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Abstract

First-order optimization algorithms are increasingly used for data-driven control and many
learning applications that often involve uncertain and noisy environments. In this thesis,
we employ control-theoretic tools to study the stochastic performance of these algorithms in
solving general (strongly) convex and some nonconvex optimization problems that arise in
reinforcement learning and control theory.

In particular, we first study momentum-based accelerated optimization algorithms in
which the iterations utilize information from the two previous steps and are subject to
additive white noise. This class of algorithms includes Polyak’s heavy-ball and Nesterov’s
accelerated methods as special cases and noise accounts for uncertainty in either gradient
evaluation or iteration updates. For unconstrained, smooth, strongly convex optimization
problems, we examine the mean-squared error in the optimization variable to quantify noise
amplification. By leveraging the theory of Lyapunov and integral quadratic constraints, we
establish an upper bound on the noise amplification of Nesterov’s method with standard
parameters that is tight up to a constant factor. We also use strongly convex quadratic
problems to identify fundamental tradeoffs between noise amplification and convergence rate
for the two-step momentum algorithms. For this class of problems, we explicitly evaluate the
steady-state variance of the optimization variable in terms of the eigenvalues of the Hessian of
the objective function. We also introduce a novel geometric characterization of conditions for
linear convergence that clarifies the relation between the noise amplification and convergence
rate as well as their dependence on the condition number and the constant algorithmic
parameters. This geometric insight leads to simple alternative proofs of standard convergence
results and allows us to establish analytical lower bounds on the product between the settling
time and noise amplification that scale quadratically with the condition number. Our analysis
also identifies a key difference between the gradient and iterate noise models: while the
amplification of gradient noise can be made arbitrarily small by sufficiently decelerating the
algorithm, the best achievable variance amplification for the iterate noise model increases
linearly with the settling time in the decelerated regime. We also characterize the impact of
condition number on worst-case transient responses of popular accelerated algorithms and
examine the noise amplification of a class of primal-dual gradient flow dynamics based on
the proximal augmented Lagrangian that can be used for non-smooth convex constrained
optimization problems.

We next focus on model-free reinforcement learning which attempts to find an optimal
control action for an unknown dynamical system by directly searching over the parameter
space of controllers. The convergence behavior and statistical properties of these approaches
are often poorly understood because of the nonconvex nature of the underlying optimization
problems and the lack of exact gradient computation. In this thesis, we take a step towards
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demystifying the performance and efficiency of such methods by focusing on the standard
linear quadratic regulator (LQR) with unknown state-space parameters. For this problem,
we establish exponential stability for the ordinary differential equation (ODE) that governs
the gradient-flow dynamics over the set of stabilizing feedback gains and show that a sim-
ilar result holds for the standard gradient descent. We also provide theoretical bounds on
the convergence rate and sample complexity of the random search method with two-point
gradient estimates. We prove that in the model-free setup, the required simulation time and
the total number of function evaluations both scale with the logarithm of the inverse of the
desired accuracy. The key enabler of our results is the PL condition that holds for the LQR
problem both in continuous and discrete time. We finish the thesis by showing the absence of
this condition for the linear quadratic Gaussian problem with incomplete state information.
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Chapter 1

Introduction

First-order methods are well suited for solving a broad range of optimization problems that
arise in statistics, signal and image processing, control, and machine learning [1]–[5]. Among
these algorithms, accelerated methods enjoy the optimal rate of convergence and they are
popular because of their low per-iteration complexity. There is a large body of literature
dedicated to the convergence analysis of these methods under different stepsize selection
rules [4]–[9]. In many applications, however, these algorithms are brought into uncertain
and noisy environments and they may only be used with limited time budgets.

For example, the exact value of the gradient is often not fully available or noise may
corrupt the iterates of the algorithm due to uncertain communication. This happens when
the objective function is obtained via costly simulations (e.g., tuning of hyper-parameters in
supervised/unsupervised learning [10]–[12] and model-free optimal control [13]–[15]), when
evaluation of the objective function relies on noisy measurements (e.g., embedded and real-
time applications), or when the noise is due to communication between different agents (e.g.,
distributed computation over networks). Another related application arises in the context of
(batch) stochastic gradient, where at each iteration the gradient of the objective function is
computed from a small batch of data points. Such a batch gradient is known to be a noisy
unbiased estimator for the gradient of the training loss. Moreover, additive noise may be
introduced deliberately in the context of nonconvex optimization to help the iterates escape
saddle points and improve generalization [16], [17].

In addition to uncertainty, many emerging applications [18], [19] that arise in modern
Reinforcement Learning (RL) involve optimization landscapes that lack convexity. In these
applications control-oriented models are not readily available and classical approaches from
optimal control may not be directly applicable. In spite of these challenges, model-free RL
approaches that rely on first-order optimization algorithms and prescribe control actions us-
ing estimated values of a cost function achieve empirical success in a variety of domains [20],
[21]. Unfortunately, however, our mathematical understanding of these algorithms is still in
its infancy and there are many open questions surrounding convergence and sample com-
plexity.

Motivated by these observations, in this dissertation, we first use control theoretic tools
to analyze the stochastic performance and transient response of accelerated optimization
algorithms for smooth strongly convex problems and identify fundamental tradeoffs between
convergence rate and noise amplification. Then, we turn our attention to the performance
of first-order methods in model-free RL and focus on the infinite-horizon Linear Quadratic
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Regulator (LQR) problem. In spite of the lack of convexity, we establish linear convergence
of gradient descent and examine the convergence and sample complexity of the random
search method [22] that attempts to emulate the behavior of gradient descent via gradient
approximations resulting from evaluating random estimates of the objective function.

1.1 Main topics
In this section, we discuss the main topics of the dissertation.

1.1.1 Noise amplification of accelerated optimization algorithms

There is a vast body of literature that considers the robustness of first-order accelerated
optimization algorithms under different types of noisy/inexact gradient oracles [23]–[28].
For example, in a deterministic noise scenario, an upper bound on the error in iterates for
accelerated proximal gradient methods was established in [29]. This study showed that both
proximal gradient and its accelerated variant can maintain their convergence rates provided
that the noise is bounded and that it vanishes fast enough. Moreover, it has been shown that
in the presence of random noise, with the proper diminishing stepsize, acceleration can be
achieved for general convex problems. However, in this case optimal rates are sub-linear [30].

In the context of stochastic approximation, while early results suggest to use a stepsize
that is inversely proportional to the iteration number [24], a more robust behavior can
be obtained by combining larger stepsizes with averaging [25], [31]–[33]. Utility of these
averaging schemes and their modifications for solving quadratic optimization and manifold
problems has been examined thoroughly in recent years [34]–[36]. Moreover, several studies
have suggested that accelerated first-order algorithms are more susceptible to errors in the
gradient compared to their non-accelerated counterparts [26], [27], [29], [37]–[39].

One of the basic sources of error that arises in computing the gradient can be modeled
by additive white stochastic noise. This source of error is typical for problems in which
the gradient is being sought through measurements of a real system [40] and it has a rich
history in analysis of stochastic dynamical systems and control theory [41]. Moreover, in
many applications including distributed computing over networks [42], [43], coordination in
vehicular formations [44], [45], and control of power systems [46]–[48], additive white noise is
a convenient abstraction for the robustness analysis of distributed control strategies [43] and
of first-order optimization algorithms [49], [50]. Motivated by this observation, we consider
the scenario in which a white stochastic noise with zero mean and identity covariance is
added to the iterates of standard first-order algorithms: gradient descent, Polyak’s heavy-
ball method, and Nesterov’s accelerated algorithm. By focusing on smooth strongly convex
problems, we use control theoretic tools to provide a tight quantitative characterization for
the mean-squared error of the optimization variable. Since this quantity provides a measure
of how noise gets amplified by the dynamics resulting from optimization algorithms, we also
refer to it as noise (or variance) amplification.
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1.1.2 Tradeoffs between noise amplification and convergence rate

While convergence properties of accelerated algorithms have been carefully studied [6], [9],
[51]–[56], their performance and fundamental limitations in the presence of noise has received
less attention [10]–[12], [57], [58]. Prior studies indicate that inaccuracies in the computa-
tion of gradient values can adversely impact the convergence rate of accelerated methods
and that gradient descent may have advantages relative to its accelerated variants in noisy
environments [23]–[26], [28]. In this dissertation, we consider the class of first-order methods
with constant parameters in which the iterations involve information from the two previous
steps. This class includes heavy-ball and Nesterov’s accelerated algorithms as special cases
and we examine its stochastic performance in the presence of additive white noise.

For strongly convex quadratic problems, we establish analytical lower bounds on the
product of the settling time and the steady-state variance of the error in the optimization
variable that hold for any constant stabilizing parameters and for both gradient and iter-
ate noise models. Our lower bounds reveal a fundamental limitation posed by the problem
condition number for this class of algorithms. Our results build upon a simple, yet power-
ful geometric viewpoint, which clarifies the relation between condition number, convergence
rate, and algorithmic parameters for strongly convex quadratic problems. This viewpoint
allows us to present alternative proofs for the optimal convergence rate of the two-step mo-
mentum algorithm [59], [60] and that of the standard gradient descent, heavy-ball method,
and Nesterov’s accelerated algorithm [52]. In addition, this viewpoint enables a novel geo-
metric characterization of noise amplification in terms of stability margins and it allows us
to precisely quantify tradeoffs between convergence rate and robustness to noise.

1.1.3 Transient growth of accelerated optimization algorithms

In addition to deterioration of robustness in the face of uncertainty, asymptotically stable
accelerated algorithms may also exhibit undesirable transient behavior [61]. This is in con-
trast to gradient descent which is a contraction for strongly convex problems with suitable
stepsize [62]. In real-time optimization and in applications with limited time budgets, the
transient growth can limit the appeal of accelerated methods. In addition, first-order meth-
ods are often used as a building block in multi-stage optimization including ADMM [63] and
distributed optimization methods [64]. In these settings, at each stage we can perform only
a few iterations of first-order updates on primal or dual variables and transient growth can
have a detrimental impact on the performance of the entire algorithm. This motivates an
in-depth study of the behavior of accelerated first-order methods in non-asymptotic regimes.
It is widely recognized that large transients may arise from the presence of resonant modal
interactions and non-normality of linear dynamical generators [65]. Even in the absence
of unstable modes, these can induce large transient responses, significantly amplify exoge-
nous disturbances, and trigger departure from nominal operating conditions. For example,
in fluid dynamics, such mechanisms can initiate departure from stable laminar flows and
trigger transition to turbulence [66], [67].

To quantify the transient behavior of accelerated algorithms, we examine the ratio of the
largest error in the optimization variable to the initial error. For convex quadratic problems,
these algorithms can be cast as a linear time-invariant (LTI) system and modal analysis of
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the state-transition matrix can be performed. For both accelerated algorithms, we identify
non-normal modes that create large transient growth, derive analytical expressions for the
state-transition matrices, and establish bounds on the transient response in terms of the
convergence rate and the iteration number. We show that both the peak value of the transient
response and the rise time to this value increase with the square root of the condition number
of the problem. Moreover, for general strongly convex problems, we combine a Lyapunov-
based approach with the theory of Integral Quadratic Constraints (IQCs) to establish similar
upper bound on the transient response of Nesterov’s accelerated algorithm.

1.1.4 Noise amplification of primal-dual gradient flow dynamics
based on proximal augmented Lagrangian

We consider a class of primal-dual gradient flow dynamics based on proximal augmented
Lagrangian [68] that can be used for solving large-scale nonsmooth constrained optimization
problems in continuous time. These problems arise in many areas e.g. signal processing [69],
statistical estimation [70], and control [71]. In addition, primal-dual methods have received
renewed attention due to their prevalent application in distributed optimization [72] and their
convergence and stability properties have been greatly studied [73]–[79]. While gradient-
based methods are not readily applicable to nonsmooth optimization, we can utilize their
proximal variants to address such problems [80]. In the context of nonsmooth constrained
optimization, proximal-based extensions of primal-dual methods can also be obtained using
the augmented Lagrangian [68], which preserve structural separability and remain suitable
for distributed optimization.

We extend our analysis of noise amplification to the primal-dual flow subject to additive
white noise. We examine the mean-squared error of the primal optimization variable as a
measure of how noise gets amplified by the dynamics. For convex quadratic optimization
problems, the primal-dual flow becomes a linear time invariant system, for which the noise
amplification can be characterized using Lyapunov equations. For non-quadratic problems,
the flow is no longer linear, however, tools from robust control theory can be utilized to
quantify upper bounds on the noise amplification. In particular, we use IQCs [81], [82]
to characterize upper bounds on the noise amplification of the primal-dual flow based on
proximal augmented Lagrangian using solutions to a certain linear matrix inequality. Our
results establish tight upper-upper bounds on the noise amplification that are inversely
proportional to the strong-convexity module of the corresponding objective function.

1.1.5 Gradient methods for model-free linear quadratic regulator

In many emerging applications, control-oriented models are not readily available and classical
approaches from optimal control may not be directly applicable. This challenge has led to the
emergence of Reinforcement Learning (RL) approaches that often perform well in practice.
Examples include learning complex locomotion tasks via neural network dynamics [18] and
playing Atari games based on images using deep-RL [19]. In spite of the empirical success
of RL in a variety of domains, our mathematical understanding of it is still in its infancy
and there are many open questions surrounding convergence and sample complexity. In this
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dissertation, we take a step towards answering such questions with a focus on the infinite-
horizon Linear Quadratic Regulator (LQR) for continuous-time systems.

The LQR problem is the cornerstone of control theory. The globally optimal solution can
be obtained by solving the Riccati equation and efficient numerical schemes with provable
convergence guarantees have been developed [83]. However, computing the optimal solution
becomes challenging for large-scale problems, when prior knowledge is not available, or in the
presence of structural constraints on the controller. This motivates the use of direct search
methods for controller synthesis. Unfortunately, the nonconvex nature of this formulation
complicates the analysis of first- and second-order optimization algorithms. To make matters
worse, structural constraints on the feedback gain matrix may result in a disjoint search
landscape limiting the utility of conventional descent-based methods [84]. Furthermore, in
the model-free setting, the exact model (and hence the gradient of the objective function) is
unknown so that only zeroth-order methods can be used.

We study the sample complexity and convergence of random search method for the
infinite-horizon LQR problem. For the continuous-time LQR, we employ a standard convex
reparameterization [85], [86] to establish exponential stability of the ODE that governs the
gradient-flow dynamics over the set of stabilizing feedback gains, and linear convergence of
the gradient descent algorithm with a suitable stepsize for the nonconvex formulation. In
the model-free setting, we also examine convergence and sample complexity of the random
search method [22] that attempts to emulate the behavior of gradient descent via gradient
approximations resulting from objective function values. For the discrete-time LQR, global
convergence guarantees were recently provided in [13] for gradient decent and the random
search method with one-point gradient estimates. For the two-point gradient estimation
setting, we prove linear convergence of the random search method and show that the total
number of function evaluations and the simulation time required in our results scale with
the logarithm of the inverse of the desired accuracy in both continuous and discrete time.

1.1.6 Optimization landscape of the linear Quadratic Gaussian

Among model-free RL approaches, simple random search achieves a logarithmic complexity
if one can access the so-called two-point gradient estimates [14], [87]. These results build
on the fact that the gradient descent itself achieves linear convergence for both discrete [13]
and continuous-time LQR problems [88] despite lack of convexity. A key enabler for these
results is the so-called gradient dominance property of the underlying optimization problem
that can be used as a surrogate for strong convexity [89].

Motivated by this observation, we study the convergence of gradient descent for the Linear
Quadratic Gaussian (LQG) problem with incomplete state information. The separation
principle states that the solution to the LQG problem is given by an observer-based controller,
which consists of a Kalman filter and the corresponding LQR solution. This problem is also
closely related to the output-feedback problem for distributed control, which is known to
be fundamentally more challenging than LQR. In particular, the output-feedback problem
has been shown to involve an optimization domain with exponential number of connected
components [84], [90]. In contrast, the standard LQG problem allows for dynamic controllers
and do not impose structural constraints on the controller.
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We reformulate the LQG problem as a joint optimization of the control and observer
feedback gains whose domain, unlike the output feedback problem is connected. We derive
analytical expressions for the gradient of the LQG cost function with respect to gain matrices
and demonstrate through examples that LQG does not satisfy the gradient dominance prop-
erty. In particular, we show that, in addition to the global solution, the gradient vanishes at
the origin for open-loop stable systems. Our study disproves global exponential convergence
of policy gradient methods for LQG.

1.2 Dissertation structure
This dissertation consists of two main parts that each focuses on a specific topic and includes
individual chapters that study relevant subjects. Each chapter is self contained in that it
provides introduction, preliminaries and background material, problem formulation, method-
ology, technical results, and concluding remarks. Proofs of technical results are relegated to
the corresponding appendices.

Part I

We study the stochastic performance of two-step momentum algorithms with additive white
noise that accounts for uncertainty in either gradient evaluation or iteration updates. For
smooth, strongly convex optimization problems, we examine the mean-squared error in the
optimization variable to quantify noise amplification. By leveraging the theory of Lyapunov
and integral quadratic constraints, we establish an upper bound on the noise amplification
of Nesterov’s method with standard parameters that is tight up to a constant factor. We
also use strongly convex quadratic problems to identify fundamental tradeoffs between noise
amplification and convergence rate for the two-step momentum algorithms. We use modal
decomposition to introduce a novel geometric characterization of conditions for linear con-
vergence that clarifies the relation between the noise amplification and convergence rate as
well as their dependence on the condition number and the constant algorithmic parameters.
This geometric insight leads to simple alternative proofs of standard convergence results and
allows us to establish analytical lower bounds on the product between the settling time and
noise amplification that scale quadratically with the condition number. We also characterize
the impact of condition number on worst-case transient responses of popular accelerated
algorithms, and examine the noise amplification of a class of primal-dual gradient flow dy-
namics based on proximal augmented Lagrangian that can be used for non-smooth convex
constrained optimization problems.

Part II

In the second part, we focus on model-free reinforcement learning which attempts to find
an optimal control action for an unknown dynamical system by directly searching over the
parameter space of controllers. The convergence behavior and statistical properties of these
approaches are often poorly understood because of the nonconvex nature of the underlying
optimization problems and the lack of exact gradient computation. In this thesis, we take
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a step towards demystifying the performance and efficiency of such methods by focusing on
the standard infinite-horizon linear quadratic regulator problem with unknown state-space
parameters. We establish exponential stability for the ordinary differential equation (ODE)
that governs the gradient-flow dynamics over the set of stabilizing feedback gains and show
that a similar result holds for the standard gradient descent. We also provide theoretical
bounds on the convergence rate and sample complexity of the random search method with
two-point gradient estimates. We prove that in the model-free setup, the required simulation
time and the total number of function evaluations both scale with the logarithm of the inverse
of the desired accuracy. The key enabler of our results is the PL condition that holds for
the LQR problem both in continuous and discrete time. We finish the thesis by showing the
absence of this condition for the linear quadratic Gaussian problem with incomplete state
information.

1.3 Contributions of the dissertation
In this section, we provide a summary of the main contributions of each part. The chapters
presented here are a reproduction of the materials that have been (or are still under review
to be) published in journals and conference proceedings. We have made only some minor
changes that were necessary to meet the guidelines for this document.

Part I

Noise amplification of accelerated algorithms

We study the robustness of noisy heavy-ball and Nesterov’s accelerated methods for smooth,
strongly convex optimization problems. Even though the underlying dynamics of these al-
gorithms are in general nonlinear, we establish upper bounds on noise amplification that are
accurate up to constant factors. For quadratic objective functions, we provide analytical
expressions that quantify the effect of all eigenvalues of the Hessian matrix on variance am-
plification. We use these expressions to establish lower bounds demonstrating that although
the acceleration techniques improve the convergence rate they significantly amplify noise for
problems with large condition numbers κ. In problems of size n� κ, the noise amplification
increases from O(κ) to Ω(κ3/2) when moving from standard gradient descent to accelerated
algorithms. We specialize our results to the problem of distributed averaging over noisy
undirected networks and also study the role of network size and topology on robustness of
accelerated algorithms [91]–[93].

Tradeoffs between convergence rate and noise amplification

We examine the amplification of stochastic disturbances for a class of two-step momentum
algorithms in which the iterates are perturbed by an additive white noise. This class of
algorithms includes Polyak’s heavy-ball and Nesterov’s accelerated methods as special cases
and noise arises from uncertainties in gradient evaluation or in computing the iterates. For
both gradient and iterate noise models, we establish lower bounds on the product of the
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settling time and the smallest/largest steady-state variance of the error in the optimization
variable among the class of strongly convex quadratic optimization problems. Our bounds
scale quadratically with the condition number for all stabilizing parameters, which reveals
a fundamental limitation imposed by the condition number in designing algorithms that
tradeoff noise amplification and convergence rate. In addition, we provide a novel geometric
viewpoint of stability and linear convergence. This viewpoint brings insight into the relation
between noise amplification, convergence rate, and algorithmic parameters. It also allows us
to (i) take an alternative approach to optimizing convergence rates for standard algorithms;
(ii) identify key similarities and differences between the iterate and gradient noise models;
and (iii) introduce parameterized families of algorithms for which the parameters can be
continuously adjusted to tradeoff noise amplification and settling time. By utilizing positive
and negative momentum parameters in accelerated and decelerated regimes, respectively, we
demonstrate that a parameterized family of heavy-ball-like algorithms can achieve order-wise
Pareto optimality for all settling times and both noise models. We also extend our analysis
to continuous-time dynamical systems that can be discretized via an implicit-explicit Euler
scheme to obtain the two-step momentum algorithm. For such gradient flow dynamics,
we show that similar fundamental stochastic performance limitations hold as in discrete
time [94], [95].

Transient growth of accelerated algorithms

We examine the impact of acceleration on the transient responses of popular first-order
optimization algorithms. Without imposing restrictions on initial conditions, we establish
bounds on the largest value of the Euclidean distance between the optimization variable and
the global minimizer. For convex quadratic problems, we utilize the tools from linear systems
theory to fully capture transient responses and for general strongly convex problems, we
employ the theory of integral quadratic constraints to establish an upper bound on transient
growth. This upper bound is proportional to the square root of the condition number and
we identify quadratic problem instances for which accelerated algorithms generate transient
responses which are within a constant factor of this upper bound [96]–[98].

Noise amplification of primal-dual gradient flow dynamics based on
proximal augmented Lagrangian

We examine the noise amplification of proximal primal-dual gradient flow dynamics that
can be used to solve non-smooth composite optimization problems. For quadratic problems,
we employ algebraic Lyapunov equations to establish analytical expressions for the noise
amplification. We also utilize the theory of IQCs to characterize tight upper bounds in terms
of a solution to a linear matrix inequality. Our results show that stochastic performance of
the primal-dual dynamics is inversely proportional to the strong-convexity module of the
smooth part of the objective function [99].

Part II
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Random search for continuous-time LQR

We prove exponential/linear convergence of gradient flow/descent algorithms for solving
the continuous-time Linear Quadratic Regulator problem based on a nonconvex formulation
that directly searches for the controller. A salient feature of our analysis is that we relate
the gradient-flow dynamics associated with this nonconvex formulation to that of a convex
reparameterization. This allows us to deduce convergence of the nonconvex approach from
its convex counterpart. We also establish a bound on the sample complexity of the random
search method for solving the continuous-time LQR problem that does not require the knowl-
edge of system parameters. We prove that in the model-free setup with two-point gradient
estimates, the required simulation time and the total number of function evaluations both
scale with the logarithm of the inverse of the desired accuracy [14], [15], [88], [100], [101].

Random search for discrete-time LQR

We study the convergence and sample complexity of the random search method with two-
point gradient estimates for the discrete-time LQR problem. Despite nonconvexity, we es-
tablish that the random search method with a fixed number of roll-outs per iteration that is
proportional to the problem size requires a simulation time and the total number of function
evaluations that scale with the logarithm of the inverse of the desired accuracy [87].

Lack of gradient domination for LQG

Motivated by the recent results on the global exponential convergence of policy gradient
algorithms for the model-free LQR problem that rely on the so-called gradient dominance
property, we study the standard Linear Quadratic Gaussian problem as optimization over
controller and observer feedback gains. We present an explicit formula for the gradient and
demonstrate that for open-loop stable systems, in addition to the unique global minimizer,
the origin is also a critical point for the LQG problem, thus disproving the gradient dominance
property for this class of problems [102].
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Part I

Robustness of accelerated first-order optimization
algorithms for strongly convex optimization problems
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Chapter 2

Noise amplification of accelerated algorithms

In this chapter, we study the robustness of accelerated first-order algorithms to stochastic
uncertainties in gradient evaluation. Specifically, for unconstrained, smooth, strongly convex
optimization problems, we examine the mean-squared error in the optimization variable when
the iterates are perturbed by additive white noise. This type of uncertainty may arise in
situations where an approximation of the gradient is sought through measurements of a real
system or in a distributed computation over a network. Even though the underlying dynamics
of first-order algorithms for this class of problems are nonlinear, we establish upper bounds on
the mean-squared deviation from the optimal solution that are tight up to constant factors.
Our analysis quantifies fundamental tradeoffs between noise amplification and convergence
rates obtained via any acceleration scheme similar to Nesterov’s or heavy-ball methods.
To gain additional analytical insight, for strongly convex quadratic problems, we explicitly
evaluate the steady-state variance of the optimization variable in terms of the eigenvalues
of the Hessian of the objective function. We demonstrate that the entire spectrum of the
Hessian, rather than just the extreme eigenvalues, influence noise amplification. We specialize
this result to the problem of distributed averaging over undirected networks and examine
the role of network size and topology on the robustness of noisy accelerated algorithms.

2.1 Introduction
First-order methods are well suited for solving a broad range of optimization problems that
arise in statistics, signal and image processing, control, and machine learning [1]–[5]. Among
these algorithms, accelerated methods enjoy the optimal rate of convergence and they are
popular because of their low per-iteration complexity. There is a large body of literature
dedicated to the convergence analysis of these methods under different stepsize selection
rules [4]–[9]. In many applications, however, the exact value of the gradient is not fully
available, e.g., when the objective function is obtained via costly simulations (e.g., tuning
of hyper-parameters in supervised/unsupervised learning [10]–[12] and model-free optimal
control [13]–[15]), when evaluation of the objective function relies on noisy measurements
(e.g., real-time and embedded applications), or when the noise is introduced via communica-
tion between different agents (e.g., distributed computation over networks). Another related
application arises in the context of (batch) stochastic gradient, where at each iteration the
gradient of the objective function is computed from a small batch of data points. Such a
batch gradient is known to be a noisy unbiased estimator for the gradient of the training
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loss. Moreover, additive noise may be introduced deliberately in the context of nonconvex
optimization to help the iterates escape saddle points and improve generalization [16], [17].

In all above situations, first-order algorithms only have access to noisy estimates of the
gradient. This observation has motivated the robustness analysis of these algorithms under
different types of noisy/inexact gradient oracles [23]–[28]. For example, in a deterministic
noise scenario, an upper bound on the error in iterates for accelerated proximal gradient
methods was established in [29]. This study showed that both proximal gradient and its
accelerated variant can maintain their convergence rates provided that the noise is bounded
and that it vanishes fast enough. Moreover, it has been shown that in the presence of random
noise, with the proper diminishing stepsize, acceleration can be achieved for general convex
problems. However, in this case optimal rates are sub-linear [30].

