T = T̄ + τ ,

P = P̄ + p, and D = D̄+d, where v, τ , p and d are fluctuations of the velocity, stress,

pressure and body force respectively.

Retaining terms that are linear in the fluctuations leads to the linearized governing

equations,

−∇p + β∇2v + ( 1− β )∇ · τ + d = 0, (4.5a)

∇ · v = 0, (4.5b)

− 1

We
τ +

1

We

(
∇v + ∇vT

)
=

∂tτ + V̄ ·∇τ + v ·∇T̄ − T̄ ·∇v − τ ·∇V̄ − (T̄ ·∇v)T − (τ ·∇V̄ )T . (4.5c)

The boundary conditions come from no-slip and no-penetration of the velocity at the

channel walls,

v(±1) = 0. (4.5d)

We consider the effects of a persistent body force d of the form

d(x, y, z, t) = d(y) δ(x) δ(z) e,i ω t (4.5e)

where δ(·) is the Dirac delta function, i is the imaginary unit, and ω is the temporal
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frequency. Notice from (4.5e) that the body force is localized in the x- and z-directions

and is harmonic in time. As we will see in § 4.4 (Figures 4.6c and 4.6d), the body force

we consider is nearly localized at specific points in the y-direction as well.

As discussed in § 4.1, we use this body force as a simple model to understand the

potential effects of finite-sized objects such as cylinders that perturb the flow. A finite-

sized object may exert a persistent body force which is localized in space, and may

generate velocity fluctuations that are periodic functions of time (Figure 19c in [86]). If

these velocity fluctuations are approximately represented by small-amplitude sinusoidal

functions of time, then an equivalent body force that generates this velocity field is a

sinusoidal function of time as well. This is a consequence of small-amplitude fluctuations

being governed by the linearized equations [6, 87].

4.2.2 Recasting the governing equations

We apply a Fourier transform on (4.5) in the x- and z-directions, and as the resultant

stress and velocity fields must have the same temporal frequency ω [6] as the body force

in (4.5e), we substitute v(κ, y, t) = v(κ, y) e,i ω t τ (κ, y, t) = τ (κ, y) e,i ω t and p(κ, y, t) =

p(κ, y) e,i ω t in (4.5). Here κ = (kx, kz) is the vector of Fourier modes corresponding to

the x- and z-directions. We then use this transformed version of (4.5c) to express the

stress in terms of the velocity. Next, we use this expression to eliminate the stress in

the momentum equations (4.5a) to arrive at a representation of (4.5) given by

[A(κ, ω, β,We)φ(·)](y) = [B(κ)d(·)](y), (4.6a)

v(y) = [Cv(κ)φ(·)](y), (4.6b)

τxx(y) = [Cxx(κ, ω,We)φ(·)](y). (4.6c)

The input d is the body force in (4.5a), and φ = [u v w p ]T . The output is either the

velocity vector (4.6b), or the component τxx (4.6c) of the stress tensor.

A, B, Cv and Cxx in (4.6) are block-matrices of differential operators in y ∈ [−1 1 ]

(relegated to Appendix E). We consider the velocity vector as the output in (4.6b)

instead of individual components as this enables us to measure the maximum value of

the kinetic energy of velocity fluctuations as we explain later in this section (see (4.12)).

We consider the xx-component of the stress in (4.6c) as we found that it shows the
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largest stress amplification compared to other components.

System (4.6) can be further simplified (Chapter 3 of [6]) by eliminating pressure and

recasting A, B, Cv, and Cxx to a form where φ = [ v η ]T with η = ikzu− ikxw being the

wall-normal vorticity. We refer to the form in which φ = [u v w p ]T as the descriptor

form, and the form in which φ = [ v η ]T as the evolution form. The descriptor form

is a larger system that involves four variables (u, v, w, and p), whereas the evolution

form involves two variables (v and η). However, a numerical solution (see § 4.3) using

the descriptor form needs fewer basis functions compared to the evolution form [69].

We perform calculations using both forms to confirm our expressions and results.

Expressions for A, B, Cv, and Cxx in (4.6) in both forms are relegated to Appendix E.

We make a note that the same set of equations in (4.6) results by using a body force

that is a sinusoidal function of x and z in all space,

d(x, y, z, t) = d(y) e.i ω t+i kxx+i kzz (4.7a)

Substituting for the velocity, stress and pressure of the same spatial and temporal

frequencies as the body force (4.7a) in (4.5), i.e., v(x, y, z, t) = v(y) e,i ω t+i kxx+i kzz

τ (x, y, z, t) = τ (y) e,i ω t+i kxx+i kzz and p(x, y, z, t) = p(y) e,i ω t+i kxx+i kzz we obtain the

same system (4.6).

Therefore solutions to (4.6) can be interpreted as being results of (a) a force that

is a sinusoidal function of x and z in all space (4.7a), or (b) a force that is localized at

one point in the x- and z-directions, i.e., at x = 0, z = 0 (4.5e). We use the localized

interpretation in (4.5e) as finite-sized objects used in related experiments in refs. [9, 8]

exert a body force on the fluid that is persistent in time and localized in space.

Modal analysis

The eigensystem of (4.6) that characterizes modal stability of (4.5) is given by pairs of

(nonzero) eigenvectors φ(y) and eigenvalues λ, where ω = −i λ, λ ∈ C (where C is the

set of complex numbers) for which

[A(κ, λ, β,We)φ(·)](y) = 0. (4.7b)
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System (4.6) is linearly unstable for any {κ, β,We} where Re(λ) > 0, where Re(·) is

the real part. Prior works have shown that inertialess Couette flow of a viscoelastic

fluid is linearly stable for all {κ,We} when β = 0 [56, 92]. For all other parameters of

plane Couette and Poiseuille flows, several numerical solutions show that system (4.6)

is linearly stable, although, to the best of our knowledge, there are no rigorous proofs

for linear stability in the full parameter space of {κ, β,We} [66, 13].

One known solution to (4.7b) is the continuous spectrum [56, 93, 66],

λ(y) = − 1

We
− i kx Ū(y), (4.7c)

which has a negative real part −1/We and is hence linearly stable (here Ū is the steady-

state velocity under laminar conditions, see (4.4)). The λ in (4.7c) is called the con-

tinuous spectrum as it varies in y according to the continuous function, Ū(y). The

continuous spectrum reverts to a discrete eigenvalue λ = −1/We when kx = 0 in (4.7c).

We find that (4.7c) plays an important role in inducing large stress amplification from

small-amplitude body forces as we will discuss in § 4.5.1.

Nonmodal analysis

While modal analysis is centered around finding solutions to (4.7b), nonmodal analysis

considers the resolvent operator [6] A−1(κ, ω, β,We) (see (4.6a)) in conjunction with

the input body force (d in (4.5a)) and a selected velocity or stress output (see (4.6b)

and (4.6c) respectively). In particular, the resolvent operators that map the body force

to the velocity and stress are given by,

v(y) = [Tv(ω)d(·)](y), (4.8a)

τxx(y) = [Txx(ω)d(·)](y), (4.8b)

where Tv is the resolvent operator that maps the body force (d in (4.5a)) to the velocity,

and Txx to the stress,

Tv(ω) = CvA−1(ω)B, Txx(ω) = Cxx(ω)A−1(ω)B. (4.8c)
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Note that operators Cv, A, B, and Cxx in (4.8c) are introduced in (4.6). We suppress

the dependence of the operators on {κ, β,We} in (4.8) for notational convenience.

One measure of the amount of nonmodal amplification in a system is the resolvent

norm [6]. We now discuss the resolvent norm of a generic resolvent operator T corre-

sponding to an output operator C in (4.6) that holds for both the velocity (Cv in (4.6b))

and the stress (Cxx in (4.6c)) outputs in (4.8),

T (ω) = C(ω)A−1(ω)B. (4.9)

4.2.3 The resolvent norm

The resolvent norm of T (in (4.9)) is defined as the maximum value of the square-

integrated velocity (4.6b) (for Tv) or the stress (4.6c) (for Txx) in the y-direction,∫ 1

−1
v†(y)v(y) dy,

∫ 1

−1
τ †xx(y)τxx(y) dy, (4.10)

for any square-integrable body force (d in (4.5a)) of a unit L2[−1 1] norm,

||d||22 :=

∫ 1

−1
d†(y)d(y) dy. (4.11)

where || · ||2 is the L2[−1 1] norm, and (·)† is the adjoint [6, 16]. Observe that the

square-integrated velocity in (4.10) yields the kinetic energy of velocity perturbations

integrated over y ∈ [−1 1],∫ 1

−1
v†(y)v(y) dy =

∫ 1

−1
|u(y)|2 + |v(y)|2 + |w(y)|2 dy. (4.12)

Linear nonmodal analysis generally studies a perturbation integrated in the y-direction

as a measure (as in (4.10)) of amplification [90, 6, 16].

The resolvent norm is given by the principal singular value of T [6, 33], and is

formally defined as

max
d∈H3×1, d6=0

||T (ω)d||2
||d||2

= σ0[T ], (4.13)
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where H is the set of square-integrable functions. The principal singular value is com-

puted using a singular value decomposition (SVD) of T . Details of how we compute an

SVD of T are deferred to § 4.3. We will now discuss quantities obtained from an SVD

of T , and their physical interpretations.

The SVD of Tv in (4.8a) yields the singular values σ, body forces, and velocities

such that [33]

σ v̂(y) = [Tv(ω) d̂(·)](y). (4.14)

where v̂ and d̂ are quantities with a unit L2[−1 1] norm (4.11). Expression (4.14) implies

that a body force d̂ acting on Tv results in a v̂ with an amplification of magnitude σ.

Comparing (4.8a) and (4.14), the velocity that results from the body force d̂ in (4.14)

is given by,

v(y) = σ v̂(y). (4.15)

Taking an L2[−1 1] norm (4.11) on both sides of (4.15) we have

||v||22 = σ2||v̂||22 = σ,2 (4.16)

where the last equality in (4.16) holds as v̂ has a unit L2[−1 1] norm (4.11). Thus

from (4.16) and (4.14), the square of the largest (principal) singular value gives the

maximum possible value of the kinetic energy of velocity fluctuations integrated in the

y-direction (||v||22 in (4.12), also see (4.11)) for any square-integrable body force of a

unit L2[−1 1] norm (4.11) (for a rigorous proof that the largest singular value is the

resolvent norm (4.13), see [34]).

Similar to (4.14)-(4.16), the SVD of Txx in (4.8b) yields the singular values σ, body

forces, and stress functions such that [33],

σ τ̂xx(y) = [Txx(ω) d̂(·)](y), (4.17)

where τ̂xx is a quantity with a unit L2[−1 1] norm. Similar to (4.15), we have by

using (4.8b) and (4.17)

τxx(y) = σ τ̂xx(y), (4.18)
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and taking an L2[−1 1] norm (4.11) on both sides of (4.18) we arrive at

||τxx||22 = σ.2 (4.19)

From (4.17) and (4.19), the largest singular value from the SVD of Txx gives the max-

imum possible value of the square-integrated stress (4.10), for any square-integrable

body force of a unit L2[−1 1] norm [33].

4.2.4 Localized amplification

As we discussed, nonmodal analysis quantifies amplification using the velocity or the

stress that is square-integrated in the y-direction (see (4.10)). However, this measure

may be misleading in viscoelastic fluids where the stress may have localized amplification

over a small region in the channel (as we discussed in Figure 4.1). We observe that

localized amplification occurs in τ̂xx computed from the SVD (4.17) with the stress as

the output.

A quantity that is square-integrated in y is not a good measure for quantities that are

locally amplified in y. We illustrated an example of this using the Gaussian function (4.1)

in Figure 4.1. The Gaussian function (4.1) attains larger magnitudes with a smaller

standard deviation, α, and no matter how large its magnitude, its integration in y is of

always of a unit magnitude (see (4.2)).

According to nonmodal theory, perturbation amplification (square-integrated in y)

acts as finite-amplitude perturbation to trigger a nonlinear flow state [16, 90, 6]. Simi-

larly, we hypothesize that localized amplification over a small region in y may act as a

finite-amplitude perturbation as well. In this paper we quantify localized amplification

as,

v(y∗) := |v(y)|max, τxx(y∗) := |τxx(y)|max, (4.20)

where y∗ is the location at which the maximum occurs for a given body force. In this

paper we refer to “localized amplification” when we quantify amplification in terms

of (4.20) and to “nonmodal amplification” or “square-integrated amplification” when

we refer to amplification in terms of quantities square-integrated in the y-direction (as

in (4.10)).
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Prior works on nonmodal analysis [20, 21, 22, 5, 36] show that the maximum (square-

integrated-in-y) nonmodal amplification (as in (4.10)) results from a system where kx =

0 in (4.6). System (4.6) when kx = 0 is frequently referred as the two-dimensional

three-component (2D3C) model in the literature [94, 21, 22, 5, 36]. However, we find

that localized amplification (as defined in (4.20)) is more prominent in the 2D system,

which is derived by setting kz = 0 in (4.6), and restricting the stress tensor, velocity,

and body force vectors to the (x, y)-plane.

We compare results from standard nonmodal analysis and our analysis based on

localized amplification (see (4.20)) by comparing results from the 2D3C model (which

exhibits the largest nonmodal amplification [20, 21, 22, 5, 36]) with the 2D model (which

has large localized amplification (4.20)) in § 4.4. In this paper we only consider these

two systems and do not consider the full 3D system owing to numerical limitations (see

Chapter 3).

4.3 Numerical methods

The SVD of T in (4.9) is determined by using an eigenvalue decomposition [72, 4][
0 BB†

C†C 0

][
φ

ψ

]
= γ

[
A 0

0 A†

][
φ

ψ

]
, (4.21)

where we suppress the dependence on {κ, ω,We, β, y} for brevity, and the eigenvalues

γ = ±σ yield the singular values, and ψ is the vector of adjoint variables corresponding

to φ in (4.6).

The eigenvalue problem (4.21) consists of differential (infinite-dimensional) operators

that act on continuous functions, φ and ψ. The operators in (4.21) are discretized using

two well-conditioned spectral methods: the spectral integration method [27, 28], and

the ultraspherical method [26]. We now briefly discuss spectral methods and their

well-conditioned variants.

Spectral methods express a variable in a differential equation in a basis of orthogonal
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polynomials like the Chebyshev polynomials, e.g.,

u(y) =

∞∑′

i= 0

ui Ti(y), (4.22)

where ui are the unknown spectral coefficients to be solved for, Ti(y) are the ith Cheby-

shev polynomials of the first kind, and
∑′

denotes a summation whose first term is

halved (this convention is commonly used in a Chebyshev basis [29, 28]).

Expressions for higher derivatives of the variable u(y) are derived by using a Cheby-

shev differentiation operator [28]. The differentiation operator produces ill-conditioned

matrix approximations to differential operators in (4.21) [29] that produce erroneous

results for calculations of the resolvent norm (4.13) at moderate to large We [33] (also

see Chapter 3).

The recent well-conditioned ultraspherical [26] and spectral integration [27] methods

avoid using the differentiation operator. For example, the spectral integration method

avoids the differentiation operator by expressing the highest derivative in a differential

equation in a Chebyshev basis, and expressing lower derivatives by using an integration

operator. The highest derivative of u in (4.5) is of second order, hence the second-

derivative of u is expressed as

d2u

dy2
=

N∑′

i= 0

u
(2)
i Ti(y). (4.23)

Expressions for lower derivatives of u in (4.23) are derived using the recurrence

relation for the integration of Chebyshev polynomials [28],

du

dy
=

N∑′

i= 0

u
(1)
i Ti(y) + c0, (4.24)
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where c0 is a constant of integration and

u
(1)
i =


1
2i

(
u

(2)
i−1 − u

(2)
i+1

)
, 0 < i < N,

1
2 u

(2)
1 , i = 0,

1
2N u

(2)
i−1, i = N.

(4.25)

The constants of integration can be computed using the boundary conditions in (4.5d).

Similarly, the ultraspherical method expresses a variable and its derivatives in a

basis of ultraspherical polynomials [26],

dnu

dyn
=

N∑
k=1

k u
(n)
k

dn−1C
(1)
k−1(y)

dyn−1
, (4.26)

where C
(α)
k is the kth ultraspherical polynomial of the α kind. The derivatives of

ultraspherical polynomials in (4.26) are related through the recurrence relation [26],

dC
(α)
k

dy
=

2αC
(α+1)
k−1 , k ≥ 1,

0, k = 0,
(4.27)

which forms a well-conditioned mapping between the variable and its derivatives, unlike

the differentiation operator used in conventional spectral methods [26].

The spectral integration method is implemented in Matlab (see Chapter 3 and sup-

plementary material, § H) to derive finite-dimensional approximations to (4.21) in both

the evolution and descriptor forms (see (4.6) and Appendix E). The ultraspherical dis-

cretization in Chebfun [31, 26] is used to derive a finite-dimensional approximation in

the evolution form (see Appendix E.1). As these well-conditioned methods are rela-

tively new, we are currently not aware of how to use the ultraspherical method with the

descriptor form. For all calculations reported in this paper, the corresponding velocity

and stress from the SVD (see (4.14) and (4.17)) are resolved to machine precision by

using up to 15, 000 basis functions with these well-conditioned spectral methods.

These two approaches (evolution form with the ultraspherical method, descriptor

and evolution forms with the spectral integration method, see (4.6) and Appendix E)

produce the same singular values (a few representative validations are relegated to
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Appendix F), confirming the accuracy of our results. Furthermore, at large We for

2D3C Couette flow, our results agree with the We and We2 scaling of the velocity v and

stress τxx singular values (relegated to Appendix F) reported in Figures 3 and 4 of [5].

4.4 Localized and square-integrated amplification of the

stress

In this section, we establish that although the square-integrated amplification (see (4.10))

is the largest in the 2D3C system [20, 22, 5, 36], localized amplification (as defined

in (4.20)) in the channel is larger in the 2D system. We will consider square-integrated

amplification in inertialess plane Poiseuille flow in § 4.4.1, and localized amplification

in § 4.4.2.

4.4.1 Square-integrated amplification

Figure 4.3 shows the principal singular value as a function of We for 2D3C Poiseuille

flow (kx = 0, kz = 1) of an Oldroyd-B fluid with β = 0.5, and ω = 0. Figure 4.3a shows

the velocity singular values obtained from the SVD of Tv in (4.14), and we notice a linear

growth with We when We >∼ 20 (the dashed line shows the slope of the scaling with

We). Note that the singular value is a square-integrated-in-y measure of the velocity or

the stress, as we discussed in § 4.2.3 (see (4.10), (4.16) and (4.19)).

Figure 4.3b shows the stress singular values obtained from the SVD of Txx, see (4.17).

We observe in Figure 4.3b that the stress singular values grow quadratically with We (on

a log-log plot, the dashed line shows the slope of the scaling with We) for We >∼4. The

We and We2 scaling of the velocity and stress singular values in Figures 4.3a and 4.3b

respectively are in agreement with the scaling arguments of Jovanović and Kumar in

Figures 3 and 4 of [5].

Figure 4.4 shows the principal singular values as a function of We for 2D Poiseuille

flow (kx = 1, kz = 0) with the same parameters as in Figure 4.3, i.e., β = 0.5, and

ω = 0. Figure 4.4a shows the velocity singular values computed from the SVD of Tv
in (4.14). We observe in Figure 4.4a that the singular values grow at small We (<∼5)

and decay at large We. As discussed in § 4.2.3 (see (4.12)), the principal singular value
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(a) v output (b) τxx output

Figure 4.3: Principal singular values of (a) Tv in (4.14) and (b) Txx in (4.17) of 2D3C
Poiseuille flow of an Oldroyd-B fluid with β = 0.5, kz = 1, and ω = 0. The solid lines
mark singular values, and the dashed lines show the slope of their scaling with We.

gives the maximum possible kinetic energy of the velocity perturbations for any square-

integrable body force, and we see in Figure 4.4a that this maximum possible kinetic

energy decreases with an increase in the elasticity of the fluid, We.

However, the stress singular values in Figure 4.4b (the maximum possible square-

integrated stress (4.10)) computed from the SVD of Txx in (4.17) show a different trend.

The singular values grow with an increase in We until We ∼ 20 and then plateau at large

We. The dashed line in Figure 4.4b shows the value of σ0 when We = 500, implying

that there is no significant variation of the principal singular values of Txx in (4.17) at

large We.

When we compare Figures 4.4a and 4.4b, we observe that the maximum possible

(square-integrated) velocity decreases with an increase in the elasticity of the fluid,

whereas the maximum possible (square-integrated) stress increases and plateaus with

an increase in the elasticity of the fluid. Thus with an increase in the elasticity, the

disparity between the square-integrated velocity and stress increases. This observation

is tied to the theme of this paper, that the stress can have large amplification even with

a relatively weak magnitude of the velocity for a small-amplitude body force. We defer

the relevance of this observation to experiments by Qin et al. [9] until later in § 4.4.3.

For now, we focus on the relative importance of the 2D3C singular values in Figure 4.3
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(a) v output (b) τxx output

Figure 4.4: Principal singular values of (a) Tv in (4.14) and (b) Txx in (4.17) of 2D
Poiseuille flow of an Oldroyd-B fluid with β = 0.5, kx = 1, and ω = 0. The solid lines
mark singular values, and the dashed line in (b) shows the magnitude of the singular
value when We = 500.

and the 2D singular values in Figure 4.4.

From the perspective of nonmodal analysis, the 2D3C case in Figure 4.3 has a square-

integrated-in-y velocity and stress (i.e., singular values, see (4.10), (4.16) and (4.19))

that scale as We and We2 respectively. However, in the 2D case in Figure 4.4 the

square-integrated-in-y velocity and stress have no scaling with We. Therefore the 2D3C

system has larger “nonmodal amplification” at large We, where the measure is in terms

of the singular value, a quantity that refers to a square-integrated velocity or stress

(see (4.10), (4.16) and (4.19)). However, the analysis reverses if we observe from the

perspective of localized amplification (see (4.20) and Figure 4.1) over a small region

in y ∈ [−1 1] (i.e., without square-integrating in y) as we will see in the section that

follows.