In the context of stochastic approximation, while early results suggest to use a stepsize
that is inversely proportional to the iteration number [24], a more robust behavior can
be obtained by combining larger stepsizes with averaging [25], [31]–[33]. Utility of these
averaging schemes and their modifications for solving quadratic optimization and manifold
problems has been examined thoroughly in recent years [34]–[36]. Moreover, several studies
have suggested that accelerated first-order algorithms are more susceptible to errors in the
gradient compared to their non-accelerated counterparts [26], [27], [29], [37]–[39].

One of the basic sources of error that arises in computing the gradient can be modeled
by additive white stochastic noise. This source of error is typical for problems in which
the gradient is being sought through measurements of a real system [40] and it has a rich
history in analysis of stochastic dynamical systems and control theory [41]. Moreover, in
many applications including distributed computing over networks [42], [43], coordination in
vehicular formations [44], [45], and control of power systems [46]–[48], additive white noise
is a convenient abstraction for the robustness analysis of distributed control strategies [43]
and of first-order optimization algorithms [49], [50]. Motivated by this observation, in this
chapter we consider the scenario in which a white stochastic noise with zero mean and iden-
tity covariance is added to the iterates of standard first-order algorithms: gradient descent,
Polyak’s heavy-ball method, and Nesterov’s accelerated algorithm. By focusing on smooth
strongly convex problems, we provide a tight quantitative characterization for the mean-
squared error of the optimization variable. Since this quantity provides a measure of how
noise gets amplified by the dynamics resulting from optimization algorithms, we also refer
to it as noise (or variance) amplification. We demonstrate that our quantitative character-
ization allows us to identify fundamental tradeoffs between the noise amplification and the
rate of convergence obtained via acceleration.

This work builds on our recent conference papers [91], [92]. In a concurrent work [103],
a similar approach was taken to analyze the robustness of gradient descent and Nesterov’s
accelerated method. Therein, it was shown that for a given convergence rate, one can select
the algorithmic parameters such that the steady-state mean-squared error in the objective
value of a Nesterov-like method becomes smaller than that of gradient descent. This is not
surprising because gradient descent can be viewed as a special case of Nesterov’s method
with a zero momentum parameter. Using this argument, similar assertions have been made
about the variance amplification of the iterates . This observation has been used to design
an optimal multi-stage algorithm that does not require any information about the variance
of the noise [104]. On the contrary, we demonstrate that there are fundamental differences
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between these two robustness measures, i.e., objective values and iterates , as the former does
not capture the negative impact of acceleration in the presence of noise.

By confining our attention to the error in the iterates, we show that any choice of pa-
rameters for Nesterov’s or heavy-ball methods that yields an accelerated convergence rate
increases variance amplification relative to gradient descent. More precisely, for the prob-
lem with the condition number κ, an algorithm with accelerated convergence rate of at least
1− c/√κ, where c is a positive constant, increases the variance amplification in the iterates
by a factor of

√
κ. The robustness problem was also studied in [58] where the authors show

a similar behavior of Nesterov’s method and gradient descent in an asymptotic regime in
which the stepsize goes to zero. In contrast, we focus on the non-asymptotic stepsize regime
and establish fundamental differences between gradient descent and its accelerated variants
in terms of noise amplification.

More recently, the problem of finding upper bounds on the variance amplification was
cast as a semidefinite program [105]. This formulation provided numerical results that are
consistent with our theoretical upper bounds in terms of the condition number. In [105],
structured objective functions (e.g., diagonal Hessians) that arise in distributed optimization
were also studied and the problem of designing robust algorithms were formulated as a
bilinear matrix inequality (which, in general, is not convex).

Contributions

The effect of imperfections on the performance and robustness of first-order algorithms has
been studied in [27], [35] but the influence of acceleration on stochastic gradient perturbations
has not been precisely characterized. We employ control-theoretic tools suitable for analyzing
stochastic dynamical systems to quantify such influence and identify fundamental tradeoffs
between acceleration and noise amplification. The main contributions of this chapter are:

1. We start our analysis by examining strongly convex quadratic optimization problems
for which we can explicitly characterize variance amplification of first-order algorithms
and obtain analytical insight. In contrast to convergence rates, which solely depend
on the extreme eigenvalues of the Hessian matrix, we demonstrate that the variance
amplification is influenced by the entire spectrum.

2. We establish the relation between the noise amplification of accelerated algorithms and
gradient descent for parameters that provide the optimal convergence rate for strongly
convex quadratic problems. We also explain how the distribution of the eigenvalues of
the Hessian influences these relations and provide examples to show that acceleration
can significantly increase the noise amplification.

3. We address the problem of tuning the algorithm parameters and demonstrate the
existence of a fundamental tradeoff between convergence rate and noise amplification:
for problems with condition number κ and bounded dimension n, we show that any
choice of parameters in accelerated methods that yields the linear convergence rate of
at least 1 − c/√κ, where c is a positive constant, increases noise amplification in the
iterates relative to gradient descent by a factor of at least

√
κ.
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4. We extend our analysis from quadratic objective functions to general strongly convex
problems. We borrow an approach based on linear matrix inequalities from control
theory to establish upper bounds on the noise amplification of both gradient descent
and Nesterov’s accelerated algorithm. Furthermore, for any given condition number,
we demonstrate that these bounds are tight up to constant factors.

5. We apply our results to distributed averaging over large-scale undirected networks.
We examine the role of network size and topology on noise amplification and further
illustrate the subtle influence of the entire spectrum of the Hessian matrix on the
robustness of noisy optimization algorithms. In particular, we identify a class of large-
scale problems for which accelerated Nesterov’s method achieves the same order-wise
noise amplification (in terms of condition number) as gradient descent.

Chapter structure

The rest of our presentation is organized as follows. In Section 2.2, we formulate the prob-
lem and provide background material. In Section 2.3, we explicitly evaluate the variance
amplification (in terms of the algorithmic parameters and problem data) for strongly convex
quadratic problems, derive lower and upper bounds, and provide a comparison between the
accelerated methods and gradient descent. In Section 2.4, we extend our analysis to general
strongly convex problems. In Section 2.5, we establish fundamental tradeoffs between the
rate of convergence and noise amplification. In Section 2.6, we apply our results to the
problem of distributed averaging over noisy undirected networks. We highlight the subtle
influence of the distribution of the eigenvalues of the Laplacian matrix on variance amplifi-
cation and discuss the roles of network size and topology. We provide concluding remarks
in Section 2.7 and technical details in appendices.

2.2 Preliminaries and background
In this chapter, we quantify the effect of stochastic uncertainties in gradient evaluation on
the performance of first-order algorithms for unconstrained optimization problems

minimize
x

f(x) (2.1)

where f : Rn → R is strongly convex with Lipschitz continuous gradient ∇f . Specifically,
we examine how gradient descent,

xt+1 = xt − α∇f(xt) + σwt (2.2a)

Polyak’s heavy-ball method,

xt+2 = xt+1 + β(xt+1 − xt) − α∇f(xt+1) + σwt (2.2b)

and Nesterov’s accelerated method,

xt+2 = xt+1 + β(xt+1 − xt) − α∇f(xt+1 + β(xt+1 − xt)) + σwt (2.2c)
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Method Parameters Linear rate

Gradient α = 1
L

ρ =
√

1 − 2
κ+1

Nesterov α = 1
L
, β =

√
κ− 1√
κ+ 1

ρ =
√

1− 1√
κ

Table 2.1: Conventional values of parameters and the corresponding rates for f ∈ FLm,
‖xt − x?‖ ≤ c ρt ‖x0 − x?‖, where κ := L/m and c > 0 is a constant [9, Theorems 2.1.15,
2.2.1]. The heavy-ball method does not offer acceleration guarantees for all f ∈ FLm.

amplify the additive white stochastic noise wt with zero mean and identity covariance matrix,
E [wt] = 0, E

[
wt(wτ )T

]
= I δ(t − τ). Here, t is the iteration index, xt is the optimization

variable, α is the stepsize, β is an extrapolation parameter used for acceleration, σ is the
noise magnitude, δ is the Kronecker delta, and E is the expected value. When the only
source of uncertainty is a noisy gradient, we set σ = α in (2.2).

The set of functions f that are m-strongly convex and L-smooth is denoted by FLm; f ∈
FLm means that f(x)− m

2
‖x‖2 is convex and that the gradient ∇f is L-Lipschitz continuous.

In particular, for a twice continuously differentiable function f with the Hessian matrix ∇2f ,
we have

f ∈ FLm ⇔ mI � ∇2f(x) � LI, ∀x ∈ Rn.

In the absence of noise (i.e., for σ = 0), for f ∈ FLm, the parameters α and β can be
selected such that gradient descent and Nesterov’s accelerated method converge to the global
minimum x? of (2.1) with a linear rate ρ < 1, i.e.,

‖xt − x?‖ ≤ c ρt ‖x0 − x?‖

for all t and some c > 0. Table 2.1 provides the conventional values of these parameters and
the corresponding guaranteed convergence rates [9]. Nesterov’s method with the parameters
provided in Table 2.1 enjoys the convergence rate ρna =

√
1− 1/

√
κ ≤ 1− 1/(2

√
κ), where

κ := L/m is the condition number associated with FLm. This rate is orderwise optimal
in the sense that no first-order algorithm can optimize all f ∈ FLm with the rate ρlb =
(
√
κ − 1)/(

√
κ + 1) [9, Theorem 2.1.13]. Note that 1 − ρlb = O(1/

√
κ) and 1 − ρna =

Ω(1/
√
κ). In contrast to Nesterov’s method, the heavy-ball method does not offer any

acceleration guarantees for all f ∈ FLm. However, for strongly convex quadratic f , parameters
can be selected to guarantee linear convergence of the heavy-ball method with a rate that
outperforms the one achieved by Nesterov’s method [52]; see Table 2.2.

To provide a quantitative characterization for the robustness of algorithms (2.2) to the
noise wt, we examine the performance measure,

J := lim sup
t→∞

1

t

t∑
k= 0

E
(
‖xk − x?‖2

)
. (2.3)

For quadratic objective functions, algorithms (2.2) are linear dynamical systems. In this
case, J quantifies the steady-state variance amplification and it can be computed from the
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solution of the algebraic Lyapunov equation; see Section 2.3. For general strongly convex
problems, there is no explicit characterization for J but techniques from control theory can
be utilized to compute an upper bound; see Section 2.4.

Notation

We write g = Ω(h) (or, equivalently, h = O(g)) to denote the existence of positive constants
ci such that, for any x > c2, the functions g and h: R→ R satisfy g(x) ≥ c1h(x). We write
g = Θ(h), or more informally g ≈ h, if both g = Ω(h) and g = O(h).

2.3 Strongly convex quadratic problems
Consider a strongly convex quadratic objective function,

f(x) = 1
2
xTQx − qTx (2.4)

where Q is a symmetric positive definite matrix and q is a vector. Let f ∈ FLm and let the
eigenvalues λi of Q satisfy

L = λ1 ≥ λ2 ≥ . . . ≥ λn = m > 0.

In the absence of noise, the constant values of parameters α and β provided in Table 2.2
yield linear convergence (with optimal decay rates) to the globally optimal point x? = Q−1q
for all three algorithms [52]. In the presence of additive white noise wt, we derive analytical
expressions for the variance amplification J of algorithms (2.2) and demonstrate that J
depends not only on the algorithmic parameters α and β but also on all eigenvalues of the
Hessian matrix Q. This should be compared and contrasted to the optimal rate of linear
convergence which only depends on κ := L/m, i.e., the ratio of the largest and smallest
eigenvalues of Q.

For constant α and β, algorithms (2.2) can be described by a linear time-invariant (LTI)
first-order recursion

ψt+1 = Aψt + σB wt

zt = C ψt
(2.5)

where ψt is the state, zt := xt − x? is the performance output, and wt is a white stochastic
input. In particular, choosing ψt := xt−x? for gradient descent and ψt := [ (xt−x?)T (xt+1−
x?)T ]T for accelerated algorithms yields state-space model (2.5) with

A = I − αQ , B = C = I

for gradient descent and

A =

[
0 I
−βI (1 + β)I − αQ

]
, A =

[
0 I

−β(I − αQ) (1 + β)(I − αQ)

]
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for the heavy-ball and Nesterov’s methods, respectively, with

BT =
[

0 I
]
, C =

[
I 0

]
.

Since wt is zero mean, we have E (ψt+1) = AE (ψt). Thus, E (ψt) = At E (ψ0) and, for
any stabilizing parameters α and β, limt→∞ E (ψt) = 0, with the same linear rate as in the
absence of noise. Furthermore, it is well-known that the covariance matrix P t := E

(
ψt(ψt)T

)
of the state vector satisfies the linear recursion

P t+1 = AP tAT + σ2BBT (2.6a)

and that its steady-state limit

P := lim
t→∞

E
(
ψt(ψt)T

)
(2.6b)

is the unique solution to the algebraic Lyapunov equation [41]

P = APAT + σ2BBT . (2.6c)

For stable LTI systems, performance measure (2.3) simplifies to the steady-state variance of
the error in the optimization variable zt := xt − x?,

J = lim
t→∞

1

t

t∑
k= 0

E
(
‖zk‖2

)
= lim

t→∞
E
(
‖zt‖2

)
(2.6d)

and it can be computed using either of the following two equivalent expressions

J = lim
t→∞

1

t

t∑
k= 0

trace
(
Zk
)

= trace (Z) (2.6e)

where Z = CPCT is the steady-state limit of the covariance matrix Zt := E
(
zt(zt)T

)
=

CP tCT of the output zt.
We next provide analytical solution P to (2.6c) that depends on the parameters α and β as

well as on the spectrum of the Hessian matrix Q. This allows us to explicitly characterize the
variance amplification J and quantify the impact of additive white noise on the performance
of first-order optimization algorithms.

2.3.1 Influence of the eigenvalues of the Hessian matrix

We use the modal decomposition of the symmetric matrix Q = V ΛV T to bring A, B,
and C in (2.5) into a block diagonal form, Â = diag (Âi), B̂ = diag (B̂i), Ĉ = diag (Ĉi),
with i = 1, . . . , n. Here, Λ = diag (λi) is the diagonal matrix of the eigenvalues and V is
the orthogonal matrix of the eigenvectors of Q. More specifically, the unitary coordinate
transformation

x̂t := V Txt, x̂? := V Tx?, ŵt := V Twt (2.7)
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Method Optimal parameters Rate of linear convergence

Gradient α =
2

L+m
ρ =

κ− 1

κ+ 1

Nesterov α =
4

3L+m
, β =

√
3κ+ 1− 2√
3κ+ 1 + 2

ρ =

√
3κ+ 1− 2√

3κ+ 1

Heavy-ball α =
4

(
√
L+
√
m)2

, β =
(
√
κ− 1)2

(
√
κ+ 1)2

ρ =

√
κ− 1√
κ+ 1

Table 2.2: Optimal parameters and the corresponding convergence rates for a strongly convex
quadratic objective function f ∈ FLm with λmax(∇2f) = L and λmin(∇2f) = m, and κ :=
L/m [52, Proposition 1].

brings the state-space model of gradient descent into a diagonal form with

ψ̂ti = x̂ti − x̂?i , Âi = 1 − αλi, B̂i = Ĉi = 1. (2.8a)

Similarly, for Polyak’s heavy-ball and Nesterov’s accelerated methods, we can use the change
of coordinates (2.7) in conjunction with a permutation of variables, ψ̂ti = [ x̂ti−x̂?i x̂t+1

i −x̂?i ]T ,
respectively to obtain

Âi =

[
0 1
−β 1 + β − αλi

]
, B̂i =

[
0
1

]
, Ĉi =

[
1 0

]
(2.8b)

Âi =

[
0 1

−β(1− αλi) (1 + β)(1− αλi)

]
, B̂i =

[
0
1

]
, Ĉi =

[
1 0

]
. (2.8c)

This block diagonal structure allows us to explicitly solve Lyapunov equation (2.6c) for P
and derive an analytical expression for J in terms of the eigenvalues λi of the Hessian matrix
Q and the algorithmic parameters α and β. Namely, under coordinate transformation (2.7)
and a suitable permutation of variables, equation (2.6c) can be brought into an equivalent
set of equations,

P̂i = Âi P̂i Â
T
i + σ2B̂iB̂

T
i , i = 1, . . . , n (2.9)

where P̂i is a scalar for the gradient descent method and a 2× 2 matrix for the accelerated
algorithms. In Theorem 1, we use the solution to these decoupled Lyapunov equations to
express the variance amplification as

J =
n∑

i= 1

Ĵ(λi) :=
n∑

i= 1

trace (ĈiP̂iĈ
T
i )

where Ĵ(λi) determines the contribution of the eigenvalue λi of the matrix Q to the variance
amplification. In what follows, we use subscripts gd, hb, and na (e.g., Jgd, Jhb, and Jna) to
denote quantities that correspond to gradient descent (2.2a), heavy-ball method (2.2b), and
Nesterov’s accelerated method (2.2c).
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Theorem 1 For strongly convex quadratic problems, the variance amplification of noisy
first-order algorithms (2.2) with any constant stabilizing parameters α and β is determined
by J =

∑n
i= 1 Ĵ(λi), where λi is the ith eigenvalue of Q = QT � 0 and the modal contribution

to the variance amplification Ĵ(λ) is given by

Gradient: Ĵgd(λ) =
σ2

αλ (2 − αλ)

Polyak: Ĵhb(λ) =
σ2(1 + β)

αλ (1 − β) (2(1 + β) − αλ)

Nesterov: Ĵna(λ) =
σ2(1 + β(1 − αλ))

αλ (1 − β(1 − αλ)) (2(1 + β) − (2β + 1)αλ)
.

Proof: See Appendix A.1. �
For strongly convex quadratic problems, Theorem 1 provides exact expressions for variance
amplification of the first-order algorithms. In addition to quantifying the dependence of J on
the algorithmic parameters α and β and the impact of the largest and smallest eigenvalues,
these expressions capture the effect of all other eigenvalues of the Hessian matrix Q. We
also observe that the variance amplification J is proportional to σ2. Apart from Section 2.5,
where we examine the role of parameters α and β on acceleration/robustness tradeoff and
allow the dependence of σ on α, without loss of generality we choose σ = 1 in the rest of the
chapter.

Remark 1 The performance measure J in (2.6d) quantifies the steady-state variance of
the iterates of first-order algorithms. Robustness of noisy algorithms can be also evaluated
using alternative performance measures, e.g., the mean value of the error in the objective
function [103],

J ′ = lim
t→∞

E
(
(xt − x?)TQ (xt − x?)

)
. (2.10)

This measure of variance amplification can be characterized using our approach by defining
C = Q1/2 for gradient descent and C = [Q1/2 0 ] for accelerated algorithms in state-space
model (2.5). Furthermore, repeating the above procedure for the modified performance out-
put zt yields J ′ =

∑n
i= 1 λiĴ(λi), where the respective expressions for Ĵ(λi) are given in

Theorem 1.

2.3.2 Comparison for parameters that optimize convergence rate

We next examine the robustness of first-order algorithms applied to strongly convex quadratic
problems for the parameters that optimize the linear convergence rate; see Table 2.2. For
these parameters, the eigenvalues of the matrix A are inside the open unit disk, which implies
exponential stability of system (2.5). We first use the expressions presented in Theorem 1
to compare the variance amplification of the heavy-ball method to gradient descent.

Theorem 2 Let the strongly convex quadratic objective function f in (2.4) satisfy λmax(Q) =
L, λmin(Q) = m > 0, and let κ := L/m be the condition number. For the optimal parameters
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provided in Table 2.2, the ratio between the variance amplification of the heavy-ball method
and gradient descent with equal values of σ is given by

Jhb

Jgd

=
(
√
κ + 1)4

8
√
κ (κ + 1)

. (2.11)

Proof: For the parameters provided in Table 2.2 we have αhb = (1 + β)αgd, where
β = (

√
κ − 1)2/(

√
κ + 1)2 is the momentum parameter for the heavy-ball method. It is

now straightforward to show that the modal contributions Ĵhb and Ĵgd to the variance am-
plification of the iterates given in Theorem 1 satisfy

Ĵhb(λ)

Ĵgd(λ)
=

1

1 − β2
=

(
√
κ + 1)4

8
√
κ (κ + 1)

, ∀λ ∈ [m,L]. (2.12)

Thus, the ratio Ĵhb(λ)/Ĵgd(λ) does not depend on λ and is only a function of the condition
number κ. Substitution of (2.12) into J =

∑
i Ĵ(λi) yields relation (2.11). �

Theorem 2 establishes the linear relation between the variance amplification of the heavy-
ball algorithm Jhb and the gradient descent Jgd. We observe that the ratio Jhb/Jgd only
depends on the condition number κ and that acceleration increases variance amplification:
for κ � 1, Jhb is larger than Jgd by a factor of

√
κ. We next study the ratio between the

variance amplification of Nesterov’s accelerated method and gradient descent. In contrast
to the heavy-ball method, this ratio depends on the entire spectrum of the Hessian matrix
Q. The following proposition, which examines the modal contributions Ĵna(λ) and Ĵgd(λ) of
Nesterov’s accelerated method and gradient descent, is the key technical result that allows
us to establish the largest and smallest values that the ratio Jna/Jgd can take for a given
pair of extreme eigenvalues m and L of Q in Theorem 3.

Proposition 1 Let the strongly convex quadratic function f in (2.4) satisfy λmax(Q) = L,
λmin(Q) = m > 0, and let κ := L/m be the condition number. For the optimal parameters
provided in Table 2.2, the ratio Ĵna(λ)/Ĵgd(λ) of modal contributions to variance amplifi-
cation of Nesterov’s method and gradient descent is a decreasing function of λ ∈ [m,L].
Furthermore, for σ = 1, the function Ĵgd(λ) satisfies

max
λ∈ [m,L]

Ĵgd(λ) = Ĵgd(m) = Ĵgd(L) =
(κ + 1)2

4κ
min

λ∈ [m,L]
Ĵgd(λ) = Ĵgd(1/α) = 1

(2.13a)
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and the function Ĵna(λ) satisfies

Ĵna(L) =
9 κ̄2

(
κ̄ + 2

√
κ̄ − 2

)
32 (κ̄ − 1)

(
κ̄ −

√
κ̄ + 1

)(
2
√
κ̄ − 1

)
max

λ∈ [m,L]
Ĵna(λ) = Ĵna(m) =

κ̄2
(
κ̄ − 2

√
κ̄ + 2

)
32
(√

κ̄ − 1
)3

min
λ∈ [m,L]

Ĵna(λ) = Ĵna(1/α) = 1

(2.13b)

where κ̄ := 3κ+ 1.

Proof: See Appendix A.1. �

For all three algorithms, Proposition 1 and Theorem 2 demonstrate that the modal
contribution to the variance amplification of the iterates at the extreme eigenvalues of the
Hessian matrix m and L only depends on the condition number κ := L/m. For gradient
descent and the heavy-ball method, Ĵ achieves its largest value at m and L, i.e.,

max
λ∈ [m,L]

Ĵgd(λ) = Ĵgd(m) = Ĵgd(L) = Θ(κ)

max
λ∈ [m,L]

Ĵhb(λ) = Ĵhb(m) = Ĵhb(L) = Θ(κ
√
κ).

(2.14a)

On the other hand, for Nesterov’s method, (2.13b) implies a gap of Θ(κ) between the bound-
ary values

max
λ∈ [m,L]

Ĵna(λ) = Ĵna(m) = Θ(κ
√
κ), Ĵna(L) = Θ(

√
κ). (2.14b)

Remark 2 Theorem 1 provides explicit formulas for the variance amplification of noisy
algorithms (2.2) in terms of the eigenvalues λi of the Hessian matrix Q. Similarly, we can
represent the variance amplification in terms of the eigenvalues λ̂i of the dynamic matrices
Âi in (2.8). For gradient descent, λ̂i = 1 − αλi and it is straightforward to verify that
Jgd is determined by the sum of reciprocals of distances of these eigenvalues to the stability
boundary, Jgd =

∑n
i= 1 σ

2/(1− λ̂2
i ). Similarly, for accelerated methods we have,

J =
n∑

i= 1

σ2(1 + λ̂iλ̂
′
i)

(1− λ̂iλ̂′i)(1− λ̂i)(1− λ̂′i)(1 + λ̂i)(1 + λ̂′i)

where λ̂i and λ̂′i are the eigenvalues of Âi. For Nesterov’s method with the parameters provided
in Table 2.2, the matrix Ân, which corresponds to λn = m, admits a Jordan canonical form
with repeated eigenvalues λ̂n = λ̂′n = 1− 2/

√
3κ+ 1. In this case, Ĵna(m) = σ2(1 + λ̂2

n)/(1−
λ̂2
n)3, which should be compared and contrasted to the above expression for gradient descent.

Furthermore, for both λ1 = L and λn = m, the matrices Â1 and Ân for the heavy-ball method
with the parameters provided in Table 2.2 have eigenvalues with algebraic multiplicity two
and incomplete sets of eigenvectors.

We next establish the range of values that the ratio Jna/Jgd can take.
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Theorem 3 For the strongly convex quadratic objective function f in (2.4) with x ∈ Rn,
λmax(Q) = L, and λmin(Q) = m > 0, the ratio between the variance amplification of Nes-
terov’s accelerated method and gradient descent, for the optimal parameters provided in Ta-
ble 2.2 and equal values of σ satisfies

Ĵna(m) + (n − 1)Ĵna(L)

Ĵgd(m) + (n − 1)Ĵgd(L)
≤ Jna

Jgd

≤ Ĵna(L) + (n − 1)Ĵna(m)

Ĵgd(L) + (n − 1)Ĵgd(m)
. (2.15)

Proof: See Appendix A.1. �
Theorem 3 provides tight upper and lower bounds on the ratio between Jna and Jgd for
strongly convex quadratic problems. As shown in Appendix A.1, the lower bound is achieved
for a quadratic function in which the Hessian matrix Q has one eigenvalue at m and n − 1
eigenvalues at L, and the upper bound is achieved when Q has one eigenvalue at L and the
remaining ones at m. Theorem 3 in conjunction with Proposition 1 demonstrate that for a
fixed problem dimension n, Jna is larger than Jgd by a factor of

√
κ for κ� 1.

This tradeoff is further highlighted in Theorem 4 which provides tight bounds on the
variance amplification of iterates in terms of the problem dimension n and the condition
number κ for all three algorithms. To simplify the presentation, we first use the explicit
expressions for Ĵna(m) and Ĵna(L) in Proposition 1 to obtain the following upper and lower
bounds on Ĵna(m) and Ĵna(L) (see Appendix A.1)

(3κ + 1)
3
2

32
≤ Ĵna(m) ≤ (3κ + 1)

3
2

8
,

9
√

3κ + 1

64
≤ Ĵna(L) ≤ 9

√
3κ + 1

8
. (2.16)

Theorem 4 For the strongly convex quadratic objective function f in (2.4) with x ∈ Rn,
λmax(Q) = L, λmin(Q) = m > 0, and κ := L/m, the variance amplification of the first-order
optimization algorithms, with the parameters provided in Table 2.2 and σ = 1, is bounded by

(κ − 1)2

2κ
+ n ≤ Jgd ≤

n(κ + 1)2

4κ
(
√
κ + 1)4

8
√
κ(κ + 1)

(
(κ − 1)2

2κ
+ n

)
≤ Jhb ≤

n(κ + 1)(
√
κ + 1)4

32κ
√
κ

(3κ + 1)
3
2

32
+

9
√

3κ + 1

64
+ n − 2 ≤ Jna ≤

(n− 1)(3κ + 1)
3
2

8
+

9
√

3κ + 1

8
.

Proof: As shown in Proposition 1, the functions Ĵ(λ) for gradient descent and Nesterov’s
algorithm attain their largest and smallest values over the interval [m,L] at λ = m and
λ = 1/α, respectively. Thus, fixing the smallest and largest eigenvalues, the variance ampli-
fication J is maximized when the other n−2 eigenvalues are all equal to m and is minimized
when they are all equal to 1/α. This combined with the explicit expressions for Ĵgd(m),
Ĵgd(L), and Ĵgd(1/α) in (2.13a) leads to the tight upper and lower bounds for gradient de-
scent. For the heavy-ball method, the bounds follow from Theorem 2 and for Nesterov’s
algorithm, the bounds follow from (2.16). �
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For problems with a fixed dimension n and a condition number κ � n, there is an
Ω(
√
κ) difference in both upper and lower bounds provided in Theorem 4 for the accelerated

algorithms relative to gradient descent. Even though Theorem 4 considers only the values
of α and β that optimize the convergence rate, in Section 2.5 we demonstrate that this gap
is fundamental in that it holds for any parameters that yield an accelerated convergence
rate. It is worth noting that both the lower and upper bounds are influenced by the problem
dimension n and the condition number κ. For large-scale problems, there may be a subtle
relation between n and κ and the established bounds may exhibit different scaling trends.
In Section 2.6, we identify a class of quadratic optimization problems for which Jna scales in
the same way as Jgd for κ� 1 and n� 1.

Before we elaborate further on these issues, we provide two illustrative examples that
highlight the importance of the choice of the performance metric in the robustness analysis
of noisy algorithms. It is worth noting that an O(κ) upper bound for gradient descent and
an O(κ2) upper bound for Nesterov’s accelerated algorithm was established in [29]. Relative
to this upper bound for Nesterov’s method, the upper bound provided in Theorem 4 is
tighter by a factor of

√
κ. Theorem 4 also provides lower bounds, reveals the influence of

the problem dimension n, and identifies constants that multiply the leading terms in the
condition number κ. Moreover, in Section 2.4 we demonstrate that similar upper bounds
can be obtained for general strongly convex objective functions with Lipschitz continuous
gradients.

2.3.3 Examples

We next provide illustrative examples to (i) demonstrate the agreement of our theoretical
predictions with the results of stochastic simulations; and (ii) contrast two relevant measures
of performance, namely the variance of the iterates J in (2.6d) and the mean objective error
J ′ in (2.10), for assessing robustness of noisy optimization algorithms.

Example 1

Let us consider the quadratic objective function in (2.4) with

Q =

[
L 0
0 m

]
, q =

[
0
0

]
. (2.17)

For all three algorithms, the performance measures J and J ′ are given by

J = Ĵ(m) + Ĵ(L)

J ′ = mĴ(m) + LĴ(L) = L
(

1
κ
Ĵ(m) + Ĵ(L)

)
= m

(
Ĵ(m) + κ Ĵ(L)

)
.

As shown in (2.14), Ĵ(m) and Ĵ(L) only depend on the condition number κ and the variance
amplification of the iterates satisfies

Jgd = Θ(κ), Jhb = Θ(κ
√
κ), Jna = Θ(κ

√
κ). (2.18a)
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On the other hand, J ′ also depends on m and L. In particular, it is easy to verify the
following relations for two scenarios that yield κ� 1:

• for m� 1 and L = O(1)

J ′gd = Θ(κ), J ′hb = Θ(κ
√
κ), J ′na = Θ(

√
κ). (2.18b)

• for L� 1 and m = O(1)

J ′gd = Θ(κ2), J ′hb = Θ(κ2
√
κ), J ′na = Θ(κ

√
κ). (2.18c)

Relation (2.18a) reveals the detrimental impact of acceleration on the variance of the
optimization variable. On the other hand, (2.18b) and (2.18c) show that, relative to gradient
descent, the heavy-ball method increases the mean error in the objective function while
Nesterov’s method reduces it. Thus, if the mean value of the error in the objective function
is to be used to assess performance of noisy algorithms, one can conclude that Nesterov’s
method significantly outperforms gradient descent both in terms of convergence rate and
robustness to noise. However, this performance metric fails to capture large variance of
the mode associated with the smallest eigenvalue of the matrix Q in Nesterov’s algorithm.
Theorem 2 and Proposition 1 show that the modal contributions to the variance amplification
of the iterates for gradient descent and the heavy-ball method are balanced at m and L, i.e.,
Ĵgd(m) = Ĵgd(L) = Θ(κ) and Ĵhb(m) = Ĵhb(L) = Θ(κ

√
κ). On the other hand, for Nesterov’s

method there is a Θ(κ) gap between Ĵna(m) = Θ(κ
√
κ) and Ĵna(L) = Θ(

√
κ). While the

performance measure J ′ reveals a superior performance of Nesterov’s algorithm at large
condition numbers, it fails to capture the negative impact of acceleration on the variance of
the optimization variable; see Fig. 2.1 for an illustration.

Figure 2.2 shows the performance outputs zt = xt and zt = Q1/2xt resulting from 105

iterations of noisy first-order algorithms with the optimal parameters provided in Table 2.2
for the strongly convex objective function f(x) = 0.5x2

1 + 0.25 × 10−4 x2
2 (κ = 2 × 104).

Although Nesterov’s method exhibits good performance with respect to the error in the
objective function (performance measure J ′), the plots in the first row illustrate detrimental
impact of noise on both accelerated algorithms with respect to the variance of the iterates
(performance measure J). In particular, we observe that: (i) for gradient descent and the
heavy-ball method, the iterates xt are scattered uniformly along the eigen-directions of the
Hessian matrix Q and acceleration increases variance equally along all directions; and (ii)
relative to gradient descent, Nesterov’s method exhibits larger variance in the iterates xt
along the direction that corresponds to the smallest eigenvalue λmin(Q).

Example 2

Figure 2.3 compares the results of twenty stochastic simulations for a strongly convex
quadratic objective function (2.4) with q = 0 and a Toeplitz matrix Q ∈ R50×50 with the
first row [ 2 −1 0 · · · 0 0 ]T . This figure illustrates the dependence of the variance of the
performance outputs zt = xt and zt = Q1/2xt on time t for the algorithms subject to additive
white noise with zero initial conditions. The plots further demonstrate that the mean error
in the objective function does not capture the detrimental impact of noise on the variance
of the iterates for Nesterov’s algorithm. The bottom row also compares variance obtained
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Gradient descent Heavy-ball

Ellipsoids associated with the performance measure J ′:

Nesterov

Ellipsoids associated with the performance measure J :

Figure 2.1: Ellipsoids {z | zTZ−1z ≤ 1} associated with the steady-state covariance matrices
Z = CPCT of the performance outputs zt = xt−x? (top row) and zt = Q1/2(xt−x?) (bottom
row) for algorithms (2.2) with the parameters provided in Table 2.2 for the matrix Q given
in (2.17) with m� L = O(1). The horizontal and vertical axes show the eigenvectors [ 1 0 ]T

and [ 0 1 ]T associated with the eigenvalues Ĵ(L) and Ĵ(m) (top row) and Ĵ ′(L) and Ĵ ′(m)
(bottom row) of the respective output covariance matrices Z.

by averaging outcomes of twenty stochastic simulations with the corresponding theoretical
values resulting from the Lyapunov equations.

2.4 General strongly convex problems
In this section, we extend our results to the class FLm ofm-strongly convex objective functions
with L-Lipschitz continuous gradients. While a precise characterization of noise amplification
for general problems is challenging because of the nonlinear dynamics, we employ tools from
robust control theory to obtain meaningful upper bounds. Our results utilize the theory of
integral quadratic constraints [81], a convex control-theoretic framework that was recently
used to analyze optimization algorithms [52] and study convergence and robustness of the
first-order methods [53], [54], [56], [68]. We establish analytical upper bounds on the mean-
squared error of the iterates (2.3) for gradient descent (2.2a) and Nesterov’s accelerated (2.2c)
methods. Since there are no known accelerated convergence guarantees for the heavy-ball
method when applied to general strongly convex functions, we do not consider it in this
section.

We first exploit structural properties of the gradient and employ quadratic Lyapunov
functions to formulate a semidefinite programing problem (SDP) that provides upper bounds
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performance output zt = xt:

z 2

z1 z1 z1

performance output zt = Q1/2 xt:

z 2

z1 z1 z1

(a) Gradient descent (b) Heavy-ball (c) Nesterov

Figure 2.2: Performance outputs zt = xt (top row) and zt = Q1/2xt (bottom row) resulting
from 105 iterations of noisy first-order algorithms (2.2) with the parameters provided in
Table 2.2. Strongly convex problem with f(x) = 0.5x2

1 + 0.25 × 10−4 x2
2 (κ = 2 × 104) is

solved using algorithms with additive white noise and zero initial conditions.

on J in (2.3). While quadratic Lyapunov functions yield tight upper bounds for gradient
descent, they fail to provide any upper bound for Nesterov’s method for large condition
numbers (κ > 100). To overcome this challenge, we present a modified semidefinite program
that uses more general Lyapunov functions which are obtained by augmenting standard
quadratic terms with the objective function. This type of generalized Lyapunov functions
has been introduced in [56], [106] and used to study convergence of optimization algorithms
for non-strongly convex problems. We employ a modified SDP to derive meaningful upper
bounds on J in (2.3) for Nesterov’s method as well.

We note that algorithms (2.2) are invariant under translation, i.e., if we let x̃ := x − x̄
and g(x̃) := f(x̃+ x̄), then (2.2c), for example, satisfies

x̃t+2 = x̃t+1 + β(x̃t+1 − x̃t) − α∇g(x̃t+1 + β(x̃t+1 − x̃t)) + σwt.

Thus, in what follows, without loss of generality, we assume that x? = 0 is the unique
minimizer of (2.1).

2.4.1 An approach based on contraction mappings

Before we present our approach based on Linear Matrix Inequalities (LMIs), we provide a
more intuitive approach that can be used to examine noise amplification of gradient descent.
Let ϕ: Rn → Rn be a contraction mapping, i.e., there exists a positive scalar η < 1 such
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t ∑ k
=

0

1 t
‖z

k
‖2

t ∑ k
=

0

1 t
‖z

k
‖2

iteration number t iteration number t
(a) performance output zt = xt (b)performance output zt = Q1/2xt

Figure 2.3: (1/t)
∑t

k= 0 ‖zk‖2 for the performance output zt in Example 2. Top row: the thick
blue (gradient descent), black (heavy-ball), and red (Nesterov’s method) lines mark variance
obtained by averaging results of twenty stochastic simulations. Bottom row: comparison
between results obtained by averaging outcomes of twenty stochastic simulations (thick lines)
with the corresponding theoretical values (1/t)

∑t
k= 0 trace (CP kCT ) (dashed lines) resulting

from the Lyapunov equation (2.6a).

that ‖ϕ(x)−ϕ(y)‖ ≤ η‖x− y‖ for all x, y ∈ Rn, and let x? = 0 be the unique fixed point of
ϕ, i.e, ϕ(0) = 0. For the noisy recursion xt+1 = ϕ(xt) + σwt, where wt is a zero-mean white
noise with identity covariance and E((wt)Tϕ(xt)) = 0, the contractiveness of ϕ implies

E(‖xt+1‖2) = E(‖ϕ(xt) + σwt‖2) ≤ η2 E(‖xt‖2) + nσ2.

Since η < 1, this relation yields

lim
t→∞

E(‖xt‖2) ≤ nσ2

1 − η2
.

If η := max{|1 − αm|, |1 − αL|} < 1, the map ϕ(x) := x − α∇f(x) is a contraction [62].
Thus, for the conventional stepsize α = 1/L we have η = 1− 1/κ, and the bound becomes

lim
t→∞

E(‖xt‖2) ≤ nσ2

1 − η2
=

nσ2κ2

2κ − 1
= nΘ(κ).

In the next section, we show that this upper bound is indeed tight for the class of functions
FLm. While this approach yields a tight upper bound for gradient descent, it cannot be used
for Nesterov’s method (because it is not a contraction).
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2.4.2 An approach based on linear matrix inequalities

For any function f ∈ FLm, the nonlinear mapping ∆: Rn → Rn

∆(y) := ∇f(y) − my

satisfies the quadratic inequality [52, Lemma 6][
y − y0

∆(y) − ∆(y0)

]T
Π

[
y − y0

∆(y) − ∆(y0)

]
≥ 0 (2.19)

for all y, y0 ∈ Rn, where the matrix Π is given by

Π :=

[
0 (L − m)I

(L − m)I −2I

]
. (2.20)

We can bring algorithms (2.2) with constant parameters into a time-invariant state-space
form

ψt+1 = Aψt + σBww
t + Buu

t[
zt
yt

]
=

[
Cz
Cy

]
ψt

ut = ∆(yt)

(2.21a)

that contains a feedback interconnection of linear and nonlinear components. Figure 2.4
illustrates the block diagram of system (2.21a), where ψt is the state, wt is a white stochastic
noise, zt is the performance output, and ut is the output of the nonlinear term ∆(yt). In
particular, if we let

ψt :=

[
xt

xt+1

]
, zt := xt, yt := −βxt + (1 + β)xt+1

and define the corresponding matrices as

A =

[
0 I

−β(1− αm)I (1 + β)(1− αm)I

]
, Bw =

[
0
I

]
, Bu =

[
0
−α I

]
Cz =

[
I 0

]
, Cy =

[
−β I (1 + β)I

]
(2.21b)

then (2.21a) represents Nesterov’s method (2.2c). For gradient descent (2.2a), we can alter-
natively use ψt = zt = yt := xt with the corresponding matrices

A = (1 − αm)I, Bw = I, Bu = −αI, Cz = Cy = I. (2.21c)

In what follows, we demonstrate how property (2.19) of the nonlinear mapping ∆ allows
us to obtain upper bounds on J when system (2.21a) is driven by the white stochastic input
wt with zero mean and identity covariance. Lemma 1 uses a quadratic Lyapunov function
of the form V (ψ) = ψTXψ and provides upper bounds on the steady-state second-order
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∆

LTI system utyt

wtzt

Figure 2.4: Block diagram of system (2.21a).

moment of the performance output zt in terms of solutions to a certain LMI. This approach
yields a tight upper bound for gradient descent.

Lemma 1 Let the nonlinear function u = ∆(y) satisfy the quadratic inequality[
y
u

]T
Π

[
y
u

]
≥ 0 (2.22)

for some matrix Π, let X be a positive semidefinite matrix, and let λ be a nonnegative scalar
such that system (2.21a) satisfies[

ATX A−X + CT
z Cz ATX Bu

BT
u X A BT

u X Bu

]
+ λ

[
CT
y 0

0 I

]
Π

[
Cy 0
0 I

]
� 0. (2.23)

Then the steady-state second-order moment J of the performance output zt in (2.21a) is
bounded by

J ≤ σ2 trace (BT
w X Bw).

Proof: See Appendix A.2. �

For Nesterov’s accelerated method with the parameters provided in Table 2.1, we have
conducted computational experiments showing that LMI (2.23) becomes infeasible for large
values of the condition number κ. Thus, Lemma 1 does not provide sensible upper bounds
on J for Nesterov’s algorithm. This observation is consistent with the results of [52],
where it was suggested that analyzing the convergence rate requires the use of additional
quadratic inequalities, apart from (2.19), to further tighten the constraints on the gradient
∇f and reduce conservativeness. In what follows, we build on the results of [56] and present
an alternative LMI in Lemma 2 that is obtained using a Lyapunov function of the form
V (ψ)= ψTXψ+ f([ 0 I ]ψ), where X is a positive semidefinite matrix and f is the objective
function in (2.1). Such Lyapunov functions have been used to study convergence of opti-
mization algorithms in [106]. The resulting approach allows us to establish an order-wise
tight analytical upper bound on J for Nesterov’s accelerated method.

Lemma 2 Let the matrix M(m,L;α, β) be defined as

M := NT
1

[
L I I
I 0

]
N1 + NT

2

[
−mI I
I 0

]
N2
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where

N1 :=

[
αmβ I −αm(1 + β) I −α I
−mβ I m(1 + β) I I

]
, N2 :=

[
−β I β I 0
−mβ I m(1 + β) I I

]
.

Consider the state-space model in (2.21a)-(2.21b) for algorithm (2.2c) and let Π be given
by (2.20). Then, for any positive semidefinite matrix X and scalars λ1 ≥ 0 and λ2 ≥ 0 that
satisfy[

ATX A−X + CT
z Cz ATX Bu

BT
u X A BT

u X Bu

]
+ λ1

[
CT
y 0

0 I

]
Π

[
Cy 0
0 I

]
+ λ2M � 0 (2.24)

the steady-state second-order moment J of the performance output zt in (2.21a) is bounded
by

J ≤ σ2
(
nLλ2 + trace (BT

w X Bw)
)
. (2.25)

Proof: See Appendix A.2. �

Remark 3 Since LMI (2.24) simplifies to (2.23) by setting λ2 = 0, Lemma 2 represents a
relaxed version of Lemma 1. This modification is the key enabler to establishing tight upper
bound on J for Nesterov’s method.

The upper bounds provided in Lemmas 1 and 2 are proportional to σ2. In what follows,
to make a connection between these bounds and our analytical expressions for the variance
amplification in the quadratic case (Section 2.3), we again set σ = 1. The best upper bound
on J that can be obtained using Lemma 2 is given by the optimal objective value of the
semidefinite program

minimize
X,λ1, λ2

nLλ2 + trace (BT
w X Bw) (2.26)

subject to LMI (2.24), X � 0, λ1 ≥ 0, λ2 ≥ 0.

For system matrices (2.21b), LMI (2.24) is of size 3n × 3n where xt ∈ Rn. However, if we
impose the additional constraint that the matrix X has the same block structure as A,

X =

[
x1I x0I
x0I x2I

]
for some scalars x1, x2, and x0, then using appropriate permutation matrices, we can sim-
plify (2.23) into an LMI of size 3× 3. Furthermore, imposing this constraint comes without
loss of generality. In particular, the optimal objective value of problem (2.26) does not
change if we require X to have this structure; see [52, Section 4.2] for a discussion of this
lossless dimensionality reduction for LMI constraints with similar structure.

In Theorem 5, we use Lemmas 1 and 2 to establish tight upper bounds on Jgd and Jna

for all f ∈ FLm.
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Theorem 5 For gradient descent and Nesterov’s accelerated method with the parameters
provided in Table 2.1 and σ = 1, the performance measures Jgd and Jna of the error xt−x? ∈
Rn satisfy

sup
f ∈FLm

Jgd = qgd, qna ≤ sup
f ∈FLm

Jna ≤ 4.08 qna

where
qgd =

nκ2

2κ− 1
= nΘ(κ), qna =

nκ2(2κ− 2
√
κ+ 1)

(2
√
κ− 1)

3 = nΘ(κ
3
2 )

and κ := L/m is the condition number of the set FLm.

Proof: See Appendix A.2. �

The variance amplification of gradient descent and Nesterov’s method for f(x) = m
2
xTx

in FLm is determined by qgd and qna, respectively, and these two quantities can be obtained
using Theorem 1. In Theorem 5, we use this strongly convex quadratic objective function to
certify the accuracy of the upper bounds on sup J for all f ∈ FLm. In particular, we observe
that the upper bound is exact for gradient descent and that it is within a 4.08 factor of the
optimal for Nesterov’s method.

For strongly convex objective functions with the condition number κ, Theorem 5 proves
that gradient descent outperforms Nesterov’s accelerated method in terms of the largest noise
amplification by a factor of

√
κ. This uncovers the fundamental performance limitation of

Nesterov’s accelerated method when the gradient evaluation is subject to additive stochastic
uncertainties.

2.5 Tuning of algorithmic parameters
The parameters provided in Table 2.2 yield the optimal convergence rate for strongly convex
quadratic problems. For these specific values, Theorem 4 establishes upper and lower bounds
on the variance amplification that reveal the negative impact of acceleration. However, it is
relevant to examine whether the parameters can be designed to provide acceleration while
reducing the variance amplification.

While the convergence rate solely depends on the extreme eigenvalues m = λmin(Q) and
L = λmax(Q) of the Hessian matrix Q, variance amplification is influenced by the entire spec-
trum of Q and its minimization is challenging as it requires the use of all eigenvalues. In this
section, we first consider the special case of eigenvalues being symmetrically distributed over
the interval [m,L] and demonstrate that for gradient descent and the heavy-ball method,
the parameters provided in Table 2.2 yield a variance amplification that is within a constant
factor of the optimal value. As we demonstrate in Section 2.6, symmetric distribution of the
eigenvalues is encountered in distributed consensus over undirected torus networks. We also
consider the problem of designing parameters for objective functions in which the problem
size satisfies n� κ and establish a tradeoff between convergence rate and variance amplifi-
cation. More specifically, we show that for any accelerating pair of parameters α and β and

31



bounded problem dimension n, the variance amplification of accelerated methods is larger
than that of gradient descent by a factor of Ω(

√
κ).

2.5.1 Tuning of parameters using the whole spectrum

Let L = λ1 ≥ λ2 ≥ · · · ≥ λn = m > 0 be the eigenvalues of the Hessian matrix Q of the
strongly convex quadratic objective function in (2.4). Algorithms (2.2) converge linearly in
expected value to the optimizer x? with the rate

ρ := max
i

ρ̂(λi) (2.27)

where ρ̂(λi) is the spectral radius of the matrix Âi given by (2.8). For any scalar c > 0 and
fixed σ, let

(α?hb(c), β?hb(c)) := argmin
α, β

Jhb(α, β)

subject to ρhb ≤ 1 − c√
κ

(2.28a)

for the heavy-ball method, and

α?gd(c) := argmin
α

Jgd(α)

subject to ρgd ≤ 1 − c

κ

(2.28b)

for gradient descent, where the expression for the variance amplification J is provided in
Theorem 1. Here, the constraints enforce a standard rate of linear convergence for gradient
descent and an accelerated rate of linear convergence for the heavy-ball method parametrized
with the constant c. Obtaining a closed form solution to (2.28) is challenging because J
depends on all eigenvalues of the Hessian matrix Q. Herein, we focus on objective functions
for which the spectrum of Q is symmetric, i.e., for any eigenvalue λ, the corresponding
mirror image λ′ := L + m − λ with respect to 1

2
(L + m) is also an eigenvalue with the

same algebraic multiplicity. For this class of problems, Theorem 6 demonstrates that the
parameters provided in Table 2.2 for gradient descent and the heavy-ball method yield
variance amplification that is within a constant factor of the optimal.

Theorem 6 For any scalar c > 0 and fixed σ, there exist constants c1 ≥ 1 and c2 > 0
such that for any strongly convex quadratic objective function in which the spectrum of the
Hessian matrix Q is symmetrically distributed over the interval [m,L] with κ := L/m > c1,
we have

Jgd(α?gd(c)) ≥ 1

2
Jgd(αgd), Jhb(α?hb(c), β?hb(c)) ≥ c2 Jhb(αhb, βhb)

where parameters αgd and (αhb, βhb) are provided in Table 2.2, and α?gd(c) and (α?hb(c), β?hb(c))
solve (2.28).

Proof: See Appendix A.2.4. �
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For strongly convex quadratic objective functions with symmetric spectrum of the Hessian
matrix over the interval [m,L], Theorem 6 shows that the variance amplifications of gradient
descent and the heavy-ball method with the parameters provided in Table 2.2 are within a
constant factors of the optimal values. As we illustrate in Section 2.6, this class of problems
is encountered in distributed averaging over noisy undirected networks. Combining this
result with the lower bound on Jhb(αhb, βhb) and the upper bound on Jgd(αgd) established
in Theorem 4, we see that regardless of the choice of parameters, there is a fundamental gap
of Ω(

√
κ) between Jhb and Jgd as long as we require an accelerated rate of convergence.

2.5.2 Fundamental lower bounds

We next establish lower bounds on the variance amplification of accelerated methods that
hold for any pair of α and β for strongly convex quadratic problems with κ� 1. In particular,
we show that the variance amplification of accelerated algorithms is lower bounded by Ω(κ3/2)
irrespective of the choice of α and β.

The next theorem establishes a fundamental tradeoff between the convergence rate and
variance amplification for the heavy-ball method.

Theorem 7 For strongly convex quadratic problems with any stabilizing parameters α > 0
and 0 < β < 1 and with a fixed noise magnitude σ, the heavy-ball method with the linear
convergence rate ρ satisfies

Jhb

1 − ρ
≥ σ2

(
κ+ 1

8

)2

. (2.29a)

Furthermore, if σ = α, i.e., when the only source of uncertainty is a noisy gradient, we have

Jhb

1 − ρ
≥
( κ

8L

)2

. (2.29b)

Proof: See Appendix A.3. �
To gain additional insight, let us consider two special cases: (i) for α = 1/L and β → 0+,
we obtain gradient descent algorithm for which 1 − ρ = Θ(1/κ) and J = Θ(κ); (ii) for the
heavy-ball method with the parameters provided in Table 2.2, we have 1 − ρ = Θ(1/

√
κ)

and J = Θ(κ
√
κ). Thus, in both cases, Jhb/(1 − ρ) = Ω(κ2). Theorem 7 shows that this

lower bound is fundamental and it therefore quantifies the tradeoff between the convergence
rate and the variance amplification of the heavy-ball method for any choice of parameters
α and β. It is also worth noting that the lower bound for σ = α depends on the largest
eigenvalue L of the Hessian matrix Q. Thus, this bound is meaningful when the value of L
is uniformly upper bounded. This scenario occurs in many applications including consensus
over undirected tori networks; see Section 2.6.

While we are not able to show a similar lower bound for Nesterov’s method, in the next
theorem, we establish an asymptotic lower bound on the variance amplification that holds
for any pair of accelerating parameters (α, β) for both Nesterov’s and heavy-ball methods.
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Theorem 8 For a strongly convex quadratic objective function with condition number κ, let
c > 0 be a constant such that either Nesterov’s algorithm or the heavy-ball method with some
(possibly problem dependent) parameters α > 0 and 0 < β < 1 converges linearly with a rate
ρ ≤ 1− c/√κ. Then, for any fixed noise magnitude σ, the variance amplification satisfies

J

σ2
= Ω(κ

3
2 ). (2.30a)

Furthermore, if σ = α, i.e., when the only source of uncertainty is a noisy gradient, we have

J = Ω(
κ

3
2

L2
). (2.30b)

Proof: For the heavy-ball method, the result follows from combining Theorem 7 with the
inequality 1− ρ ≥ c/

√
κ. For Nesterov’s method, the proof is provided in Appendix A.3. �

For problems with n � κ, we recall that the variance amplification of gradient descent
with conventional values of parameters scales as O(κ); see Theorem 5. Irrespective of the
choice of parameters α and β, this result in conjunction with Theorem 8 demonstrates that
acceleration cannot be achieved without increasing the variance amplification J by a factor
of Ω(

√
κ).

2.6 Application to distributed computation
Distributed computation over networks has received significant attention in optimization,
control systems, signal processing, communications, and machine learning communities. In
this problem, the goal is to optimize an objective function (e.g., for the purpose of training
a model) using multiple processing units that are connected over a network. Clearly, the
structure of the network (e.g., node dynamics and network topology) may impact the perfor-
mance (e.g., convergence rate and noise amplification) of any optimization algorithm. As a
first step toward understanding the impact of the network structure on performance of noisy
first-order optimization algorithms, in this section, we examine the standard distributed
consensus problem.