4.4.2 Localized amplification

Figure 4.5a shows τ̂xx (see (4.18) and (4.19)) corresponding to the principal singular

value with We = 100 from Figure 4.3b (2D3C with β = 0.5, kz = 1, and ω = 0),

Figure 4.5b shows τ̂xx corresponding to the principal singular value with We = 100

from Figure 4.4b (2D with β = 0.5, kx = 1, and ω = 0). Figure 4.5c enlarges the region
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near y = 1 in Figure 4.5b for clarity.

In Figure 4.5a, the principal singular value for the 2D3C case (σ0 = 9422.386) is

about a thousand times greater than the 2D case (σ0 = 6.033) in Figures 4.5b and 4.5c.

However, the peak magnitude of the stress for the 2D3C case in Figure 4.5a (see (4.17)

and (4.20)) is σ0 |τ̂xx|max ≈ 9422.386 × 0.01 = 94.22. In contrast, for the 2D case

in Figures 4.5b and 4.5c (see (4.17) and (4.20)) σ0 |τ̂xx|max ≈ 6.033 × 300 = 1809.00;

this is about twenty times more significant compared to the 2D3C case.

In Figure 4.5, both, the 2D3C and the 2D cases have their optimal body forces of

unit L2[−1 1] norms (4.11), but the 2D system generates larger localized amplification

compared to the 2D3C system under the same conditions. Therefore, we conclude

from Figure 4.5 that if we measure amplification in terms of localized amplification (4.20)

in the place of quantities that are square-integrated in y (as in (4.10)), the 2D system in

this case produces larger stress amplification with small-amplitude body forces compared

to the 2D3C system.

Nonmodal analysis considers that small-amplitude body forces result in large veloc-

ity or stress amplification that may act as a finite-amplitude initial condition to trigger

a nonlinear flow state [41, 89]. If this were the case, then the stress that results from

small-amplitude body forces on the 2D system is more likely to trigger a transition to

elastic turbulence compared to the 2D3C system as localized amplification is larger in

the 2D system. Moreover, note that this large localized stress amplification in Fig-

ures 4.5b and 4.5c occurs simultaneously with a relatively weak magnitude of velocity

amplification as seen in Figure 4.4a.

Figures 4.6a and 4.6b show the components of the velocity v = [u v]T corresponding

to the SVD of Txx (4.17) in Figures 4.5b and 4.5c (2D with We = 100, β = 0.5, kx = 1,

and ω = 0). Observe from the y-axis of Figures 4.6a and 4.6b that the magnitude of

the velocity is of O(0.1) which is weaker by about 5 orders of magnitude compared to

the stress in Figure 4.5b (σ0 |τ̂xx|max ≈ 6.023 × 300 = 1809 in Figure 4.5b, compared

to O(0.1) magnitude of v = [u v]T in Figures 4.6a and 4.6b). Note that the velocity

shown in Figures 4.6a and 4.6b is not normalized to have a unit L2[−1 1] norm (4.11).

Figures 4.6c and 4.6d show the x- and y-components of the body force that induce

the velocity fields in Figures 4.6a and 4.6b, and the stress in Figures 4.5b and 4.5c. The

magnitude of the x-component of the body force in Figure 4.6c is significantly larger
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2D3C: 2D: 2D:

(a) σ0 = 9422.386 (b) σ0 = 6.033 (c) σ0 = 6.033

Figure 4.5: The quantity τ̂xx (see (4.18)) corresponding to the principal singular value
from the SVD of Txx in (4.17) of inertialess (a) 2D3C (kz = 1), and (b,c) 2D (kx = 1)
Poiseuille flow of an Oldroyd-B fluid with We = 100, β = 0.5, and ω = 0. Solid lines
mark the real parts and the dashed lines mark the imaginary parts of τ̂xx. Figure (c)
enlarges (b) near y = 1.

compared to the y-component in Figure 4.6d. However, we observe a similarity between

the two components of the body force in Figures 4.6c and 4.6d in that they are locally

amplified near y = ±1, which are the same locations where localized amplification occurs

in the stress in Figures 4.5b and 4.5c.

Lastly, in Figure 4.7 we plot contours of the steady-state kinetic energy u2 + v,2 and

the square of the stress τ2
xx in physical space that result from the body force shown

in Figures 4.6c and 4.6d. Note that the persistent body force we use is of form (4.5e),

which is localized in x and z. Plots in physical space are obtained by applying an inverse

Fourier transform to the velocity and stress by linearly sampling 24 wavenumbers from

kx,min = −2.5 to kx,max = 2.29. Red represents regions of high magnitude, and blue

represents regions of low magnitude (as indicated in the color bars).

We observe in Figure 4.7a that the kinetic energy, u2 + v,2 has a peak value near the

channel center at y = 0 (of O(10−3) from the color bar). This agrees with observations

in Figures 4.6a and 4.6b where the magnitude of the velocity in Fourier space is the

largest near the channel center (y = 0) and smaller near the channel walls (y = ±1). Fig-

ures 4.7b, 4.7c and 4.7d consider the steady-state square of the stress, τ2
xx. Figure 4.7b

is almost entirely blue which corresponds to near zero squared stress (as indicated in

the color bar). This is because large magnitudes of the stress are localized in regions

near the walls (i.e., near y = ±1). This can be observed in Figures 4.7c and 4.7d,
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(a) (b)

(c) (d)

Figure 4.6: The (a,b) velocity components v = [u v]T respectively, and (c,d) x- and
y-components of the body force d corresponding to the principal singular value from
the SVD of Txx in (4.17) of 2D Poiseuille flow of an Oldroyd-B fluid with We = 100,
β = 0.5, kx = 1, and ω = 0 . The solid lines mark the real parts and the dashed lines
mark the imaginary parts of the velocity and body force vectors.
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(a) u2(x, y) + v2(x, y) (b) τ2xx(x, y)

(c) τ2xx(x, y) (d) τ2xx(x, y)

Figure 4.7: The steady-state (a) kinetic energy u2 + v,2 and (b,c,d) squared stress τ2
xx

that result from a persistent body force of the form in (4.5e) with a frequency ω = 0, and
a variation in y shown in Figures 4.6c and 4.6d in the 2D system of (4.5), with We = 100
and β = 0.5. Figure (c) enlarges (b) near y = −1, and Figure (d) enlarges (b) near
y = 1. Plots in physical space are obtained by applying an inverse Fourier transform
to the velocity and stress by linearly sampling 24 wavenumbers from kx,min = −2.5 to
kx,max = 2.29, and using 6000 Chebyshev basis functions in the y-direction.
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where Figure 4.7b is enlarged in the regions near y = −1 and y = +1 respectively.

We observe from the color bars in Figures 4.7b, 4.7c and 4.7d that the steady-state

squared stress reaches a value of O(106). This large value is prominent near the channel

wall at y = ±1 as seen in Figures 4.7c and 4.7d. Furthermore, the steady-state kinetic

energy (O(10−3) in Figure 4.7a) and the square of the stress (O(106) in Figures 4.7b, 4.7c

and 4.7d) have a disparity of about nine orders of magnitude. This observation may

provide an alternative linear mechanism for the transition to elastic turbulence reported

by Qin et al. [9].

4.4.3 A potential mechanism: Flow transition via localized amplifica-

tion

Qin et al. [9] observed a transition to elastic turbulence in a microfluidic channel at a

Reynolds number∼0.01. They induced perturbations into the channel using instabilities

that arise from cylindrical obstructions. We know from previous experimental and

theoretical studies [86] that the velocity field downstream of a single cylinder is a periodic

function of time, and we argued in § 4.1.1 and § 4.2.1 that if the instability induced by

the cylinders is considered a small-amplitude perturbation on the rest of the channel

downstream [8], and if the velocity is assumed to be a sinusoidal function of time, then

an equivalent body force is a sinusoidal function of time as well [87, 6].

The body force we consider is not induced by a finite-sized object like a cylinder.

However, the body force is nearly localized (see (4.5e), and Figures 4.6c and 4.6d), and

is a periodic function of time. The key observation we make for such forces is that there

is a large disparity between the magnitudes of the velocity (Figure 4.7a) and the stress

(Figures 4.7b, 4.7c and 4.7d). Qin et al. [9] observe that the kinetic energy first decreases

along the channel length (see Figure 3, inset, in reference [9]), and then undergoes an

increase at large channel lengths.

A potential mechanism for this puzzling observation (as in general, a transition to

a nonlinear state occurs with a strong growth of velocity perturbations [6, 15]) is that

the stress could have significant localized amplification and act as a finite-amplitude

perturbation (see (4.20)) even when there is relatively weak kinetic energy growth (like

the kinetic energy in Figure 4.7a relative to the stress in Figures 4.7b, 4.7c and 4.7d).
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Therefore although the kinetic energy decreases along the channel length in the obser-

vations of Qin et al. (Figure 3, inset, in reference [9]), the magnitude of the stress may

have been significantly larger and act as a finite-amplitude perturbation to trigger a

nonlinear flow state [41, 89].

In related numerical simulations, Grilli et al. [95] considered the fully nonlinear,

nearly inertialess (Re = 2.4 × 10−2, β = 0.5, and We = 1.3) 2D flow of an Oldroyd-B

fluid around a linear array of cylinders. The cylinders were separated by a distance 2.5

times their radius. They observe similar steep stress gradients as in Figures 4.7b, 4.7c

and 4.7d generated by cylindrical obstructions in viscoelastic channel flow (see Figure 4

in [95]). Furthermore, the flow was observed to transition to a nonlinear flow state [95].

We observe these steep stress gradients generated from the simplified linearized in-

ertialess 2D model of the Oldroyd-B equations subject to a body force which is nearly

localized in space and a harmonic function of time (§ 4.2.1 (4.5e), and Figures 4.6c

and 4.6d). We further note that similar arguments were made on the importance of lo-

calized stress amplification in ref. [96] for low-inertia (Re ∼100) transition to turbulence

in viscoelastic channel flows.

In this section we compared the velocity and stress amplification generated from the

2D and 2D3C systems and showed that although the square-integrated amplification

is the largest in the 2D3C system, localized amplification is larger in the 2D system

(Figure 4.5). We point out that this localized amplification (see (4.20)) may act as a

finite-amplitude perturbation to trigger a nonlinear flow state. In the next section, we

show that this localized amplification originates from the continuous spectrum (4.7c),

and we identify the location where this localized amplification of the stress (see (4.20))

occurs in the channel for a given frequency of the body force, ω (4.5e), and spatial

wavenumber kx = 1.

4.5 Mechanisms for localized amplification

4.5.1 The role of the continuous spectrum

In this section we demonstrate that localized amplification of the stress in Figures 4.5b

and 4.5c is related to the continuous spectrum λ(y) = −i kx Ū(y)−1/We (see § 4.2.1, (4.7c)).
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Note that the continuous spectrum reverts to a discrete eigenvalue λ = −1/We by set-

ting kx = 0 in (4.7c). We start by looking at the expression for τxx.

The expression for τxx from (4.6c) (see Appendix E, (E7)) for the full 3D system is

given by

τxx = c1,11Du + c0,11u + c1,12Dv + c0,12v, (4.28)

where D := d/dy. Note that the expression of τxx in (4.28) is the same for the 2D

system (this is true as (4.28) is kz- and w-independent, where w is the z-component of

v), and the expression of τxx for the 2D3C system in (4.28) can be derived by setting

kx = 0. Let us consider the first term, c1,11 in (4.28),

c1,11Du =
2
(
Wec(y)T̄xy(y) + Ū ′(y)

)
Wec(y)2

Du. (4.29)

So far no assumption is made about 2D or 2D3C in (4.29), and

c(y) = i ω + 1/We+ i kx Ū(y). (4.30)

Note that c(y) = iω−λ(y) where λ(y) is the continuous spectrum (see (4.7c)). Also, the

expression for τxx in (4.28), and hence (4.29), is kz- and β-independent to begin with.

Equation (4.29) can be rearranged as

c1,11Du =
2 T̄xy(y)

i ω + 1
We + i kx Ū(y)︸ ︷︷ ︸

g1(y,ω,kx,We)

Du +
2 Ū ′(y)

We(i ω + 1
We + i kx Ū(y))2︸ ︷︷ ︸

g2(y,ω,kx,We)

Du. (4.31)

In (4.31), T̄xy and Ū ′(y) are the same, i.e., T̄xy = Ū ′(y) (see (4.4)), but we retain them

separately to isolate their influence on τxx. The contribution from T̄xy in (4.31) comes

from T̄ ·∇v in (4.5c), and that from Ū ′(y) in (4.31) comes from τ ·∇V̄ in (4.5c).

We next plot g1 in (4.31) to understand its role in generating localized amplification

in τxx (in (4.28), see Figures 4.5b and 4.5c). Figure 4.8 shows g1 under the same

conditions as Figure 4.5 for τxx, i.e., with We = 100, kx = 1, and ω = 0. Note that g1

in (4.31) is kz- and β-independent.

We observe in the 2D case (kx = 1) in Figures 4.8a and 4.8b that g1 shows localized
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2D: 2D: 2D3C:

(a) kx = 1 (b) kx = 1 (c) kx = 0

Figure 4.8: The function g1 in (4.31) with We = 100, and ω = 0 (a,b) kx = 1, and (c)
kx = 0. The solid lines mark the real parts and the dashed lines mark the imaginary
parts of g1 in (4.31). Figure (b) enlarges (a) near y = 1.

amplification near y = ±1. Figure 4.8b enlarges Figure 4.8a near y = 1 for clarity,

and we observe that g1 has a maximum magnitude of about ∼ 400. Furthermore, the

locations of localized amplification y = ±1 (see (4.20)) of τ̂xx in Figures 4.5b and 4.5c

is the same as that for g1 in Figures 4.8a and 4.8b.

In Figure 4.8c we plot g1 for the 2D3C case (kx = 0, in which case, g1(y) =

−2We Ū ′(y)), and we observe a smooth function without prominent localized ampli-

fication. This is again similar to the 2D3C case in Figure 4.5a, where τxx is a smooth

function without prominent localized amplification.

To recapitulate, we are interested in answering why localized amplification occurs

in the stress in Figures 4.5b and 4.5c, and we found that the function g1 in the expres-

sion for τxx in (4.31) has similar localized amplification as τxx itself (in Figures 4.8a

and 4.8b). We can extract information about the locations of localized amplification

from g1 in (4.31). This is easier to do with g1 as it is a simpler function compared to

the full expression for the stress in (4.28).

Two questions arise by observing g1 as a function of y in Figure 4.8: (a) What causes

localized amplification of g1 in (4.31)? (b) For any ω, does localized amplification occur

at the same locations for g1 in (4.31) and τxx in (4.28)?

We attempt to answer these questions next. Answers to the above questions allow

us to identify where localized stress amplification happens in the channel, for a given

frequency of the body force (4.5e), ω. As we discussed in § 4.1.1 and § 4.2.1, the body
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(a) y∗ = 0, ω = −1 (b) y∗ = ±0.2, ω = −0.96 (c) y∗ = ±0.4, ω = −0.84

(d) y∗ = ±0.6, ω = −0.64 (e) y∗ = ±0.8, ω = −0.36 (f) y∗ = ±1.0, ω = 0

Figure 4.9: Stress τxx corresponding to the principal singular value from the SVD of
Txx in (4.17) with We = 40, β = 0.5, and kx = 1, and (a) y∗ = 0, (b) y∗ = ±0.2, (c)
y∗ = ±0.4, (d) y∗ = ±0.6, (e) y∗ = ±0.8, and (f) y∗ = ±1. For a given value of kx and
y∗, ω is calculated from (4.33). The solid lines mark the real parts and the dashed lines
mark the imaginary parts of τ̂xx. The dashed-dotted lines mark y = ±y.∗ Figure G4
(relegated to Appendix G) shows the region enlarged near y = y.∗

forces we consider are nearly localized in space, and are sinusoidal functions of time,

which are similar to small-amplitude perturbations induced by finite-sized objects such

as cylinders.

We first answer what causes localized amplification in g1 in Figure 4.8. Separating

the real and imaginary parts of g1 in (4.31) we have

g1(y) =
2 T̄xy(y)(1/We− i (ω + kxŪ(y)))

1/We2 + (ω + kxŪ(y))2
. (4.32)

The function g1 in (4.32) reaches its largest magnitude when its denominator is at its

minimum (for a finite numerator). As the denominator is a sum of two squares in (4.32),
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it is minimized when

ω + kxŪ(y∗) = 0, (4.33)

where y∗ is the location where the magnitude of g1 in (4.32) is maximized.

This increase in the magnitude of g1 with an increase in We happens at particular

points y = y∗ in the channel that satisfy (4.33). This is consistent with the localized

amplification observed in Figures 4.8a and 4.8b in the 2D case. However, observe that

in the 2D3C case, when kx = 0 in (4.33), we no longer have specific points y∗ where the

magnitude of g1 in (4.31) is maximized. This is consistent with localized amplification

is not being prominent in Figure 4.8c.

Furthermore we note that as We → ∞, the minimum value of the denomina-

tor of (4.32) is 0, in which case |τxx|max → ∞ at specific points y = y∗ in the

channel (from (4.33)). This corresponds to the infinite-extensibility of the polymer

molecules [60]. Although the singular values were observed to plateau with large We

in Figure 4.4b, the peak magnitude of the singular function, |τ̂xx|max →∞ as We→∞.

In contrast, for the 2D3C case when kx = 0, there are no specific locations y∗ for lo-

calized amplification (from (4.33)). However, the singular values (the square-integrated

amplification, see (4.17)) themselves tend to infinity, σ → ∞ as We → ∞ as seen

in Figure 4.3b.

Equation (4.33) identifies where localized amplification occurs (y∗) for a given value

of ω and kx in g1 in (4.31). Note that this expression is valid for Couette flow as well.

For example, for the case in Figure 4.8, substituting ω = 0, kx = 1, in (4.33), yields

y∗ = ±1 for plane Poiseuille flow, where y∗ are the locations of localized amplification

(see (4.20)), and this agrees with observations in Figures 4.8a and 4.8b (in fact, also for

the stress in Figures 4.5b and 4.5c).

The feature in g1 in (4.31) that induces localized amplification is the function c(y)

(see (4.30)) in its denominator, and localized amplification occurs at locations in the

channel where the imaginary part of c(y), ω + kxŪ(y), is zero. We did this analysis by

considering one term, c1,11 in (4.29) and on one function within this term, g1 in (4.31).

However, all functions, c1,11, c0,11, c1,12, and c0,12 in (4.28) contain c(y) or its powers in

the denominator (see (E8) in Appendix E) in a similar manner as g1 in (4.31), and all

of them have similar local amplification (as g1 in Figures 4.8a and 4.8b) at locations y∗
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where the imaginary part of c(y) in (4.30) is zero for kx = 1.

Thus far we answered the first question in relation to observations on Figure 4.8

as to why localized amplification occurs in g1 in (4.31). As both g1 in Figures 4.8a

and 4.8b and the stress τ̂xx in Figures 4.5b and 4.5c have localized amplification at the

same locations, y∗ = ±1, we next examine if this trend is general for any ω by choosing

different values of ω.

4.5.2 Locations of localized amplification

We pick several values of y∗ ∈ [−1, 1] in the channel, fix kx = 1 (with We = 40 and

β = 0.5) in Figure 4.9, and calculate ω from the relation in (4.33). We then use this

value of ω and compute an SVD of Txx in (4.17). The solid and dashed lines mark the

real and imaginary parts of τ̂xx corresponding to the principal singular value from the

SVD of Txx in (4.17), and the dashed-dotted lines mark y = y∗. If the dashed-dotted

lines, i.e., y = y∗ match with the locations where localized amplification occurs for τ̂xx,

we can conclude that relation (4.33) is valid for τ̂xx.

We first consider the case when y∗ = 0 and kx = 1 and fix ω based on (4.33)

in Figure 4.9a, and we observe that the dashed-dotted line, y = y∗ does not coincide with

the location of localized amplification of τ̂xx. Thus, when y∗ = 0, (4.33) is not a valid

expression for the location of localized amplification of τ̂xx (Figure 4.9a). In Figure 4.9b

we consider y∗ = ±0.2 and kx = 1 and fix ω based on (4.33), and we observe that the

dashed-dotted lines (y = y∗) and the locations of localized amplification (see (4.20)) of

τ̂xx coincide. This implies that (4.33) is valid for the locations of localized amplification

of τ̂xx in this case.

Similarly, in Figure 4.9c we choose y∗ = 0.4 and kx = 1 and fix ω based on (4.33);

the locations of localized amplification (see (4.20)) in τ̂xx coincide with y = y∗ (the

dashed-dotted lines), implying that (4.33) is valid for this case as well. Figures 4.9d-4.9f

consider cases with y∗ = 0.6, y∗ = 0.8 and y∗ = 1.0 respectively with kx = 1. In every

case, ω is computed from (4.33), and in every case, we observe that the locations of

localized amplification (see (4.20)) of τ̂xx and y = y∗ (the dashed-dotted lines) coincide

according to (4.33). For the purpose of clarity, the region near y = y∗ for all panels

in Figure 4.9 is enlarged in Figure G4, Appendix G.

In summary, although the relationship in (4.33) identifies the locations of localized
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amplification of the functions c1,11, c0,11, c1,12, and c0,12 in (4.28), it seems to be valid for

the stress that result from an SVD of Txx in (4.17) for all ω, except when the resultant

location is such that y∗ = 0 (as the dashed-dotted line and the location of localized

amplification do not match for this case in Figure 4.9a). We now discuss the reason

y∗ = 0 is an exception where the dashed-dotted lines and the locations of localized

amplification of τ̂xx do not match in Figure 4.9a, unlike all other cases in Figure 4.9.

The exception when y∗ = 0 in Figure 4.9a (where the dashed-dotted lines, y = y∗

do not coincide with the locations of local amplification (4.20) of τ̂xx, unlike all other

cases in Figure 4.9) can be understood by going back to the functions c1,11, c0,11, c1,12,

and c0,12 in (4.28). For example, the function g1 which is a function in c1,11 in (4.31) is

locally amplified according to (4.33), only when (4.32) has a finite numerator. However,

when y∗ = 0, its numerator becomes zero as Ū ′(y∗) = −2y∗.

Therefore g1 (and hence c1,11 in (4.28)) is not locally amplified when the numerator

is zero, i.e., when y∗ = 0. The term Ū ′(y) appears in all functions c1,11, c0,11, c1,12, and

c0,12 in (4.28) (see (E8) in Appendix E), and when y∗ = 0 the only nonzero term that

survives is

c0,11 =
2 i kx
Wec(y)

, (4.34)

and using (4.33) and (4.30), we have c(y∗) = 1/We, so (4.34) reduces to a constant

c0,11 = 2 i kx, (4.35)

and this constant does not produce prominent localized amplification compared to g1

in (4.31) when y∗ 6= 0.

The absence of localized amplification at y = 0 can also be understood from a

physical perspective by considering that the normal and shear components of the stress

in the base-state (T̄xx and T̄xy in (4.4)) vanish at y = 0, thus there is no driving force

to locally amplify the stress at y = y∗ = 0. This explains why the dashed-dotted

lines (corresponding to y = y∗) do not coincide with the locations where τ̂xx is locally

amplified when y∗ = 0 in Figure 4.9a, unlike all other cases in Figure 4.9.

As the localized amplification of τxx seems to occur at same locations where the

functions c1,11, c0,11, c1,12, and c0,12 in (4.28) are locally amplified, physical mechanisms

for the local amplification of τxx are likely to be embedded in these functions. These
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functions are listed in (E8) in Appendix E, and the prominent feature of these functions

apart from the continuous spectrum (discussed in § 4.5.1) is the coupling of the base-

state stress, T̄xx and T̄xy, and the base-state velocity gradient, Ū ′ (see (4.4)) with the

velocity fluctuations and their derivatives (see (4.28)). The influence of the base-state

stress and velocity gradient in (4.4) on the localized amplification of the stress is further

evidenced from the observation that the localized amplification becomes less prominent

at locations where they are zero, i.e., at y = 0 (Figure 4.9a).

Lastly, we find that the expression (4.33) for the locations of localized amplification

of τ̂xx that result from the SVD of Txx in (4.17) is valid for other kx as well (an example

of kx = 3 is relegated to Appendix G, Figure G3). However, we do not know if (4.33)

is valid for all kx ∈ R where R is the set of real numbers, as computational limitations

preclude a comprehensive verification. Stress singular functions (see (4.18)) become

increasingly steep with an increase in kx > 3 and need a large number of basis functions

for good resolution; this makes an SVD (4.17) prohibitively expensive.

We found in § 4.4 that localized amplification of the stress is more prominent in

the 2D case (Figures 4.5b and 4.5c) compared to the 2D3C case (Figure 4.5a). In

this section we sought to understand why and where does the stress τxx have localized

amplification for a body force (4.5e) of frequency ω as observed in Figures 4.5b and 4.5c.

We find that the localized amplification of τ̂xx computed from the SVD of Txx in (4.17),

is essentially related to the continuous spectrum (4.7c). The expression ω+ kx Ū(y∗) =

0 (as discussed in Figure 4.9) estimates the locations where the stress has localized

amplification when kx = 1, except when the normal and shear components of the stress

in the base-state (4.4) become zero, i.e., Ū ′(y) = 0.

4.6 Summary and conclusions

This paper explores a linear mechanism that may explain recent experimental observa-

tions by Qin et al. [9]. They found that the kinetic energy of perturbations induced in

the channel decrease along the length of the channel, followed by an increase at larger

channel lengths (Figure 3, inset, in [9]). This phenomenon is unlikely to be related to

a standard modal or nonmodal growth mechanism, as in both cases, the kinetic energy

of the velocity perturbations should increase, and then trigger a nonlinear flow state.
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We demonstrated in this paper that the stress can be significantly amplified locally

even when there is much weaker growth of the kinetic energy. The locally amplified stress

may act as a finite-amplitude perturbation to drive a viscoelastic fluid to a nonlinear

flow state [89, 41]. Nonmodal analysis typically focuses on a square-integrated measure

of perturbation amplification (see Figure 4.1), which we argue may be misleading for

the stress, which may amplify very significantly in a localized region in the channel.

We found that the localized amplification of the stress is dominant in the 2D system

(Figure 4.5), and that it occurs in regions in the channel where the imaginary part of

the function c(y) = iω − λ(y) (4.30) is zero, where λ(y) is the continuous spectrum

(see (4.7c)). The continuous spectrum, in conjunction with the base-state stress and

the velocity gradient, plays an important role in locally amplifying the stress in channel

flows of viscoelastic fluids.
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Chapter 5

An integral reformulation of the

influence-matrix algorithm for

direct numerical simulations of

channel flows

5.1 Introduction

Spectral methods are used to solve differential equations owing to their superior ac-

curacy [29, 24, 35] and they naturally fit into direct numerical simulations (DNS) to

study fluid flow [24, 25]. In DNS of channel flows using spectral methods, the temporal

variation is approximated using a time-stepping scheme, and the spatial variation using

sets of orthogonal basis functions [24, 25] for each spatial dimension. The wall-parallel

directions are assumed to be periodic, and hence Fourier series are used in these direc-

tions, and a basis of Chebyshev polynomials is used for the non-periodic wall-normal

direction [24, 25].

DNS of channel flow of incompressible fluids have a complication as the pressure is

coupled with the velocity field, but the boundary conditions on pressure are unknown a

priori [24, 25]. All that is known is that the boundary conditions are such that mass and

momentum conservation is preserved. The Navier-Stokes (NS) equations describe the

109
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spatio-temporal evolution of the flow field of a Newtonian fluid. Once the NS equations

are discretized in time, two approaches have been used to address pressure coupling:

One approach eliminates pressure by using higher derivatives (e.g., see [97, 1]), and the

second approach estimates the proper boundary conditions on pressure [98].

The NS equations are a set of partial differential equations (PDE) with second-order

spatial derivatives, and eliminating pressure leads to a set of fourth-order PDEs [97, 1].

When marching in time using a time-stepping scheme, spurious (non-physical) solutions

result from this fourth-order PDE when using the Chebyshev basis for the wall-normal

direction [99, 29]. While procedures to alleviate these non-physical solutions are known

for conventional spectral methods [29], to the best of our knowledge, there are no direct

extensions to these procedures to relatively new well-conditioned spectral methods, like

the ultraspherical [26] and spectral integration [27] methods.

The second approach to address pressure coupling involves estimating the proper

boundary conditions on pressure using an influence-matrix [37, 38] (see § 5.3.1, (5.13)).

This approach has a correction step which depends on the type of spectral method used.

This correction step is essential to ensure that the velocity satisfies mass conservation

(i.e., the velocity is divergence-free (5.3b)) [24]. However, the correction procedure is

not obvious for recent well-conditioned spectral methods [27, 26].

Moreover, the correction is such that errors associated with mass conservation are

removed by carrying them over to the momentum conservation equations [100, 38].

This ensures that the velocity is divergence-free to machine precision, albeit with a mild

compromise (about ∼10−1-10−3 units relative to machine precision, ∼10−15 [100, 38])

in the accuracy of momentum conservation [38].

In this chapter we provide an alternative procedure that involves an integral refor-

mulation of Kleiser and Schumann’s influence-matrix method [37]. The advantage of

this method is two-fold: (a) It does not need a correction step and is therefore more eas-

ily adaptable to the new spectral methods mentioned above, and (b) it simultaneously

satisfies both mass and momentum conservation to the precision of our calculations.

By precision of our calculations, we mean the extent to which the velocity field is

resolved. For example, consider a function u(y) expressed in a sufficiently large, but
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finite number of Chebyshev basis functions,

u(y) = u0
1

2
T0(y) + u1 T1(y) + u2 T2(y) · · ·+ uN TN (y), (5.1)

where ui are the spectral coefficients, and Ti(y) are the ith Chebyshev polynomials of the

first kind. As (5.1) is a spectral expansion on an orthogonal set of basis functions [67],

the precision to which u(y) is resolved is approximately equal to the average of the

last two spectral coefficients, (|uN | + |uN−1|)/2 (if the function is resolved to machine

precision, this average would result in a value of ∼10−15). Note that an average of the

last two spectral coefficients is needed as some functions are composed of either purely

odd or even Chebyshev polynomials [101].

In the approach we present in this paper, the velocity is divergence-free to the

precision to which the velocity field is resolved, and there are no compromises to either

mass or momentum conservation. In our approach, if the velocity is resolved to machine

precision, then the velocity is also divergence-free to machine precision. We end this

section by briefly reviewing related work concerning the influence-matrix method.

Werne proposed a correction to Kleiser and Schumann’s influence matrix method [100],

however Kleiser clarified that there was no mistake in the original approach [38], and

that Werne’s procedure [100] is a valid alternative to the correction step. Phillips and

Soliman [102] show a method to extend the influence-matrix approach to viscoelastic

fluids. More recently, Liu [103] extended the original influence-matrix method [37] to

general mixed boundary conditions on the velocity. The common point of these ap-

proaches is that a correction step is needed, whereas our approach needs no correction

step.

This paper is organized as follows. In Section 5.2, we formally present the problem

and governing equations. In Section 5.3 we present our method. In Section 5.4 we show

several examples using our method, and in Section 5.5 we summarize this work.

5.2 Governing equations

We consider flow of a Newtonian fluid of density ρ and viscosity µ between two parallel

planes as shown in Figure 5.1. We use the following scaling to present the governing
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Figure 5.1: Flow geometry showing the steady-state laminar velocity profile for plane
Poiseuille and Couette flows.

equations: Velocity is scaled with the maximum velocity under steady, laminar condi-

tions, U0, length with the half-channel width, h, time with h/U0, and pressure with

ρU2
0 .

The governing equations are given by

∂tV + V ·∇V = −∇P +
1

Re
∇2V , (5.2a)

∇·V = 0, (5.2b)

where, V = [U V W ]T is the velocity vector, P is the pressure, Re = hU0ρ/µ is the

Reynolds number, ∇ is the gradient and ∇2 is the Laplacian. The boundary conditions

for system (5.2) come from no-slip and no-penetration of the velocity at the channel

walls. System (5.2) can alternatively be expressed as a superposition of a base flow under

steady laminar conditions and fluctuating components, V = V̄ + v, and P = P̄ + p,

where quantities with an overbar represent the steady-state laminar profiles, and v and

p are the velocity and pressure fluctuations. In this representation, system (5.2) takes
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the form

∂tv + V̄ ·∇v + v ·∇V̄ + v ·∇v = −∇p − Πxex +
1

Re
∇2v, (5.3a)

∇·v = 0, (5.3b)

v(±1) = 0, (5.3c)

where v = [u v w ]T , is the vector of velocity fluctuations, p is the pressure fluctuation,

and Πx = ∂xP̄ is a constant external pressure gradient, and ex is a unit vector in the

x-direction. For plane Couette flow, Πx is zero, and for plane Poiseuille flow it is equal

to a constant. The steady-state laminar velocity is given by V̄ = [ U(y) 0 0 ]T , where

U(y) = 1− y2 for plane Poiseuille flow, and U(y) = y for plane Couette flow.

We use representation (5.3) to illustrate our method as boundary conditions are

homogeneous unlike the representation in (5.2). However, the algorithm can be easily

extended to nonhomogeneous boundary conditions as well in a similar manner as Klieser

and Schumann’s influence-matrix method [37, 24].

5.3 Numerical method

When performing DNS of channel flows using spectral methods, Fourier transforms

are applied to the wall-parallel directions, and a basis of Chebyshev polynomials is

used to approximate the wall-normal direction (see Figure 5.1). There are different

approaches to use Chebyshev polynomials as basis functions: The Chebyshev-tau, the

Chebyshev collocation, and the spectral integration methods [24, 1, 28]. Algorithms

to use the Chebyshev-tau and collocation methods are well-known and documented in

Refs. [24, 25].

Heningson et al. [1] used an algorithm for DNS of channel flows using the spectral

integration method. The implementation of the spectral integration method for DNS by

Henningson et al. [1] uses an integration correction, although the details of this correc-

tion are different from the influence-matrix correction [37], this approach also ensures

that the velocity field is divergence-free while mildly compromising on the accuracy of

momentum conservation to ensure numerical stability [1].
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The alternative we propose herein needs no correction step. The velocity is divergence-

free up to the precision of our calculations, and there are no compromises made to either

mass or momentum conservation. In this section, we first discuss the discretized rep-

resentation of (5.3), and revisit Kleiser and Schumann’s influence-matrix method [37].

We then present our variant of this method that avoids a correction step.

Equation (5.3a) has both advection (V̄ ·∇v, v·∇V̄ , and v·∇v) and diffusion (∇2v)

terms. A time-stepping scheme can either be explicit (where the value of the velocity

at a given time is calculated using values of the advective and diffusive terms from a

previous time-step) or implicit (where the value of the velocity is solved simultaneously

with the advective and diffusive terms at any given time). Note that pressure must be

treated implicitly [24, Section 7.3] as it adjusts instantaneously in a manner so that

velocity is divergence-free (i.e., satisfies (5.3b)).

In DNS, terms related to diffusion are typically treated implicitly in time to ensure

numerical stability. An explicit treatment of diffusion terms requires a time step of size

∼1/(N + 1)4, where N + 1 is the number of Chebyshev basis functions, and an implicit

treatment requires a time step of size ∼1/(N + 1)2 [24, Section 7.3], i.e., an implicit

treatment ensures numerical stability with a larger time step. The advective terms are

treated explicitly as they need a time step of size ∼1/(N + 1)2.

After simplifying (5.3a), the advective terms that are treated explicitly in time can

be grouped into f where

f = −(U∂xv + vU ′ex + v ·∇v). (5.4)

Using (5.4), (5.3a) can be expressed as

∂tv = f + −∇p+
1

Re
∇2v − Πxex. (5.5)

Applying a Fourier transform in the x- and z-directions on (5.5) and (5.3b), and

discretizing in time by using an implicit-explicit scheme [2] (the schemes we use in this
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work are relegated to Appendix H), system (5.3) takes the form,

aD2vn+1 − bvn+1 − ∇̂pn+1 = rn, (5.6a)

∇̂·vn+1 = 0, (5.6b)

where the superscript n+ 1 refers to (unknown) quantities to be computed in a future

time step, and the quantities superscripted with n refer to (known) terms from a previous

time step. The unknown quantities (vn+1 and pn+1) are on the left-hand side of (5.6),

and the known quantities (rn) are on the right-hand side. Also, D = d/dy, ∇̂ =

[ ikx D ikz]
T is the gradient operator in Fourier space, kx and kz are the Fourier modes

corresponding to the x- and z-directions, and r = [ ru rv rw]T . The values for constants a

and b and the function rn depend on the choice of the implicit-explicit time discretization

used (relegated to Appendix H).

5.3.1 Kleiser and Schumann’s influence-matrix method

Kleiser and Schumann used an efficient method to solve (5.6) [98, 24, 25, 37]. An imple-

mentation of their algorithm is found in the open source Channelflow solver [104, 105].

In this section we review Kleiser and Schumann’s influence-matrix method. Toward the

end of this section we will see that this method needs an influence-matrix correction that

makes a mild compromise on the accuracy of the momentum conservation equations to

obtain a divergence-free velocity [38]. We then show an approach that does not need

such a correction, and simultaneously satisfies both mass and momentum conservation.

Taking the divergence of (5.6a) and using (5.6b), we obtain an equation for pressure

without velocities. System (5.6) is thus recast to

D2pn+1 − k2pn+1 = −∇̂rn, D vn+1(±1) = 0, (5.7a)

aD2vn+1 − b vn+1 − D pn+1 = rnv , vn+1(±1) = 0, (5.7b)

where k2 = k2
x+k2

z . In the developments to follow we omit the superscripts n and n+ 1

with the understanding that r is a forcing, and v and p in (5.6) need to be solved for.

The boundary conditions ∂yv(±1) = 0 in (5.7a) come from using (5.3c) and (5.3b).

Observe that (5.7) has two second-order differential equations, one for pressure (5.7a)
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and the other for the wall-normal velocity (5.7b). There are four boundary conditions on

velocity, and no boundary conditions on pressure. Each differential equation in (5.7) is a

Helmholtz equation and can be efficiently solved in O(N) operations [24, Section 5.1.2]

where N is the number of Chebyshev polynomials used, provided appropriate boundary

conditions on pressure (corresponding to velocity boundary conditions in (5.7a)) are

known. Kleiser and Schumann used the principle of linear superposition to estimate

the boundary conditions on pressure [37, 98] corresponding to the velocity boundary

conditions in (5.7a).

The solution to system (5.7), is obtained by solving three sets of equations as listed

below. Variables p and v are expressed as[
p

v

]
=

[
p∗

v∗

]
+ δ−

[
p−

v−

]
+ δ+

[
p+

v+

]
, (5.8)

where Dp(±1) = δ± are the boundary conditions on pressure that satisfy the velocity

boundary conditions in (5.7a), p∗ and v∗ solve for the forcing in (5.7a) with homogeneous

boundary conditions on both p∗ and v∗,

D2p∗ − k2p∗ = −∇̂rn, D p∗(±1) = 0, (5.9a)

D2v∗ − λv∗ −D p∗ = rv, v∗(±1) = 0, (5.9b)

and p− and v− are solutions to

D2p− − k2p− = 0, D p−(1) = 0, D p−(−1) = 1, (5.10a)

D2v− − λv− − D p− = 0, v−(±1) = 0, (5.10b)

and p+ and v+ are solutions to

D2p+ − k2p+ = 0, D p+(1) = 1, D p+(−1) = 0, (5.11a)

D2v+ − λv+ − D p+ = 0, v+(±1) = 0. (5.11b)

After obtaining solutions for p∗ and v∗ using (5.9), p− and v− using (5.10), and p+

and v+ using (5.11), the constants δ±1 in (5.8) are estimated using linear superposition



117

to satisfy the velocity boundary conditions in (5.7a),

D v(1) = 0⇒ D v∗(1) + δ−D v−(1) + δ+D v+(1) = 0, (5.12a)

D v(−1) = 0⇒ D v∗(−1) + δ−D v−(−1) + δ+D v+(−1) = 0. (5.12b)

Rearranging (5.12), we have[
D v+(1) D v−(1)

D v+(−1) D v−(−1)

][
δ+

δ−

]
= −

[
D v∗(1)

D v∗(−1)

]
. (5.13)

The matrix in (5.13) is the influence-matrix that determines δ±1 in (5.8), and results in

Neumann boundary conditions D p(±1) = δ±1 that satisfy D v(±1) = 0 in (5.7a). The

choice of Neumann boundary conditions on pressure is arbitrary, we could have chosen

Dirichlet boundary conditions on pressure in (5.9), (5.10) and (5.11) and estimated

Dirichlet boundary conditions on p for (5.7a).

Once v and p have been estimated using (5.8)-(5.13), u and w can be found using

(5.6a). Contrary to intuition, the velocity computed in this manner is not necessarily

divergence-free, i.e., ∇̂ ·v 6= 0 (see (5.3b)). This method finds solutions v and p so

that (5.7) is satisfied, while it does not imply anything about the original equation

from where (5.7) was derived, i.e., (5.6), being valid for the computed v. Kleiser and

Schumann noticed this in their original work and used an influence-matrix correction [98,

37].

Details of the influence-matrix correction can be found in Refs. [37, 24]. The essential

feature of this correction is to solve a modified Helmholtz equation for pressure given

by,

D2p − k2p+ Dσ = −∇̂r, D v(±1) = 0, (5.14a)

aD2v − b v −D p + σ = rv, v(±1) = 0, (5.14b)

where σ is a term used adjust the momentum conservation equations to make the velocity

divergence-free. Canuto et al. [24, Chapter 7] discuss that the velocity is not divergence-

free without this correction step owing to discrete defects that are introduced when using

the divergence operator on the momentum equations (5.6a) to arrive at (5.7a). In the
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following section, we present an integral reformulation of this method where we side-

step the use of the divergence operator, and compute a divergence-free velocity without

a correction step.

5.3.2 An integral reformulation of the influence-matrix method

We now present our method to solve system (5.6). We apply a dot product of the

indefinite integral of the gradient operator, ∆̂ :=
∫
∇̂ dy with (5.6a) to obtain

a D ∇̂·v︸ ︷︷ ︸
Term 1

− b ∆̂·v︸︷︷︸
Term 2

− (p′ − k2

∫
pdy) = ∆̂·r + c, (5.15)

where c is the constant of integration. Term 1 in (5.15) is the y-derivative of the

continuity equation (i.e., (5.3b)) and is equal to zero. Term 2 is the indefinite integral

of (5.3b) with respect to y, and hence this is a constant. We define the integral of

pressure as

q :=

∫
p dy. (5.16)

Thus (5.15) can be rewritten using (5.16) as

D2q − k2q = −∆̂·r + c1, (5.17)

where c1 = −c− b ∆̂·v. Notice that in this formulation (5.17) the boundary conditions

on q, and the constant c1 are unknowns. To summarize, we need to solve the following

pair of equations

D2q − k2q = −∆̂·r + c1, Dv(±1) = 0, (5.18a)

aD2v − b v −D2q = rv, v(±1) = 0, (5.18b)

where the boundary conditions ∂yv(±1) = 0 in (5.18a) come from using (5.3c) and

(5.3b).

System (5.18) is analogous to system (5.7) in the original method by Kleiser and

Schumann [37]. But unlike (5.7), we now have an additional unknown, i.e., c1 in (5.18a).

Assuming that we know the value of c1 in (5.18a), the linear superposition discussed

in (5.8)-(5.13) can be used to solve for appropriate boundary conditions for Dq(±1) =
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δ±1 in the place of p, and u and w can be estimated using (5.6a) and (5.16). We now

show that the constant c1 in (5.18a) is inconsequential and can be set to zero.