The consensus problem arises in applications ranging from social networks, to distributed
computing networks, to cooperative control in multi-agent systems. In the simplest setup,
each node updates a scalar value using the values of its neighbors such that they all agree on
a single consensus value. Simple updating strategies of this kind can be obtained by applying
a first-order algorithm to the convex quadratic problem

minimize
x

1

2
xTLx (2.31)

where L = LT ∈ Rn×n is the Laplacian matrix of the graph associated with the underlying
undirected network and x ∈ Rn is the vector of node values.
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The graph Laplacian matrix L � 0 has a nontrivial null space that consists of the
minimizers of problem (2.31). In the absence of noise, for gradient descent and both of its
accelerated variants, it is straightforward to verify that the projections vt of the iterates xt
onto the null space of L remain constant (vt = v0, for all t) and also that xt converges linearly
to v0. In the presence of additive noise, however, vt experiences a random walk which leads
to an unbounded variance of xt as t → ∞. Instead, as described in [42], the performance
of algorithms in this case can be quantified by examining J̄ := limt→∞ E (‖xt − vt‖2) . For
connected networks, the null space of L is given by N (L) = {c1 | c ∈ R} and

J̄ = lim
t→∞

E
(
‖xt − (1Txt/n)1‖2

)
(2.32)

quantifies the mean-squared deviation from the network average, where 1 denotes the vector
of all ones, i.e., 1 := [ 1 · · · 1 ]T . Finally, it is straightforward to show that J̄ can also be
computed using the formulae in Theorem 1 by summing over the non-zero eigenvalues of L.

In what follows, we consider a class of networks for which the structure allows for the
explicit evaluation of the eigenvalues of the Laplacian matrix L. For d-dimensional torus
networks, fundamental performance limitations of standard consensus algorithms in contin-
uous time were established in [43], but it remains an open question if gradient descent and
its accelerated variants suffer from these limitations. We use such torus networks to show
that standard gradient descent exhibits the same scaling trends as consensus algorithms
studied in [43] and that, in lower spatial dimensions, acceleration always increases variance
amplification.

2.6.1 Explicit formulae for d-dimensional torus networks

We next examine the asymptotic scaling trends of the performance metric J̄ given by (2.32)
for large problem dimensions n� 1 and highlight the subtle influence of the distribution of
the eigenvalues of L on the variance amplification for d-dimensional torus networks. Tori with
nearest neighbor interactions generalize one-dimensional rings to higher spatial dimensions.
Let Zn0 denote the group of integers modulo n0. A d-dimensional torus Tdn0

consists of
n := nd0 nodes denoted by va where a ∈ Zdn0

and its set of edges is given by

{{va vb} | ‖a − b‖ = 1 mod n0}

where the nodes va and vb are neighbors if and only if a and b differ exactly at a single
entry by one. For example, T1

n0
denotes a ring with n = n0 nodes and T5

n0
denotes a five

dimensional torus with n = n5
0 nodes.

The multidimensional discrete Fourier transform can be used to determine the eigenvalues
of the Laplacian matrix L of a d-dimensional torus Tdn0

,

λi =
d∑

l= 1

2
(

1 − cos 2πil
n0

)
, il ∈ Zn0 (2.33)
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where i := (i1, . . . , id) ∈ Zdn0
. We note that λ0 = 0 is the only zero eigenvalue of L with the

eigenvector 1 and that all other eigenvalues are positive. Let κ := λmax/λmin be the ratio of
the largest and smallest nonzero eigenvalues of L. A key observation is that, for n0 � 1,

κ = Θ(
2

1 − cos 2π
n0

) = Θ(n2
0) = Θ(n2/d). (2.34)

This is because λmin = 2d (1−cos (2π/n0)) goes to zero as n0 →∞, and the largest eigenvalue
of L, λmax = 2d (1− cos (2πbn0

2
c/n0)), is equal to 4 d for even n0 and it approaches 4 d from

below for odd n0.
As aforementioned, the performance metric J̄ can be obtained by

J̄ =
∑

0 6= i∈Zdn0

Ĵ(λi)

where Ĵ(λ) for each algorithm is determined in Theorem 1 and λi are the non-zero eigenvalues
of L. The next theorem characterizes the asymptotic value of the network-size normalized
mean-squared deviation from the network average, J̄/n, for a fixed spatial dimension d and
condition number κ � 1. This result is obtained using analytical expression (2.33) for the
eigenvalues of the Laplacian matrix L.

Theorem 9 Let L ∈ Rn×n be the graph Laplacian of the d-dimensional undirected torus Tdn0

with n = nd0 � 1 nodes. For convex quadratic optimization problem (2.31), the network-
size normalized performance metric J̄/n of noisy first-order algorithms with the parameters
provided in Table 2.2 and σ = 1, is determined by

d = 1 d = 2 d = 3 d = 4 d = 5

Gradient Θ(
√
κ) Θ(log κ) Θ(1) Θ(1) Θ(1)

Nesterov Θ(κ) Θ(
√
κ log κ) Θ(κ

1
4 ) Θ(log κ) Θ(1)

Polyak Θ(κ) Θ(
√
κ log κ) Θ(

√
κ) Θ(

√
κ) Θ(

√
κ)

where κ = Θ(n2/d) is the condition number of L given in (2.34).

Proof: See Appendix A.4. �

Theorem 9 demonstrates that the variance amplification of gradient descent is equivalent
to that of the standard consensus algorithm studied in [43] and that, in lower spatial di-
mensions, acceleration always negatively impacts the performance of noisy algorithms. Our
results also highlight the subtle influence of the distribution of the eigenvalues of L on the
variance amplification. For rings (i.e., d = 1), lower bounds provided in Theorem 4 capture
the trends that our detailed analysis based on the distribution of the entire spectrum of L
reveals. In higher spatial dimensions, however, the lower bounds that are obtained using
only the extreme eigenvalues of L are conservative. Similar conclusion can be made about
the upper bounds provided in Theorem 4. This observation demonstrates that the naïve
bounds that result only from the use of the extreme eigenvalues can be overly conservative.
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We also note that gradient descent significantly outperforms Nesterov’s method in lower
spatial dimensions. In particular, while J̄/n becomes network-size-independent for d = 3
for gradient descent, Nesterov’s algorithm reaches “critical connectivity” only for d = 5. On
the other hand, in any spatial dimension, there is no network-size independent upper bound
on J̄/n for the heavy-ball method. These conclusions could not have been reached without
performing an in-depth analysis of the impact of all eigenvalues on performance of noisy
networks with n� 1 and κ� 1.

2.7 Concluding remarks
We study the robustness of noisy first-order algorithms for smooth, unconstrained, strongly
convex optimization problems. Even though the underlying dynamics of these algorithms
are in general nonlinear, we establish upper bounds on noise amplification that are accurate
up to constant factors. For quadratic objective functions, we provide analytical expressions
that quantify the effect of all eigenvalues of the Hessian matrix on variance amplification. We
use these expressions to establish lower bounds demonstrating that although the acceleration
techniques improve the convergence rate they significantly amplify noise for problems with
large condition numbers. In problems of bounded dimension n� κ, the noise amplification
increases from O(κ) to Ω(κ3/2) when moving from standard gradient descent to accelerated
algorithms. We specialize our results to the problem of distributed averaging over noisy
undirected networks and also study the role of network size and topology on robustness
of accelerated algorithms. Future research directions include (i) extension of our analysis
to multiplicative and correlated noise; and (ii) robustness analysis of broader classes of
optimization algorithms.
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Chapter 3

Tradeoffs between convergence rate and noise
amplification for accelerated algorithms

We study momentum-based first-order optimization algorithms in which the iterations uti-
lize information from the two previous steps and are subject to an additive white noise.
This class of algorithms includes Polyak’s heavy-ball and Nesterov’s accelerated methods as
special cases and noise accounts for uncertainty in either gradient evaluation or iteration
updates. For strongly convex quadratic problems, we use the steady-state variance of the
error in the optimization variable to quantify noise amplification and identify fundamental
stochastic performance tradeoffs. Our approach utilizes the Jury stability criterion to pro-
vide a novel geometric characterization of conditions for linear convergence, and it clarifies
the relation between the noise amplification and convergence rate as well as their depen-
dence on the condition number and the constant algorithmic parameters. This geometric
insight leads to simple alternative proofs of standard convergence results and allows us to
establish analytical lower bounds on the product between the settling time and noise am-
plification that scale quadratically with the condition number. Our analysis also identifies
a key difference between the gradient and iterate noise models: while the amplification of
gradient noise can be made arbitrarily small by sufficiently decelerating the algorithm, the
best achievable variance amplification for the iterate noise model increases linearly with the
settling time in decelerating regime. Furthermore, we introduce two parameterized families
of algorithms that strike a balance between noise amplification and settling time while pre-
serving order-wise Pareto optimality for both noise models. Finally, by analyzing a class of
accelerated gradient flow dynamics, whose suitable discretization yields the two-step momen-
tum algorithm, we establish that stochastic performance tradeoffs also extend to continuous
time.

3.1 Introduction
Accelerated first-order algorithms [5], [7], [8] are often used in solving large-scale optimization
problems [1], [2], [4] because of their scalability, fast convergence, and low per-iteration
complexity. Convergence properties of these algorithms have been carefully studied [6], [9],
[51]–[56], but their performance in the presence of noise has received less attention [10]–[12],
[57], [58]. Prior studies indicate that inaccuracies in the computation of gradient values can
adversely impact the convergence rate of accelerated methods and that gradient descent may
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have advantages relative to its accelerated variants in noisy environments [23]–[26], [28]. In
contrast to gradient descent, accelerated algorithms can also exhibit undesirable transient
behavior [61], [98], [107]; for convex quadratic problems, the non-normal dynamic modes
in accelerated algorithms induce large transient responses of the error in the optimization
variable [98].

Analyzing the performance of accelerated algorithms with additive white noise that arises
from uncertainty in gradient evaluation dates back to [57] where Polyak established the op-
timal linear convergence rate for strongly convex quadratic problems. In addition, he used
time-varying parameters to obtain convergence in the error variance at a sub-linear rate and
with an improved constant factor compared to gradient descent. Acceleration in a sub-linear
regime can also be achieved for smooth strongly convex problems with properly diminishing
stepsize [30] and averaging techniques can be used to prevent the accumulation of gradi-
ent noise by accelerated algorithms [108]. For standard accelerated methods with constant
parameters, control-theoretic tools were utilized in [93] and [109] to study the steady-state
variance of the error in optimization variable for smooth strongly convex problems. In par-
ticular, for the parameters that optimize convergence rates for quadratic problems, tight
upper and lower bounds on the noise amplification of gradient descent, heavy-ball method,
and Nesterov’s accelerated algorithm were developed in [93]. These bounds are expressed
in terms of the condition number κ and the problem dimension n, and they demonstrate
opposite trends relative to the settling time: for a fixed problem size n, accelerated algorithms
increase noise amplification by a factor of Θ(

√
κ) relative to gradient descent. Similar result

also holds for heavy-ball and Nesterov’s algorithms with parameters that provide convergence
rate ρ ≤ 1− c/√κ with c > 0 [93]. Furthermore, for all strongly convex optimization prob-
lems with a condition number κ, tight and attainable upper bounds for noise amplification
of gradient descent and Nesterov’s accelerated method were provided in [93].

In this chapter, we extend the results of [93] to the class of first-order algorithms with
three constant parameters in which the iterations involve information from the two previous
steps. This class includes heavy-ball and Nesterov’s accelerated algorithms as special cases
and we examine its stochastic performance for strongly convex quadratic problems. Our
results are complementary to [103], which evaluates stochastic performance in the objective
error, and to a recent work [109] that studies the steady-state variance of the error associ-
ated with the point at which the gradient is evaluated. This reference combines theory with
computational experiments to demonstrate that a parameterized family of heavy-ball-like
methods with reduced stepsize provides Pareto-optimal algorithms for the simultaneous op-
timization of convergence rate and amplification of gradient noise. In contrast to [109], we
establish analytical lower bounds on the product of the settling time and the steady-state
variance of the error in the optimization variable that hold for any constant stabilizing pa-
rameters and for both gradient and iterate noise models. Our lower bounds scale with the
square of the condition number and thus reveal a fundamental limitation of this class of
algorithms.

In addition to considering noise arising from gradient evaluation, we study the stochastic
performance of algorithms when noise is directly added to the iterates (rather than the
gradient). For the iterate noise model, we establish an alternative lower bound on the noise
amplification which scales linearly with the settling time and is order-wise tight for settling
times that are larger than that of gradient descent with the standard stepsize. In this
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decelerated regime, our results identify a key difference between the two noise models: while
the impact of gradient uncertainties on variance amplification can be made arbitrarily small
by decelerating the two-step momentum algorithm, the best achievable variance amplification
for the iterate noise model increases linearly with the settling time in the decelerated regime.

Our results build upon a simple, yet powerful geometric viewpoint, which clarifies the
relation between condition number, convergence rate, and algorithm parameters for strongly
convex quadratic problems. This viewpoint allows us to present alternative proofs for (i) the
optimal convergence rate of the two-step momentum algorithm, which recovers Nesterov’s
fundamental lower bound on the convergence rate [59] for finite dimensional problems [60];
and (ii) the optimal rates achieved by standard gradient descent, heavy-ball method, and
Nesterov’s accelerated algorithm [52]. In addition, it enables a novel geometric characteriza-
tion of noise amplification in terms of stability margins and it allows us to precisely quantify
tradeoffs between convergence rate and robustness to noise.

We also introduce two parameterized families of algorithms that are structurally similar
to the heavy-ball and Nesterov’s accelerated algorithms. These algorithms utilize continu-
ous transformations from gradient descent to the corresponding accelerated algorithm (with
the optimal convergence rate) via a homotopy path, and they can be used to provide addi-
tional insight into the tradeoff between convergence rate and noise amplification. We prove
that these parameterized families are order-wise (in terms of the condition number) Pareto-
optimal for simultaneous minimization of settling time and noise amplification. Another
family of algorithms that facilitates similar tradeoff was proposed in [54], and it includes the
fastest known algorithm for the class of smooth strongly convex problems. We also utilize
negative momentum parameters to decelerate a heavy-ball-like family of algorithms relative
to gradient descent with the optimal stepsize. For both noise models, our parameterized
family yields order-wise optimal algorithms and it allows us to further highlight the key
difference between them in the decelerated regime.

Finally, we examine the noise amplification of a class of stochastically-forced momentum-
based accelerated gradient flow dynamics. Such dynamics were introduced in [110] as a
continuous-time variant of Nesterov’s accelerated algorithm and a Lyapunov-based method
was used to establish their stability properties and infer the convergence rate. Inspired by
this work, we examine the tradeoffs between the noise amplification and convergence rate
of similar gradient flow dynamics for strongly convex quadratic problems. We introduce
a geometric viewpoint analogous to the discrete-time setting to characterize the optimal
convergence rate and identify the corresponding algorithmic parameters. We then examine
the dependence of the noise amplification on the parameters and the spectrum of the Hessian
matrix and demonstrate that our findings regarding the restrictions imposed by the condition
number on the product of the settling time and noise amplification extend to the continuous-
time case as well.

The rest of the chapter is organized as follows. In Section 3.2, we provide preliminar-
ies and background material and, in Section 3.3, we summarize our key contributions. In
Section 3.4, we introduce the tools and ideas that enable our analysis. In particular, we
utilize the Jury stability criterion to provide a novel geometric characterization of stabil-
ity and ρ-linear convergence and exploit this insight to derive simple alternative proofs of
standard convergence results and quantify fundamental stochastic performance tradeoffs. In

40



Section 3.5, we introduce two parameterized families of algorithms that allow us to construc-
tively tradeoff settling time and noise amplification. In Section 3.6, we extend our results
to the continuous-time setting, in Section 3.7, we provide proofs of our main results, and in
Section 3.8, we conclude the chapter.

3.2 Preliminaries and background
For the unconstrained optimization problem

minimize
x

f(x) (3.1)

where f : Rn → R is a strongly convex function with a Lipschitz continuous gradient ∇f ,
we consider noisy momentum-based first-order algorithms that use information from the two
previous steps to update the optimization variable:

xt+2 = xt+1 + β(xt+1 − xt) − α∇f(xt+1 + γ(xt+1 − xt)) + σww
t. (3.2)

Here, t is the iteration index, α is the stepsize, β and γ are momentum parameters, σw is the
noise magnitude, and wt is an additive white noise with zero mean and identity covariance
matrix,

E
[
wt
]

= 0, E
[
wt(wτ )T

]
= I δ(t − τ)

where δ is the Kronecker delta and E is the expected value operator. In this chapter, we
consider two noise models.

1. Iterate noise (σw = σ): models uncertainty in computing the iterates of (3.2), where σ
denotes the stepsize-independent noise magnitude.

2. Gradient noise (σw = ασ): models uncertainty in the gradient evaluation. In this case,
the stepsize α directly impacts magnitude of the additive noise.

Iterate noise models scenarios where uncertainties in optimization variables exist because
of roundoff, quantization, and communication errors. This model has also been used to
improve generalization and robustness in machine learning [111]. On the other hand, the
second noise model accounts for gradient computation error or scenarios in which the gradient
is estimated from noisy measurements [40]. Also, noise may be intentionally added to the
gradient for privacy reasons [112].

Remark 1 An alternative noise model with σw =
√
ασ has been used to escape local minima

in stochastic gradient descent [113] and to provide non-asymptotic guarantees in nonconvex
learning [114], [115]. This model arises from a discretization of the continuous-time Langevin
diffusion dynamics [114] and, for strongly convex quadratic problems, our framework can be
used to examine acceleration/robustness tradeoffs. For algorithms that are faster than the
standard gradient descent, this model has order-wise identical performance bounds as the
other two models and the only difference arises in decelerated regime. We omit details for
brevity.
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Special cases of (3.2) include noisy gradient descent (β = γ = 0), Polyak’s heavy-ball
method (γ = 0), and Nesterov’s accelerated algorithm (γ = β). In the absence of noise (i.e.,
for σ = 0), the parameters (α, β, γ) can be selected such that the iterates converge linearly
to the globally optimal solution [9]. For the family of smooth strongly convex problems, the
parameters that yield the fastest known linear convergence rate were provided in [55].

3.2.1 Linear dynamics for quadratic problems

Let QLm denote the class of m-strongly convex L-smooth quadratic functions

f(x) = 1
2
xTQx − qTx (3.3)

with the condition number κ := L/m, where q is a vector and Q = QT � 0 is the Hessian
matrix with eigenvalues

L = λ1 ≥ λ2 ≥ . . . ≥ λn = m > 0.

For the quadratic objective function in (3.3), we can use a linear time-invariant (LTI) state-
space model to describe the two-step momentum algorithm (3.2) with constant parameters,

ψt+1 = Aψt + B wt

zt = C ψt
(3.4a)

where ψt is the state, zt := xt−x? is the performance output, and wt is the white stochastic
input. In particular, choosing ψt := [(xt − x?)T (xt+1 − x?)T ]T yields

A =

[
0 I

−βI + γαQ (1 + β)I − (1 + γ)αQ

]
BT =

[
0 σwI

]
, C =

[
I 0

]
.

(3.4b)

3.2.2 Convergence rates

An algorithm is stable if in the absence of noise (i.e., σw = 0), the state converges linearly
with some rate ρ < 1,

‖ψt‖2 ≤ c ρt ‖ψ0‖2 for all t ≥ 1 (3.5)

for all f ∈ QLm and all initial conditions ψ0, where c > 0 is a constant. For LTI system (3.4a),
the spectral radius ρ(A) determines the best achievable convergence rate. In addition,

Ts :=
1

1 − ρ
(3.6)

determines the settling time, i.e., the number of iterations required to reach a given desired
accuracy; see Appendix B.1. For the classQLm of high-dimensional functions (i.e., for n & Ts),
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method fastest parameters (α, β, γ) Ts Jmin/σ
2
w Jmax/σ

2
w

Gradient (2/(L+m), 0, 0) (κ+ 1)/2 Θ(κ) + n nΘ(κ)

Heavy-ball (4/(
√
L+
√
m)2, (1− 2/(

√
κ+ 1))2, 0) (

√
κ+ 1)/2 Θ(κ

√
κ) + nΘ(

√
κ) nΘ(κ

√
κ)

Nesterov (4/(3L+m), 1− 4/(
√

3κ+ 1 + 2, β)
√

3κ+ 1/2 Θ(κ
√
κ) + n nΘ(κ

√
κ)

Table 3.1: Settling times Ts := 1/(1 − ρ) [52, Proposition 1] along with the corresponding
noise amplification bounds in (3.10) [93, Theorem 4] for the parameters that optimize the
linear convergence rate ρ for strongly convex quadratic function f ∈ QLm with the condition
number κ := L/m, Here, n is the dimension of x and σ2

w is the variance of the white noise.

Nesterov established the fundamental lower bound on the settling time (convergence rate)
of any first-order algorithm [9],

Ts ≥
√
κ + 1

2
. (3.7)

This lower bound is sharp and it is achieved by the heavy-ball method with the parameters
provided in Table 3.1 [52].

3.2.3 Noise amplification

For LTI system (3.4a) driven by an additive white noise wt, E (ψt+1) = AE (ψt) . Thus,
E (ψt) = At E (ψ0) and, for any stabilizing parameters (α, β, γ), the iterates reach a statistical
steady-state with limt→∞ E (ψt) = 0 and a variance that can be computed from the solution
of the algebraic Lyapunov equation [41], [93]. We call the steady-state variance of the error
in the optimization variable noise (or variance) amplification,

J := lim
t→∞

1

t

t∑
k= 0

E
(
‖xk − x?‖2

2

)
. (3.8)

In addition to the algorithmic parameters (α, β, γ), the entire spectrum {λi | i = 1, . . . , n} of
the Hessian matrix Q impacts the noise amplification J of algorithm (3.2) [93].

Remark 2 An alternative performance metric that examines the steady-state variance of
yt − x? was considered in [109], where yt := xt + γ(xt − xt−1) is the point at which the
gradient is evaluated in (3.2). For all γ ≥ 0, we have Jx ≤ Jy ≤ (1 + 2γ)2Jx, where the
subscripts x and y denote the noise amplification in terms of the error in xt and yt. Thus,
these performance metrics are within a constant factor of each other for bounded values of
γ ≥ 0.

3.2.4 Parameters that optimize convergence rate

For special instances of the two-step momentum algorithm (3.2) applied to strongly convex
quadratic problems, namely gradient descent (gd), heavy-ball method (hb), and Nesterov’s
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accelerated algorithm (na), the parameters that yield the fastest convergence rates were
established in [52], [57]. These parameters along with the corresponding rates and the noise
amplification bounds are provided in Table 3.1. The convergence rates are determined by
the spectral radius of the corresponding A-matrices and the noise amplification bounds are
computed by examining the solution to the algebraic Lyapunov equation and determining
the functions f ∈ QLm for which the steady-state variance is maximized/minimized [93,
Proposition 1]. Since the optimal convergence rate for the heavy-ball method meets the
fundamental lower bound (3.7), this choice of parameters also optimizes the convergence
rate of the two-step momentum algorithm (3.2) for f ∈ QLm.

For the optimal parameters provided in Table 3.1, there is a Θ(
√
κ) improvement in

settling times of the heavy-ball and Nesterov’s accelerated algorithms relative to gradient
descent,

Ts =

{
Θ(κ) gd

Θ(
√
κ) hb, na

(3.9)

where a = Θ(b) means that a lies within constant factors of b as b→∞. This improvement
makes accelerated algorithms popular for problems with large condition number κ.

While convergence rate is only affected by the largest and smallest eigenvalues of Q, the
entire spectrum of Q influences the noise amplification J . On the other hand, the largest
and smallest values of J over the function class QLm,

Jmax := max
f ∈QLm

J, Jmin := min
f ∈QLm

J (3.10)

depend only on the noise magnitude σw, the algorithmic parameters (α, β, γ), the problem
dimension n, and the extreme eigenvalues m and L of Q.

For the parameters that optimize convergence rates, tight upper and lower bounds on the
noise amplification were developed in [93, Theorem 4]. These bounds are expressed in terms
of the condition number κ and the problem dimension n, and they demonstrate opposite
trends relative to the settling time. In particular, for gradient descent,

Jmax = σ2
wnΘ(κ), Jmin = σ2

w(Θ(κ) + n) (3.11a)

and for accelerated algorithms,

Jmax = σ2
wnΘ(κ

√
κ), Jmin =

{
σ2
w(Θ(κ

√
κ) + nΘ(

√
κ)) hb

σ2
w(Θ(κ

√
κ) + n) na.

(3.11b)

We observe that for fixed problem dimension n and noise magnitude σw, the accelerated
algorithms increase noise amplification by a factor of Θ(

√
κ) relative to gradient descent

for the parameters that optimize convergence rates. While similar result also holds for
heavy-ball and Nesterov’s algorithms with arbitrary values of parameters α and β that
provide settling time Ts ≤ c

√
κ with c > 0 [93, Theorem 8], in this chapter we establish

fundamental tradeoffs between noise amplification and settling time for the class of the two-
step momentum algorithms (3.2) with arbitrary stabilizing values of constant parameters.

44



3.3 Summary of main results
In this section, we summarize our key contributions regarding tradeoffs between robustness
and convergence of noisy two-step momentum algorithm (3.2). In addition, our geometric
characterization of stability and ρ-linear convergence allows us to provide alternative proofs
of standard convergence results and quantify fundamental performance tradeoffs. The proofs
of results presented here can be found in Section 3.7.

3.3.1 Bounded noise amplification for stabilizing parameters

For a discrete-time LTI system with a convergence rate ρ, the distance of the eigenvalues
to the unit circle is lower bounded by 1 − ρ. We use this stability margin to establish an
upper bound on the noise amplification J of the two-step momentum method (3.2) for any
stabilizing parameters (α, β, γ).

Theorem 1 Let the parameters (α, β, γ) be such that the two-step momentum algorithm
in (3.2) converges linearly with the rate ρ = 1− 1/Ts for all f ∈ QLm. Then,

J ≤ σ2
w(1 + ρ2)

(1 + ρ)3
nT 3

s (3.12a)

where n is the problem size. Furthermore, for the gradient noise model (σw = ασ),

J ≤ σ2(1 + ρ)(1 + ρ2)

L2
nT 3

s . (3.12b)

For ρ < 1, both upper bounds in (3.12) scale with nT 3
s and they are exact for the heavy-

ball method with the parameters that optimize the convergence rate provided by Table 3.1.
However, these bounds are not tight for all stabilizing parameters; e.g., applying (3.12a) to
gradient descent with the optimal stepsize α = 2/(L+m) yields J ≤ σ2

wnΘ(κ3), which is off
by a factor of κ2; cf. Table 3.1. The bound in (3.12b) is obtained by combining (3.12a) with
αL ≤ (1 + ρ)2, which follows from the conditions for ρ-linear convergence in Section 3.4.

3.3.2 Tradeoff between settling time and noise amplification

In this subsection, we establish lower bounds on the products Jmax×Ts and Jmin×Ts for any
stabilizing constant parameters (α, β, γ) in the two-step momentum algorithm (3.2), where
Jmax and Jmin defined in (3.10) are the largest and the smallest noise amplification for the
class of functions QLm and Ts is the settling time.
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Theorem 2 Let the parameters (α, β, γ) be such that the two-step momentum algorithm
in (3.2) converges linearly with the rate ρ = 1− 1/Ts for all f ∈ QLm. Then, Jmax and Jmin

in (3.10) satisfy,

Jmax × Ts ≥ σ2
w

(
(n − 1)

κ2

64
+

√
κ+ 1

2

)
(3.13a)

Jmin × Ts ≥ σ2
w

(
κ2

64
+ (n − 1)

√
κ+ 1

2

)
. (3.13b)

Furthermore, for the gradient noise model (σw = ασ), we have

Jmax × Ts ≥
σ2

L2

(
(n − 1)

κ2

4
+ max

{
κ2

T 3
s

,
1

4

})
(3.13c)

Jmin × Ts ≥
σ2

L2

(
κ2

4
+ (n − 1) max

{
κ2

T 3
s

,
1

4

})
. (3.13d)

For both noise models, the condition number κ restricts the performance of the two-step
momentum algorithm with constant parameters: for a fixed problem size n, all four lower
bounds in (3.13) scale with κ2. Relative to the dominant term in κ, the problem dimension
n appears in a multiplicative fashion for the lower bounds on Jmax and in an additive fashion
for the lower bounds on Jmin. Next, by establishing upper bounds on Jmax×Ts and Jmin×Ts
for a parameterized family of heavy-ball-like algorithms in Theorem 3, we prove that for any
settling time Ts these bounds are order-wise tight (in κ) for the gradient noise model. On
the other hand, for the iterate noise model, they are tight only if Ts is smaller than the best
achievable settling time of gradient descent, (κ+ 1)/2.