Theorem 1. The constant of integration c1 in (5.18a) can be arbitrarily chosen to

satisfy (5.6) when using appropriate Neumann boundary conditions on q that satisfy the

velocity boundary conditions D v(±1) = 0.

Proof. Let the appropriate Neumann boundary conditions on q that satisfy the velocity

boundary conditions in (5.18a) (D v(±1) = 0) be given by D q(±1) = c±1. We now have

a problem that is equivalent to (5.18),

D2q − k2q = −∆̂·r + c1, Dq(±1) = c±1, (5.19a)

aD2v − b v −D2q = rv, v(±1) = 0, (5.19b)

As (5.19a) is a linear equation, we decompose the problem into q = q1 + q2 where

D2q1 − k2 q1 = −∆̂·r, D q1(±1) = c± (5.20a)

D2q2 − k2q2 = c1, D q2(±1) = 0. (5.20b)

The solution to (5.20b) is given by q2 = −c1/k
2, another constant (see [106] for the

solution procedure). The total solution is hence given by q = q1 + q2. As p = Dq =

D(q1 + q2) = D q1 (see (5.16)), there is no need to consider the second part of the

solution involving q2. Notice in (5.18b) that only D2q is needed to compute v, similarly,

to estimate u and w using (5.6a), we need p = D q = D q1. Therefore c1 in (5.18) can

be arbitrarily chosen to satisfy (5.6).

In summary, to solve (5.6), we solve system (5.18) by setting c1 = 0. System (5.18)

is solved in the same manner as (5.7) (see (5.8)-(5.13)). Once v and q are determined

in this way, u and w can be computed from (5.6a) and (5.16). Unlike Kleiser and

Schumann’s influence-matrix method [37, 24], this approach needs no correction as we

do not use the divergence operator (which necessitates differentiating the velocity) and

hence avoid associated discrete defects [24]. Instead, we derive a Helmholtz equation

for the integral of pressure (5.18a) by applying an indefinite integral of the divergence

operator on (5.6a).
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5.4 Computational experiments

We present two test cases to demonstrate that our approach can simulate channel flows

without a correction step. We use spectral integration discussed in § 3.3.2 to numerically

approximate spatial derivatives in the y-direction and two time-stepping schemes, the

modified Crank-Nicholson for implicit terms, and Adams-Bashforth for explicit terms

(MCNAB) [2], and Crank-Nicholson for implicit and three-stage Runge-Kutta (RK) for

explicit terms [1] (see Appendix H for details on these time-stepping schemes).

The MCNAB scheme is more accurate [2], but has a low energy damping rate which

is undesirable to simulate sustained turbulence (as discussed in [24, Chapter 4]). In

contrast, the RK scheme is a self-starting scheme that needs one initial condition, and is

well-suited to simulate sustained turbulence [97, 1, 24]. Therefore to simulate sustained

turbulence we use the RK scheme, and for all other calculations we use the MCNAB

scheme.

We start by comparing solutions of the linearized NS equations to an impulsive

excitation whose solutions are available from Chapter 2 using the matrix exponential,

(2.13). We then consider nonlinear solutions of the NS equations and compare our

results with previous works.

5.4.1 The impulse response of the linearized NS equations

In this section we consider the impulse response of the linearized NS equations using

the algorithm for DNS presented in § 5.3.2 (by switching off the nonlinear term v·∇v in

(5.3)) and compare results from the matrix exponential (2.13) . We consider streamwise-

constant flow (kx = 0) in plane Poiseuille flow of a Newtonian fluid with Re = 2000,

with Nz = 256 linearly spaced Fourier modes in the z-direction. We use N = 127 where

N + 1 is the number of Chebyshev basis functions in the wall-normal direction, and the

largest (Nyquist) frequency of kz,max = 5 (corresponds to a periodic channel of length

Lz = Nzπ/kz,max = 160.85) and a time step of 0.01 units. We consider an impulsive

excitation (2.9) as a body force to the linearized NS equations.

We denote the kinetic energy averaged in dimensions {i, j} by Gij , e.g., the kinetic
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(a) Nonlinearities switched off in DNS (b) Nonlinearities switched on in DNS

Figure 5.2: The impulse response (2.9) of a Newtonian fluid with Re = 2000, kx = 0,
Nz = 256, kz,max = 5, N = 127, using the matrix-exponential solution from (2.9) (×)
and the DNS algorithm in § 5.3.2 (�) with the nonlinear term v·∇v in (5.3) (a) switched
off, and (b) switched on. Note that in (b) the impulsive body force is attenuated by a
factor of 100 to restrict the nonlinear terms to a maximum frequency kz,max = 5.

energy averaged in y and z is represented as

Gyz(t) :=
1

2Lz

[∫ 1

y=−1

∫ Lz

z=0
v ·v dz dy

]
(t). (5.21)

Figure 5.2a shows the kinetic energy averaged in space as a function of time computed

using the matrix-exponential (2.13), and the DNS algorithm by switching off nonlinear-

ities in the flow. We see in Figure 5.2a that the results from the two approaches are

in excellent agreement. This demonstrates that our approach works well without any

correction step as discussed in § 5.3.2.

In Figure 5.2b we plot the kinetic energy obtained when nonlinear terms are switched

on in the governing equations in DNS. Note that the matrix exponential solution pro-

duces solutions to the linearized governing equations (with nonlinear terms switched

off). We attenuate the strength of the impulse by a factor of 100 to contain the re-

sponse within the maximum frequency selected for this run, i.e., kz,max = 5. We see

in Figure 5.2b that the results from the two approaches overlap at early times, and at

later times, the approach using the matrix exponential results in larger kinetic energy

compared to DNS. The active nonlinear terms are responsible for this decreased kinetic
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(a) Velocity profile at t = 0 (b) Velocity profiles at long times

Figure 5.3: The velocity profile of plane Couette flow averaged in the x- and z-directions,
with Re = 1250 (Reτ = 73), (a) the initial condition at t = 0, and (b) the profiles at
times 500, 1000, 1500, and 2000 units.

energy compared to the linearized dynamics at later times.

In this section we simulated the impulse response using the algorithm proposed

in § 5.3.2 and compared with solutions from the matrix exponential in (2.13). We found

a good agreement between the two approaches without a correction step in implementing

our version of the influence-matrix algorithm (§ 5.3.2).

5.4.2 Simulating a sustained turbulent flow state of plane Couette flow

We consider plane Couette flow in a box of dimensions 1.75π × 2 × 1.2π in (x, y, z),

with Nx = 32, N = 91, and Nz = 32. The Reynolds number based on the maximum

velocity (i.e., the velocity of the channel wall) is set to 1250, this corresponds to a wall-

friction Reynolds number (Reτ ) of 73. We use a fixed time step of 0.01, and a random,

divergence-free velocity as an initial condition (Figure 5.3a) and simulate its evolution

as a function of time.

The random initial velocity field is such that the velocity in Fourier-space is set

to zero for all kx, kz 6= 0, so that the velocity naturally satisfies the divergence-free

constraint, i kxU + ∂y V + i kzW = 0 (see (5.2b)). At kx = kz = 0, we further set
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V = W = 0, and the second-derivative of the streamwise velocity is expressed as

D2U(kx = 0, y, kz = 0, t = 0) = a
(2)
0 /2T0(y) + a

(2)
1 T1(y) + a

(2)
2 T2(y) · · · + a

(2)
N TN (y),

(5.22)

where the coefficients a
(2)
i in (5.22) are random numbers multiplied with a decay-rate

factor so that the last spectral coefficient, aN is zero to machine precision, 10−15. Equa-

tion (5.22) is then integrated twice to derive an expression for the streamwise velocity,

U(kx = 0, y, kz = 0, t = 0) = a0/2T0(y) + a1 T1(y) + a2 T2(y) · · ·+aN TN (y)+c1+c2y,

(5.23)

where c1 and c2 are integration constants, which are fixed using the no-slip boundary

conditions at the channel walls.

We define the velocity averaged in the x- and z-directions as

V xz(y, t) :=
1

Lx Lz

∫ Lx

0

∫ Lz

0
V (x, y, z, t) dx dz. (5.24)

With an increase in time, we see in Figure 5.3b that the velocity averaged in the x- and

z-directions (5.24) acquires a profile that is steep near the wall (y = ±1) and flat near

the center (y = 0), as expected in a turbulent flow state for plane Couette flow [107].

The profile is steep near the wall as the momentum from the moving wall is imparted to

the fluid, and the fluid satisfies the no-slip boundary conditions at the channel walls. In

contrast, far away from the wall, the flow acquires a turbulent flow state that is nearly

independent of the no-slip boundary conditions at the channel walls.

Wall-bounded turbulent flow shows nearly universal characteristics near the wall [67,

Section 13.4], exemplified by the wall-law. We now verify that our simulations conform

with well-known statistical measures near the wall. The wall-friction velocity is defined

as [67, Section 13.4],

uτ :=

√
1

Re

d 〈Uxz〉
dy

∣∣∣∣∣
y=−1

, (5.25)

where 〈 · 〉 denotes a time average taken over an interval after the simulation is run for

sufficiently long times (from 1200 to 1300 time units), and Uxz is the streamwise velocity

averaged in the x- and z-directions.
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(a) Wall-law (b) Root-mean-squared velocity

Figure 5.4: Couette flow with Re = 1250 (Reτ = 73) using the DNS algorithm in § 5.3.2,
(a) the streamwise velocity (rescaled with wall-friction velocity, see (5.26)) averaged in
the x- and z-directions, conforming with the wall-law (5.27), (b) RMS of the velocity
averaged in the x- and z-directions (see (5.28)).

The velocity and length rescaled with uτ (see (5.25)) are defined as [67, Section 13.4]

V + = V /uτ , (5.26a)

y+ = Reuτ y. (5.26b)

The asymptotic limits of the streamwise velocity near the wall are given by [67, Equa-

tions 13.4-21 and 13.4-24],

U+(y) =

y+, y+ → 0,

2.5 ln(y+) + 5.5, y+ →∞.
(5.27)

In Figure 5.4a we plot U+
xz (i.e., U+ averaged in the x- and z-directions) computed

from DNS of Couette flow using the influence matrix algorithm in § 5.3.2, and compare

with the wall-law in (5.27). The solid line marks U+
xz from our calculations, the dashed

lined marks y+, and the dashed-dotted line marks the logarithmic equation in (5.27).

We observe a good agreement with the asymptotic limits in (5.27) in Figure 5.4a.
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Lastly, we plot the root-mean-squared (RMS) velocity given by,

Vxz, rms(y) :=

√〈(
Vxz(y)− 〈Vxz(y)〉

)2
〉
, (5.28)

in Figure 5.4b. The solid line marks the RMS streamwise velocity, the dashed line marks

the wall-normal velocity and the dashed-dotted line marks the spanwise velocity. We

observe in Figure 5.4b that the RMS streamwise velocity has the largest magnitude,

followed by the spanwise velocity, and then the wall-normal velocity. This trend of the

RMS values near the wall in Figure 5.4b is in agreement with previous experimental [108]

and theoretical observations [97] of near-wall turbulence.

5.5 Summary and conclusions

In this work we provide an integral reformulation of the Kleiser and Schumann’s influ-

ence matrix algorithm. Our approach does not need a correction step and makes no

compromise in satisfying mass and momentum conservation accurately to the precision

of our calculations.

The integral reformulation of the influence-matrix method proposed in this work

makes use of a Helmholtz equation that governs the indefinite integral of pressure. We

used the fact that appropriate Neumann boundary conditions can be used to derive a

divergence-free velocity field without a correction step. As the method reported here

needs no correction step, adopting it in recently developed, well-conditioned spectral

methods [26, 27] will be straightforward in principle.
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Chapter 6

Summary

Elastic turbulence has many potential applications to enhance transport in systems

with weak inertia like medical diagnostic devices and environmental sensor applications.

Low-inertia elastic instabilities are sometimes undesirable e.g., in materials processing

and coating operations. A good understanding of the initial stages of transition to

turbulence in channel flows of viscoelastic fluids will form a firm foundation for devising

strategies to control elastic turbulence.

Linear analysis provides information regarding the evolution of the velocity and

stress perturbations that arise from small-amplitude disturbances [6, 16] and can un-

cover potential mechanisms governing the initial stages of a transition to elastic tur-

bulence. This thesis uses linear systems theory, together with recent well-conditioned

spectral methods, to explore potential mechanisms that may govern the initial stages

of a transition to elastic turbulence.

Localized body forces considered in Chapter 2 confirm observations from previous

work on distributed body forces [20, 21, 22, 5, 36] that the amount of nonmodal ampli-

fication increases with the polymer concentration and relaxation time. Localized body

forces also provide information that is not obtainable from distributed body forces, e.g.,

identifying the location in the channel where a disturbance can induce the largest ki-

netic energy growth, and the vortical structures in Figures 2.10 and 2.11 that arise in

the flow. Examining the nonlinear evolution of a localized body force is a natural step

forward to analyzing a transition to elastic turbulence.

Recent experimental observations by Qin et al. [9] motivated us to revisit linear
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analysis in 2D channel flows of viscoelastic fluids. Experiments by Qin et al. [9] showed

that a transition occurs while the kinetic energy in the fluid decreases along the length

of the channel. This is hard to understand from the point of view of the standard

nonmodal theory, as we would expect a growth of the kinetic energy followed by a

transition to elastic turbulence [9, 8, 15].

Linear analysis of the 2D system is a numerically stiff problem that needs recent

well-conditioned spectral methods for good resolution. In Chapter 3, we employed a

reflection technique of Lanczos [72] in conjunction with recent well-conditioned spectral

methods [26, 27] that enables linear analysis with fluids of large elasticity.

Motivated by the experiments of Qin et al. [9] and Pan et al. [8], we considered

the effects of a persistent body force which is localized in space, and harmonic in time.

We found that such forces can induce large stresses in localized regions in the channel

simultaneously with a weak growth of the kinetic energy. This provides a potential

linear mechanism for the initial stages of transition to elastic turbulence observed by

Qin et al. [9].

Qin et al. [9] observe that the kinetic energy of the fluid decreases along the channel

length, followed by a transition to elastic turbulence. The initial stages of this transition

are unlikely related to a conventional linear growth mechanism as the kinetic energy

decreases along the channel length. However, although the kinetic energy decreases,

a large stress may have been simultaneously generated through a linear mechanism as

discussed in Chapter 4. The large stress in a localized region (Figure 4.7) may have

acted as a finite-amplitude perturbation to trigger a nonlinear flow state [41, 89].

We learnt from Chapters 3 and 4 that well-conditioned spectral methods are useful

in linear analysis of viscoelastic channel flows. We further saw in Chapter 3 that the

conventional spectral collocation method can produce erroneous results (Figure 3.6). A

natural next step is to extend these well-conditioned spectral methods for use in direct

numerical simulations of channel flows of viscoelastic fluids. However, it is essential

to have an algorithm for DNS of channel flows of a Newtonian fluid using these well-

conditioned spectral methods before we consider a viscoelastic fluid.

Kleiser and Schumann’s influence-matrix method [37] is a computationally efficient

method to perform DNS of channel flows using conventional spectral methods. This

method has a correction step that varies with the type of spectral discretization. An
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extension of the correction procedure is not obvious for a new spectral method like

the recent ultraspherical and spectral integration methods [26, 27]. Furthermore, this

correction step ensures that mass conservation is satisfied to machine precision, but with

a mild compromise on the accuracy of momentum conservation [38, 100]. In Chapter 4

we developed an integral reformulation of this method which is (a) devoid of a correction

step and (b) satisfies mass and momentum conservation to the extent that the velocity

field is resolved.

This thesis aims to understand the initial stages of transition to elastic turbulence

using linear systems analysis in conjunction with recent well-conditioned spectral meth-

ods. Our work provides many useful guidelines to enhance nonmodal growth and to

generate finite-amplitude stresses in a channel. This may aid understanding of the role

of small-amplitude perturbations in triggering a transition to elastic turbulence in ex-

periments. For example, we identified that a disturbance induced near the channel wall

generates the large kinetic energy growth in the channel in Chapter 2, and in Chapter 4

we identified that body forces which are localized in space and persistent in time (which

are similar to forces exerted by finite-sized objects in the flow) produce stress amplifi-

cation at a location in the channel as governed by a fairly simple equation in (4.33).



Chapter 7

Future directions

7.1 Complementary experiments on effects of localized body

forces in channel flows of viscoelastic fluids

We studied the effects of localized body forces in channel flows of viscoelastic fluids in

Chapter 2. Localized body forces in Newtonian channel flows at high Reynolds num-

bers provide insights into mechanisms that govern the initial stages of a transition to

turbulence [46, 49]. Experiments reveal streamwise streaks during the initial stages of

a transition [46] and these were thought to be related to nonlinear effects. However, Jo-

vanović [49] showed that such flow structures [46] can be recovered by merely simulating

the response of localized body forces on the linearized governing equations.

In Chapter 2 we performed numerical simulations of responses of channel flows

of viscoelastic fluids to localized body forces. However, to the best of our knowledge,

complementary experiments have not been reported using such forces. Most experiments

that we are aware of have focused on flows in microfluidic channels [54, 8, 9] and it is

relatively hard to induce localized body forces in such systems. Experiments similar

to those used to study transition to turbulence in channel flows of Newtonian fluids at

high Reynolds numbers [46] may be used with channel flows of viscoelastic solutions.

When numerical results presented in Chapter 2 are compared to such experiments, the

significance of linearized dynamics on transition to elastic turbulence will become more

clear.
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7.2 Well-conditioned spectral methods to study effects of

impulsive body forces in channel flows

We discussed in Chapter 2 the advantage of using a spatio-temporal impulsive body

force to study flow transition, that they can be approximated in experiments [46, 48]

and in numerical simulations [23, 49, 50] relatively easily. The responses of the linearized

equations governing the flow of a viscoelastic fluid to impulsive body forces considered

in Chapter 2 were limited to a minimum Reynolds number of 50. In contrast, elastic

turbulence has been observed in experiments with a Reynolds number as low as 0.01 [8,

9]. Calculations in Chapter 2 were limited to a Reynolds number of 50 as reducing it

further lead to significant numerical errors (see § 2.2.3).

Although inertial effects are expected to be relatively small at a Reynolds number

of 50 (considered in Chapter 2), lowering the Reynolds number further will enable us

to isolate effects associated with elasticity from effects associated with inertia in the

flow. However, note that we were able to simulate responses of flows with Re = 0 in

Chapters 3 and 4 by using well-conditioned spectral methods (that are less prone to

numerical errors) for body forces that are persistent in time (see Figure 3.6). These

well-conditioned spectral methods (see Chapter 3) may allow simulating responses of

instantaneous body forces (like the spatio-temporal impulse in Chapter 2) well below a

Reynolds number of 50 as well.

However, the procedure to use these well-conditioned spectral methods with body

forces that are instantaneous in time (such as the spatio-temporal impulse in Chapter 2)

are yet to be uncovered. The DNS algorithm in Chapter 5 provides the first step, e.g.,

we simulate the impulse response of the linearized Navier-Stokes equations using a well-

conditioned spectral method in § 5.4.1.

However, a DNS procedure is intended for use with nonlinear simulations; it does

not take advantage of the linearity of the linearized governing equations. The DNS

procedure needs to step in time to reach the evolution of a localized body force at a

particular time. In contrast, the matrix exponential (that takes advantage of linearity)

used in (2.13) in Chapter 2 can directly compute the flow structure at any given time.

In addition, the operator-Lyapunov equations (2.15) can be used to directly compute

the total kinetic energy of velocity fluctuations (over all time) that is generated by an
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impulsive body force (a result from linear systems theory, see § 2.2.4). In contrast, a

DNS code can only provide a reasonable approximation by running an arduous time-

stepping simulation over a long time interval.

In order to use the operator-Lyapunov equations (2.15) on or the matrix exponen-

tial (2.13) of a linear dynamical system, the system must be inherently stable [17]. Also,

the numerical discretization scheme used to approximate differential operators should

not introduce artificial instabilities. We typically obtain two spurious (non-physical and

sometimes unstable) eigenvalues whose magnitudes are close to ±∞ [29] when using

a Chebyshev basis to approximate differential operators in (2.12). Even one spurious

mode is sufficient to ruin numerical evaluations of the operator-Lyapunov equations or

a matrix exponential.

While methods to avoid these spurious modes associated with a Chebyshev basis

are known for conventional spectral methods [109, Section 6.2.1][32, Section 4.2], such

procedures are not known (to the best of our knowledge) for the recent well-conditioned

spectral methods [26, 27]. Once we alleviate these spurious modes in the context of

these new well-conditioned spectral methods, we can obtain reliable calculations of the

matrix exponential (2.13) and solutions of the operator-Lyapunov equations (2.15).

Reliable solutions of the operator-Lyapunov equations and evaluations of the matrix

exponential may facilitate studying the effects of impulsive body forces in the nearly

inertialess regime. In this way, we may be able to isolate the elastic effects from inertial

effects while using the impulsive body force to study the initial stages of transition to

elastic turbulence.

7.3 DNS of elastic turbulence using well-conditioned spec-

tral methods

In Chapter 3 we saw that recent well-conditioned spectral methods can resolve steep

stress gradients without being hindered by effects arising from ill-conditioned matrices.

The superiority of these well-conditioned spectral methods compared to conventional

spectral methods in the context of viscoelastic channel flows is clear. To the best of

our knowledge, there are no reports of DNS on elastic turbulence (low-inertia, Re < 0.1

and high elasticity regime), and most simulations focus on elasto-inertial turbulence
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(Re > 20) and moderate elasticity due to numerical difficulties associated with resolving

steep stress gradients.

The well-conditioned spectral methods considered in Chapter 3 have good poten-

tial to resolve such steep stress gradients in the high-elasticity, low-inertia regime. An

efficient algorithm needs to be developed and validated using these well-conditioned

spectral methods. The key challenge is to devise an efficient method to solve the non-

linear velocity-stress coupled equations that govern the dynamics of the stress tensor.

7.4 Control of elastic turbulence

Much of this thesis was devoted to understanding the initial stages of a transition to

elastic turbulence. As discussed in Chapter 1, elastic turbulence has potential utility to

improve transport in microfluidic channel flows. However, in certain applications like

polymer processing operations, a transition to elastic turbulence needs to be prevented

to avoid defective end products. Thus, it is necessary to devise strategies to control a

transition to elastic turbulence.

Flow control has been extensively studied in high-inertia channel flows of Newtonian

fluids [110, 111, 112, 113, 114]. For example, high-inertia turbulence in Newtonian fluids

can be suppressed by small-amplitude transverse wall oscillations [110, 113]. Similarly,

turbulence can be enhanced and suppressed using streamwise traveling waves generated

by subjecting the channel walls to vibrations of certain spatial and temporal frequen-

cies [111, 112]. Similar studies on low-inertia channel flows of viscoelastic fluids may

provide means to suppress (or enhance) elastic turbulence when necessary.

7.5 Concluding remarks

Analyzing transition to turbulence in viscoelastic channel flows is a challenging prob-

lem that needs a multi-faceted approach involving linear and nonlinear systems theory,

robust numerical methods, and complementary experiments. We believe that this disser-

tation provides new insights into possible mechanisms that may govern the initial stages

of a transition to elastic turbulence using linear systems theory and recent numerical

methods. We further hope that the numerical methods studied in this dissertation will
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open new avenues to simulate and analyze flow transition in complex fluids.
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Appendix

A Operators in Poiseuille flow of FENE-CR fluids

In this section, we define the underlying operators that appear in (2.6) in § 2.2.1. We

use a Fourier transform defined by

X(κ, y, t) =

∫ ∞
−∞

∫ ∞
−∞

X(x, y, z, t) e−j(xkx+zkz) dx dz. (A1)

The operator A in (2.6) is given by

A =


R V N
PT LOS 0

QT Cp S

 . (A2)

Each of the operators that make up A are given below in Fourier space. The operator

R is defined as

R =

[
R11 R12

03×3 R22

]
, (A3)

where

R11 =


−f̄/We− 2We

(
Ū ′
)2
/L̄2 − jŪkx 2Ū ′ 0

−f̄ Ū ′/L̄2 −f̄/We− jŪkx 0

0 0 −f̄/We− jŪkx

 ,
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R12 =


−2We

(
Ū ′
)2
/L̄2 0 −2We

(
Ū ′
)2
/L̄2

Ū ′ − f̄ Ū ′/L̄2 0 −f̄ Ū ′/L̄2

0 Ū ′ 0

 ,

R22 =


−f̄/We− jŪkx 0 0

0 −f̄/We− jŪkx 0

0 0 −f̄/We− jŪkx

 .

The operator V is defined as

V = V1 + V2 ∂y + V3 ∂yy, (A4)

where V1, V2, and V3 are given by

V1 =



(
4We2Ū ′

(
Ū ′f̄ ′ − f̄ Ū ′′

))
/f̄3(

WeŪ ′
(
f̄ ′ + 2jWekxŪ

′)+ jf̄2kx −Wef̄Ū ′′
)
/f̄2

0(
2jWekxŪ

′) /f̄
jkz

0


,

V2 =



−
(

2k2
x

(
f̄2 + 2We2

(
Ū ′
)2))

/(k2f̄2)(
WeŪ ′

(
−k2

x + k2
))
/(k2f̄)

−
(

2kxkz

(
f̄2 +We2

(
Ū ′
)2))

/(k2f̄2)

2

−
(
WekxkzŪ

′) /(k2f̄)

−
(
2k2

z

)
/(k2)


,



146

V3 =



(
2jWekxŪ

′) /(k2f̄)

(jkx) /(k2)(
jWekzŪ

′) /(k2f̄)

0

(jkz)/(k
2)

0


,

where k2 = k2
x + k2

z . The operator N is defined as

N = N1 +N2 ∂y, (A5)

where

N1 =



(
2kxkz

(
f̄2 + 2We2 (U ′)2

))
/(k2f̄2)(

WekxkzŪ
′) /(k2f̄)

−
(
f̄2
(
k2
x − k2

z

)
+ 2We2k2

x (U ′)2
)
/(k2f̄2)

0

−
(
Wek2

xŪ
′) /(k2f̄)

− (2kxkz) (k2)


,

N2 =



−
(
2jWekzŪ

′) /(k2f̄)

− (jkz) /(k
2)(

jWekxŪ
′) /(k2f̄)

0

(jkx)/(k2)

0


.

The operator P is defined as

PT =
(1− β)

Re
∆−1

(
PT1 + PT2 ∂y + PT3 ∂yy

)
, (A6)
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where ∆ = ∂yy − k2 is the Laplacian in Fourier space, and

P1 =



(
kx
(
f̄ ′
(
L̄2kx − 2jWeŪ ′′

)
+WeŪ ′

(
4WekxŪ

′′ − j
(
k2f̄ + f̄ ′′

))))
/(WeL̄2)

−
(
jkx

(
k2f̄ + f̄ ′′

))
/We(

2kxkz f̄
′) /We(

−f̄ ′
(
k2L̄2 + 2jWekxŪ

′′)−WekxŪ ′ (jk2f̄ + jf̄ ′′ − 4WekxŪ
′′)) /(WeL̄2)

−
(
jkz

(
k2f̄ + f̄ ′′

))
/(We)(

f̄ ′
(
L̄2k2

z − 2jWekxŪ
′′)−WekxŪ ′ (jk2f̄ + jf̄ ′′ − 4WekxŪ

′′)) /(WeL̄2)


,

P2 =



(
kx
(
f̄
(
L̄2kx − 2jWeŪ ′′

)
+ 2WeŪ ′

(
WekxŪ

′ − jf̄ ′
)))

/(WeL̄2)

−
(
2jkxf̄

′) /We(
2f̄kxkz

)
/We(

2WekxŪ
′ (WekxŪ ′ − jf̄ ′)− f̄ (k2L̄2 + 2jWekxŪ

′′)) /(WeL̄2)

−
(
2jkz f̄

′) /We(
f̄
(
L̄2k2

z − 2jWekxŪ
′′)+ 2WekxŪ

′ (WekxŪ ′ − jf̄ ′)) /(WeL̄2)


,

P3 =



−
(
jf̄kxŪ

′) /(L̄2)

−(jf̄kx)/We

0

−(jf̄kxŪ
′)/L̄2

−(jf̄kz)/We

−(jf̄kxŪ
′)/L̄2


.

The operator Q is defined as

Q =
(1− β)

Re
(Q1 +Q2 ∂y) , (A7)
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where

Q1 =



(
kz
(
f̄
(
jWeŪ ′′ − L̄2kx

)
+WeŪ ′

(
jf̄ ′ − 2WekxŪ

′))) /(WeL̄2)(
jkz f̄

′) /We(
f̄ (kx − kz) (kx + kz)

)
/We(

kz

(
jf̄ Ū ′′ + jŪ ′f̄ ′ − 2Wekx

(
Ū ′
)2))

/L̄2

−
(
jkxf̄

′) /We(
kz
(
f̄
(
L̄2kx + jWeŪ ′′

)
+WeŪ ′

(
jf̄ ′ − 2WekxŪ

′))) /(WeL̄2)


,

Q2 =



(
jf̄kzŪ

′) /L̄2(
jf̄kz

)
/We

0

(jf̄kzŪ
′)/L̄2

−(jf̄kx)/We

(jf̄kzŪ
′)/L̄2


.

The operators LOS , Cp and S are the Orr-Sommerfeld, coupling, and Squire operators

respectively,

LOS = ∆−1

(
−jkxŪ∆ + jkxŪ

′′ +
β

Re
∆2

)
,

Cp = −jkzŪ ′,

S = −jkxŪ +
β

Re
∆.

(A8)

The operator B in (2.6) is given by

B =


06×3

B1

B2

 , (A9)
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where 06×3 represents a 6× 3 matrix of zeros, and

B1 = ∆−1


−jkx ∂y
−k2I

−jkz ∂y


T

, B2 =


jkzI

0

−jkxI


T

.

The operator C in (2.6) is given by

C =


Cu

Cv

Cw

 =


Cu

Cv

Cw

 =
1

k2


01×6 jkx ∂y −jkzI
01×6 k2I 0

01×6 jkz ∂y jkxI

 . (A10)

where 01×6 represents a 1× 6 submatrix of zeros.

B Inner product that determines the kinetic energy

In this section, we define the inner product that determines the kinetic energy of fluc-

tuations discussed in § 2.2.4.

The Hilbert space for the operator A (see (2.6) in § 2.2.1) can be defined on the

basis of its domain and boundary conditions [16, 19]. We define the space of functions

HOS

HOS :=
{
g ∈ L2[−1, 1]; g′′ ∈ L2[−1, 1]; g(±1) = 0

}
. (B1)

The domain of the operators P, Q, V, and N is H 6×1
OS , and the domain of S is HOS .

The domain of the LOS can be defined as

D(LOS) :=
{
g ∈ HOS ; g′′′′ ∈ L2[−1, 1]; g′(±1) = 0

}
. (B2)

We define the following weighted inner product for functions ξ1, ξ2 ∈ H8×1
OS ,

〈ξ1, Qξ2〉 := 〈ξ1, ξ2〉e , (B3)

where 〈·, ·〉 is the standard L2[−1,−1] inner product and Q is a linear operator given
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by,

Q = lim
ι→ 0+

1

k2


ιI6×6 0 0

0 −∆ 0

0 0 I

 ,
where, Im×n is a block matrix identity operator of dimensionsm by n. The inner product

defined in (B3) determines the energy of velocity fluctuations. It can be verified that

(see [19]) that the kinetic energy can be evaluated as

〈ψ(κ, t),ψ(κ, t)〉e = 〈φi(κ, t),φi(κ, t)〉 =

∫ 1

−1
v∗i (κ, y, t)vi(κ, y, t) dy, (B4)

where φ is the vector of outputs (i.e., the velocity fluctuations φ = [u v w ]T ) and ψ =

[ rT v η ]T is the vector of state variables that appear in state-space representation (2.6)

of the FENE-CR model presented in § 2.2.1. The adjoints of A, F i, and C are defined

with respect to the inner-product defined in (B3) as

〈ψ,Aψ〉e =
〈
A†ψ,ψ

〉
e

〈ψ,F i g(t)〉e =
〈
F †iψ, g(t)

〉
C

〈φ,Cψ〉 =
〈
C†φ, ψ

〉
e

(B5)

Here, 〈·, ·〉e is the weighted inner product defined in (B3), 〈·, ·〉 is the standard L2[−1,−1]

inner product, and 〈·, ·〉C is the standard vector inner product that induces a Euclidean

norm.
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C Operators governing 2D channel flow of an Oldroyd-B

fluid

The variable coefficients for the operator in (3.8a) are given by (we have suppressed the

dependence on ω for the sake of brevity, e.g., a0(y, ω) is denoted as a0(y))

a4(y) =
β − 1

c(y)
− β,

a3(y) = − 2(β − 1) (c′(y)− i kxWec(y)U ′(y))

c(y)2
,

a2(y) =
(1− β) c′′(y)

c(y)2
+

2i (1− β) kxWec
′(y)U ′(y)

c(y)2

− 2 (1− β) k2
xWe

2U ′(y)2

c(y)2
+

2i (1− β) kxWeU
′′(y)

c(y)2

− 4i (1− β) kxWec
′(y)U ′(y)

c(y)3
− 2 (1− β) c′(y)2

c(y)3
− 4 (1− β) k2

xWe
2U ′(y)2

c(y)3

+
2 (1− β) k2

xWe
2U ′(y)2

c(y)
+

2 (1− β) k2
x

c(y)
− 3i (1− β) kxWeU

′′(y)

c(y)
+ 2β k2

x,

a1(y) =
12 (1− β) k2

xWe
2c′(y)U ′(y)2

c(y)4
+

12i (1− β) kxWec
′(y)2U ′(y)

c(y)4

− 4i (1− β) kxWec
′′(y)U ′(y)

c(y)3
+

8 (1− β) k2
xWe

2c′(y)U ′(y)2

c(y)3

− 8i (1− β) kxWec
′(y)U ′′(y)

c(y)3
− 4i (1− β) k3

xWe
3U ′(y)3

c(y)3

− 8 (1− β) k2
xWe

2U ′(y)U ′′(y)

c(y)3

− 2 (1− β) k2
xc
′(y)

c(y)2
+

2i (1− β) kxWec
′(y)U ′′(y)

c(y)2

− 4i (1− β) k3
xWe

3U ′(y)3

c(y)2
− 6 (1− β) k2

xWe
2U ′(y)U ′′(y)

c(y)2

+
2i (1− β) k3

xWeU
′(y)

c(y)
+

4 (1− β) k2
xWe

2U ′(y)U ′′(y)

c(y)
,
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where c(y) = i ω + 1 + i kxWeU(y),

c11(y) =
2WeU ′(y)

c(y)
+

2WeU ′(y)

c(y)2
,

c12(y) =
4i kxWe

2U ′(y)2

c(y)
− 4i kxWe

2U ′(y)2

c(y)3
+

2i kx
c(y)

,

c13(y) = +
4 k2

xWe
3U ′(y)3

c(y)3

+
4 k2

xWe
3U ′(y)3

c(y)2
+

2 k2
xWeU

′(y)

c(y)2
+

2i kxWe
2U ′(y)U ′′(y)

c(y)2

+
4i kxWe

2U ′(y)U ′′(y)

c(y)
,

c21(y) =
1

c(y)
,

c22(y) = − 2i kxWeU
′(y)

c(y)2
,

c23(y) =
2 k2

xWe
2U ′(y)2

c(y)
+

2 k2
xWe

2U ′(y)2

c(y)2
+

k2
x

c(y)
+
i kxWeU

′′(y)

c(y)
,

c31(y) = − 2i kx
c(y)

,

c32(y) =
2 k2

xWeU
′(y)

c(y)
.
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D Operators governing 3D channel flow of an Oldroyd-B

fluid

The nonzero components in the operator V in (3.37) are derived from the following

relations that come from (3.7c). Note that c(y) = i ω+ 1/We+ i kx U(y) in this section.

τzz(y) =
2 i kz
Wec(y)

w(y) (D1a)

τyz(y) =
1

c(y)

(
i kz
We

v(y) + i kx Txy(y)w(y) +
w′(y)

We

)
(D1b)

τyy(y) =
2 i kx Txy(y)

c(y)
v(y) +

2

Wec(y)
v′(y) (D1c)

τxz(y) =
1

c(y)

(
U ′(y)τyz(y) + i kx Txx(y)w(y) +

i kz
We

u(y) +
i kx
We

w(y) + Txy(y)w′(y)

)
(D1d)

τxy(y) =
1

c(y)

(
i kx Txy(y)u(y) + i kx Txx(y)v(y)− T ′xy(y)v(y)

)
+

+
1

c(y)

(
i kx
We

v(y) +
1

We
u′(y) + U ′(y)τyy + Txy(y) v′(y)

) (D1e)

τxx(y) = (D1f)

1

c(y)

(
2 i kx
We

u(y) + 2 kx Txx(y)u(y)− T ′xx(y) v(y) + 2Txy(y)u′(y) + 2U ′(y)τxy(y)

)
(D1g)

D.1 Evolution form

The state variables for this system are the wall-normal velocity and vorticity, φ = [ v η ]T

in (4.6). The boundary conditions are

v(±1) = [Dv(·)](±1) = η(±1) = 0. (D2)
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The operator-valued matrices A, B, Cv, and Cxx in are detailed in this section. A is of

size 2× 2 with non-zero elements

A(1, 1) =

(
4∑

n= 0

an,11(y, ω)Dn

)
,

A(2, 1) =

(
2∑

n= 0

an,21(y, ω)Dn

)
,

A(2, 2) =

(
2∑

n= 0

an,22(y, ω)Dn

)
,

where

a4,11 = − (1− β)

Wec(y)
− β,

a3,11 =
2(1− β) c′(y)

Wec(y)2
− 2i(1− β) kx Txy(y)

c(y)
,

a2,11 =
(1− β) c′′(y)

Wec(y)2
+

2i(1− β) kx Txy(y)c′(y)

c(y)2
− 4i(1− β) kx c

′(y)U ′(y)

Wec(y)3

− 2(1− β) c′(y)2

Wec(y)3
+

2(1− β) k2

Wec(y)
+

(1− β) k2
x Txx(y)

c(y)

− 2(1− β) k2
x Txy(y)U ′(y)

c(y)2
− 4(1− β) k2

x U
′(y)2

Wec(y)3

−
3i(1− β) kx T

′
xy(y)

c(y)
+

2i(1− β) kx U
′′(y)

Wec(y)2
+ 2β k2,

a1,11 = − 4i(1− β) kx c
′′(y)U ′(y)

Wec(y)3
+

8(1− β) k2
x Txy(y)c′(y)U ′(y)

c(y)3

+
12(1− β) k2

x c
′(y)U ′(y)2

Wec(y)4
− 2(1− β) k2

x c
′(y)

Wec(y)2
+

2i(1− β) kx c
′(y)T ′xy(y)

c(y)2

− 8i(1− β) kx c
′(y)U ′′(y)

Wec(y)3
+

12i(1− β) kx c
′(y)2U ′(y)

Wec(y)4
− 2(1− β) k2

z c
′(y)

Wec(y)2

+
2i(1− β) k2 kx Txy(y)

c(y)
− 2i(1− β) k3

x Txx(y)U ′(y)

c(y)2

− 4i(1− β) k3
x Txy(y)U ′(y)2

c(y)3
+

(1− β) k2
x T
′
xx(y)

c(y)
−

2(1− β) k2
x T
′
xy(y)U ′(y)

c(y)2

− 4(1− β) k2
x Txy(y)U ′′(y)

c(y)2
− 8(1− β) k2

x U
′(y)U ′′(y)

Wec(y)3
,
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a0,11 =
(1− β) k2 c′′(y)

Wec(y)2
+

(1− β) k2
x Txx(y)c′′(y)

c(y)2
+

4(1− β) k2
x Txy(y)c′′(y)U ′(y)

c(y)3

+
i(1− β) kx c

′′(y)T ′xy(y)

c(y)2
− 2i(1− β) k2 kx Txy(y)c′(y)

c(y)2

+
4i(1− β) k2 kx c

′(y)U ′(y)

Wec(y)3
− 2(1− β) k2 c′(y)2

Wec(y)3

+
4i(1− β) k3

x Txx(y)c′(y)U ′(y)

c(y)3

+
12i(1− β) k3

x Txy(y)c′(y)U ′(y)2

c(y)4
+

(1− β) k2
x c
′(y)T ′xx(y)

c(y)2

− 2(1− β) k2
x Txx(y)c′(y)2

c(y)3
+

4(1− β) k2
x c
′(y)T ′xy(y)U ′(y)

c(y)3

+
8(1− β) k2

x Txy(y)c′(y)U ′′(y)

c(y)3
− 12(1− β) k2

x Txy(y)c′(y)2U ′(y)

c(y)4

−
2i(1− β) kx c

′(y)2T ′xy(y)

c(y)3
− (1− β) k4

Wec(y)
− (1− β) k2 k2

x Txx(y)

c(y)

− 2(1− β) k2 k2
x Txy(y)U ′(y)

c(y)2
+
i(1− β) k2 kx T

′
xy(y)

c(y)
− 2i(1− β) k2 kx U

′′(y)

Wec(y)2

− 2i(1− β) k3
x T
′
xx(y)U ′(y)

c(y)2
− 2i(1− β) k3

x Txx(y)U ′′(y)

c(y)2

−
4i(1− β) k3

x T
′
xy(y)U ′(y)2

c(y)3
− 8i(1− β) k3

x Txy(y)U ′(y)U ′′(y)

c(y)3

−
2(1− β) k2

x T
′
xy(y)U ′′(y)

c(y)2
− βk4,

a2,21 = − i(1− β) kz U
′(y)

Wec(y)2
,

a1,21 =
i(1− β) kz Txy(y)c′(y)

c(y)2
+

4i(1− β) kz c
′(y)U ′(y)

Wec(y)3
+

3(1− β) kx kz Txy(y)U ′(y)

c(y)2

+
4(1− β) kx kz U

′(y)2

Wec(y)3
− 2i(1− β) kz U

′′(y)

Wec(y)2
,

a0,21 = − (1− β) kx kz Txx(y)c′(y)

c(y)2
− 4(1− β) kx kz Txy(y)c′(y)U ′(y)

c(y)3

−
i(1− β) kz c

′(y)T ′xy(y)

c(y)2
+

2i(1− β) k2
x kz Txx(y)U ′(y)

c(y)2

+
4i(1− β) k2

x kz Txy(y)U ′(y)2

c(y)3
+
i(1− β) k2

x kz U
′(y)

Wec(y)2

+
2(1− β) kx kz Txy(y)U ′′(y)

c(y)2
+
i(1− β) k3

z U
′(y)

Wec(y)2
,
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a2,22 = − (1− β)

Wec(y)
− β,

a1,22 =
(1− β) c′(y)

Wec(y)2
− 2i(1− β) kx Txy(y)

c(y)
− i(1− β) kx U

′(y)

Wec(y)2
,

a0,22 =
i(1− β) kx Txy(y)c′(y)

c(y)2
+

(1− β) k2

Wec(y)
+

(1− β) k2
x Txx(y)

c(y)

+
(1− β) k2

x Txy(y)U ′(y)

c(y)2
−
i(1− β) kx T

′
xy(y)

c(y)
+ βk2.