Theorem 3 For the class of strongly convex quadratic functions QLm with the condition
number κ = L/m, let the scalar ρ be such that the fundamental lower bound Ts = 1/(1 −
ρ) ≥ (

√
κ + 1)/2 given by (3.7) holds. Then, the two-step momentum algorithm (3.2) with

parameters

α =
(1 + ρ)(1 + β/ρ)

L
, β = ρ

κ − (1 + ρ)/(1 − ρ)

κ + (1 + ρ)/(1 − ρ)
, γ = 0 (3.14)

converges linearly with the rate ρ and, for settling times Ts ≤ (κ + 1)/2, Jmax and Jmin

in (3.10) satisfy

Jmax × Ts ≤ σ2
w nκ (κ + 1)/2 (3.15a)

Jmin × Ts ≤ σ2
w κ (κ + n − 1) . (3.15b)

Furthermore, for the gradient noise model (σw = ασ) and any settling time that satisfies the
inequality in (3.7), parameters (3.14) lead to

Jmax × Ts ≤ σ2 nκ (κ + 1)/L2 (3.15c)
Jmin × Ts ≤ σ2 2κ (κ + 4n − 7)/L2. (3.15d)
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Theorem 3 provides upper bounds on Jmax×Ts and Jmin×Ts for a family of heavy-ball-like
algorithms (γ = 0) parameterized by the settling time Ts. For both noise models, the upper
bounds in (3.15) scale with κ2 which matches the corresponding lower bounds in (3.13). For
the gradient noise model, the upper and lower bounds are order-wise tight (in κ) for any
settling time. However, for the iterate noise model, the lower bounds in Theorem 2 can be
improved when Ts ≥ (κ+1)/2. In Theorem 4, we establish alternative lower bounds on Jmax

and Jmin that scale with Ts for the two-step momentum algorithm (3.2) with any stabilizing
parameters. We also utilize parameterized family (3.14) of heavy-ball-like algorithms with
negative momentum parameter β to increase Ts beyond (κ+ 1)/2 and obtain upper bounds
on Jmax and Jmin that scale linearly with Ts for the iterate noise model.

Theorem 4 Let the parameters (α, β, γ) be such that the two-step momentum algorithm
in (3.2) achieves the convergence rate ρ = ρ(A) = 1 − 1/Ts, where the matrix A is given
by (3.4). Then, Jmax and Jmin in (3.10) satisfy,

Jmax ≥ σ2
w

(
(n − 1)

Ts
2(1 + ρ)2

+ 1

)
(3.16a)

Jmin ≥ σ2
w

(
Ts

2(1 + ρ)2
+ (n − 1)

)
. (3.16b)

Furthermore, for the parameterized family of heavy-ball-like algorithms (3.14) with Ts ≥
(κ+ 1)/2,

Jmax ≤ σ2
wnTs (3.17a)

Jmin ≤ 2σ2
w(1 + (n− 2)/κ)Ts. (3.17b)

We note that the condition Ts ≥ (κ+1)/2 in Theorem 4 corresponds to non-positive momen-
tum parameter β ≤ 0. We also observe that both upper and lower bounds on Jmax and Jmin

in Theorem 4 grow linearly with Ts and that for the iterate noise model with Ts ≥ (κ+ 1)/2
the lower bound is sharper than the one established in Theorem 2.

Remark 3 Since QLm is a subset of the class of m-strongly convex functions with L-Lipschitz
continuous gradients, the fundamental lower bounds on Jmax × Ts established in Theorem 2
carry over to this broader class of problems. Thus, the restriction imposed by the condition
number on the tradeoff between settling time and noise amplification goes beyond QLm and
holds for general strongly convex problems.

Remark 4 The upper bounds in Theorems 3 and 4 are obtained for a particular choice
of constant parameters. Thus, they also provide upper bounds on the best achievable noise
amplification bounds J?max := minα,β,γ Jmax and J?min := minα,β,γ Jmin for a settling time Ts;
see Figure 3.1.
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J⋆
min

J⋆
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(
√
κ+ 1)/2

heavy-ball

(κ+ 1)/2

gradient descent

(σw = 1)

Ts =
1

1−ρ

J

•

•
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J⋆
max

(
√
κ+ 1)/2

heavy-ball

(κ+ 1)/2

gradient descent

(σw = α)

Ts =
1

1−ρ

J

Figure 3.1: Summary of the results established in Theorems 1-4 for σ2 = 1. The top and
bottom rows correspond to the iterate and gradient noise models, respectively, and they
illustrate (i) J?max := minα,β,γ maxf J and J?min := minα,β,γ minf J subject to a settling time
Ts for f ∈ QLm (black curves); and (ii) their corresponding upper (maroon curves) and lower
(red curves) bounds in terms of the condition number κ = L/m, problem size n, and settling
time Ts. The upper bounds on J established in Theorem 1 are marked by blue curves. The
dark shaded region and its union with the light shaded region respectively correspond to
all possible pairs (Ts,maxf J) and (Ts,minf J) for f ∈ QLm and any stabilizing parameters
(α, β, γ).
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3.4 Geometric characterization
In this section, we examine the relation between the convergence rate and noise amplifi-
cation of the two-step momentum algorithm (3.2) for strongly convex quadratic problems.
In particular, the eigenvalue decomposition of the Hessian matrix Q allows us to bring the
dynamics into n decoupled second-order systems parameterized by the eigenvalues of Q and
the algorithmic parameters (α, β, γ). We utilize the Jury stability criterion to provide a
novel geometric characterization of stability and ρ-linear convergence and exploit this in-
sight to derive alternative proofs of standard convergence results and quantify fundamental
performance tradeoffs.

3.4.1 Modal decomposition

We utilize the eigenvalue decomposition of the Hessian matrix Q = QT � 0, Q = V ΛV T ,
where Λ is the diagonal matrix of the eigenvalues and V is the orthogonal matrix of the
corresponding eigenvectors. The change of variables x̂t := V T (xt − x?) and ŵt := V Twt

allows us to bring (3.4) into n decoupled second-order subsystems,

ψ̂t+1
i = Âiψ̂

t
i + B̂iŵ

t
i

ẑti = Ĉiψ̂
t
i

(3.18a)

where ŵti is the ith component of the vector ŵt ∈ Rn, ψ̂ti =
[
x̂ti x̂t+1

i

]T ,
Âi = Â(λi) :=

[
0 1

−a(λi) −b(λi)

]
, B̂i =

[
0 σw

]T
, Ĉi =

[
1 0

]
(3.18b)

and

a(λ) := β − γαλ, b(λ) := (1 + γ)αλ− (1 + β). (3.18c)

3.4.2 Conditions for linear convergence

For the class of strongly convex quadratic functions QLm, the best convergence rate ρ is
determined by the largest spectral radius of the matrices Â(λ) in (3.18) for λ ∈ [m,L],

ρ = max
λ∈ [m,L]

ρ(Â(λ)). (3.19)

For the heavy-ball and Nesterov’s accelerated methods, analytical expressions for ρ(Â(λ))
were developed and algorithmic parameters that optimize convergences rate were obtained
in [52]. Unfortunately, these expressions do not provide insight into the relation between
convergence rates and noise amplification.

In this chapter, we ask the dual question:

• For a fixed convergence rate ρ, what is the largest condition number κ that can be
handled by the two-step momentum algorithm (3.2) with constant parameters (α, β, γ)?
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We note that the matrices Â(λ) share the same structure as

M =

[
0 1
−a −b

]
(3.20a)

with the real scalars a and b and that the characteristic polynomial associated with the
matrix M is given by

F (z) := det (zI − M) = z2 + b z + a. (3.20b)

We next utilize the Jury stability criterion [116, Chap. 4-3] to provide conditions for stability
of the matrix M given by (3.20a).

Lemma 1 For the matrix M ∈ R2×2 given by (3.20a),

ρ(M) < 1 ⇐⇒ (b, a) ∈ ∆ (3.21a)

where the stability set

∆ := {(b, a) | |b| − 1 < a < 1} (3.21b)

is an open triangle in the (b, a)-plane with vertices

X = (−2, 1), Y = (2, 1), Z = (0,−1). (3.21c)

Proof: The characteristic polynomial F (z) associated with the matrix M is given by
equation (3.20b) and the Jury stability criterion [116, Chap. 4-3] provides necessary and
sufficient conditions for stability,

|a| < 1, F (±1) = 1 ± b + a > 0.

The condition a > −1 is ensured by the positivity of F (±1). �

For any ρ > 0, the spectral radius ρ(M) of the matrix M is smaller than ρ if and only
if ρ(M/ρ) is smaller than 1. This observation in conjunction with Lemma 1 allow us to
obtain necessary and sufficient conditions for stability with the linear convergence rate ρ of
the two-step momentum algorithm (3.2).

Lemma 2 For any positive scalar ρ < 1 and the matrix M ∈ R2×2 given by (3.20a), we
have

ρ(M) ≤ ρ ⇐⇒ (b, a) ∈ ∆ρ (3.22a)

where the ρ-linear convergence set

∆ρ :=
{

(b, a) | ρ (|b| − ρ) ≤ a ≤ ρ2
}

(3.22b)

is a closed triangle in the (b, a)-plane with vertices

Xρ = (−2ρ, ρ2), Yρ = (2ρ, ρ2), Zρ = (0,−ρ2). (3.22c)
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Proof: See Appendix B.3. �

• •

•

X = (−2, 1) Y = (2, 1)

Z = (0,−1)

• •

•

Xρ = (−2ρ, ρ2) Yρ = (2ρ, ρ2)

Zρ= (0,−ρ2)

h

d l• b

a

Figure 3.2: The stability set ∆ (the open, cyan triangle) in (3.21b) and the ρ-linear conver-
gence set ∆ρ (the closed, yellow triangle) in (3.22b) along with the corresponding vertices.
For the point (b, a) (black dot) associated with the matrix M in (3.20a), the corresponding
distances (d, h, l) in (3.29) are marked by black lines.

Figure 3.2 illustrates the stability and the ρ-linear convergence sets ∆ and ∆ρ. We note
that for any ρ ∈ (0, 1), we have ∆ρ ⊂ ∆. This can be verified by observing that the vertices
(Xρ, Yρ, Zρ) of ∆ρ all lie in ∆.

For the two-step momentum algorithm (3.2), the functions a(λ) and b(λ) given by (3.18c)
satisfy the affine relation,

(1 + γ) a(λ) + γ b(λ) = β − γ. (3.23)

This fact in conjunction with Lemmas 1 and 2 allow us to derive conditions for stability and
the convergence rate.

Lemma 3 The two-step momentum algorithm (3.2) with constant parameters (α, β, γ) is
stable for all functions f ∈ QLm if and only if the following equivalent conditions hold:

1. (b(λ), a(λ)) ∈ ∆ for all λ ∈ [m,L];

2. (b(λ), a(λ)) ∈ ∆ for λ ∈ {m,L}.

Furthermore, the linear convergence rate ρ < 1 is achieved for all functions f ∈ QLm if and
only if the following equivalent conditions hold:

1. (b(λ), a(λ)) ∈ ∆ρ for all λ ∈ [m,L];

2. (b(λ), a(λ)) ∈ ∆ρ for λ ∈ {m,L}.

Here, (b(λ), a(λ)) is given by (3.18c), and the stability and ρ-linear convergence triangles ∆
and ∆ρ are given by (3.21b) and (3.22b), respectively.
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•

Xρ Yρ

Zρ
Gradient descent

b

a

• •

•

Xρ Yρ

Zρ
Polyak’s method

b

a

• •

•
•

Xρ Yρ

Zρ
X ′
ρNesterov’s method

•
b

a

Figure 3.3: For a fixed ρ-linear convergence triangle ∆ρ (yellow), dashed blue lines mark
the line segments (b(λ), a(λ)) with λ ∈ [m,L] for gradient descent, Polyak’s heavy-ball,
and Nesterov’s accelerated methods as particular instances of the two-step momentum al-
gorithm (3.2) with constant parameters. The solid blue line segments correspond to the
parameters for which the algorithm achieves rate ρ for the largest possible condition number
given by (3.28).

Proof: The conditions in 1) follow from combing (3.19) with Lemma 1 (for stability) and
with Lemma 2 (for ρ-linear convergence). The conditions in 2) follow from the facts that ∆
and ∆ρ are convex sets and that (b(λ), a(λ)) is a line segment in the (b, a)-plane with end
points corresponding to λ = m and λ = L. �

Lemma 3 exploits the affine relation (3.23) between a(λ) and b(λ) and the convexity of
the sets ∆ and ∆ρ to establish necessary and sufficient conditions for stability and ρ-linear
convergence: the inclusion of the end points of the line segment (b(λ), a(λ)) associated with
the extreme eigenvalues m and L of the matrix Q in the corresponding triangle. A similar
approach was taken in [109, Appendix A.1], where the affine nature of the conditions resulting
from the Jury stability criterion with respect to λ was used to conclude that ρ(Â(λ)) is a
quasi-convex function of λ and show that the extreme points m and L determine ρ(A). In
contrast, we exploit the triangular shapes of the stability and ρ-linear convergence sets ∆ and
∆ρ and utilize this geometric insight to identify the parameters that optimize the convergence
rate and to establish tradeoffs between noise amplification and convergence rate.

The following corollary is immediate.

Corollary 1 Let the two-step momentum algorithm (3.2) with constant parameters (α, β, γ)
minimize a function f ∈ QLm with a linear rate ρ < 1. Then, the convergence rate ρ is
achieved for all functions f ∈ QLm.

Proof: Lemma 3 implies that only the extreme eigenvalues m and L of Q determine ρ.
Since all functions f ∈ QLm share the same extreme eigenvalues, this completes the proof. �

For the two-step momentum algorithm (3.2) with constant parameters, Lemma 3 leads
to a simple alternative proof for the fundamental lower bound (3.7) on the settling time
established by Nesterov. Our proof utilizes the fact that for any point (b(λ), a(λ)) ∈ ∆ρ, the
horizontal signed distance to the edge XZ of the stability triangle ∆ satisfies

d(λ) := a(λ) + b(λ) + 1 = αλ. (3.24)

where a and b are given by (3.18c); see Figure 3.2 for an illustration.
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Proposition 1 Let the two-step momentum algorithm in (3.2) with constant parameters
(α, β, γ) achieve the linear convergence rate ρ < 1 for all functions f ∈ QLm. Then, lower
bound (3.7) on the settling time holds and it is achieved by the heavy-ball method with the
parameters provided in Table 3.1.

Proof: Let d(m) = αm and d(L) = αL denote the values of the function d(λ) associ-
ated with the points (b(m), a(m)) and (b(L), a(L)), where (b, a) and d are given by (3.18c)
and (3.24), respectively. Lemma 3 implies that (b(L), a(L)) and (b(m), a(m)) lie in the
ρ-linear convergence triangle ∆ρ. Thus,

dmax/dmin ≥ d(L)/d(m) = κ (3.25)

where dmax and dmin are the largest and smallest values of d among all points (b, a) ∈ ∆ρ.
From the shape of ∆ρ, we conclude that dmax and dmin correspond to the vertices Yρ and Xρ

of ∆ρ given by (3.22c); see Figure 3.2. Thus,

dmax = dYρ = 1 + ρ2 + 2 ρ = (1 + ρ)2 (3.26a)
dmin = dXρ = 1 + ρ2 − 2 ρ = (1 − ρ)2. (3.26b)

Combining (3.25) with (3.26) yields

κ =
d(L)

d(m)
≤ dmax

dmin

=
(1 + ρ)2

(1 − ρ)2
. (3.27)

Rearranging terms in (3.27) gives lower bound (3.7). �

To provide additional insight, we next examine the implications of Lemma 3 for gradient
descent, Polyak’s heavy-ball, and Nesterov’s accelerated algorithms. In all three cases, our
dual approach recovers the optimal convergence rates provided in Table 3.1. From the affine
relation (3.23), it follows that (b(λ), a(λ)) with λ ∈ [m,L] for,

• gradient descent (β = γ = 0), is a horizontal line segment parameterized by a(λ) = 0;

• heavy-ball method (γ = 0), is a horizontal line segment parameterized by a(λ) = β;

• Nesterov’s accelerated method (β = γ), is a line segment parameterized by a(λ) =
−βb(λ)/(1 + β).

These observations are illustrated in Figure 3.3 and, as we show in the proof of Lemma 3,
to obtain the largest possible condition number for which the convergence rate ρ is feasible
for each algorithm, one needs to find the largest ratio d(L)/d(m) = κ among all possible
orientations for the line segment (b(λ), a(λ)) with λ ∈ [m,L] to lie within ∆ρ. This leads to
the following conditions:
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• For gradient descent, the largest ratio d(L)/d(m) corresponds to the intersections of
the horizontal axis and the edges YρZρ and XρZρ of the triangle ∆ρ, which are given
by (ρ, 0) and (−ρ, 0), respectively. Thus, we have

κ = d(L)/d(m) ≤ (1 + ρ)/(1 − ρ). (3.28a)

Rearranging terms in (3.28a) yields a lower bound on the settling time for gradient
descent 1/(1 − ρ) ≥ (κ + 1)/2. This lower bound is tight as it can be achieved by
choosing the parameters in Table 3.1, which place (b(λ), a(λ)) to (ρ, 0) and (−ρ, 0) for
λ = L and λ = m, respectively.

• For the heavy-ball method, the optimal rate is recovered by designing the parameters
(α, β) such that the vertices Xρ and Yρ belong to the line segment (b(λ), a(λ)),

κ = d(L)/d(m) ≤ (1 + ρ)2/(1 − ρ)2. (3.28b)

By choosing d(L) = dYρ and d(m) = dXρ , we recover the optimal parameters provided
in Table 3.1 and achieve the fundamental lower bound (3.7) on the convergence rate.

• For Nesterov’s accelerated method, the largest ratio d(L)/d(m) corresponds to the line
segment XρX

′
ρ that passes through the origin, where X ′ρ = (2ρ/3,−ρ2/3) lies on the

edge YρZρ; see Appendix B.3. This yields

κ = d(L)/d(m) ≤ (1 + ρ)(3 − ρ)/(3(1 − ρ)2). (3.28c)

Rearranging terms in this inequality provides a lower bound on the settling time 1/(1−
ρ) ≥

√
3κ+ 1/2. This lower bound is tight and it can be achieved with the parameters

provided in Table 3.1, which place (b(L), a(L)) to X ′ρ and (b(m), a(m)) to Xρ.

Figure 3.3 illustrates the optimal orientations discussed above.

3.4.3 Noise amplification

To quantify the noise amplification of the two-step momentum algorithm (3.2), we utilize
an alternative characterization of the stability and ρ-linear convergence triangles ∆ and ∆ρ.
As illustrated in Figure 3.2, let d and l denote the horizontal signed distances of the point
(a, b) to the edges XZ and Y Z of the stability triangle ∆,

d(λ) := a(λ) + b(λ) + 1

l(λ) := a(λ) − b(λ) + 1.
(3.29a)

and let h denote its vertical signed distance to the edge XY ,

h(λ) := 1 − a(λ). (3.29b)
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Then, the following equivalence conditions,

(b, a) ∈ ∆ ⇐⇒ h, d, l > 0 (3.30a)

(b, a) ∈ ∆ρ ⇐⇒


h ≥ (1 − ρ)(1 + ρ)

d ≥ (1 − ρ)(1 + ρ + b)

l ≥ (1 − ρ)(1 + ρ − b)

(3.30b)

follow from the definition of the sets ∆ in (3.21b), ∆ρ in (3.22b), and (h, d, l) in (3.29).
In Theorem 5, we quantify the steady-state variance of the error in the optimization

variable in terms of the spectrum of the Hessian matrix and the algorithmic parameters for
noisy two-step momentum algorithm (3.2). Special cases of this result for gradient decent,
heavy-ball, and Nesterov’s accelerated algorithms were established in [93]. The proof of
Theorem 5 follows from similar arguments and we omit it for brevity.

Theorem 5 For a strongly convex quadratic objective function f ∈ QLm with the Hessian
matrix Q, the steady-state variance of xt − x? for the two-step momentum algorithm (3.2)
with any stabilizing parameters (α, β, γ) is determined by

J =
n∑

i= 1

σ2
w(d(λi) + l(λi))

2 d(λi)h(λi) l(λi)
=:

n∑
i= 1

Ĵ(λi)

Here, Ĵ(λi) denotes the modal contribution of the ith eigenvalue λi of Q to the steady-state
variance, (d, h, l) are defined in (3.29), and (a, b) are given by (3.18c).

In Appendix B.6, we describe how the algebraic Lyapunov equation for the steady-state
covariance matrix of the error in the optimization variable can be used to compute the noise
amplification J . Theorem 5 demonstrates that J depends on the entire spectrum of the
Hessian matrix Q and not only on its extreme eigenvalues m and L, which determine the
convergence rate. Since for any f ∈ QLm the extreme eigenvalues of Q are fixed at m and L,
we have

Jmax := max
f ∈QLm

J = Ĵ(m) + Ĵ(L) + (n − 2)Ĵmax

Jmin := min
f ∈QLm

J = Ĵ(m) + Ĵ(L) + (n − 2)Ĵmin

(3.31a)

where
Ĵmax := max

λ∈ [m,L]
Ĵ(λ), Ĵmin := min

λ∈ [m,L]
Ĵ(λ). (3.31b)

We use these expressions to determine explicit upper and lower bounds on Jmax and Jmin in
terms of the condition number and the settling time.

3.5 Designing order-wise Pareto-optimal algorithms with
adjustable parameters

We now utilize the geometric insight developed in Section 3.4 to design algorithm parameters
that tradeoff settling time and noise amplification. In particular, we introduce two instances
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of parameterized families of heavy-ball-like (γ = 0) and Nesterov-like (γ = β) algorithms that
provide continuous transformations from gradient descent to the corresponding accelerated
algorithm (with the optimal convergence rate) via a homotopy path parameterized by the
settling time Ts. For both the iterate and gradient noise models, we establish an order-wise
tight scaling Θ(κ2) for Jmax×Ts and Jmin×Ts in accelerated regime (i.e., when Ts is smaller
than the settling time of gradient descent with the optimal stepsize, (κ + 1)/2). This is
a direct extension of [93, Theorem 4] which studied gradient descent and its accelerated
variants for the parameters that optimize the corresponding convergence rates.

We also examine performance tradeoffs for the parameterized family of heavy-ball-like
algorithms with negative momentum parameter β < 0. This decelerated regime corresponds
to settling times larger than (κ+ 1)/2 and it captures a key difference between the two noise
models: for Ts ≥ (κ + 1)/2, Jmax and Jmin grow linearly with the settling time Ts for the
iterate noise model and they remain inversely proportional to Ts for the gradient noise model.
Comparison with the lower bounds in Theorems 2 and 4 shows that the parameterized family
of heavy-ball-like methods yields order-wise optimal (in κ and Ts) Jmax and Jmin for both
noise models. The results presented here prove all upper bounds in Theorems 3 and 4.

3.5.1 Parameterized family of heavy-ball-like methods

For the two-step momentum algorithm (3.2) with γ = 0, the line segment (b(λ), a(λ)) pa-
rameterized by λ ∈ [m,L] is parallel to the b-axis in the (b, a)-plane and it satisfies a(λ) = β.
As described in Section 3.4, gradient descent and heavy-ball methods with the optimal pa-
rameters provided in Table 3.1 are obtained for β = 0 and β = ρ2, respectively, and the
corresponding end points (b(m), a(m)) and (b(L), a(L)) lie at the edges XρZρ and YρZρ of
the ρ-linear convergence triangle ∆ρ. Inspired by this observation, we propose a family of
parameters for which β = cρ2, for some scalar c ∈ [−1, 1], and determine the stepsize α such
that the above end points lie at XρZρ and YρZρ,

α = (1 + ρ)(1 + cρ)/L, β = cρ2, γ = 0. (3.32)

This yields a continuous transformation between the standard heavy-ball method (c = 1)
and gradient descent (c = 0) for a fixed condition number κ. In addition, the momentum
parameter β in (3.32) becomes negative for c < 0; see Figure 3.3 for an illustration. In
Lemma 4, we provide expressions for the scalar c as well as for Ĵmax and Ĵmin defined in (3.31b)
in terms of the condition number κ and the convergence rate ρ.

Lemma 4 For the class of functions QLm with the condition number κ = L/m, let the scalar
ρ be such that

Ts = 1/(1 − ρ) ≥ (
√
κ + 1 )/2.
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Then, the two-step momentum algorithm in (3.2) with parameters in (3.32) achieves the
convergence rate ρ, and the largest and smallest values Ĵmax and Ĵmin of Ĵ(λ) for λ ∈ [m,L]
satisfy

Ĵmax = Ĵ(m) = Ĵ(L) =
σ2
w(κ + 1)

2(1− cρ2)(1 + ρ)(1 + cρ)

Ĵmin = Ĵ(λ̂) =
σ2
w

(1 + cρ2)(1 − cρ2)

where λ̂ := (m+ L)/2 and the scalar c is given by

c :=
κ − (1 + ρ)/(1 − ρ)

ρ (κ + (1 + ρ)/(1 − ρ))
∈ [−1, 1]. (3.33)

Proof: See Appendix B.4. �

The parameters in (3.32) with c given by (3.33) are equivalent to the parameters presented
in Theorem 3. Lemma 4 in conjunction with (3.31) allow us to derive analytical expressions
for Jmax and Jmin.

Corollary 2 The parameterized family of heavy-ball-like methods (3.32) satisfies

Jmax = nĴ(m) = nĴ(L)

Jmin = 2Ĵ(m) + (n − 2)Ĵ(λ̂)

where Ĵ(m) and Ĵ(λ̂) are given in Lemma 4, and Jmax and Jmin defined in (3.10) are the
largest and smallest values of J when the algorithm is applied to f ∈ QLm with the condition
number κ = L/m.

The next proposition uses the analytical expressions in Corollary 2 to establish order-wise
tight upper and lower bounds on Jmax and Jmin for the parameterized family of heavy-ball-
like algorithms (3.32). Our upper and lower bounds are within constant factors of each other
and they are expressed in terms of the problem size n, condition number κ, and settling time
Ts.