The operators C (for the velocity output) and B are given by [16]

C =
1

k2


i kx D −i kz
k2 0

i kz D i kx

 , B =

[
−i kx D −k2 −i kz D

i kz 0 −i kx

]
. (D3a)

For the stress output τxx, Cxx is 1× 2 block-matrix operator with

Cxx(1, 1) =

(
2∑

n= 0

cn,11(y, ω)Dn

)
,

Cxx(1, 2) =

(
1∑

n= 0

cn,12(y, ω)Dn

)
,

(D3b)

where,

c2,11 =
2ikx Txy(y)

k2 c(y)
+

2ikx U
′(y)

k2Wec(y)2
,

c1,11 = − 2k2
x Txx(y)

k2 c(y)
− 2k2

x

k2Wec(y)
+

2k2
z Txy(y)U ′(y)

k2 c(y)2
+

4U ′(y)2

Wec(y)3
,

c0,11 =
2ikx Txx(y)U ′(y)

c(y)2
+

4ikx Txy(y)U ′(y)2

c(y)3

+
2ikx U

′(y)

Wec(y)2
− T ′xx(y)

c(y)
−

2T ′xy(y)U ′(y)

c(y)2
,

c1,12 = − 2ikz Txy(y)

k2 c(y)
− 2ikz U

′(y)

k2Wec(y)2
,

c0,12 =
2kx kz Txx(y)

k2 c(y)
+

2kx kz Txy(y)U ′(y)

k2 c(y)2
+

2kx kz
k2Wec(y)

.
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D.2 Descriptor form with the stress eliminated

The state variables are the velocity and pressure, φ = [u v w p ]T in (4.6), and the

boundary conditions are

u(±1) = v(±1) = w(±1) = [Dv(·)](±1) = 0.

In this representation the operator-valued matrix A is of size 4× 4 with components

A(i, j) =

(
2∑

n= 0

an,ij(y, ω)Dn

)
,

where the non-zero coefficients an,ij are given by

a2,11 = − (1− β)

Wec(y)
− β,

a1,11 =
(1− β) (c′(y)− ikx (3Wec(y)Txy(y) + 2U ′(y)))

Wec(y)2
,

a0,11 =
(1− β) kx Txy(y) (2kx U

′(y) + ic′(y))

c(y)2

+
(1− β)

(
2k2

x + kxWe
(
2kx Txx(y)− iT ′xy(y)

)
+ k2

z

)
Wec(y)

+ βk2,

a2,12 = − (1− β) (Wec(y)Txy(y) + 2U ′(y))

Wec(y)2
,

a1,12 =
(1− β)Txy(y)c′(y)

c(y)2
+

4(1− β) c′(y)U ′(y)

Wec(y)3
− i(1− β) kx Txx(y)

c(y)

− 4i(1− β) kx Txy(y)U ′(y)

c(y)2
− 4i(1− β) kx U

′(y)2

Wec(y)3

− i(1− β) kx
Wec(y)

− 2(1− β)U ′′(y)

Wec(y)2
,



158

a0,12 =
i(1− β) kx Txx(y)c′(y)

c(y)2
+

4i(1− β) kx Txy(y)c′(y)U ′(y)

c(y)3

+
i(1− β) kx c

′(y)

Wec(y)2
−

(1− β) c′(y)T ′xy(y)

c(y)2

+
2(1− β) k2

xTxx(y)U ′(y)

c(y)2
+

4(1− β) k2
xTxy(y)U ′(y)2

c(y)3
+

2(1− β) k2
xU
′(y)

Wec(y)2

− 2i(1− β) kx Txy(y)U ′′(y)

c(y)2
+

(1− β) k2
zU
′(y)

Wec(y)2
,

a1,13 = − i(1− β) kz (Wec(y)Txy(y) + U ′(y))

Wec(y)2
,

a0,13 =
(1− β) kx kz (Wec(y)Txx(y) + c(y) +WeTxy(y)U ′(y))

Wec(y)2
,

a0,14 = ikx,

a1,21 = − i(1− β) kx
Wec(y)

,

a0,21 =
(1− β) k2

xTxy(y)

c(y)
,

a2,22 = − 2(1− β)

Wec(y)
− β,

a1,22 =
2(1− β) c′(y)

Wec(y)2
− 3i(1− β) kx Txy(y)

c(y)
− 2i(1− β) kx U

′(y)

Wec(y)2
,
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a0,22 =
2i(1− β) kx Txy(y)c′(y)

c(y)2
+

(1− β) k2
xTxx(y)

c(y)
+

2(1− β) k2
xTxy(y)U ′(y)

c(y)2

+
(1− β) k2

x

Wec(y)
−
i(1− β) kx T

′
xy(y)

c(y)
+

(1− β) k2
z

Wec(y)
+ βk2,

a1,23 = − i(1− β) kz
Wec(y)

,

a0,23 =
(1− β) kx kzTxy(y)

c(y)
,

a1,24 = 1,

a0,31 =
(1− β) kx kz
Wec(y)

,

a1,32 = − i(1− β) kz
Wec(y)

,

a0,32 =
(1− β) kz (kx U

′(y) + ic′(y))

Wec(y)2
,

a2,33 = − (1− β)

Wec(y)
− β,

a1,33 =
(1− β) c′(y)

Wec(y)2
− 2i(1− β) kx Txy(y)

c(y)
− i(1− β) kx U

′(y)

Wec(y)2
,

a0,33 =
i(1− β) kx Txy(y)c′(y)

c(y)2
+

(1− β) k2
xTxx(y)

c(y)
+

(1− β) k2
xTxy(y)U ′(y)

c(y)2

+
(1− β) k2

x

Wec(y)
−
i(1− β) kx T

′
xy(y)

c(y)
+

2(1− β) k2
z

Wec(y)
+ βk2,

a0,34 = ikz.

The expressions for B and Cv are given by

B =


1 0 0

0 1 0

0 0 1

0 0 0

 , C =


1 0 0 0

0 1 0 0

0 0 1 0

 ,

and for the stress output τxx, Cxx is a 1× 4 block-matrix operator given by

Cxx(i, j) =

(
1∑

n= 0

cn,ij(y, ω)Dn

)
, (D4)
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where the non-zero coefficients cn,ij are given by

c1,11 =
2 (Wec(y)Txy(y) + U ′(y))

Wec(y)2
,

c0,11 =
2ikx (Wec(y)Txx(y) + c(y) +WeTxy(y)U ′(y))

Wec(y)2
,

c1,12 =
2U ′(y) (Wec(y)Txy(y) + 2U ′(y))

Wec(y)3
,

c0,12 =
2ic(y)U ′(y)

(
kxWeTxx(y) + kx + iWeT ′xy(y)

)
Wec(y)3

+
−Wec(y)2T ′xx(y) + 4ikxWeTxy(y)U ′(y)2

Wec(y)3
.
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E Operators governing channel flow of an Oldroyd-B fluid

The equations governing channel flow of an Oldroyd-B fluid (4.5) can be recast to the

representation in (4.6) as discussed in § 4.2.1. System (4.6) can be expressed in two

forms, the evolution form (where the pressure is eliminated), and the descriptor form

(where the pressure is not eliminated). In this section we present the operators A, B,

Cv, and Cxx in (4.6) in both forms.

E.1 Evolution form

The state variables for the evolution form [6] are the wall-normal velocity and vorticity,

φ = [ v η ]T in (4.6). The boundary conditions are

v(±1) = [Dv(·)](±1) = η(±1) = 0. (E5)

The operator-valued matrices A, B, Cv, and Cxx are detailed in this section. A is of size

2× 2 with elements

A(1, 1) =

(
4∑

n= 0

an,11(y, ω)Dn

)
,

A(1, 2) = 0,

A(2, 1) =

(
2∑

n= 0

an,21(y, ω)Dn

)
,

A(2, 2) =

(
2∑

n= 0

an,22(y, ω)Dn

)
,
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where the dependence on ω enters through the c(y) in (4.30), and the nonzero coefficients

an,ij are given by

a4,11 = − (1− β)

Wec(y)
− β,

a3,11 =
2(1− β) c′(y)

Wec(y)2
− 2i(1− β) kx T̄xy(y)

c(y)
,

a2,11 =
(1− β) c′′(y)

Wec(y)2
+

2i(1− β) kx T̄xy(y)c′(y)

c(y)2
− 4i(1− β) kx c

′(y)Ū ′(y)

Wec(y)3

− 2(1− β) c′(y)2

Wec(y)3
+

2(1− β) k2

Wec(y)
+

(1− β) k2
x T̄xx(y)

c(y)

− 2(1− β) k2
x T̄xy(y)Ū ′(y)

c(y)2
− 4(1− β) k2

x Ū
′(y)2

Wec(y)3

−
3i(1− β) kx T̄

′
xy(y)

c(y)
+

2i(1− β) kx Ū
′′(y)

Wec(y)2
+ 2β k2,

a1,11 = − 4i(1− β) kx c
′′(y)Ū ′(y)

Wec(y)3
+

8(1− β) k2
x T̄xy(y)c′(y)Ū ′(y)

c(y)3

+
12(1− β) k2

x c
′(y)Ū ′(y)2

Wec(y)4
− 2(1− β) k2

x c
′(y)

Wec(y)2
+

2i(1− β) kx c
′(y)T̄ ′xy(y)

c(y)2

− 8i(1− β) kx c
′(y)Ū ′′(y)

Wec(y)3
+

12i(1− β) kx c
′(y)2Ū ′(y)

Wec(y)4
− 2(1− β) k2

z c
′(y)

Wec(y)2

+
2i(1− β) k2 kx T̄xy(y)

c(y)
− 2i(1− β) k3

x T̄xx(y)Ū ′(y)

c(y)2

− 4i(1− β) k3
x T̄xy(y)Ū ′(y)2

c(y)3
+

(1− β) k2
x T̄
′
xx(y)

c(y)

−
2(1− β) k2

x T̄
′
xy(y)Ū ′(y)

c(y)2
− 4(1− β) k2

x T̄xy(y)Ū ′′(y)

c(y)2

− 8(1− β) k2
x Ū
′(y)Ū ′′(y)

Wec(y)3
,
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a0,11 =
(1− β) k2 c′′(y)

Wec(y)2
+

(1− β) k2
x T̄xx(y)c′′(y)

c(y)2
+

4(1− β) k2
x T̄xy(y)c′′(y)Ū ′(y)

c(y)3

+
i(1− β) kx c

′′(y)T̄ ′xy(y)

c(y)2
− 2i(1− β) k2 kx T̄xy(y)c′(y)

c(y)2

+
4i(1− β) k2 kx c

′(y)Ū ′(y)

Wec(y)3
− 2(1− β) k2 c′(y)2

Wec(y)3

+
4i(1− β) k3

x T̄xx(y)c′(y)Ū ′(y)

c(y)3

+
12i(1− β) k3

x T̄xy(y)c′(y)Ū ′(y)2

c(y)4
+

(1− β) k2
x c
′(y)T̄ ′xx(y)

c(y)2

− 2(1− β) k2
x T̄xx(y)c′(y)2

c(y)3
+

4(1− β) k2
x c
′(y)T̄ ′xy(y)Ū ′(y)

c(y)3

+
8(1− β) k2

x T̄xy(y)c′(y)Ū ′′(y)

c(y)3
− 12(1− β) k2

x T̄xy(y)c′(y)2Ū ′(y)

c(y)4

−
2i(1− β) kx c

′(y)2T̄ ′xy(y)

c(y)3
− (1− β) k4

Wec(y)
− (1− β) k2 k2

x T̄xx(y)

c(y)

− 2(1− β) k2 k2
x T̄xy(y)Ū ′(y)

c(y)2
+
i(1− β) k2 kx T̄

′
xy(y)

c(y)
− 2i(1− β) k2 kx Ū

′′(y)

Wec(y)2

− 2i(1− β) k3
x T̄
′
xx(y)Ū ′(y)

c(y)2
− 2i(1− β) k3

x T̄xx(y)Ū ′′(y)

c(y)2

−
4i(1− β) k3

x T̄
′
xy(y)Ū ′(y)2

c(y)3
− 8i(1− β) k3

x T̄xy(y)Ū ′(y)Ū ′′(y)

c(y)3

−
2(1− β) k2

x T̄
′
xy(y)Ū ′′(y)

c(y)2
− βk4,

a2,21 = − i(1− β) kz Ū
′(y)

Wec(y)2
,

a1,21 =
i(1− β) kz T̄xy(y)c′(y)

c(y)2
+

4i(1− β) kz c
′(y)Ū ′(y)

Wec(y)3
+

3(1− β) kx kz T̄xy(y)Ū ′(y)

c(y)2

+
4(1− β) kx kz Ū

′(y)2

Wec(y)3
− 2i(1− β) kz Ū

′′(y)

Wec(y)2
,

a0,21 = − (1− β) kx kz T̄xx(y)c′(y)

c(y)2
− 4(1− β) kx kz T̄xy(y)c′(y)Ū ′(y)

c(y)3

−
i(1− β) kz c

′(y)T̄ ′xy(y)

c(y)2
+

2i(1− β) k2
x kz T̄xx(y)Ū ′(y)

c(y)2

+
4i(1− β) k2

x kz T̄xy(y)Ū ′(y)2

c(y)3
+
i(1− β) k2

x kz Ū
′(y)

Wec(y)2

+
2(1− β) kx kz T̄xy(y)Ū ′′(y)

c(y)2
+
i(1− β) k3

z Ū
′(y)

Wec(y)2
,
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a2,22 = − (1− β)

Wec(y)
− β,

a1,22 =
(1− β) c′(y)

Wec(y)2
− 2i(1− β) kx T̄xy(y)

c(y)
− i(1− β) kx Ū

′(y)

Wec(y)2
,

a0,22 =
i(1− β) kx T̄xy(y)c′(y)

c(y)2
+

(1− β) k2

Wec(y)
+

(1− β) k2
x T̄xx(y)

c(y)
+

(1− β) k2
x T̄xy(y)Ū ′(y)

c(y)2

−
i(1− β) kx T̄

′
xy(y)

c(y)
+ βk2,

where c(y) = i ω + 1/We+ i kx Ū(y) (see (4.30)).

The operators Cv (for the velocity output) and B are given by [16]

Cv =
1

k2


i kx D −i kz
k2 0

i kz D i kx

 , B =

[
−i kx D −k2 −i kz D

i kz 0 −i kx

]
. (E6a)

For the stress output τxx, Cxx is 1× 2 block-matrix operator with

Cxx(1, 1) =

(
2∑

n= 0

cn,11(y, ω)Dn

)
,

Cxx(1, 2) =

(
1∑

n= 0

cn,12(y, ω)Dn

)
,

(E6b)

where the nonzero coefficients cn,ij are given by

c2,11 =
2ikx T̄xy(y)

k2 c(y)
+

2ikx Ū
′(y)

k2Wec(y)2
,

c1,11 = − 2k2
x T̄xx(y)

k2 c(y)
− 2k2

x

k2Wec(y)
+

2k2
z T̄xy(y)Ū ′(y)

k2 c(y)2
+

4Ū ′(y)2

Wec(y)3
,

c0,11 =
2ikx T̄xx(y)Ū ′(y)

c(y)2
+

4ikx T̄xy(y)Ū ′(y)2

c(y)3
+

2ikx Ū
′(y)

Wec(y)2
− T̄ ′xx(y)

c(y)
−

2T̄ ′xy(y)Ū ′(y)

c(y)2
,

c1,12 = − 2ikz T̄xy(y)

k2 c(y)
− 2ikz Ū

′(y)

k2Wec(y)2
,

c0,12 =
2kx kz T̄xx(y)

k2 c(y)
+

2kx kz T̄xy(y)Ū ′(y)

k2 c(y)2
+

2kx kz
k2Wec(y)

.
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E.2 Descriptor form

The state variables of the descriptor form are the velocity and pressure, i.e., φ =

[u v w p ]T in (4.6). The boundary conditions are

u(±1) = v(±1) = w(±1) = [Dv(·)](±1) = 0.

In this representation the operator-valued matrix A is of size 4× 4 with components

A(i, j) =

(
2∑

n= 0

an,ij(y, ω)Dn

)
,

where the nonzero coefficients an,ij are given by

a2,11 = − (1− β)

Wec(y)
− β,

a1,11 =
(1− β)

(
c′(y)− ikx

(
3Wec(y)T̄xy(y) + 2Ū ′(y)

))
Wec(y)2

,

a0,11 =
(1− β) kx T̄xy(y)

(
2kx Ū

′(y) + ic′(y)
)

c(y)2

+
(1− β)

(
2k2

x + kxWe
(
2kx T̄xx(y)− iT̄ ′xy(y)

)
+ k2

z

)
Wec(y)

+ βk2,

a2,12 = −
(1− β)

(
Wec(y)T̄xy(y) + 2Ū ′(y)

)
Wec(y)2

,

a1,12 =
(1− β) T̄xy(y)c′(y)

c(y)2
+

4(1− β) c′(y)Ū ′(y)

Wec(y)3
− i(1− β) kx T̄xx(y)

c(y)

− 4i(1− β) kx T̄xy(y)Ū ′(y)

c(y)2
− 4i(1− β) kx Ū

′(y)2

Wec(y)3
− i(1− β) kx

Wec(y)

− 2(1− β) Ū ′′(y)

Wec(y)2
,
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a0,12 =
i(1− β) kx T̄xx(y)c′(y)

c(y)2
+

4i(1− β) kx T̄xy(y)c′(y)Ū ′(y)

c(y)3

+
i(1− β) kx c

′(y)

Wec(y)2
−

(1− β) c′(y)T̄ ′xy(y)

c(y)2

+
2(1− β) k2

xT̄xx(y)Ū ′(y)

c(y)2
+

4(1− β) k2
xT̄xy(y)Ū ′(y)2

c(y)3
+

2(1− β) k2
xŪ
′(y)

Wec(y)2

− 2i(1− β) kx T̄xy(y)Ū ′′(y)

c(y)2
+

(1− β) k2
z Ū
′(y)

Wec(y)2
,

a1,13 = −
i(1− β) kz

(
Wec(y)T̄xy(y) + Ū ′(y)

)
Wec(y)2

,

a0,13 =
(1− β) kx kz

(
Wec(y)T̄xx(y) + c(y) +We T̄xy(y)Ū ′(y)

)
Wec(y)2

,

a0,14 = ikx,

a1,21 = − i(1− β) kx
Wec(y)

,

a0,21 =
(1− β) k2

xT̄xy(y)

c(y)
,

a2,22 = − 2(1− β)

Wec(y)
− β,

a1,22 =
2(1− β) c′(y)

Wec(y)2
− 3i(1− β) kx T̄xy(y)

c(y)
− 2i(1− β) kx Ū

′(y)

Wec(y)2
,

a0,22 =
2i(1− β) kx T̄xy(y)c′(y)

c(y)2
+

(1− β) k2
xT̄xx(y)

c(y)
+

2(1− β) k2
xT̄xy(y)Ū ′(y)

c(y)2

+
(1− β) k2

x

Wec(y)
−
i(1− β) kx T̄

′
xy(y)

c(y)
+

(1− β) k2
z

Wec(y)
+ βk2,

a1,23 = − i(1− β) kz
Wec(y)

,

a0,23 =
(1− β) kx kzT̄xy(y)

c(y)
,

a1,24 = 1,

a0,31 =
(1− β) kx kz
Wec(y)

,

a1,32 = − i(1− β) kz
Wec(y)

,

a0,32 =
(1− β) kz

(
kx Ū

′(y) + ic′(y)
)

Wec(y)2
,
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a2,33 = − (1− β)

Wec(y)
− β,

a1,33 =
(1− β) c′(y)

Wec(y)2
− 2i(1− β) kx T̄xy(y)

c(y)
− i(1− β) kx Ū

′(y)

Wec(y)2
,

a0,33 =
i(1− β) kx T̄xy(y)c′(y)

c(y)2
+

(1− β) k2
xT̄xx(y)

c(y)
+

(1− β) k2
xT̄xy(y)Ū ′(y)

c(y)2

+
(1− β) k2

x

Wec(y)
−
i(1− β) kx T̄

′
xy(y)

c(y)
+

2(1− β) k2
z

Wec(y)
+ βk2,

a0,34 = ikz.

The expressions for B and Cv are given by

B =


1 0 0

0 1 0

0 0 1

0 0 0

 , Cv =


1 0 0 0

0 1 0 0

0 0 1 0

 ,

and for the stress output τxx, Cxx is a 1× 4 block-matrix operator given by

Cxx(i, j) =

(
1∑

n= 0

cn,ij(y, ω)Dn

)
, (E7)

where the nonzero coefficients cn,ij are given by

c1,11 =
2
(
Wec(y)T̄xy(y) + Ū ′(y)

)
Wec(y)2

,

c0,11 =
2ikx

(
Wec(y)T̄xx(y) + c(y) +We T̄xy(y)Ū ′(y)

)
Wec(y)2

,

c1,12 =
2Ū ′(y)

(
Wec(y)T̄xy(y) + 2Ū ′(y)

)
Wec(y)3

,

c0,12 =
2iŪ ′(y)

(
kxWe T̄xx(y) + kx + iWe T̄ ′xy(y)

)
Wec(y)2

+
− c(y)2T̄ ′xx(y) + 4ikx T̄xy(y)Ū ′(y)2

c(y)3
.

(E8)
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(a) v output (b) τxx output

Figure F1: Principal singular values of (a) Tv in (4.14) and (b) Txx in (4.17) of 2D
Couette flow of an Oldroyd-B fluid with β = 0.5, kx = 1, and ω = 0. Spectral integration
1 uses the descriptor form in § E.2, and Spectral integration 2 uses the evolution form
in § E.1. The ultraspherical method uses the evolution form.

F Validation

In this section we present a few representative calculations that validate our numerical

discretization presented in § 4.3. Figure F1 shows calculations with 2D Couette flow

with β = 0.5, ω = 0, and kx = 1 using three approaches: the ultraspherical method with

the evolution form (see § E.1), the spectral integration method with the descriptor form

(see § E.2), and the spectral integration method with the evolution form (see § E.1)

using 150 basis functions in each case. Figure F1a shows singular values of Tv in (4.14),

and Figure F1b shows singular values of Txx in (4.17). We find good agreement in

the results obtained from the three approaches. Furthermore the singular values of Tv
in Figure F1a agree quantitatively with the results of Lieu and Jovanović, Figure 8a

in [33].

Next we plot the principal singular values from the SVD of Tv (4.14) and Txx (4.17)

for 2D3C Couette flow with β = 0.5, kz = 1, and ω = 0 in Figure F2. We present

results that use the ultraspherical method, although we have confirmed that the spectral

integration method (using both the descriptor and evolution forms) produces identical

results. Figure F2a shows singular values of Tv in (4.14) as a function of We, and we
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(a) v output (b) τxx output

Figure F2: Principal singular values of (a) Tv in (4.14) and (b) Txx in (4.17) of 2D3C
Couette flow of an Oldroyd-B fluid with β = 0.5, kz = 1, and ω = 0. The solid lines
mark singular values, and the dashed lines show the slope of their scaling with We [5].

observe that the singular values scale linearly with We (as indicated by the dashed line).

Figure F2b shows singular values of Txx in (4.17) scaling as We2 on a log-log plot, as

indicated by the dashed line. These scaling of the velocity and the stress singular values

with We are in agreement with Figures 3 and 4 in [5].

G Additional figures for § 4.5

In § 4.5.2 we showed that the localized amplification of the stress occurs at locations

y = y∗ in the channel where kx = 1 and ω+kx Ū(y∗) = 0 (see (4.33) and Figure 4.9). In

this section we show that the relation (4.33) is also valid for kx = 3. Figure G3 considers

τ̂xx from the SVD of Txx in (4.17) with the same values of We and β as in Figure 4.9,

We = 40 and β = 0.5, but uses kx = 3 in the place of kx = 1. In the same way as we

did in Figure 4.9, we vary y,∗ compute ω according to (4.33), and use this ω to compute

the SVD of Txx in (4.17). If the dashed-dotted line y = y∗ coincides with the location

where τ̂xx (see (4.17)) has the maximum magnitude, then (4.33) is valid for kx = 3 as

well.

When y∗ = 0 in Figure G3a (kx = 3), we observe that the stress has a similar

structure as when kx = 1 (Figure 4.9a), however we observe that the stress is of a
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larger magnitude compared to Figure 4.9a. Similar to Figure 4.9a, in Figure G3a the

dashed-dotted line corresponding to y = y∗ does not coincide with the location of the

maximum magnitude of τ̂xx, implying that the relation in (4.33) is not valid in this case.

In Figure G3b (kx = 3), we fix y∗ = 0.2 and calculate ω from (4.33) and compute an

SVD of Txx in (4.17). We observe that the locations of the maximum magnitude of τ̂xx

coincide with y = y∗ (dashed-dotted lines). When compared to Figure 4.9b (kx = 1),

τ̂xx in Figure G3b (kx = 3) has a larger magnitude.

Similarly, Figures G3c-G3f plot τ̂xx computed from the SVD of Txx in (4.17), with

y∗ = 0.4, 0.6, 0.8, and 1 respectively and kx = 3. In each case ω is computed to

satisfy (4.33). We observe that the magnitudes of τ̂xx in Figures G3c-G3f (kx = 3)

is larger compared to their counterparts in Figures 4.9c-4.9f (kx = 1), and that the

locations of localized amplification of τ̂xx coincide with the dashed-dotted lines (y = y∗).

This suggests that the relation (4.33) is valid for kx = 3 as well. Lastly, Figures G4

and G5 enlarge the region near y = y∗ in Figures 4.9 and G3 respectively.
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(a) y∗ = 0, ω = −3 (b) y∗ = ±0.2, ω = −2.88 (c) y∗ = ±0.4, ω = −2.52

(d) y∗ = ±0.6, ω = −1.92 (e) y∗ = ±0.8, ω = −1.08 (f) y∗ = ±1.0, ω = 0

Figure G3: Stress τxx corresponding to the principal singular value from the SVD of
Txx in (4.17) with We = 40, β = 0.5 and kx = 3, and (a) y∗ = 0, (b) y∗ = ±0.2, (c)
y∗ = ±0.4, (d) y∗ = ±0.6, (e) y∗ = ±0.8, and (f) y∗ = ±1. For a given value of kx and
y∗, ω is calculated from (4.33). The solid lines mark the real parts and the dashed lines
mark the imaginary parts of τ̂xx. The dashed-dotted lines mark y = ±y.∗ Figure G5
shows the region enlarged near y = y∗.
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(a) y∗ = 0, ω = −1 (b) y∗ = ±0.2, ω = −0.96 (c) y∗ = ±0.4, ω = −0.84

(d) y∗ = ±0.6, ω = −0.64 (e) y∗ = ±0.8, ω = −0.36 (f) y∗ = ±1.0, ω = 0

Figure G4: Stress τxx corresponding to the principal singular value from the SVD of
Txx in (4.17) with We = 40, β = 0.5, and kx = 1, and (a) y∗ = 0, (b) y∗ = ±0.2, (c)
y∗ = ±0.4, (d) y∗ = ±0.6, (e) y∗ = ±0.8, and (f) y∗ = ±1. For a given value of kx
and y∗, ω is calculated from (4.33). The solid lines mark the real parts and the dashed
lines mark the imaginary parts of τ̂xx. The dashed-dotted lines mark y = y.∗ Figure 4.9
shows corresponding plots in the full domain, i.e., y ∈ [−1 1 ].
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(a) y∗ = 0, ω = −3 (b) y∗ = ±0.2, ω = −2.88 (c) y∗ = ±0.4, ω = −2.52

(d) y∗ = ±0.6, ω = −1.92 (e) y∗ = ±0.8, ω = −1.08 (f) y∗ = ±1.0, ω = 0

Figure G5: Stress τxx corresponding to the principal singular value from the SVD of
Txx in (4.17) with We = 40, β = 0.5, and kx = 3, and (a) y∗ = 0, (b) y∗ = ±0.2, (c)
y∗ = ±0.4, (d) y∗ = ±0.6, (e) y∗ = ±0.8, and (f) y∗ = ±1. For a given value of kx
and y∗, ω is calculated from (4.33). The solid lines mark the real parts and the dashed
lines mark the imaginary parts of τ̂xx. The dashed-dotted lines mark y = y.∗ Figure G3
shows corresponding plots in the full domain, i.e., y ∈ [−1 1 ].
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H Time-stepping schemes for DNS

Time-stepping schemes are organized in the following manner. Equation (5.5) is dis-

cretized in time as

λvv
n+1 = −∇pn+1 + 1

Re∇
2vn+1 − rn, (H1)

where n+ 1 refers to future-time values, and n to past-time values, and

rn = −
m∑
i=0

( ai g
i + bi f

i + ci v
i) + Πx ex, (H2)

where ai, bi, and ci are defined based on the time discretization (Table H1). The index i

is for memory such that i = 0 is the most recent. For example, for a third-order scheme

that needs to remember quantities of present time, past time, and time past of past

time, a0 stores present, a1 the past, and a2 the past of past. Note that a time-stepping

scheme can have several stages for n, e.g., the three-stage RK scheme (Table H1). The

gi in (H2) is given by

gi = −∇pi + 1
Re∇

2vi. (H3)

Notice that (H2) is general and can accommodate a new implicit-explicit time stepping

scheme by assigning values of ai, bi, and ci.

Finally, rearranging (H1) we have in (5.6)

a =
1

Re
, (H4)

b =
k2

Re
+ λv. (H5)
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Stage Memory, i λv ai bi ci
Family of second-order schemes

0
0 γ+0.5

h (γ+0.5c)
1−γ−c
γ+0.5c

γ+1
γ+0.5c

2 γ
h (γ+0.5c)

1 0.5c
γ+0.5c

−γ
γ+0.5c − γ−0.5

h (γ+0.5c)

Crank-Nicholson, three-stage RK

0 0 15
4h 1 2 15

4h

1
0 15

h 1 25
4

15
h

1 - 0 −17
4 0

2
0 6

h 1 9
2

6
h

1 - 0 −5
2 0

Crank-Nicholson, four-stage RK

0 0 17
4h 1 2 17

4h

1
0 255

h 8 1 289
32

255
h 8

1 - 0 −225
32 0

2
0 15

h 1 25
4

15
h

1 - 0 −17
4 0

3
0 6

h 1 9
2

6
h

1 - 0 −5
2 0

Table H1: Implicit-explicit time-stepping schemes used in DNS, where h is the time
step [1, 2]; see Table H2 for values of γ and c. The first name refers the implicit part,
e.g., in “Crank-Nicholson, three-stage RK”, quantities treated implicitly use Crank-
Nicholson, and quantities treated explicitly use three-stage RK time discretization.



176

Implicit-explicit scheme Abbreviation γ c

Crank-Nicholson Adams-Bashforth CNAB 0.5 0
Modified Crank-Nicholson Adams-Bashforth MCNAB 0.5 0.125

Crank-Nicholson Leap-frog CNLF 0 1
Semi-implicit backward differentiation formula SBDF 1 0

Table H2: Family of second-order time-stepping schemes implemented in DNS (Chap-
ter 5), taken from [2]. The first name refers the implicit part, e.g., in “Crank-Nicholson,
Adams-Bashforth”, quantities treated implicitly use Crank-Nicholson, and quantities
treated explicitly use Adams-Bashforth time discretization.



Supplementary material

S1 A Matlab spectral integration suite

S1.1 Introduction

We develop a customized Matlab spectral integration suite that is based on the method

described by Greengard [28] and Du [27]. In order to facilitate application to nth

order differential equations, our implementation introduces minor modifications that

we describe next.

An example: A reaction-diffusion equation

Let us consider a second-order linear differential equation,

D2u(y) − k2u(y) = f(y), (S1-1a)

with either homogeneous Dirichlet,

u(±1) = 0, (S1-1b)

or Neumann boundary conditions,

Du(±1) = 0. (S1-1c)

Here, u is the field of interest, f is an input, k ∈ R is a given constant, y ∈ [−1, 1], and

D := d/dy.

In the spectral integration method, the highest derivative in a differential equation

177
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is expressed in a basis of Chebyshev polynomials. In particular, for equation (S1-1a),

D2u(y) =

∞∑′

i= 0

u
(2)
i Ti(y) =: tTy u, (S1-2)

where
∑′

denotes a summation with the first term halved, u := [u
(2)
0 u

(2)
1 u

(2)
2 · · · ]T

is the infinite vector of spectral coefficients u
(2)
i , and ty is the vector of Chebyshev

polynomials of the first kind Ti(y),

tTy :=
[

1
2T0(y) T1(y) T2(y) · · ·

]
. (S1-3)

Integration of (S1-2) in conjunction with the recurrence relations for integration of

Chebyshev polynomials is used to determine spectral coefficients corresponding to lower

derivatives of u. For example, indefinite integration of (S1-2) yields

Du(y) =

∞∑′

i= 0

u
(1)
i Ti(y) + c1 =: tTy u(1) + c1, (S1-4)

where c1 is a constant of integration and

u
(1)
i =


1
2 u

(2)
1 , i = 0,

1
2i(u

(2)
i−1 − u

(2)
i+1), i ≥ 1.

(S1-5)

These expressions for u
(1)
i are derived in § S1.4.

Similarly, indefinite integration of Du in (S1-4) allows us to express u as

u(y) =

∞∑′

i= 0

u
(0)
i Ti(y) + c̃0 + c1y =: tTy u(0) + c̃0 + c1y,

where c̃0 and c1 are integration constants and

u
(0)
i =


1
2 u

(1)
1 , i = 0,

1
2i(u

(1)
i−1 − u

(1)
i+1), i ≥ 1.
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Equation (S1-5) provides a recursive relation that is used to determine spectral coeffi-

cients of lower derivatives from the spectral coefficients of the highest derivative of the

variable u,

u(1) = Ju, u(0) = J2u,

where J2 := JJ, and

J :=



0 1
2 0 · · ·

1
2 0 −1

2 0 · · ·
0 1

4 0 −1
4 0 · · ·

0 0 1
6 0 −1

6 0 · · ·
...

...
. . .

. . .
. . .


. (S1-6)

Since T0(y) = 1 and T1(y) = y, we let c0 := 2 c̃0 and represent integration constants in

the basis expansion of u and Du in terms of Chebyshev polynomials,

u(y) = tTy J2u +
[

1
2T0(y) T1(y)

] K0︷ ︸︸ ︷[
1 0

0 1

][
c0

c1

]
, (S1-7)

Du(y) = tTy Ju +
[

1
2T0(y) T1(y)

] [ 0 2

0 0

]
︸ ︷︷ ︸

K1

[
c0

c1

]
. (S1-8)

By introducing the vector of integration constants c :=
[
c0 c1

]T
, we can represent

u, Du, and D2u as

u(y) = tTy (J2u + R2c), (S1-9)

Du(y) = tTy (J1u + R1c), (S1-10)

D2u(y) = tTy (J0u + R0c), (S1-11)

where J0 = I is an infinite identity matrix, and

Ri :=

[
K2−i

0

]
, i = 0, 1, 2,
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are matrices with an infinite number of rows and two columns, and K2 = K K results

in a 2 × 2 zero matrix. Thus, in the basis of Chebyshev polynomials, we can express

differential equation (S1-1a) without its boundary conditions as

tTy
(
(I − k2J2)u + (R0 − k2R2)c

)
= tTy f , (S1-12)

where f is the vector of spectral coefficients associated with the input f in (S1-1a).

Using (S1-9), we can write Dirichlet boundary conditions (S1-1b) as

tT+1 J2 u + tT+1 R2 c = 0,

tT−1 J2 u + tT−1 R2 c = 0,
(S1-13)

and the use of (S1-10) brings Neumann boundary conditions (S1-1c) into,

tT+1 J u + tT+1 R1 c = 0,

tT−1 J u + tT−1 R1 c = 0.
(S1-14)

Hence, the infinite-dimensional representation of differential equation (S1-1a) with Dirich-

let boundary conditions is given by
I − k2 J2 R0 − k2 R2

tT+1 J2 tT+1 R2

tT−1 J2 tT−1 R2


[

u

c

]
=


f

0

0

 , (S1-15)

and the representation for Neumann boundary conditions is obtained by replacing the

last two rows in (S1-15) with those in (S1-14). We obtain the finite-dimensional approx-

imation from (S1-15) by truncating the infinite spectral coefficients to N + 1 spectral

coefficients using the projection operator [26, Eq. 2.9, also last paragraph of Section

2.4],

P = [ IN+1 0 ] , (S1-16)

where IN+1 is an identity matrix of dimension N + 1, and P is a matrix with N + 1
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rows and infinite columns so that

[
P 0

0 I2

]
I−k2 J2 R0 − k2 R2

tT+1 J2 tT+1R2

tT−1 J2 tT−1R2


[

PT 0

0 I2

][
P 0

0 I2

][
u

c

]
(S1-17)

=

[
P 0

0 I2

]
f

0

0

 (S1-18)

⇒


P
(
I−k2 J2

)
PT P

(
R0 − k2 R2

)
tT+1 J2 PT tT+1R2

tT−1 J2 PT tT−1R2


[

û

c

]
=


f̂

0

0

 . (S1-19)

The variables with a cap represent the finite-dimensional truncation of spectral coeffi-

cients, e.g., P u = û.

Notice in the left-bottom corner in the matrix in (S1-19) has a matrix multiplication

of tT−1 J2 PT , which is a quantity that involves multiplying matrices of dimensions (1×
∞)×(∞×∞)×(∞×(N+1) ) which results in a vector of size 1×(N+1). The product

(1 ×∞) × (∞×∞) is needed to ensure proper truncation, see [26, last paragraph of

Section 2.4]. For a practical implementation some large value greater than N + 1 works

in the place of a matrix dimension of ∞. In our codes we use N + 1 + 2n, where n is

the order of the differential equation (e.g., for the reaction-diffusion equation (S1-1a)

we use N + 1 + 4 = N + 5) as the ∞ as we found that results are the same if we use a

value greater than N + 1 + 2n.

Note on implementation: The routine Matgen, i.e., [J,K,E] = Matgen(n,N) generates

the discretization matrices, here K{1} (in Matlab’s cell notation) corresponds to K0,

K{2} to K1 and so on in (S1-29). E{1} corresponds to the projected versions of D2u(y)

in (S1-11), E{2} to Du(y) in (S1-10) and so on. Finally, J{1} stores J0 in (S1-6), J{2}
stores J1, and so on.
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Eigenvalues

We now consider the eigenvalues of the transient reaction-diffusion equation with Neu-

mann boundary conditions,

D2u(y) − k2u(y) = λu(y), (S1-20a)

Du(±) = 0. (S1-20b)

Using the relations from (S1-9) and (S1-11), the differential equation (S1-20a) is ex-

pressed in an infinite Chebyshev basis as,

tTy
( (

I − k2J2
)
u +

(
R0 − k2 R2

)
c
)

= λ tTy
(
J2 u + R2 c

)
. (S1-21)

The boundary conditions are the same as (S1-14). The infinite-dimensional representa-

tion from equating terms of the same basis and appending boundary conditions is given

by 
I − k2 J2 R0 − k2 R2

tT+1 J1 tT+1 R1

tT−1 J1 tT−1 R1


[

u

c

]
= λ


J2 R2

0 0

0 0


[

u

c

]
. (S1-22)

The differential equation in (S1-20a) has an eigenvalue λ, but the boundary conditions

in (S1-20b) do not. Thus the eigenvalue problem with padded zeros as on the right-hand

side of (S1-22) can result in extra eigenvalues that increase in value with an increase in

N in certain problems [99]. This zero padding in (S1-22) can be removed by using the

procedure described in § 3.3.2. The projection operator (S1-16) is used on (S1-22) to

reduce it to a finite dimensional approximation in the same way as (S1-19). Eigenvalues

of (S1-22) are computed in Code 7.1.
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Frequency responses

The system for frequency responses of the reaction-diffusion equation is given by (see

§ 3.2.2),

(
iωI − D2 + ε2I

)
u(y) = d(y), (S1-23a)

Du(±1) = 0, (S1-23b)

and the adjoint system by,

(
−iωI − D2 + ε2I

)
v(y) = g(y), (S1-23c)

D v(±1) = 0. (S1-23d)

The feedback interconnected system to compute frequency responses is given by (see

§ 3.3.1),[
0 I

I 0

][
u(y)

v(y)

]
= λ

[
(iω + ε2)I − D2 0

0 (−iω + ε2)I − D2

][
u(y)

v(y)

]
,

(S1-24a)

with boundary conditions
Q(+1,D) 0

Q(−1,D) 0

0 Q(+1,D)

0 Q(−1,D)


[
u(y)

v(y)

]
= 0, (S1-24b)

whereQ(a, L) is an evaluation operator that evaluates the action of the linear operator L

on a variable at a point y = a, and (S1-24b) specifies homogeneous Neumann boundary

conditions on u(y) and v(y) (see (S1-23)).

The expression for the identity operators in (S1-24) is given in (S1-9), and for the

second derivative operators in (S1-10). The infinite-dimensional representation for the
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differential equation of this system is given by,

[
0 0 J2 R2

J2 R2 0 0

]
u

c(u)

v

c(v)

 =

λ


(iω + ε2)J2 − I 0

(iω + ε2)R2 − R0 0

0 (−iω + ε2)J2 − I

0 (−iω + ε2)R2 − R0


T 

u

c(u)

v

c(v)

 ,
(S1-25a)

where c(u) and c(v) are the vector of constants of integration corresponding to u(y) and

v(y) respectively. The expressions for Neumann boundary conditions follow from (S1-14),

and are given by 
tT+1 J tT+1 R1 0 0

tT−1 J tT−1 R1 0 0

0 0 tT+1 J tT+1 R1

0 0 tT−1 J tT−1 R1




u

c(u)

v

c(v)

 = 0. (S1-25b)

The finite-dimensional projection of the infinite-dimensional representation for the dif-

ferential equation (S1-25a) and boundary conditions (S1-25b) is obtained using (S1-16)

in the same manner as (S1-19). The finite-dimensional approximation to (S1-25) is

solved to compute λ = ±σ, and σmax is the resolvent norm of (S1-23). The last part of

Code 7.1 solves for frequency responses of this system.

S1.2 Arbitrary order linear differential equation with non-constant

coefficients

In the previous subsection we considered the reaction-diffusion equation, and discussed

how spectral integration is used to solve for a forcing, for eigenvalues, and for frequency

responses. In this subsection, we illustrate this process for an nth order linear differential

equation with non-constant coefficients. Steps that follow are similar to what was
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discussed in § S1.1.

Consider a general representation of an nth order linear differential equation with

non-constant coefficients,

n∑
k=0

a(k)(y) Dku(y) = f(y), (S1-26a)

n−1∑
k=0

b(k,p)Dk u(p) = q, (S1-26b)

where a(k) are the non-constant coefficients, and f is an input, b(k,p) are constant coef-

ficients associated with boundary constraints (a general case of mixed boundary condi-

tions), at a vector of evaluation points, p, and corresponding values at the boundaries,

q.

Differential equation

In the same manner as the second derivative in (S1-2) for the reaction-diffusion equa-

tion (S1-1a), the highest derivative of the variable u(y) in (S1-26a) is expressed in a

basis of Chebyshev polynomials as

Dnu(y) =

∞∑′

i= 0

u
(n)
i Ti(y) =: tTy u, (S1-27)

where, u = [u
(n)
0 u

(n)
1 · · · u(n)

∞ ]T . The lower derivatives are expressed as,

Di u(y) = tTy
(
Jn−iu + Rn−i c

)
, (S1-28)

where, J is defined in (S1-6), c = [ c0 c1 · · · cn−1 ]T are the n constants of integration

that result from integrating the highest derivative (S1-27), and

Ri :=

[
Kn−i

0

]
,
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are matrices with n columns and infinite number of rows, where [28, Eq. 10]

K =


0 2 0 6 0 10 · · ·

0 0 4 0 8 0
. . .

0 0 0 6 0 10
. . .

...
. . .

. . .
. . .

. . .
. . .

. . .

 , (S1-29)

is a matrix of dimension n× n.