Proposition 2 For the parameterized family of heavy-ball-like algorithms in (3.32), Jmax

and Jmin in (3.10) satisfy,

Jmax × Ts = σ2
w p1c(ρ)nκ(κ + 1) (3.34a)

Jmin × Ts = σ2
w κ (2 p1c(ρ) (κ + 1) + (n − 2) p2c(ρ)) . (3.34b)

Furthermore, for the gradient noise model (σw = ασ),

Jmax × Ts = σ2p3c(ρ)nκ(κ + 1) (3.35a)
Jmin × Ts = σ2κ (2 p3c(ρ) (κ + 1) + (n − 2) p4c(ρ)) (3.35b)
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where

p1c(ρ) := qc(ρ)/(2(1 + ρ)2(1 + cρ)2), p2c(ρ) := qc(ρ)/((1 + ρ)(1 + cρ2)(1 + cρ))

p3c(ρ) := qc(ρ)/(2L2), p4c(ρ) := qc(ρ)q−c(ρ)(1 + ρ)/L2
(3.36)

and qc(ρ) := (1− cρ)/(1− cρ2). In addition, for c ∈ [0, 1], p1c(ρ) ∈ [1/64, 1/2] and p2c(ρ) ∈
[1/16, 1]; and for c ∈ [−1, 1], p3c(ρ) ∈ [1/(4L2), 1/L2] and p4c(ρ) ∈ [1/(4L2), 4/L2].

Proof: See Appendix B.4. �

Proposition 3 For the parameterized family of heavy-ball-like methods (3.32) with c ∈
[−1, 0], Jmax and Jmin in (3.10) satisfy,

Jmax = σ2
w p5c(ρ)n (1 + 1/κ)Ts (3.37a)

Jmin = σ2
w

(
2 p5c(ρ) (1 + 1/κ) + p6c(ρ)(n− 2)/κ

)
Ts (3.37b)

where p5c(ρ) := 1/(2(1 + |c|ρ)(1 + |c|ρ2)) ∈ [1/8, 1/2] and p6c(ρ) := 2(1 + ρ)p5c(ρ)q−c(ρ) ∈
[1/8, 2].

Proof: See Appendix B.4. �

The upper bounds in Theorems 3 and 4 follow from Propositions 2 and 3, respectively.
Since these upper bounds have the same scaling as the corresponding lower bounds in Theo-
rems 2 and 4 that hold for all stabilizing parameters (α, β, γ), this demonstrates the tightness
of lower bounds for all settling times and for both noise models.

3.5.2 Parameterized family of Nesterov-like methods

For the two-step momentum algorithm (3.2) with γ = β, the line segment (b(λ), a(λ)) param-
eterized by λ ∈ [m,L] passes through the origin. As described in Section 3.4, gradient descent
and Nesterov’s method with the optimal parameters provided in Table 3.1 are obtained for
a = 0 and a = −(ρ/2)b, respectively, and the corresponding end points (b(m), a(m)) and
(b(L), a(L)) lie on the edges XρZρ and YρZρ of the ρ-linear convergence triangle ∆ρ. To
provide a continuous transformation between these two standard algorithms, we introduce a
parameter c ∈ [0, 1/2], and let the line segment satisfy a(λ) = −cρb(λ) and take its end points
at the edges XρZρ and YρZρ; see Figure 3.3 for an illustration. This can be accomplished
with the following choice of parameters,

α = (1 + ρ)(1 + c − cρ)/(L(1 + c)), γ = β = cρ2/((αL − 1)(1 + c)). (3.38)

For the parameterized family of Nesterov-like algorithms (3.38), Proposition 4 establishes
the settling time and characterizes the dependence of Jmin×Ts and Jmax×Ts on the condition
number κ and the problem size n.

58



• •

•
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(2c′ρ, ρ2)

(cρ, 0)
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Parameters (3.39) Parameters (3.40)

Figure 3.4: The triangle ∆ρ (yellow) and the line segments (b(λ), a(λ)) with λ ∈ [m,L] (blue)
for gradient descent with reduced stepsize (3.39) and heavy-ball-like method (3.40), which
place the end point (b(m), a(m)) at Xρ and the end point (b(L), a(L)) at (2c′ρ, ρ2) on the
edge XρYρ, where c′ := κ(1− ρ)2/ρ− (1 + ρ2)/ρ ranges over the interval [−1, 1].

Proposition 4 For the class QLm with the condition number κ = L/m, let the scalar ρ be
such that

Ts = 1/(1− ρ) ∈ [(
√

3κ+ 1)/2, (κ+ 1)/2].

The two-step momentum algorithm (3.2) with parameters (3.38) achieves the convergence
rate ρ and satisfies

σ2
w

(
(n− 1)κ(κ + 1)/32 +

√
3κ+ 1/2

)
≤ Jmax × Ts ≤ 6σ2

wnκ(3κ + 1)

σ2
w

(
κ(κ+ 1)/32 + (n− 1)

√
3κ+ 1/2

)
≤ Jmin × Ts ≤ σ2

w (6κ(3κ+ 1) + (n− 1)(κ+ 1)/2)

where Jmax and Jmin are the largest and smallest values that J can take when the algorithm
is applied to f ∈ QLm with the condition number κ = L/m, and the scalar c ∈ [0, 1/2] is the
solution to the quadratic equation

κ(1− ρ)(1− cρ− c2(1 + ρ)) = (1 + ρ)(1− cρ− c2(1− ρ)).

Proof: See Appendix B.4. �

Since the stepsize in (3.38) satisfies α ∈ [1/L, 3/L], comparing the upper bounds in
Proposition 4 with the lower bounds in Theorem 2 shows that, for settling times Ts ≤
(κ + 1)/2, the parameters in (3.38) achieve order-wise optimal Jmax and Jmin for both the
iterate (σw = σ) and gradient (σw = ασ) noise models.

3.5.3 Impact of reducing the stepsize

When the only source of uncertainty is a noisy gradient, i.e., σw = ασ, one can attempt to
reduce the noise amplification J by decreasing the stepsize α at the expense of increasing the
settling time Ts = 1/(1− ρ) [56], [58], [103], [109]. In particular, for gradient descent, α can
be reduced from its optimal value 2/(L+m) by keeping (b(m), a(m)) at (−ρ, 0) and moving
the point (b(L), a(L)) from (ρ, 0) towards (−ρ, 0) along the horizontal axis; see Figure 3.4.
This can be accomplished with

α = (1 + cρ)/L, γ = β = 0 (3.39)
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for some c ∈ [−1, 1] parameterizing (b(L), a(L)) = (cρ, 0). In this case, the settling time
satisfies Ts = (κ + c)/(c + 1) ∈ [(κ + 1/2),∞) and similar arguments to those presented in
the proof of Lemma 4 can be used to obtain

Ĵmax = Ĵ(m) = σ2κ2(1− ρ)/L2

Ĵmin =

{
Ĵ(L) = σ2α2/(1− c2ρ2) c ≤ 0

Ĵ(1/α) = σ2α2 c ≥ 0.

For a fixed n, the stepsize in (3.39) yields a Θ(κ2) scaling for both Jmax × Ts and Jmin × Ts
for all c ∈ [−1, 1]. Thus, gradient descent with reduced stepsize order-wise matches the
lower bounds in Theorem 2. An IQC-based approach [93, Lemma 1] was utilized in [109,
Theorem 13] to show that stepsize (3.39) also yields the above discussed convergence rate
and worst-case noise amplification for one-point m-strongly convex L-smooth functions.

Remark 5 Any desired settling time Ts = 1/(1 − ρ) ∈ [(
√
κ + 1)/2,∞) can be achieved by

the heavy-ball-like method with reduced stepsize,

α = (1− ρ)2/m, β = ρ2, γ = 0. (3.40)

This choice yields Jmax = σ2nκ2(1 − ρ4)/(L2(1 + ρ)4) [109, Theorem 9]; see Figure 3.4. In
addition, by considering the error in yt = xt+γ(xt−xt−1) as the performance metric, it was
stated and numerically verified in [109] that the choice of parameters (3.40) yields Pareto-
optimal algorithms for simultaneously optimizing Jmax and ρ. We note that the settling time
Ts = Θ(κ) of gradient descent with standard stepsizes (α = 1/L or 2/(m+L)) can be achieved
via (3.40) by reducing α to O(1/(κL)). In contrast, the parameterized family of heavy-
ball-like methods (3.32) is order-wise Pareto-optimal (cf. Theorems 2-4) while maintaining
α ∈ [1/L, 4/L].

3.6 Continuous-time gradient flow dynamics
Noisy gradient descent can be viewed as the forward Euler discretization of gradient flow
dynamics (gfd),

ẋ + α∇f(x) = σw (3.41a)

where ẋ denotes the derivative of x with respect to time τ and w is a white noise with zero
mean and identity covariance matrix, E[w(τ)] = 0, E[w(τ1)wT (τ2)] = Iδ(τ1 − τ2). Similarly,
noisy two-step momentum algorithm (3.2) can be obtained by discretizing the accelerated
gradient flow dynamics (agd),

ẍ + θẋ + α∇f(x+ γẋ) = σw (3.41b)

with θ := 1− β by approximating x, ẋ, and ẍ using

x = xt+1, ẋ ≈ xt+1 − xt, ẍ ≈ xt+2 − 2xt+1 + xt.
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System (3.41b) with β = γ was introduced in [110] as a continuous-time analogue of Nes-
terov’s accelerated algorithm and a Lyapunov-based method was employed to characterize
its stability properties for smooth strongly convex problems.

For a time dilation s = cτ , the solution to (3.41b) satisfies

x′′ + θ̄x′ + ᾱ∇f(x+ γ̄x′) = σ̄w

where ẋ = dx/dτ , x′ = dx/ds, and

θ̄ = θ/c, γ̄ = cγ, ᾱ = α/c2, σ̄ = σ/(c
√
c).

This follows by combining ẋ = cx′ and ẍ = c2x′′ with the fact that the time dilation yields a√
c increase in the noise magnitude σ. Similar change of variables can be applied to gradient

flow dynamics (3.41a) and to study stability and noise amplification of (3.41) we set α = 1/L
and σ = 1 without loss of generality.

3.6.1 Modal-decomposition

For the quadratic problem (3.3) with Q = QT � 0, we follow the approach of Section 3.4.1
and utilize the eigenvalue decomposition of Q = V ΛV T and the change of variables, x̂ :=
V T (x− x?), ŵ := V Tw, to bring (3.41) to,

˙̂
ψi = Âiψ̂i + B̂iŵi,

ẑi = Ĉiψ̂i
(3.42a)

where ŵi is the ith component of the vector ŵ. For gradient flow dynamics (3.41a), we let
ψ̂i := x̂i, which leads to

Âi = −αλi =: −a(λi), B̂i = 1, Ĉi = 1. (3.42b)

On the other hand, for accelerated gradient flow dynamics (3.41b), ψ̂i :=
[
x̂i ˙̂xi

]T
, and

Âi = Â(λi) :=

[
0 1

−a(λi) −b(λi)

]
B̂i =

[
0 1

]T
, Ĉi =

[
1 0

]
a(λ) := αλ, b(λ) := θ + γαλ.

(3.42c)

Even though functions a(λ) and b(λ) take different forms in continuous time, matrices Âi,
B̂i, and Ĉi in (3.42c) have the same structure as their discrete-time counterparts in (3.18).
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3.6.2 Optimal convergence rate

System (3.42) is stable if and only if the matrix Âi is Hurwitz (i.e., if all of its eigenvalues
have negative real parts). Moreover, the system is exponentially stable with the rate ρ,

‖ψ̂i(τ)‖2 ≤ c e−ρτ ‖ψ̂i(0)‖2

if and only if the real parts of all eigenvalues of Âi are less than or equal to −ρ. For gradient
flow dynamics (3.41a) with α = 1/L, Âi’s are real scalars and ρ is determined by

ρgfd := min
i
|αλi| = m/L = 1/κ. (3.43)

Note that Âi in (3.42c) has the same structure as the matrix M in (3.20a). Lemma 5 is a
continuous-time counterpart for Lemmas 1 and 2 and it provides conditions for (exponential)
stability of matrices Âi for accelerated gradient flow dynamics (3.41b).

Lemma 5 The real matrix M in (3.20a) satisfies

M is Hurwitz ⇐⇒ a, b > 0.

In addition, for any ρ > 0, we have

max {< (eig(M))} ≤ −ρ ⇐⇒
{
a ≥ ρ(b − ρ)

b ≥ 2ρ.

Proof: See Appendix B.5. �

Conditions for stability and ρ-exponential stability in Lemma 5 respectively require in-
clusion of the point (b, a) to the open positive orthant and the ρ-parameterized cone shown
in Figure 3.5. Furthermore, the normalization of the parameter α to α = 1/L yields the
extra condition a ≤ 1. For ρ < 1, combining this inequality with the exponential stability
conditions in Lemma 5 further restricts the ρ-exponential stability cone to the triangle in
the (b, a)-plane,

∆ρ := {(b, a) | b ≥ 2ρ, ρ(b− ρ) ≤ a ≤ 1} (3.44a)

whose vertices are given by

Xρ = (2ρ, ρ2), Yρ = (2ρ, 1), Zρ = (ρ+ 1/ρ, 1). (3.44b)

For ρ = 1, the triangle ∆ρ is a single point and, for ρ > 1, adding the normalization condition
a ≤ 1 makes the ρ-exponential stability conditions in Lemma 5 infeasible. Thus, in what
follows, we confine our attention to ρ < 1.

Figure 3.5 illustrates the stability and ρ-exponential stability cones as well as the ρ-
exponential stability triangle ∆ρ. The geometry of ∆ρ allows us to determine the largest
condition number for which (3.41b) is ρ-exponentially stable.
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Figure 3.5: The open positive orthant (cyan) in the (b, a)-plane is the stability region for
the matrix M in (3.20a). The intersections Yρ and Zρ of the stepsize normalization line
a = 1 (black) and the boundary of the ρ-exponential stability cone (yellow) established in
Lemma 5, along with the cone apex Xρ determine the vertices of the ρ-exponential stability
triangle ∆ρ given by (3.44).

Proposition 5 For a strongly convex quadratic objective function f ∈ QLm with the condition
number κ = L/m, the optimal convergence rate and the corresponding parameters (β, γ) of
accelerated gradient flow dynamics (3.41b) with α = 1/L are

ρ = 1/
√
κ, β = 1 + (v − 2)/

√
κ, γ = v

√
κ (3.45)

where v ∈ [0, 1]. This rate is achieved by the heavy-ball method (γ = 0) with v = 0 and, for
κ ≥ 4, by Nesterov’s accelerated method (γ = β) with v = (

√
κ− 2)/(κ− 1).

Proof: See Appendix B.5. �

Proposition 5 uses necessary and sufficient condition for ρ-exponential stability:

(b(λ), a(λ)) ∈ ∆ρ for all λ ∈ [m,L].

Figure 3.6 illustrates the orientation of this line segment in ∆ρ for the heavy-ball and Nes-
terov’s algorithms. For the optimal values of parameters, Proposition 5 implies that accel-
erated gradient flow dynamics (3.41b) reduces the settling time 1/ρ relative to gradient flow
dynamics (3.41a) by a factor of

√
κ, i.e.,

ρagd/ρgfd =
√
κ.

3.6.3 Noise amplification

Similar to the discrete-time setting, exponentially stable LTI systems in (3.42) driven by
white noise reach a statistical steady-state with limt→∞ E (ψ̂i(t)) = 0. Furthermore, the
variance

J := lim
t→∞

1

t

∫ t

0

E
(
‖x(τ) − x?‖2

2

)
dτ (3.46)

can be computed from the solution of the continuous-time algebraic Lyapunov equation [41].
The following theorem provides analytical expressions for the steady-state variance J .

63



•Xρ

•
Yρ

•
Zρ

•
(1, 1)

Nesterov’s method

b

a

•Xρ

•
Yρ

•
Zρ

Polyak’s method

• • • • • • • • • • • • •

b

a

Figure 3.6: For a fixed ρ-exponential stability triangle ∆ρ (yellow) in (3.44), the line segments
(b(λ), a(λ)), λ ∈ [m,L] for Nesterov’s accelerated (γ = β) and the heavy-ball (γ = 0)
dynamics, as special examples of accelerated dynamics (3.41b) with constant parameters
γ, β, and α = 1/L are marked by dashed blue lines. The blue bullets correspond to the locus
of the end point (b(L), a(L)), and the solid blue line segments correspond to the parameters
for which the rate ρ is achieved for the largest possible condition number (3.45).

Theorem 6 For a strongly convex quadratic objective function f ∈ QLm with Hessian Q, the
noise amplification J of (3.41) with any constant stabilizing parameters (α, β, γ) is deter-
mined by J =

∑n
i= 1 Ĵ(λi). Here, Ĵ(λi) is the modal contribution of the ith eigenvalue λi of

Q to the noise amplification

Ĵgfd(λ) = 1/(2a(λ)), Ĵagd(λ) = 1/(2a(λ)b(λ))

where the functions a and b are given by (3.42c).

We omit the proof of Theorem 6 as it uses similar arguments to those used in the proof
of [93, Theorem 1].

For α = 1/L and the parameters that optimize the convergence rate in Proposition 5, we
can use the explicit forms of Ĵ(λ) established in Theorem 6 to obtain

Jmax =


((n − 1)κ + 1)/2 gfd

((n − 1)κ
√
κ +

√
κ)/4 agd (hb)

((n − 1)κ
√
κ + 2)/4 agd (na)

Jmin =


(κ + (n − 1))/2 gfd

(κ
√
κ + (n − 1)

√
κ)/4 agd (hb)

(κ
√
κ + (n − 1)2)/4 agd (na)

(3.47)

For all three cases, the largest noise amplification Jmax occurs when the Hessian matrix Q
has n − 1 eigenvalues at λ = L and one at λ = m, and the smallest noise amplification
Jmin occurs when Q has n − 1 eigenvalues at λ = m and one at λ = L. Despite the

√
κ

improvement in the convergence rate achieved by the accelerated gradient flow dynamics,
the corresponding Jmax and Jmin are larger than those of gradient flow dynamics by a factor
of
√
κ. We next generalize this result to any stabilizing (β, γ) and establish similar trends

for all f ∈ QLm.
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3.6.4 Convergence and noise amplification tradeoffs

The next result is the continuous-time analogue of Theorem 2 and it establishes a lower
bound on the product of the noise amplification and the settling time Ts = 1/ρ of the
accelerated gradient flow dynamics for any (β, γ).

Theorem 7 Let the parameters (β, γ) be such that the accelerated gradient flow dynamics
in (3.41b) with α = 1/L is exponentially stable with rate ρ = 1/Ts for all f ∈ QLm. Then,
Jmax and Jmin in (3.10) satisfy,

Jmax × Ts ≥ (n − 1)
κ2

4
+

1

2(1 + ρ2)
(3.48a)

Jmin × Ts ≥
κ2

4
+

(n − 1)

2(1 + ρ2)
. (3.48b)

Proof: See Appendix B.5. �

Theorem 7 demonstrates that the tradeoff between Jmax and Jmin and the settling time
established in Theorem 2 for the two-step momentum algorithm extends to the continuous-
time dynamics. For a fixed problem size n and the parameters that optimize the convergence
rate provided in Lemma 5, we can use (3.47) to conclude that the bounds in Theorem 7 are
order-wise tight for the parameters that achieve the optimal convergence rate.

3.7 Proofs of Theorems 1-4

3.7.1 Proof of Theorem 1

From Theorem 5 it follows that we can use upper bounds on Ĵ(λ) over λ ∈ [m,L] to establish
an upper bound on J . Since the algorithm achieves the convergence rate ρ, combining
equation (3.19) and Lemma 2 yield (b(λ), a(λ)) ∈ ∆ρ for all λ ∈ [m,L]. As we demonstrate
in Appendix B.2, the function Ĵ is convex in (b, a) over the stability triangle ∆. In addition,
∆ρ ⊂ ∆ is the convex hull of the points Xρ, Yρ, Zρ in the (b, a)-plane. Since the maximum
of a convex function over the convex hull of a finite set of points is attained at one of these
points, Ĵ attains its maximum over ∆ρ at Xρ, Yρ, or Zρ.

Using the definition of Xρ, Yρ, and Zρ in (3.22c), the affine relations (3.29), and the
analytical expression for Ĵ in Theorem 5, it follows that the maximum occurs at vertices Xρ

and Yρ,

Ĵmax := max
λ∈ [m,L]

Ĵ(λ) =
σ2
w(1 + ρ2)

(1− ρ)3(1 + ρ)3

where we use dXρ = lYρ = (1− ρ)2, lXρ = dYρ = (1 + ρ)2, and hXρ = hYρ = 1− ρ2. Combining
the above identity with Theorem 5 completes the proof of (3.12a).

We use an argument similar to the proof of Proposition 1 to prove (3.12b). In particular,
since (b(L), a(L)) ∈ ∆ρ, we have

αL = d(L) ≤ dmax = (1 + ρ)2
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where d given by (3.24) is the horizontal signed distance to the edge XZ of the stability
triangle ∆. On the other hand, dmax is the largest value that d can take among all points
(b, a) ∈ ∆ρ and it corresponds to the vertex Yρ; see equation (3.26a). Combining this
inequality with σw = ασ and (3.12a) completes the proof of Theorem 1.

3.7.2 Proof of Theorem 2

Using the expression J =
∑

i Ĵ(λi) established in Theorem 5, we have the decomposition

J = Ĵ(m) +
n−1∑
i= 1

Ĵ(λi). (3.49)

To prove the lower bounds (3.13b) and (3.13d) on Jmin × Ts, we establish a lower bound on
Ĵ(m)× Ts that scales quadratically with κ, and a general lower bound on Ĵ(λ)× Ts.

Case σw = σ

The proof of (3.13b) utilizes the following inequalities

Ĵ(m)

1 − ρ
≥ σ2

wκ
2

2(1 + ρ)5
(3.50a)

Ĵ(λ)

1 − ρ
≥ σ2

w(
√
κ + 1)

2
. (3.50b)

We first prove (3.50a). Our approach builds on the proof of Proposition 1. In particular,
d(λ) = αλ for the point (b(λ), a(λ)), where d and (b, a) are defined in (3.29) and (3.18c),
respectively. Thus, d(m) = d(L)/κ. Furthermore, Lemma 3 implies (b(λ), a(λ)) ∈ ∆ρ for
λ ∈ [m,L]. Thus, the trivial inequality d(L) ≤ dmax leads to

d(m) ≤ dmax/κ = (1 + ρ)2/κ (3.51)

where dmax = (1 + ρ)2 is the largest value that d can take among all points (b, a) ∈ ∆ρ; see
equation (3.26a). We now use Theorem 5 to write

Ĵ(λ)

1 − ρ
=

σ2
w(d(λ) + l(λ))

2d(λ)h(λ)l(λ)(1 − ρ)
≥ σ2

w

2d(λ)h(λ)(1 − ρ)
. (3.52)

Next, we lower bound the right-hand side of (3.52). Let L be the line that passes through
(b(λ), a(λ)) which is parallel to the edge XZ of the stability triangle ∆, and let G be the
intersection of L and the edge XρZρ of the ρ-stability triangle ∆ρ; see Figure 3.7 for an
illustration. It is easy to verify that

hG ≥ h(λ), dG = d(λ) (3.53a)
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where hG and dG correspond to the values of h and d associated with the point G. In
addition, since G lies on the edge XρZρ, hG and dG satisfy the affine relation

hG = 1 − ρ + dGρ/(1 − ρ). (3.53b)

This follows from the equation of the line XρZρ in the (b, a)-plane and from the definitions
of d and h in (3.29). Furthermore, combining (3.53a) and (3.53b) implies

σ2
w

2 d(λ)h(λ)(1 − ρ)

(a)

≥ σ2
w

2 d(λ)hG(1 − ρ)

(b)
=

σ2
w

2 d(λ) ((1 − ρ)2 + ρ d(λ))
. (3.54a)

For λ = m, we can further write

σ2
w

2 d(m) ((1 − ρ)2 + ρ d(m))
≥ σ2

w

2
(1 + ρ)2

κ
(
(1 + ρ)2

κ
+ ρ

(1 + ρ)2

κ
)

=
σ2
wκ

2

2 (1 + ρ)5
(3.54b)

where the inequality is obtained from (3.27) and (3.51). Combining (3.52) with (3.54a)
and (3.54b) completes the proof of (3.50a).

• •

•

X Y

Z

• •

•

Xρ Yρ

Zρ

h(λ)

•

d(λ)• •

G

hG

•

dG• •
L b

a

Figure 3.7: The line L (blue, dashed) and the intersection point G, along with the distances
d1, h1, dG, and hG as introduced in the proof of Theorem 2.

Next, we prove the general lower bound in (3.50b). As we demonstrate in Appendix B.2,
the modal contribution Ĵ to the noise amplification is a convex function of (b, a) which takes
its minimum Ĵmin = σ2

w over the stability triangle ∆ at the origin b = a = 0. Combining
this fact with the lower bound in (3.7) on ρ completes the proof of (3.50b). Finally, we can
obtain the lower bound (3.13b) on Jmin × Ts by combining (3.49) and (3.50).

Case σw = ασ

The proof of (3.13d) utilizes the following inequalities

Ĵ(λ)

1 − ρ
≥ σ2

2λ2(1 + ρ)
(3.55a)

Ĵ(λ)

1 − ρ
≥ σ2(1 − ρ)3κ2

L2
. (3.55b)
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In particular, (3.13d) follows from using (3.55a) for λ = m and taking the maximum
of (3.55a) and (3.55b) for the other eigenvalues to bound the expression for J established by
Theorem 5.

We first prove (3.55a). By combining (3.52) and (3.54a), we obtain

Ĵ(λ)

1 − ρ
≥ α2σ2

2 d(λ) ((1 − ρ)2 + ρ d(λ))
. (3.56)

Since d(λ) ≥ dmin := (1− ρ)2, where dmin is the smallest value of d over ∆ρ, [cf. (3.26b)], we
can write

α2σ2

2 d(λ) ((1 − ρ)2 + ρd(λ))
≥ α2σ2

2 d(λ)2(1 + ρ)
=

σ2

2λ2(1 + ρ)
. (3.57)

Combining (3.56) and (3.57) completes the proof of (3.55a).
To prove (3.55b) we use d(λ) ≥ dmin := (1 − ρ)2 and d(m) = αm, to obtain α ≥

(1 − ρ)2κ/L. Combining this inequality with Ĵmin = σ2
w = α2σ2 yields (3.55b). Finally, we

obtain the lower bound (3.13d) on Jmin × Ts by combining (3.49) and (3.55).
To obtain the lower bounds (3.13a) and (3.13c) on Jmax × Ts, we consider a quadratic

function for which the Hessian has n− 1 eigenvalues at λ = m and one eigenvalue at λ = L.
For such a function, we can use Theorem 5 to write

Jmax ≥ J = (n − 1)Ĵ(m) + Ĵ(L). (3.58)

Case σw = σ

To prove (3.13a), we use inequalities in (3.50a) and (3.50b) to bound Ĵ(m)/(1 − ρ) and
Ĵ(L)/(1− ρ) in (3.58), respectively.

Case σw = ασ

To prove (3.13c), we use inequality in (3.55a) with λ = m to lower bound Ĵ(m)/(1 − ρ),
and combine (3.55a) and (3.55b) to lower bound Ĵ(L)/(1− ρ) in (3.58). This completes the
proof.

3.7.3 Proof of Theorem 3

As described in Section 3.5, the parameters in Theorem 3 are obtained by placing the end
points of the horizontal line segment (b(λ), a(λ)) parameterized by λ ∈ [m,L] at the edges
XρZρ and YρZρ of the ρ-linear convergence triangle ∆ρ. These parameters can be equivalently
represented by (3.32) where the scalar c given in Lemma 4 satisfies c ≥ 0 if and only if
Ts ≤ (κ+1)/2. The proof of Theorem 3 follows from combining Lemma 4 and Proposition 2.

3.7.4 Proof of Theorem 4

The following proposition allows us to prove the lower bounds in Theorem 4.
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Proposition 6 Let ρ = ρ(A) = 1− 1/Ts be the convergence rate of the two-step momentum
algorithm (3.2). Then, the largest and smallest modal contributions to noise amplification
given by (3.31b) satisfy

Ĵmax ≥
σ2
w

2(1 + ρ)2
Ts, Ĵmin ≥ σ2

w.

Proof: The inequality Ĵmin ≥ σ2
w follows from the fact that Ĵ , as a function of (b, a),

takes its minimum value at the origin; see Appendix B.2. The proof for Ĵmax utilizes the
fact that for any constant parameters (α, β, γ) and fixed condition number, the spectral
radius ρ(A) corresponds to the smallest ρ-linear convergence triangle ∆ρ that contains the
line segment (b(λ), a(λ)) for λ ∈ [m,L]. Thus, at least one of the end points (b(m), a(m))
or (b(L), a(L)) will be on the boundary of the triangle ∆ρ(A). Combining this with the fact
that d(m) ≤ d(L), it follows that at least one of the following holds

(b(m), a(m)) ∈ XρZρ or XρYρ,

(b(L), a(L)) ∈ YρZρ or XρYρ.

Together with the concrete values of vertices (3.21c) in terms of ρ, this yields

1 − ρ ≥ min {h(m), h(L), l(L)/(1 + ρ), d(m)/(1 + ρ)} (3.59)

Also, using Theorem 5 and noting that the maximum values that h(λ), d(λ), and l(λ) can
take among ∆ρ are given by 1 + ρ2, (1 + ρ)2, and (1 + ρ)2, respectively, we can write

Ĵ(m) ≥ σ2
w

2h(m)d(m)
≥ max

{
σ2
w

2h(m)(1 + ρ)2
,

σ2
w

2d(m)(1 + ρ2)

}
Ĵ(L) ≥ σ2

w

2h(L)l(L)
≥ max

{
σ2
w

2h(L)(1 + ρ)2
,

σ2
w

2l(L)(1 + ρ2)

}
.

(3.60)

Finally, by the convexity of Ĵ (see Appendix B.2), we have Ĵmax ≥ max{Ĵ(m), Ĵ(L)}. Com-
bining this with (3.59) and (3.60) completes the proof. �

The lower bounds in Theorem 4 follow from combining Proposition 6 with the expression
for J in Theorem 5. To obtain the upper bounds, we note that the parameter c in Lemma 4
satisfies c ∈ [−1, 0] if and only if Ts ≥ (κ+1)/2. Thus, we can use Proposition 3 to complete
the proof.

3.8 Concluding remarks
We examined the amplification of stochastic disturbances for a class of two-step momentum
algorithms in which the iterates are perturbed by an additive white noise which arises from
uncertainties in gradient evaluation or in computing the iterates. For both noise models, we
establish lower bounds on the product of the settling time and the smallest/largest steady-
state variance of the error in the optimization variable. These bounds scale with κ2 for
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all stabilizing parameters, which reveals a fundamental limitation imposed by the condition
number κ in designing algorithms that tradeoff noise amplification and convergence rate. In
addition, we provide a novel geometric viewpoint of stability and ρ-linear convergence. This
viewpoint brings insight into the relation between noise amplification, convergence rate, and
algorithmic parameters. It also allows us to (i) take an alternative approach to optimiz-
ing convergence rates for standard algorithms; (ii) identify key similarities and differences
between the iterate and gradient noise models; and (iii) introduce parameterized families
of algorithms for which the parameters can be continuously adjusted to tradeoff noise am-
plification and settling time. By utilizing positive and negative momentum parameters in
accelerated and decelerated regimes, respectively, we demonstrate that a parameterized fam-
ily of the heavy-ball-like algorithms can achieve order-wise Pareto optimality for all settling
times and both noise models. We also extend our analysis to continuous-time dynamical
systems that can be discretized via an implicit-explicit Euler scheme to obtain the two-step
momentum algorithm. For such gradient flow dynamics, we show that similar fundamental
stochastic performance limitations hold as in discrete time.

Our ongoing work focuses on extending these results to algorithms with more complex
structures including update strategies that utilize information from more than the last two
iterates and time-varying algorithmic parameters [117]. It is also of interest to identify
fundamental performance limitations of stochastic gradient descent algorithms in which both
additive and multiplicative stochastic disturbances exist [118], [119].
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Chapter 4

Transient growth of accelerated algorithms

First-order optimization algorithms are increasingly being used in applications with limited
time budgets. In many real-time and embedded scenarios, only a few iterations can be per-
formed and traditional convergence metrics cannot be used to evaluate performance of the
algorithms in these non-asymptotic regimes. In this chapter, we examine the transient be-
havior of accelerated first-order optimization algorithms. For convex quadratic problems, we
employ tools from linear systems theory to show that transient growth arises from the pres-
ence of non-normal dynamics. We identify the existence of modes that yield an algebraic
growth in early iterations and quantify the transient excursion from the optimal solution
caused by these modes. For strongly convex smooth optimization problems, we utilize the
theory of integral quadratic constraints (IQCs) to establish an upper bound on the magni-
tude of the transient response of Nesterov’s accelerated algorithm. We show that both the
Euclidean distance between the optimization variable and the global minimizer and the rise
time to the transient peak are proportional to the square root of the condition number of
the problem. Finally, for problems with large condition numbers, we demonstrate tightness
of the bounds that we derive up to constant factors.

4.1 Introduction
First-order optimization algorithms are widely used in a variety of fields including statistics,
signal/image processing, control, and machine learning [1]–[5], [71], [120], [121]. Acceleration
is often utilized as a means to achieve a faster rate of convergence relative to gradient descent
while maintaining low per-iteration complexity. There is a vast literature focusing on the
convergence properties of accelerated algorithms for different stepsize rules and acceleration
parameters, including [7]–[9], [122]. There is also a growing body of work which investigates
robustness of accelerated algorithms to various types of uncertainty [27], [53], [91]–[93],
[123], [124]. These studies demonstrate that acceleration increases sensitivity to uncertainty
in gradient evaluation.

In addition to deterioration of robustness in the face of uncertainty, asymptotically stable
accelerated algorithms may also exhibit undesirable transient behavior [61]. This is in con-
trast to gradient descent which is a contraction for strongly convex problems with suitable
stepsize [62]. In real-time optimization and in applications with limited time budgets, the
transient growth can limit the appeal of accelerated methods. In addition, first-order algo-
rithms are often used as a building block in multi-stage optimization including ADMM [63]
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‖x
t
−
x
?
‖2 2

iteration number t

Figure 4.1: Error in the optimization variable for Polyak’s heavy-ball (black) and Nesterov’s
(red) algorithms with the parameters that optimize the convergence rate for a strongly
convex quadratic problem with the condition number 103 and a unit norm initial condition
with x0 6= x?.

and distributed optimization methods [64]. In these settings, at each stage we can perform
only a few iterations of first-order updates on primal or dual variables and transient growth
can have a detrimental impact on the performance of the entire algorithm. This motivates an
in-depth study of the behavior of accelerated first-order methods in non-asymptotic regimes.

It is widely recognized that large transients may arise from the presence of resonant modal
interactions and non-normality of linear dynamical generators [65]. Even in the absence of
unstable modes, these can induce large transient responses, significantly amplify exogenous
disturbances, and trigger departure from nominal operating conditions. For example, in
fluid dynamics, such mechanisms can initiate departure from stable laminar flows and trigger
transition to turbulence [66], [67].

In this chapter, we consider the optimization problem

minimize
x

f(x) (4.1)

where f : Rn → R is a convex and smooth function, and we focus on a class of accelerated
first-order algorithms

xt+2 = xt+1 + β(xt+1 − xt) − α∇f(xt+1 + γ(xt+1 − xt)) (4.2)

where t is the iteration index, α is the stepsize, and β is the momentum parameter. In
particular, we are interested in Nesterov’s accelerated and Polyak’s heavy-ball methods that
correspond to γ = β and γ = 0, respectively. While these algorithms have faster convergence
rates compared to the standard gradient descent (γ = β = 0), they may suffer from large
transient responses; see Fig. 4.1 for an illustration. To quantify the transient behavior, we
examine the ratio of the largest error in the optimization variable to the initial error.

For convex quadratic problems, the algorithm in (4.2) can be cast as a linear time-
invariant (LTI) system and modal analysis of the state-transition matrix can be performed.
For both accelerated algorithms, we identify non-normal modes that create large transient
growth, derive analytical expressions for the state-transition matrices, and establish bounds
on the transient response in terms of the convergence rate and the iteration number. We
show that both the peak value of the transient response and the rise time to this value
increase with the square root of the condition number of the problem. Moreover, for general
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strongly convex problems, we combine a Lyapunov-based approach with the theory of IQCs
to establish an upper bound on the transient response of Nesterov’s accelerated algorithm.
As for quadratic problems, we demonstrate that this bound scales with the square root of
the condition number.

This work builds on our conference papers [96], [97]. In contrast to these preliminary
results, we provide a comprehensive analysis of transient growth of accelerated algorithms for
convex quadratic problems and address the important issue of eliminating transient growth
of Nesterov’s accelerated algorithm with the proper choice of initial conditions. Adaptive
restarting, which was introduced in [61] to address the oscillatory behavior of Nesterov’s
accelerated method, provides heuristics for improving transient responses. In [107], the
transient growth of second-order systems was studied and a framework for establishing up-
per bounds was introduced, with a focus on real eigenvalues. The result was applied to the
heavy-ball method but was not applicable to quadratic problems in which the dynamical
generator may have complex eigenvalues. We account for complex eigenvalues and conduct
a thorough analysis for Nesterov’s accelerated algorithm as well. Furthermore, for convex
quadratic problems, we provide tight upper and lower bounds on transient responses in terms
of the condition number and identify the initial condition that induces the largest transient
response. Similar results with extensions to the Wasserstein distance have been recently
reported in [125]. Previous work on non-asymptotic bounds for Nesterov’s accelerated algo-
rithm includes [126], where bounds on the objective error in terms of the condition number
were provided. However, in contrast to our work, this result introduces a restriction on the
initial conditions. Finally, while [56] presents computational bounds we develop analytical
bounds on the non-asymptotic value of the estimated optimizer.

4.2 Convex quadratic problems
In this section, we examine transient responses of accelerated algorithms for convex quadratic
objective functions,

f(x) =
1

2
xTQx (4.3a)

where Q = QT � 0 is a positive semi-definite matrix. In what follows, we first bring (4.2) into
a standard LTI state-space form and then utilize appropriate coordinate transformation to
decompose the dynamics into decoupled subsystems. Using this decomposition, we provide
analytical expressions for the state-transition matrix and establish sharp bounds on the
transient growth and the location of the transient peak for accelerated algorithms. We also
examine the influence of initial conditions on transient responses and relegate the proofs to
Appendix C.1.

4.2.1 LTI formulation

The matrix Q admits an eigenvalue decomposition, Q = V ΛV T , where Λ is the diagonal
matrix of eigenvalues with

L := λ1 ≥ · · · ≥ λr =: m > 0

λi = 0 for i = r + 1, . . . , n
(4.3b)
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Method Optimal parameters Linear rate ρ

Nesterov α = 4
3L+m

β =
√

3κ+1−2√
3κ+1+2

1− 2√
3κ+1

Polyak α = 4
(
√
L+
√
m)2

β = (
√
κ−1)2

(
√
κ+1)2

1− 2√
κ+1

Table 4.1: Parameters that provide optimal convergence rates for a convex quadratic objec-
tive function (4.3) with κ := L/m.

and V is the unitary matrix of the corresponding eigenvectors. We define the condition
number κ := L/m as the ratio of the largest and smallest non-zero eigenvalues of the matrix
Q. For f in (4.3a), we have ∇f(x) = Qx, and the change of variables x̂t := V Txt brings
dynamics (4.2) to

x̂t+2 = (I − αΛ) x̂t+1 + (βI − γαΛ)(x̂t+1 − x̂t). (4.4)

This system can be represented via n decoupled second-order subsystems of the form,

ψ̂t+1
i = Aiψ̂

t
i , x̂ti = Ciψ̂

t
i (4.5a)

where x̂ti is the ith element of the vector x̂t ∈ Rn, ψ̂ti :=
[
x̂ti x̂t+1

i

]T , Ci :=
[

1 0
]
, and

Ai =

[
0 1

−(β − γαλi) 1− αλi + (β − γαλi)

]
. (4.5b)

4.2.2 Linear convergence of accelerated algorithms

The minimizers of (4.3a) are determined by the null space of the matrix Q, x? ∈ N (Q). The
constant parameters α and β can be selected to provide stability of subsystems in (4.5) for
all λi ∈ [m,L], and guarantee convergence of x̂ti to x̂?i := 0 with a linear rate determined by
the spectral radius ρ(Ai) < 1. On the other hand, for i = r + 1, . . . , n the eigenvalues of Ai
are β and 1. In this case, the solution to (4.5) is given by

x̂ti =
1 − βt

1 − β
(x̂1

i − x̂0
0) + x̂0

i (4.6a)

and the steady-state limit of x̂ti,

x̂?i :=
1

1 − β
(x̂1

i − x̂0
i ) + x̂0

i (4.6b)

is achieved with a linear rate β < 1. Thus, the iterates of (4.2) converge to the optimal
solution x? = V x̂? ∈ N (Q) with a linear rate ρ < 1 and Table 4.1 provides the parameters
α and β that optimize the convergence rate [52, Proposition 1].
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4.2.3 Transient growth of accelerated algorithms

In spite of a significant improvement in the rate of convergence, acceleration may deteriorate
performance on finite time intervals and lead to large transient responses. This is in contrast
to gradient descent which is a contraction [62]. At any t, we are interested in the worst-case
ratio of the two norm of the error of the optimization variable zt := xt− x? to the two norm
of the initial condition ψ0 − ψ? =

[
(z0)T (z1)T

]T ,
J2(t) := sup

ψ0 6=ψ?

‖xt − x?‖2
2

‖ψ0 − ψ?‖2
2

. (4.7)

Proposition 1 For the accelerated algorithms applied to convex quadratic problems, J(t)
in (4.7) is determined by

J2(t) = max

{
max
i≤ r
‖CiAti‖2

2, β
2t/(1 + β2)

}
. (4.8)

Proof: Since V is unitary and dynamics (4.5) that govern the evolution of each x̂ti are
decoupled, J(t) is determined by

J2(t) = max
i

sup
ψ̂0
i 6= ψ̂?i

(x̂ti − x̂?i )
2

‖ψ̂0
i − ψ̂?i ‖2

2

(4.9)

where ψ̂?i :=
[
x̂?i x̂?i

]T . Furthermore, the mapping from ψ̂0
i − ψ̂?i to x̂ti − x̂?i is given by

Φi(t) := CiA
t
i where the state-transition matrix Ati is determined by the tth power of Ai,

x̂ti − x̂?i = CiA
t
i(ψ̂

0
i − ψ̂?i ) =: Φi(t)(ψ̂

0
i − ψ̂?i ). (4.10)

For λi 6= 0, ψ̂0
i − ψ̂?i = ψ̂0

i is an arbitrary vector in R2. Thus,

sup
ψ̂0
i 6= ψ̂?i

(x̂ti − x̂?i )
2

‖ψ̂0
i − ψ̂?i ‖2

2

= ‖CiAti‖2
2, i = 1, . . . , r. (4.11)

This expression, however, does not hold when λi = 0 in (4.5) because ψ0
i − ψ?i is restricted

to a line in R2. Namely, from (4.6),

x̂ti − x̂?i =
−βt

1 − β
(x̂1

i − x̂0
0)

ψ0
i − ψ?i =

[
x̂0
i − x̂?i
x̂1
i − x̂?i

]
=
−(x̂1

i − x̂0
i )

1 − β

[
1
β

] (4.12)

which, for any initial condition with x̂0
i 6= x̂1

i , leads to

(x̂ti − x̂?i )
2

‖ψ0
i − ψ?i ‖2

2

=
β2t

1 + β2
, i = r + 1, . . . , n. (4.13)
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Finally, substitution of (4.11) and (4.13) to (4.9) yields (4.8). �

4.2.4 Analytical expressions for transient response

We next derive analytical expressions for the state-transition matrix Ati and the response
matrix Φi(t) = CiA

t
i in (4.5).

Lemma 1 Let µ1 and µ2 be the eigenvalues of the matrix

M =

[
0 1
a b

]
and let t be a positive integer. For µ1 6= µ2,

M t =
1

µ2 − µ1

[
µ1µ2(µt−1

1 − µt−1
2 ) µt2 − µt1

µ1µ2(µt1 − µt2) µt+1
2 − µt+1

1

]
.

Moreover, for µ := µ1 = µ2, the matrix M t is determined by

M t =

[
(1− t)µt t µt−1

−t µt+1 (t+ 1)µt

]
. (4.14)

Lemma 1 with M = Ai determines explicit expressions for Ati. These expressions allow
us to establish a bound on the norm of the response for each decoupled subsystem (4.5). In
Lemma 2, we provide a tight upper bound on ‖CiAti‖2

2 for each t in terms of the spectral
radius of the matrix Ai.

Lemma 2 The matrix M in Lemma 1 satisfies

‖
[

1 0
]
M t‖2

2 ≤ (t− 1)2ρ2t + t2ρ2t−2 (4.15)

where ρ is the spectral radius of M . Moreover, (4.15) becomes equality if M has repeated
eigenvalues.

Remark 1 For Nesterov’s accelerated algorithm with the parameters that optimize the rate
of convergence (cf. Table 4.1), the matrix Âr, which corresponds to the smallest non-zero
eigenvalue of Q, λr = m, has an eigenvalue 1 − 2/

√
3κ+ 1 with algebraic multiplicity two

and incomplete sets of eigenvectors. Similarly, for both λ1 = L and λr = m, Â1 and Âr for
the heavy-ball method with the parameters provided in Table 4.1 have repeated eigenvalues
which are, respectively, given by (1−√κ)/(1 +

√
κ) and −(1−√κ)/(1 +

√
κ).

We next use Lemma 2 with M = Ai to establish an analytical expression for J(t).
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‖x
t ‖
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iteration number t iteration number t

(a)x1 = x0 (b)x1 = −x0

Figure 4.2: Dependence of the error in the optimization variable on the iteration number for
the heavy-ball (black) and Nesterov’s methods (red), as well as the peak magnitudes (dashed
lines) obtained in Proposition 2 for two different initial conditions with ‖x1‖2 = ‖x0‖2 = 1.

Theorem 1 For accelerated algorithms applied to convex quadratic problems, J(t) in (4.7)
satisfies

J2(t) ≤ max
{

(t− 1)2ρ2t + t2ρ2(t−1), β2t/(1 + β2)
}

where ρ := maxi≤ r ρ(Ai). Moreover, for the parameters provided in Table 4.1

J2(t) = (t− 1)2ρ2t + t2ρ2(t−1). (4.16)

Theorem 1 highlights the source of disparity between the long and short term behavior
of the response. While the geometric decay of ρt drives xt to x? as t → ∞, early stages
are dominated by the algebraic term which induces a transient growth. We next provide
tight bounds on the time tmax at which the largest transient response takes place and the
corresponding peak value J(tmax). Even though we derive the explicit expressions for these
two quantities, our tight upper and lower bounds are more informative and easier to interpret.

Theorem 2 For accelerated algorithms with the parameters provided in Table 4.1, let ρ ∈
[1/e, 1). Then the rise time tmax := argmaxt J(t) and the peak value J(tmax) satisfy

−1/log(ρ) ≤ tmax ≤ 1 − 1/log(ρ)

−
√

2ρ

e log(ρ)
≤ J(tmax) ≤ −

√
2

e ρ log(ρ)
.

For accelerated algorithms with the parameters provided in Table 4.1, Theorem 2 can
be used to determine the rise time to the peak in terms of condition number κ. We next
establish that both tmax and J(tmax) scale as

√
κ.

Proposition 2 For accelerated algorithms with the parameters provided in Table 4.1, the
rise time tmax := argmaxt J(t) and the peak value J(tmax) satisfy
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(i) Polyak’s heavy-ball method with κ ≥ 4.69

(
√
κ− 1)/2 ≤ tmax ≤ (

√
κ+ 3)/2

(
√
κ− 1)2

√
2 e(
√
κ+ 1)

≤ J(tmax) ≤ (
√
κ+ 1)2

√
2 e(
√
κ− 1)

(ii) Nesterov’s accelerated method with κ ≥ 3.01

(
√

3κ+ 1− 2)/2 ≤ tmax ≤ (
√

3κ+ 1 + 2)/2

(
√

3κ+ 1− 2)2

√
2 e
√

3κ+ 1
≤ J(tmax) ≤ 3κ+ 1√

2 e(
√

3κ+ 1− 2)
.

In Proposition 2, the lower-bounds on κ are only required to ensure that the convergence
rate ρ satisfies ρ ≥ 1/e, which allows us to apply Theorem 2. We also note that the upper
and lower bounds on tmax and J(tmax) are tight in the sense that their ratio converges to 1
as κ→∞.

4.2.5 The role of initial conditions

The accelerated algorithms need to be initialized with x0 and x1 ∈ Rn. This provides a
degree of freedom that can be used to potentially improve their transient performance. To
provide insight, let us consider the quadratic problem with Q = diag (κ, 1). Figure 4.2 shows
the error in the optimization variable for Polyak’s and Nesterov’s algorithms as well as the
peak magnitudes obtained in Proposition 2 for two different types of initial conditions with
x1 = x0 and x1 = −x0, respectively. For x1 = −x0, both algorithms recover their worst-case
transient responses. However, for x1 = x0, Nesterov’s method shows no transient growth.

Our analysis shows that large transient responses arise from the existence of non-normal
modes in the matrices Ai. However, such modes do not move the entries of the state transition
matrix Ati in arbitrary directions. For example, using Lemma 1, it is easy to verify that
Ar in (4.5b), associated with the smallest non-zero eigenvalue λr = m of Q in Nesterov’s
algorithm with the parameters provided by Table 4.1 has the repeated eigenvalue µ = 1 −
2/
√

3κ+ 1 and Atr is determined by (4.14) with M = Ar. Even though each entry of Atr
experiences a transient growth, its row sum is determined by

Atr

[
1
1

]
=

[
1 + 2t/(

√
3κ+ 1− 2)

1 + 2t/
√

3κ+ 1

]
(1 − 2/

√
3κ+ 1)t

and entries of this vector are monotonically decaying functions of t. Furthermore, for i < r,
it can be shown that the entries of Ati [ 1 1 ]T remain smaller than 1 for all i and t. In
Theorem 3, we provide a bound on the transient response of Nesterov’s method for balanced
initial conditions with x1 = x0.

Theorem 3 For convex quadratic optimization problems, Nesterov’s accelerated method with
a balanced initial condition x1 = x0 and parameters provided in Table 4.1 satisfies

‖xt − x?‖2 ≤ ‖x0 − x?‖2.
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Proof: See Appendix C.2. �

It is worth mentioning that the transient growth of the heavy-ball method cannot be
eliminated with the use of balanced initial conditions. To see this, we note that the matrices
Atr and At1 for the heavy-ball method with parameters provided in Table 4.1 also take the
form in (4.14) with µ = (1−√κ)/(1 +

√
κ) and µ = −(1−√κ)/(1 +

√
κ), respectively. In

contrast to Atr
[

1 1
]T , which decays monotonically,

At1

[
1
1

]
=

[
1 + 2t

√
κ/(1−√κ)

1 + 2t
√
κ/(1 +

√
κ)

]
(1−√κ)t

(1 +
√
κ)t

experiences transient growth. It was recently shown that an averaged version of the heavy-
ball method experiences smaller peak deviation than the heavy-ball method [127]. We also
note that adaptive restarting provides effective heuristics for reducing oscillatory behavior
of accelerated algorithms [61].

Remark 2 For accelerated algorithms with the parameters provided in Table 4.1, the initial
condition that leads to the largest transient growth at any time τ is determined by

ψ̂0
r = c

[
(1− τ) ρτ τρτ−1

]T
, ψ̂0

i = 0 for i 6= r

where c 6= 0 and ψ̂0
r is the principal right singular vector of CrAτr . Thus, the largest peak

J(tmax) occurs for {ψ̂0
i = 0, i 6= r} and ψ̂0

r = c
[

(1− tmax) ρtmax tmax ρ
tmax−1

]T
, where tight

bounds on tmax are established in Proposition 2.

Remark 3 For λi = 0 in (4.5), |x̂ti − x̂?i | decays monotonically with a linear rate β and
only non-zero eigenvalues of Q contribute to the transient growth. Furthermore, for the
parameters provided in Table 4.1, our analysis shows that J2(t) = maxi≤ r ‖CiAti‖2

2. In what
follows, we provide bounds on the largest deviation from the optimal solution for Nesterov’s
algorithm for general strongly convex problems.

4.3 General strongly convex problems
In this section, we combine a Lyapunov-based approach with the theory of IQCs to provide
bounds on the transient growth of Nesterov’s accelerated algorithm for the class FLm of m-
strongly convex and L-smooth functions. When f is not quadratic, first-order algorithms are
no longer LTI systems and eigenvalue decomposition cannot be utilized to simplify analysis.
Instead, to handle nonlinearity and obtain upper bounds on J in (4.7), we augment standard
quadratic Lyapunov functions with the objective error.

For f ∈ FLm, algorithm (4.2) is invariant under translation. Thus, without loss of gener-
ality, we assume that x? = 0 is the unique minimizer of (4.1) with f(0) = 0. In what follows,
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we present a framework based on Linear Matrix Inequalities (LMIs) that allows us to ob-
tain time-independent bounds on the error in the optimization variable. This framework
combines certain IQCs [81] with Lyapunov functions of the form

V (ψ) = ψTXψ + θf(Cψ) (4.17)

which consist of the objective function evaluated at Cψ and a quadratic function of ψ, where
X is a positive definite matrix.

The IQC theory provides a convex control-theoretic approach to analyzing optimization
algorithms [52] and it was recently employed to study convergence and robustness of the
first-order methods [53], [54], [56], [68], [93], [128]. The type of Lyapunov functions in (4.17)
was introduced in [56], [106] to study convergence for convex problems. For Nesterov’s
accelerated algorithm, we demonstrate that this approach provides orderwise-tight analytical
upper bounds on J(t).

Nesterov’s accelerated algorithm can be viewed as a feedback interconnection of linear
and nonlinear components

ψt+1 = Aψt + B ut

yt = Cy ψ
t, ut = ∆(yt)

(4.18a)

where the LTI part of the system is determined by

A =

[
0 I
−βI (1 + β)I

]
, B =

[
0
−αI

]
, Cy =

[
−βI (1 + β)I

]
(4.18b)

and the nonlinear mapping ∆: Rn → Rn is ∆(y) := ∇f(y). Moreover, the state vector ψt
and the input yt to ∆ are determined by

ψt :=

[
xt

xt+1

]
, yt := (1 + β)xt+1 − βxt. (4.18c)

For smooth and strongly convex functions f ∈ FLm, ∆ satisfies the quadratic inequality [52,
Lemma 6] [

y − y0

∆(y) − ∆(y0)

]T
Π

[
y − y0

∆(y) − ∆(y0)

]
≥ 0 (4.19a)

for all y, y0 ∈ Rn, where the matrix Π is given by

Π :=

[
−2mLI (L+m)I

(L+m)I −2I

]
. (4.19b)

Using ut := ∆(yt) and yt := Cyψ
t and evaluating (4.19a) at y = yt and y0 = 0 leads to,[

ψt

ut

]T
M1

[
ψt

ut

]
≥ 0 (4.19c)
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where

M1 :=

[
CT
y 0

0 I

]
Π

[
Cy 0
0 I

]
=

[
−2mLCT

y Cy (L+m)CT
y

(L+m)Cy −2I

]
. (4.19d)

In Lemma 3, we provide an upper bound on the difference between the objective func-
tion at two consecutive iterations of Nesterov’s algorithm. In combination with (4.19), this
result allows us to utilize Lyapunov function of the form (4.17) to establish an upper bound
on transient growth. We note that variations of this lemma have been presented in [56,
Lemma 5.2] and in [93, Lemma 3].