Spatially varying coefficients

The multiplication operator for the product of two Chebyshev series is used to account

for non-constant coefficients a(k) in (S1-26a). For a function a(y) in the basis of Cheby-

shev polynomials,

a(y) =

∞∑′

i=0

ai Ti(y), (S1-30)

the multiplication operator is given by [27, Section 3]

M[a] =
1

2



a0 a1 a2 a3 · · ·

a1 a0 a1 a2
. . .

a2 a1 a0 a1
. . .

a3 a2 a1 a0
. . .

...
. . .

. . .
. . .

. . .


+

1

2



0 0 0 0 · · ·
a1 a2 a3 a4 · · ·

a2 a3 a4 a5
. . .

a3 a4 a5 a6
. . .

...
. . .

. . .
. . .

. . .


. (S1-31)

Infinite-dimensional representation

The differential equation in (S1-26a) is expressed in a Chebyshev basis using (S1-28)

and (S1-31) as

tTy

([
n∑
k=0

M[a(k)] Jn−k

]
u +

[
n−1∑
k=0

M[a(k)] Rn−k

]
c

)
= tTy f , (S1-32)
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and the boundary conditions (S1-26b) using (S1-28) as

tTp

([
n−1∑
k=0

b(k,p) Jn−k

]
u +

[
n−1∑
k=0

b(k,p) Rn−k

]
c

)
= q. (S1-33)

Thus the infinite-dimensional representation based on equating the terms of the same

basis for the differential equation (S1-26) using (S1-32) and appending boundary con-

ditions in (S1-33) is given by,
∑n

k=0 M[a(k)] Jn−k
∑n−1

k=0 M[a(k)] Rn−k

∑n−1
k=0 b

(k,p) tTp Jn−k
∑n−1

k=0 b
(k,p) tTp Rn−k


︸ ︷︷ ︸

M

[
u

c

]
=

[
f

q

]
. (S1-34)

Finite-dimensional approximation

We use the projection operator (S1-16) to truncate the infinite spectral coefficients in

u and f in (S1-34) [26, Eq. 2.9, also last paragraph of Section 2.4] in the same way

as (S1-19)[
P 0

0 In

]
M

[
PT 0

0 In

][
P 0

0 In

] [
u

c

]
=

[
P 0

0 In

] [
f

q

]
,

to arrive at
P
∑n

k=0 M[a(k)] Jn−k PT P
∑n−1

k=0 M[a(k)] Rn−k

∑n−1
k=0 b

(k,p) tTp Jn−k PT
∑n−1

k=0 b
(k,p) tTp Rn−k


[

û

c

]
=

[
f̂

q

]
. (S1-35)

We represent the two rows of the matrix in (S1-35) separately for the sake of brevity,

L =
[

P
∑n

k=0 M[a(k)] Jn−k PT P
∑n−1

k=0 M[a(k)] Rn−k

]
, (S1-36)

B =
[ ∑n−1

k=0 b
(k,p) tTp Jn−k PT

∑n−1
k=0 b

(k,p) tTp Rn−k

]
, (S1-37)

where L is the discrete approximation for the differential equation (S1-26a) and B is

the discrete approximation for the boundary conditions (S1-26b). The final discrete
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expression to solve (S1-26) is given by,[
L

B

][
û

c

]
=

[
f̂

q

]
. (S1-38)

S1.3 The spectral integration suite

The spectral integration suite is a set of routines to compute the finite-dimensional

approximation in (S1-38) to linear operators and block-matrix operators. An example of

this is presented in Code 7.1 where we solve (S1-1a) with boundary conditions in (S1-1b)

with a forcing and compare our solution with results from Chebfun [31].

In summary, we use the following routines (and these are sufficient for most problems

to compute eigenvalues of or solve for inputs to linear differential equations or block-

matrix operators):

Note: Our implementation needs that N (where N + 1 is the number of

basis functions) is an odd number.

• sety(N): Sets points in physical space, yi = cos(π (i + 0.5)/(N + 1)) over N + 1

points. These points are such that when we take a discrete cosine transform, we

have an array that represents spectral coefficients of a Chebyshev basis [115, Eq.

12.4.16-17].

• Discretize(n,N,L): Produces L in (S1-38) by taking inputs as the highest differential

order of the variable, n, N , and the linear operator L (linear operators are specified

using cells in Matlab, e.g., the operator aD2 + bD + c is represented by a 3 × 1

cell with values L{1} = a, L{2} = b, and L{3} = c).

• BcMat(n,N,eval,L): Generates a matrix of boundary evaluations (B in (S1-38))

given the highest order of the linear differential equation, n, N , the evaluation

point, eval, and the linear operator to be applied at that point (Dirichlet, Neumann

or mixed).

• phys2cheb.m: Takes points in physical space (we refer to this as phys-space in this

text and our codes) and converts them to an array of spectral coefficients in the

basis of Chebyshev polynomials of the first kind (we refer to this as cheb-space in

this text and our codes) using [115, Eq. 12.4.16-17].
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• cheb2phys.m: Takes an array of spectral coefficients in the basis of Chebyshev

polynomials of the first kind, and coverts them to points in phys-space using [115,

Eq. 12.4.16-17].

• Matgen(n,N): The solution we solve for, û in (S1-38), is a vector of spectral coef-

ficients of the highest derivatives in the differential equation (S1-27). However, in

most cases we need spectral coefficients of the lowest derivative, i.e., the variable

itself ((S1-28) with i = 0). We use matrices generated from this routine to get

to lower derivatives. Suppose we generate [J,K,E] = Matgen(n,N), then J contains

matrices corresponding to (S1-6), K corresponding to (S1-29), and the matrices

in E are the ones needed to go to lower derivatives (E uses both J and K). For

instance, to integrate n times, we multiply the solution [ûT cT ]T from (S1-38)

with E{n+1}; see Code 7.1.

In addition to these primary functions, we provide the following auxiliary functions

that are useful in certain applications:

• ChebMat2CellMat Takes a matrix of size mN × n, and returns a cell of arrays of

size m× n, each element in the cell is a vector representing a function in y.

• AdjointFormal Takes a linear operator or a block matrix operator and returns the

formal adjoint.

• keepConverged Takes in eigenvalues, eigenvectors, and N , and returns those eigen-

values and eigenvectors that have converged to machine precision.

• MultOps Gives the composition of two linear (block) matrix operators of compat-

ible dimensions.

• integ Integrates a function in phys-space.

• ChebEval Evaluates a function in cheb-space at points in the domain.

Listing 7.1: Problems with the reaction-diffusion equation, solving for a forcing to the

system and eigenvalues and frequency responses of the system.

% Set problem data
% number of basis functions, differential order, spatial variable, parameters
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N = 63; % N has to be an odd number
m = 2; % order of differential operator
y = sety(N); % spatially-independent variable

% parameter eps in TPBVP
eps = 1; eps2 = eps*eps;

% Represent operator in TPBVP
Delta = cell(m+1,1); % cell array with coefficients
Delta{1} = 1.0; Delta{2} = 1./(y.^2 + 1); Delta{3} = -eps2;

% Input in physical space
d = 1 + y + y.^2;

% Dirichlet BCs
bc1 = BCs(2,1); % two constraints on one variable
% Identity operator
I = cell(1,1); % cell array with coefficients
I{1} = 1.0;

% Dirichlet BCs at y = \pm 1
bc1.Operator = {I; I}; % boundary operator
bc1.Points = [1; -1]; % boundary points
bc1.Values = [1; -1]; % BCs at the boundaries ([0; 0] for homogeneous BCs)

% Neumann BCs
bc2 = BCs(2,1); % two constraints on one variable
% 1st derivative operator: 1.0 Dy + 0.0 I
Dy = cell(2,1); % cell array with coefficients
Dy{1} = 1.0; Dy{2} = 0.0;

% Neumann BCs at y = \pm 1
bc2.Operator = {Dy; Dy};
bc2.Points = [1; -1];
bc2.Values = [2; -2];

% Robin BCs
bc3 = BCs(2,1); % two constraints on one variable
% Operator 4 Dy + 3 I
Op = cell(2,1); % cell array with coefficients
Op{1} = 4; Op{2} = 3;

% Robin BCs at y = \pm 1
bc3.Operator = {Op; Op};
bc3.Points = [1; -1];
bc3.Values = [3; -3];

% Use sisSolves to solve TPBVP
% inputs to sisSolve: differential order m, N, operator, BCs, input forcing d
solution1 = sisSolves(m,N,Delta,bc1,d); % Dirichlet BCs
solution2 = sisSolves(m,N,Delta,bc2,d); % Neumann BCs
solution3 = sisSolves(m,N,Delta,bc3,d); % Robin BCs

% Visualize solution for Dirichlet BCs
plot(y,solution1);
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% Compare with Chebfun
A = chebop([-1 1]);
yc = chebfun(’y’);
A.op = @(y,u) diff(u,2) + (1/(yc^2 + 1))*diff(u) - eps2*u;
A.lbc = @(u) u + 1;
A.rbc = @(u) u - 1;
solcDir = A\(1+yc+yc^2);

% Visualize solution for Dirichlet BCs
plot(y,solution1,’-b’,yc,solcDir,’--r’);
xlabel(’$y$’);
ylabel(’$\phi (y)$’);
legend(’SISMatlab’,’Chebfun’,’location’,’northwest’);
print(’-painters’,’-dsvg’,’../docs/pics/cod1Dir’);

% Visualize solution for Neumann BCs
A.lbc = @(u) diff(u) + 2;
A.rbc = @(u) diff(u) - 2;
solcNeu = A\(1+yc+yc^2);
plot(y,solution2,’-b’,yc,solcNeu,’--r’);
xlabel(’$y$’);
ylabel(’$\phi (y)$’);
legend(’SISMatlab’,’Chebfun’,’location’,’north’);
print(’-painters’,’-dsvg’,’../docs/pics/cod1Neu’);

% Visualize solution for Robin BCs
A.lbc = @(u) 4*diff(u) + 3*u + 3;
A.rbc = @(u) 4*diff(u) + 3*u - 3;
solcRob = A\(1+yc+yc^2);
plot(y,solution3,’-b’,yc,solcRob,’--r’);
xlabel(’$y$’);
ylabel(’$\phi (y)$’);
legend(’SISMatlab’,’Chebfun’,’location’,’northwest’);
print(’-painters’,’-dsvg’,’../docs/pics/cod1Rob’);

Spatially varying coefficients

Spatially varying coefficients are accounted using an expression for product of Chebyshev

polynomials detailed in (S1-31) (see [26, Section 2.2]). Spatially varying coefficients are

accounted using MultMat.m, which generates a matrix for the expression in (S1-31). For

example, let us consider the solution of the following system:

Du(y) +
1

y2 + 1
u(y) = 0, (S1-39a)

u(−1) = 1. (S1-39b)
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Anaytical solution is given by [26, Eq. 2.12]:

u(y) = exp
(
−tan−1(y) − tan−1(1)

)
. (S1-39c)

Code 7.2 solves for u(y) in (S1-39a) and (S1-39b) using spectral integration.

Listing 7.2: Solving (S1-39a) with the boundary condition (S1-39b)

y = sety(N); % spatially-independent variable

% parameter eps in reaction-diffusion equation
eps = 1; eps2 = eps*eps;

% Represent operators Delta = D^2 - eps^2 I and I in e-value problem
Delta = cell(m+1,1); % cell array with coefficients
Delta{1} = 1.0; Delta{2} = 0; Delta{3} = -eps2;
I = cell(1,1); % Identity operator
I{1} = 1;

% The first derivative operator 1.0 Dy + 0.0
Dy = cell(2,1); Dy{1} = 1.0; Dy{2} = 0.0;

% Neumann boundary conditions at y = \pm 1
bc = BCs(2,1); % two constraints on one variable
bc.Operator = {Dy; Dy};
bc.Points = [1; -1];

% Use sisEig to conduct the eigenvalue decomposition
[V,lambda] = sisEigs(m,N,Delta,I,bc,10,’Full’);

%% Frequency responses
clear;
close all;
clc;

% Set problem data
% number of basis functions, differential order, spatial variable, parameters
N = 63; % N has to be an odd number
m = 2; % order of differential operator
y = sety(N); % spatially-independent variable

% parameter eps in TPBVP
eps = 1; eps2 = eps*eps;
% temporal frequency
omega = 0;

% Represent operators A, B, and C in the frequency response operator
A = cell(m+1,1); % cell array with coefficients
A{1} = -1.0; A{2} = 0; A{3} = 1i*omega + eps2;

% Identity operator
I = cell(1,1); I{1} = 1;

% Input and output operators B and C
B = I; C = I;
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% The first derivative operator 1.0 Dy + 0.0:
Dy = cell(2,1); Dy{1} = 1.0; Dy{2} = 0.0;

% Neumann boundary conditions at y = \pm 1
bc = BCs(2,1); % two constraints on one variable
bc.Operator = {Dy; Dy};
bc.Points = [1; -1];

% Solve
[Phi0Psi0,gamma] = sisSvdfrs(2,2,N,A,B,C,bc,bc);
plot(y,Phi0Psi0{1,2}/val_rbc(Phi0Psi0{1,2}));

The linearized Navier-Stokes equations in the descriptor form

We consider the eigenvalues of the linearized Navier-Stokes equations (see § 3.2.4 and

§ 3.3.3). This system is given by,
1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 0


︸ ︷︷ ︸

E

∂t


u

v

w

p

 =


∆
Re − i kx U −U ′ 0 −i , kx

0 ∆
Re − i kx U 0 −∂y

0 0 ∆
Re − i kx U −i kz

i kx ∂y i kz 0


︸ ︷︷ ︸

F


u

v

w

p

 ,

(S1-40a)

+


1 0 0

0 1 0

0 0 1

0 0 0


︸ ︷︷ ︸

B


dx

dy

dz

 , (S1-40b)


u

v

w

 =


1 0 0 0

0 1 0 0

0 0 1 0


︸ ︷︷ ︸

C


u

v

w

p

 , (S1-40c)

with boundary conditions u(±1) = v(±1) = w(±1) = v′(±1) = 0 (the boundary

condition v′(±1) = 0 is derived in § 3.3.3 ). Note that pressure is expressed with a

highest derivative of 2 as discussed in § 3.3.3. The boundary conditions are expressed
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Figure S1: Comparing analytical and numerical solutions to (S1-39) from Code 7.2.
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as 

Q(1, I) Q(1, Z) Q(1, Z) Q(1, Z)

Q(1, Z) Q(1, I) Q(1, Z) Q(1, Z)

Q(1, Z) Q(1, Z) Q(1, I) Q(1, Z)

Q(1, Z) Q(1,D) Q(1, Z) Q(1, Z)

Q(−1, I) Q(−1, Z) Q(−1, Z) Q(−1, Z)

Q(−1, Z) Q(−1, I) Q(−1, Z) Q(−1, Z)

Q(−1, Z) Q(−1, Z) Q(−1, I) Q(−1, Z)

Q(−1, Z) Q(−1,D) Q(−1, Z) Q(−1, Z)




u(y)

v(y)

w(y)

p(y)

 = 0, (S1-40d)

where Q(a, L) is an evaluation operator that evaluates the action of the linear operator

L on a variable at a point y = a. The generalized eigenvalues of the operators (F , E)

yield eigenvalues of (S1-40). As discussed in § 3.3, the norm of the resolvent operator,

A−1(ω) = (i ωE − F)−1 can be computed using a feedback interconnected system,[
0 BB†

C†C 0

][
φ

ψ

]
= γ

[
A 0

0 A†

][
φ

ψ

]
, (S1-41)

where γ = ±σ are the singular values and the maximum singular value is the resol-

vent norm of (S1-40), φ = [u v w p ]T in (S1-40), and ψ are the adjoint variables

corresponding to φ.

Finally, the maximum singular value over all ω ∈ R is computed using the fast

algorithm by Bruinsma and Steinbuch [78]. The Matlab code for these different problems

concerning the linearized Navier-Stokes equations is given in Code 7.3.

Figure S2 shows plots generated from Code 7.3. Figure S2a shows the eigenvalues

for the case of plane Poiseuille flow with Re = 2000, kx = kz = 1 (also see Figure 3.10a).

Figure S2b shows the largest (σ0) and the second largest (σ1) singular values calculated

from (S1-41). The singular values computed in Figure S2b are in agreement with [6,

Figure 4.10].

Listing 7.3: Solving for the eigenvalues, resolvent norms, and the H∞-norm of (S1-40)

% Eigenvalues and frequency responses of LNS

%% Eigenvalues
clear;
clc;
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close all;
N = 127;
[~,~,J] = Matgen(2,N);
y = sety(N);

% Set parameters:
Re = 2000;
kx = 1;
kz = 1;
U = 1-y.^2; % Poiseuille flow.
Uy = -2*y;

% Make operators: identity, zero, and first derivative operator:
I = cell(1,1); I{1} = 1; Z = cell(1,1); Z{1} = 0;
Dy = cell(2,1); Dy{1} = 1; Dy{2} = 0;

% Make the diagonal of F:
k2 = kx*kx + kz *kz;
F11 = cell(3,1);
F11{1} = 1/Re;
F11{2} = 0;
F11{3} = (-k2/Re) - 1i*kx*U;

% Make other operators for F12, F14 etc.
F12 = cell(1,1) ; F12{1} = -Uy;
F14 = cell(1,1); F14{1} = -1i*kx;
F24 = cell(2,1); F24{1} = -1; F24{2} = 0;
F34 = cell(1,1); F34{1} = -1i*kz;
F41 = cell(1,1); F41{1} = 1i*kx;
F42 = cell(2,1); F42{1} = 1; F42{2} = 0;
F43 = cell(1,1); F43{1} = 1i*kz;

% Make the operator:

F = {F11, F12, Z, F14;...
Z, F11, Z, F24;...
Z, Z, F11, F34;...
F41, F42, F43, Z};

% Make E:
E = {I, Z, Z, Z;...

Z, I, Z, Z;...
Z, Z, I, Z;...
Z, Z, Z, Z};

% Make boundary conditions matrix:
bcOp = {I,Z,Z,Z;...

Z,I,Z,Z;...
Z,Z,I,Z;...
Z,Dy,Z,Z;
I,Z,Z,Z;...
Z,I,Z,Z;...
Z,Z,I,Z;...
Z,Dy,Z,Z};

bcPoints = [ones(4,4); % as first 4 rows for bc at y = 1,
-ones(4,4)]; % next four rows for y = -1.

% Differential orders of u, v, w, and p:
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(a) (b)

Figure S2: Eigenvalues and frequency responses of the linearized Navier equations in
plane Poiseuille flow with Re = 2000 and kx = kz = 1, generated from Code 7.3. The
spectral integration method with N = 91 basis functions is used. (a) Spectrum resulting
from the use of the descriptor formulation, and (b) two largest singular values of the
frequency response operator computed using Code 7.3. A reference for this plot is found
in [6, Figure 4.10].

n = [2,2,2,2];

% Make boundary conditions matrix
M = BcMat(n,N,bcPoints,bcOp);

% Find null space of M:
M_null = null(M);

% Find eigenvalues
F = Discretize(n,N,F)*M_null;
E = Discretize(n,N,E)*M_null;
[~,evals] = eig(F,E);

plot(real(evals),imag(evals),’xk’);
ylabel(’$\mathrm{Im}(\lambda)$’);
xlabel(’$\mathrm{Re}(\lambda)$’);
ax = gca;
ax.XLim = [-2,0];
ax.YLim = [-1,-0.2];
ax.YTick = [-1 -0.8 -0.6 -0.4 -0.2];
ax.XTick = [-2 -1.5 -1 -0.5 0];
print(’-painters’,’-dsvg’,’../docs/pics/Code5_1’);

%% Frequency responses
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S1.4 Recurrence relations

Consider the expression for the highest derivative of a second-order differential equation

in a Chebyshev basis,

D2u(y) = u
(2)
0

1
2T0(y) + u

(2)
1 T1(y) + u

(2)
2 T2(y) + u

(2)
3 T3(y) + · · · . (S1-42)

Relation of Chebyshev polynomials with derivatives is given by [101, Equation 3.25]

T0(y) = T ′1(y), (S1-43a)

T1(y) = 1
4 T
′
2(y), (S1-43b)

Tn(y) = 1
2

(
T ′n+1(y)

n+ 1
−
T ′n−1(y)

n− 1

)
, n > 1. (S1-43c)

Substuting (S1-43) in (S1-42) and making an indefinite integration on the resultant

expression yields,

D v(y) =
u

(2)
0

2
y +

u
(2)
1

2
y2 +

u
(2)
2

2

(
T3(y)

3
− T1(y)

1

)
+
u

(2)
3

2

(
T4(y)

4
− T2(y)

2

)
+
u

(2)
4

2

(
T5(y)

5
− T3(y)

3

)
+ · · ·+ c0,

(S1-44)

where c0 is the effective integration constant. As y2 = (T0(y) + T2(y))/2, (S1-44) takes
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the form:

D v(y) =
u

(2)
0

2
y +

u
(2)
1

2

(
T0(y) + T1(y)

2

)
+
u

(2)
2

2

(
T3(y)

3
− T1(y)

1

)
+
u

(2)
3

2

(
T4(y)

4
− T2(y)

2

)
+
u

(2)
4

2

(
T5(y)

5
− T3(y)

3

)
+ · · ·+ c0,

(S1-45)

= T1(y)

(
u

(2)
0

2
− u

(2)
2

2

)
︸ ︷︷ ︸

u
(1)
1

+T2(y)

(
u

(2)
1

4
− u

(2)
3

4

)
︸ ︷︷ ︸

u
(1)
2

+T3(y)

(
u

(2)
2

6
− u

(2)
2

6

)
︸ ︷︷ ︸

u
(1)
3

+ · · ·+ u
(2)
1

4︸︷︷︸
u
(1)
0 /2

+ c0.

(S1-46)

Hence we have from (S1-46),

D v(y) = u
(1)
0

1
2T0(y) + u

(1)
1 T1(y) + u

(1)
2 T2(y) + u

(1)
3 T3(y) + · · · + c0, (S1-47)

where u
(1)
0 = u

(2)
1 /2 and the remaining coefficients for u

(1)
i from the recursive relation

in (S1-5).
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