Lemma 3 Along the solution of Nesterov’s accelerated algorithm (4.18), the function f ∈
FLm with κ := L/m satisfies

f(xt+2) − f(xt+1) ≤ 1

2

[
ψt

ut

]T
M2

[
ψt

ut

]
(4.20a)

where the matrix M2 is given by

M2 :=

[
−mCT

2 C2 CT
2

C2 −α(2− αL)I

]
, C2 :=

[
−βI βI

]
. (4.20b)

Using Lemma 3, we next demonstrate how a Lyapunov function of the form (4.17) with
θ := 2θ2 and C := [ 0 I ] in conjunction with property (4.19) of the nonlinear mapping ∆
can be utilized to obtain an upper bound on ‖xt‖2

2.

Lemma 4 Let M1 be given by (4.19d) and let M2 be defined in Lemma 3. Then, for any
positive semi-definite matrix X and nonnegative scalars θ1 and θ2 that satisfy

W :=

[
ATX A−X ATX B
BT X A BT X B

]
+ θ1M1 + θ2M2 � 0 (4.21)

the transient growth of Nesterov’s accelerated algorithm (4.18) for all t ≥ 1 is upper bounded
by

‖xt‖2
2 ≤

λmax(X)‖x0‖2
2 + (λmax(X) + Lθ2)‖x1‖2

2

λmin(X) +mθ2

. (4.22)

In Lemma 4, the Lyapunov function candidate V (ψ) := ψTXψ + 2θ2f([ 0 I ]ψ) is used to
show that the state vector ψt is confined within the sublevel set {ψ ∈ R2n |V (ψ) ≤ V (ψ0)}
associated with V (ψ0). We next establish an order-wise tight upper bound on ‖xt‖2 that
scales linearly with

√
κ by finding a feasible point to LMI (4.21) in Lemma 4.

Theorem 4 For f ∈ FLm with the condition number κ := L/m, the iterates of Nesterov’s
accelerated algorithm (4.18) for any stabilizing parameters α ≤ 1/L and β < 1 satisfy

‖xt‖2
2 ≤ κ

(
1 + β2

αβL
‖x0‖2

2 + (1 +
1 + β2

αβL
) ‖x1‖2

2

)
. (4.23a)
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Furthermore, for the conventional values of parameters

α = 1/L, β = (
√
κ− 1)/(

√
κ+ 1) (4.23b)

the largest transient error, defined in (4.7), satisfies
√

2 (
√
κ− 1)2

e
√
κ

≤ sup
{t∈N, f ∈FLm}

J(t) ≤
√

3κ+
4κ

κ− 1
. (4.23c)

For balanced initial conditions, i.e., x1 = x0, Nesterov established the upper bound√
κ+ 1 on J in [9]. Theorem 4 shows that similar trends hold without restriction on initial

conditions. Linear scaling of the upper and lower bounds with
√
κ illustrates a potential

drawback of using Nesterov’s accelerated algorithm in applications with limited time budgets.
As κ → ∞, the ratio of these bounds converges to e

√
3/2 ≈ 3.33, thereby demonstrating

that the largest transient response for all f ∈ FLm is within the factor of 3.33 relative to the
bounds established in Theorem 4.

4.4 Concluding remarks
We have examined the impact of acceleration on the transient responses of accelerated first-
order optimization algorithms. Without imposing restrictions on initial conditions, we estab-
lish bounds on the largest value of the Euclidean distance between the optimization variable
and the global minimizer. For convex quadratic problems, we utilize the tools from linear
systems theory to fully capture transient responses and for general strongly convex prob-
lems, we employ the theory of integral quadratic constraints to establish an upper bound
on transient growth. This upper bound is proportional to the square root of the condition
number and we identify quadratic problem instances for which accelerated algorithms gen-
erate transient responses which are within a constant factor of this upper bound. Future
directions include extending our analysis to nonsmooth optimization problems and devising
algorithms that balance acceleration with quality of transient responses.
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Chapter 5

Noise amplification of primal-dual gradient flow
dynamics based on proximal augmented Lagrangian

In this chapter, we examine amplification of additive stochastic disturbances to primal-dual
gradient flow dynamics based on proximal augmented Lagrangian. These dynamics can be
used to solve a class of non-smooth composite optimization problems and are convenient
for distributed implementation. We utilize the theory of integral quadratic constraints to
show that the upper bound on noise amplification is inversely proportional to the strong-
convexity module of the smooth part of the objective function. Furthermore, to demonstrate
tightness of these upper bounds, we exploit the structure of quadratic optimization problems
and derive analytical expressions in terms of the eigenvalues of the corresponding dynamical
generators. We further specialize our results to a distributed optimization framework and
discuss the impact of network topology on the noise amplification.

5.1 Introduction
We consider a class of primal-dual gradient flow dynamics based on proximal augmented
Lagrangian [68] that can be used for solving large-scale non-smooth constrained optimization
problems in continuous time. These problems arise in many areas e.g. signal processing [69],
statistical estimation [70], and control [71]. In addition, primal-dual methods have received
renewed attention due to their prevalent application in distributed optimization [72] and
their convergence and stability properties have been greatly studied [73]–[79].

While gradient-based methods are not readily applicable to non-smooth optimization,
we can utilize their proximal counterparts to address such problems [80]. In the context of
non-smooth constrained optimization, proximal-based extensions of primal-dual methods can
also be obtained using the augmented Lagrangian [68], which preserve structural separability
and remain suitable for distributed optimization.

Using primal-dual algorithms in real-world distributed settings motivates the robustness
analysis of such methods as uncertainty can potentially enter the dynamics due to noisy
communication channels [129]. Moreover, uncertainties can also arise in applications where
the exact value of the gradient is not fully available, e.g., when the objective function is
obtained via costly simulations or its computation relies on noisy measurements e.g., real-
time and embedded applications.
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In this chapter, we consider the scenario in which the dynamics of the primal-dual flow
are perturbed by additive white noise. We examine the mean-squared error of the primal
optimization variable as a measure of how noise gets amplified by the dynamics – we refer
to this quantity as noise (or variance) amplification. For convex quadratic optimization
problems, the primal-dual flow becomes a linear time invariant system, for which the noise
amplification can be characterized using Lyapunov equations. For non-quadratic problems,
the flow is no longer linear, however, tools from robust control theory can be utilized to quan-
tify upper bounds on the noise amplification. In particular, we use the theory of Integral
Quadratic Constraints (IQC) [81], [82] to characterize upper bounds on the noise amplifi-
cation of the primal-dual flow based on proximal augmented Lagrangian using solutions to
a certain linear matrix inequality. Our results establish tight upper-upper bounds on the
noise amplification that are inversely proportional to the strong-convexity module of the
corresponding objective function.

The approach taken in this chapter is similar to those in [53], [56], [93], [98], [103],
[105], wherein IQCs have been used to analyze convergence and robustness of first-order
optimization algorithms and their accelerated variants. The noise amplification of primal-
dual methods has also been studied in [129] where the authors have focused on quadratic
problems and considered the average error in the objective function. In contrast, we consider
the average error in the optimization variable and extend the noise amplification analysis
to the case of strongly convex and non-smooth optimization problems. For smooth strongly
convex problems, an input-output analysis with a focus on the induced L2 norm using the
passivity theory has been provided in [49]. In contrast, we study stochastic performance
of primal-dual algorithms that can be utilized to solve non-smooth composite optimization
problems.

The rest of the chapter is structured as follows. We describe the proximal-augmented
Lagrangian and the noisy primal-dual gradient flow dynamics in Section 5.2. We next study
the variance amplification for quadratic problems in Section 5.3. We present our IQC-based
approach for general strongly convex but non-smooth optimization problems in Section 5.4.
We study the noise amplification in a distributed optimization setting in Section 5.5, and
provide concluding remarks in Section 5.6.

5.2 Proximal Augmented Lagrangian
We study a nonsmooth composite optimization problem

minimize
x,z

f(x) + g(z)

subject to Tx − z = 0
(5.1)

where f : Rn → R is a convex, continuously differentiable function, g: Rk → R is a convex,
but possibly non-differentiable function, and T ∈ Rk×n is a given matrix. The augmented
Lagrangian associated with (5.1) is given by

Lµ(x, z; ν) = f(x) + g(z) + νT (Tx− z) + 1
2µ
‖Tx− z‖2

2
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where µ > 0 is a parameter and ν is the Lagrange multiplier. The infimum of the augmented
Lagrangian Lµ with respect to z is given by the proximal augmented Lagrangian [68]

Lµ(x; ν) := inf
z
Lµ(x, z; ν)

= f(x) + Mµg(Tx+ µν) − µ
2
‖ν‖2

2 (5.2)

where Mµg(ξ) := g(proxµg(ξ)) + 1
2µ
‖proxµg(ξ)− ξ‖2

2 is the Moreau envelope of the function
g and

proxµg(ξ) := argmin
z

(
g(z) + 1

2µ
‖z − ξ‖2

)
is the corresponding proximal operator. In addition, the Moreau envelope is continuously
differentiable and its gradient is determined by µ∇Mµg(ξ) = ξ − proxµg(ξ).

For convex problems, solving (5.1) amounts to finding the saddle points of Lµ(x; ν). To
this end, continuous differentiability of Lµ(x; ν) was utilized in [68] to introduce associated
Arrow-Hurwicz-Uzawa gradient flow dynamics

ẋ = −∇xLµ(x; ν)

ν̇ = ∇νLµ(x; ν)
(5.3)

which is a continuous-time algorithm that performs gradient primal-descent and dual-ascent
on the proximal augmented Lagrangian. For Lµ(x; ν) given by (5.2), gradient flow dynamics
in (5.3) take the following form,

ẋ = −∇f(x)− 1
µ
T T (Tx+ µν − proxµg(Tx+ µν))

ν̇ = Tx − proxµg(Tx+ µν).
(5.4)

5.2.1 Stability properties

When f is convex with a Lipschitz continuous gradient, and g is proper, closed, and convex,
the set of equilibrium points of (5.4) is characterized by minimizers of problem (5.1) and is
globally asymptotically stable [68, Theorem 2]. Furthermore, when f is strongly convex and
T is full-row-rank, there is a unique equilibrium point (x?, ν?) which is globally exponentially
stable and (x?, z? = proxµg(Tx

? +µν?)) is the unique optimal solution of problem (5.1) [75,
Theorem 6].

5.2.2 Noise amplification

We examine the impact of additive stochastic uncertainties on performance of the primal-
dual gradient flow dynamics. In particular, we consider the noisy version of (5.4),

dx = −
(
∇f(x) + T T∇Mµg(Tx+ µν)

)
dt + dw1

dν =
(
Tx − proxµg(Tx+ µν)

)
dt + dw2

(5.5)
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where dwi(t) are the increments of independent Wiener processes with covariance matrices
E[wi(t)w

T
i (t)] = siIt and si > 0 for i ∈ {1, 2}. We quantify the noise amplification using [82]

J = lim sup
T→∞

1

T

∫ T

0

E[‖x(t) − x?‖2
2] dt. (5.6)

For quadratic objective functions f(x) := 1
2
xTQx, if we let g be the indicator function of the

set {b} with b ∈ Rk, (5.5) is a linear time-invariant system and J quantifies the steady-state
variance of the error in the optimization variable x(t)− x?,

J = lim
t→∞

E[‖x(t) − x?‖2
2]. (5.7)

In the next section, we examine this class of problems.

5.3 Quadratic optimization problems
To provide insight into the noise amplification of the primal-dual gradient flow dynamics,
we first examine the special case in which the quadratic objective function f(x) = 1

2
xTQx

is strongly convex with Q = QT � 0 and g(z) = I{b}(z), where IS is the indicator function
of the set S, i.e., IS(z) := 0 for z ∈ S and IS(z) := ∞ for z /∈ S. For this choice of g,
optimization problem (5.1) simplifies to

minimize
x

f(x)

subject to Tx = b
(5.8)

and the nonlinear terms in (5.5) are determined by

∇f(x) = Qx, proxµg(ξ) = b, ∇Mµg(ξ) = 1
µ
(ξ − b).

Hence, (5.5) simplifies to

dx = −
(

(Q + 1
µ
T TT )x+ T Tν − 1

µ
Tb
)

dt + dw1

dν = (Tx − b) dt + dw2

(5.9)

In what follows, without loss of generality, we set b = 0. In this case, noisy dynamics (5.5)
are described by an LTI system

dψ = Aψ dt + dw (5.10)

where w :=
[
wT1 wT2

]T and

ψ :=

[
x − x?

ν − ν?

]
, A =

[ −(Q+ 1
µ
T TT ) −T T

T 0

]
.
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For Q � 0 and a full-row-rank T , A is a Hurwitz matrix and LTI system (5.10) is stable.
Moreover from linearity, it follows that the variance amplification can be computed as

J = lim
t→∞

E[‖x(t)− x?‖2
2] = trace (XCTC) = trace (X1) (5.11)

where X := limt→∞ E[ψ(t)ψT (t)] =

[
X1 X2

XT
2 X3

]
is the steady-state covariance matrix of the

state ψ(t) which can be obtained by solving the algebraic Lyapunov equation

AX + XAT = −diag (s1I, s2I) (5.12)

and C :=
[
I 0

]
. Theorem 1 addresses the special case with Q = mI and provides an

analytical expression for the variance amplification of the corresponding primal-dual gradient
flow dynamics. This result is obtained by computing the steady-state covariance matrix of
the state ψ.

Theorem 1 Let f(x) = m
2
‖x‖2, g(z) = I{0}(z), and T be a full-row-rank matrix in (5.1).

Then, the steady-state variance of the primal optimization variable in (5.5) with dwi(t) being
the increments of independent Wiener processes with covariance E[wi(t)w

T
i (t)] = siIt is

determined by

J =
(n− k)s1

2m
+

k∑
i= 1

s1 + s2

2(m+ (1/µ)σ2
i (T ))

where σi(T ) is the ith singular values of the matrix T .

Proof: Let T = UΣV T be the singular value decomposition with unitary matrices U ∈
Rk×k and V ∈ Rn×n and Σ =

[
Σ0 0k×(n−k)

]
∈ Rk×n, with

Σ0 := diag (σ1, . . . , σk) ∈ Rk×k.

Multiplication of the Lyapunov equation (5.12) by M = diag (V, U) and MT from right and
left, respectively, yields

Â X̂ + X̂ ÂT = −diag (s1I, s2I) (5.13)

where

Â =

[ −mI − 1
µ
ΣTΣ −ΣT

Σ 0

]
, X̂ =

[
X̂1 X̂2

X̂T
2 X̂3

]
:= MTXM.
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Finally, it is straightforward to verify that

X̂1 =

[
s1+s2

2

(
mI + 1

µ
Σ0Σ0

)−1

0

0 s1
2m
I

]

X̂2 =

[
− s2

2
Σ−1

0

0(n−k)×k

]
∈ Rn×k, X̂3 = diag (a1, . . . , ak) ∈ Rk×k

where ai =
s1 + s2

2(m+ σ2
i /µ)

+
s2(m+ σ2

i /µ)

2σ2
i

. The result follows from

J = trace (X1) = trace (X̂1).

�

The following corollary is immediate from Theorem 1.

Corollary 1 Under the conditions of Theorem 1, the steady-state variance of the primal
optimization variable in (5.5) is upper bounded by J ≤ (ns1 + ks2)/(2m).

Corollary 1 establishes that, for µ > 0 and a full-row-rank matrix T , the variance of the
primal optimization variable in (5.5) satisfies an upper bound that is independent of T and
µ. In addition, using the explicit expression for J provided in Theorem 1, it follows that for
any fixed µ > 0, in the limit of σmax(T ) → 0 and/or n/k → ∞, the upper bound on the
variance amplification J in Corollary 1 becomes exact.

It is also noteworthy that, as demonstrated in the proof of Theorem 1, the dual variable
ν may experience an unbounded steady-state variance for s2 > 0 if σmin(T )→ 0.

Even though it is challenging to derive an analytical expression for the covariance matrix
X for a general strongly convex quadratic objective function f , we next demonstrate that
the upper bound in Corollary 1 remains valid.

Theorem 2 Let f(x) = 1
2
xTQx with Q � mI, g(z) = I{0}(z), and T be a full-row-

rank matrix in (5.1). Then, the steady-state variance of the primal optimization variable
in (5.5) with dwi(t) being the increments of independent Wiener processes with covariance
E[wi(t)w

T
i (t)] = siIt satisfies

J ≤ ns1 + ks2

2m
. (5.14)

Proof: To quantify J , an alternative method to using the state covariance matrix is to
write J = trace(Pdiag(s1I, s2I)), where P is the observability gramian of system (5.10)

ATP + PA = −CTC (5.15)
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with C =
[
I 0

]
. Thus, any matrix P ′ � P satisfies J ≤ trace(P ′diag(s1I, s2I)). To find

such a P ′, we note that A satisfies

AT I + IA = −2diag (Q+ 1
µ
T TT, 0) � −2λmin(Q)CTC.

Dividing this inequality by 2λmin(Q) and subtracting from (5.15) yields

AT ( 1
2λmin(Q)

I − P ) + ( 1
2λmin(Q)

I − P )A � 0.

Since A is Hurwitz, it follows that P � 1
2λmin(Q)

I, and hence

J = trace (P diag (s1I, s2I)) ≤ 1

2λmin(Q)
trace (diag (s1I, s2I)) ≤ ns1 + ks2

2m
.

�

5.4 Beyond quadratic problems
In this section, we extend our upper bounds on the noise amplification of the primal-dual
gradient flow dynamics to problems with a general strongly convex function f , a convex but
possibly non-differentiable function g, and a matrix T of an arbitrary rank. Our approach
is based on Integral Quadratic Constraints (IQCs) which provide a convex control-theoretic
framework for stability and robustness analysis of systems with structured nonlinear compo-
nents [81]. This framework has been recently used to analyze convergence and robustness of
first-order optimization methods [53], [56], [93], [105]. In what follows, we first demonstrate
how IQCs can be combined with quadratic storage functions to characterize upper bounds
on the noise amplification of continuous-time dynamical systems via solutions to a certain
linear matrix inequality (LMI). We then specialize this result to the primal-dual gradient
flow dynamics and establish tight upper bounds on the noise amplification by finding feasible
solutions to the associated LMI.

5.4.1 An IQC-based approach

As demonstrated in Section 5.4.2, noisy primal-dual gradient flow dynamics can be viewed
as a feedback interconnection of an LTI system with a static nonlinear component

dψ = Aψ dt + B u dt + dw[
z
y

]
=

[
Cz
Cy

]
ψ, u(t) = ∆(y(t)).

(5.16)

Here, ψ(t) is the state, dw(t) is the increment of a Wiener process with covariance

E[w(t)wT (t)] = W t
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where W is a positive semidefinite matrix, z(t) is the performance output, and u(t) is the
output of the nonlinear term ∆: Rn → Rn that satisfies the quadratic inequalities[

y
∆(y)

]T
Πi

[
y

∆(y)

]
≥ 0 (5.17)

for some matrices Πi and all y ∈ Rn.
Lemma 1 utilizes property (5.17) of the nonlinear mapping ∆ and provides an upper

bound on the average energy [82]

J = lim sup
T →∞

1

T

∫ T

0

E [‖z(t)‖]22 dt.

Lemma 1 Let the nonlinear function u = ∆(y) satisfy[
y
u

]T
Πi

[
y
u

]
≥ 0 (5.18)

for some matrices Πi, let P be a positive semidefinite matrix, and let λi be nonnegative
scalars such that system (5.16) satisfies[

ATP + PA+ CT
z Cz PB

BT P 0

]
+
∑
i

λi

[
CT
y 0

0 I

]
Πi

[
Cy 0
0 I

]
� 0. (5.19)

Then the average energy of the performance output in statisticaly steady-state is bounded by
J ≤ trace(PW ).

The proof of Lemma 1 follows from similar arguments as in [82, Theorem 7.2] and is
omitted for brevity. Lemma 1 introduces a quadratic storage function, ψTPψ, for continuous-
time primal-dual gradient flow dynamics. We note that discrete-time variants of this result
have been used to quantify noise amplification of accelerated optimization algorithms [93,
Lemmas 1, 2], [103].

5.4.2 State-space representation

We next demonstrate how noisy primal-dual gradient flow dynamics (5.5) can be brought
into the standard state-space form (5.16). In particular, choosing ψ =

[
xT νT

]T as the
state variable along with z := x and

y =

[
y1

y2

]
:=

[
x

Tx+ µν

]
, u =

[
u1

u2

]
:=

[
∇f(x)−mx

proxµg(Tx+ µν)

]
brings system (5.5) into the state-space form (5.16) with

A =

[ −(mI + 1
µ
T TT ) −T T

T 0

]
, B =

[ −I 1
µ
T T

0 −I

]
, Cy =

[
I 0
T µI

]
. (5.20)
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and Cz =
[
I 0

]
, where m is the strong-convexity module of f . We note that the

input-output pair (u, y) satisfies the pointwise nonlinear equation u = ∆(y) with ∆ =
diag (∆1,∆2), where

u1 = ∆1(y1) := ∇f(y1)−my1, u2 = ∆2(y2) := proxµg(y2).

It is worth mentioning that for the special case g(z) = I{0}(z), which we considered in
our analysis of quadratic problems in Section 5.3, the nonlinear term u2 vanishes and the
primal-dual gradient flow dynamics simplify to

dx = −
(
∇f(x) + 1

µ
T TTx + T Tν

)
dt + dw1

dν = Tx dt + dw2.
(5.21)

5.4.3 Characterizing the structural properties via IQCs

The input-output pairs (yi, ui) associated with nonlinear mappings ∆i satisfy[
yi − y′i
ui − u′i

]T
πi

[
yi − y′i
ui − u′i

]
≥ 0 (5.22)

where

π1 :=

[
0 (L−m)I

(L−m)I −2I

]
, π2 :=

[
0 I
I −2I

]
.

The above inequalities follow from the facts that ∆1 is the gradient of the (L−m)-smooth
convex function f(·)− (m/2)‖ · ‖2 and that ∆2 = proxµg is firmly non-expansive.

To make the above IQCs conform to the required format in Lemma 1, we can employ a
suitable permutation combined with a change of variables that utilizes deviations from the
optimal solution to obtain the inequalities in (5.18) with

Π1 =


0 0 (L−m) I 0
0 0 0 0

(L−m) I 0 −2I 0
0 0 0 0

 , Π2 =


0 0 0 0
0 0 0 I
0 0 0 0
0 I 0 −2I

 . (5.23)

5.4.4 General convex g

The main result of the chapter is presented in Theorem 3. It demonstrates that proximal
primal-dual gradient flow dynamics enjoys the same upper bound on noise amplification as
the primal-dual gradient flow dynamics for smooth problems.

Theorem 3 Let the function f be m-strongly convex and let g be closed, proper, convex.
Then, the noise amplification of noisy primal-dual gradient flow dynamics satisfies (5.14).

Proof: It is easy to verify that P = pI, λ1 = 1/(L − m), λ2 = 1/µ with p ≥ 1/(2m)
provides a feasible solution to the LMI in Lemma 1 for the system matrices in (5.20) and
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matrices Π1, Π2 in (5.23). Thus, the result follows from Lemma 1. �

For general strongly convex problems, Theorem 3 establishes the same upper bound on
the noise amplification as what we obtained using Lyapunov equations for quadratic problems
in Theorem 2. In addition, as we discussed in Section 5.3, this upper bound is tight in the
sense that the noise amplification for the quadratic problem in Theorem 1 converges to this
upper bound in the limit σmax(T )→ 0 and/or as n/k →∞. Another advantage of the IQC
framework is that it does not require the matrix A to be Hurwitz. Therefore, the upper
bound established in Theorem 3 holds for any matrix T independent of its rank.

5.5 Application to distributed optimization
The primal-dual gradient flow dynamics provide a distributed strategy for solving

minimize
θ

n∑
i= 1

fi(θ) (5.24)

where fi are convex functions [72]. Assuming without loss of generality that θ ∈ R, given
a connected network with an incidence matrix E = T T , we can assign a different scalar
variable xi to each agent and define the equivalent problem

minimize
x

n∑
i= 1

fi(xi)

subject to T x = 0

(5.25)

where the constraint enforces that

x :=
[
x1 · · · xn

]T ∈ N (T ) = {c1 | c ∈ R}

where 1 := [ 1 · · · 1 ]T . Letting f(x) :=
∑

i fi(xi), the primal-dual gradient flow for solving
problem (5.25) is determined by (5.21) and, in the absence of noise, it converges to x = θ?1,
where θ? is an optimal solution of problem (5.24). In this formulation, the primal and dual
variables xi and νi correspond to the nodes and the edges of the network, respectively.

Theorem 3 provides an upper bound on noise amplification of a distributed primal-dual
algorithm

J ≤ ns1 + ks2

2m

for strongly convex problems. Here, k denotes the number of edges in the network and m
is the strong convexity module of the function f . However, if f lacks strong convexity, then
an additive white noise with a full-rank covariance matrix can result in unbounded variance
of x(t) as t→∞.
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To see one such example, we can let fi be constants, in which case the primal-dual
gradient flow simplifies to a consensus-type algorithm. In this case, the average mode a(t) :=
1
n
(1Tx(t))1 experiences a random walk, and its variance

Ja := lim
t→∞

E
(
‖a(t)− θ?1‖2

)
(5.26a)

is unbounded. However, the mean-square deviation from the network average

J̄ := lim
t→∞

E
(
‖x(t)− a(t)‖2

)
(5.26b)

becomes a relevant quantity and it can be used in lieu of J to quantify stochastic performance
as it remains bounded [43].

Using the fact that 〈x(t)− a(t),1〉 = 0, this idea can be generalized to the distributed
optimization framework by noting that the variance amplification can be split into two terms,

J = Ja + J̄ .

To provide insight, let us examine the special case with fi(θ) = 1
2
m(θ−ci)2, where the agents

aim to compute the average of ci. Although the underlying dynamics are linear in this case,
the results of Theorem 1 are not applicable because the matrix T is full row-rank only when
the corresponding graph is a tree. However, by eliminating modes from the dual-variable
that are not stable, a similar argument as in the proof of Theorem 1 can be used to establish
an expression for the noise amplification in the distributed setting in terms of the non-zero
eigenvalues λi of the Laplacian matrix L = T TT .

Proposition 1 The noisy primal-dual gradient flow dynamics (5.9) for solving distributed
optimization problem (5.25) with fi(xi) = 1

2
m(xi − ci)2 satisfies J = Ja + J̄ , where

Ja =
s1

2m
, J̄ =

n−1∑
i= 1

s1 + s2

2(m+ λi(L)/µ)

and λi are the non-zero eigenvalues of the Laplacian matrix L = T TT of connected undirected
network.

Proof: Let us without loss of generality assume that ci = 0; using the change of variables
y := T Tν, we obtain that the noisy primal-dual flow satisfies[

dx
dy

]
=

[ −mI − 1
µ
L −I

L 0

][
x
y

]
dt+

[
dw1

T Tdw2

]
.

Noting that L1 = 0, we can let L = V ΛV T , where Λ = diag(0, Λ̂) is the diagonal matrix of
eigenvalues and the columns of the unitary matrix V =

[
1/
√
n U

]
are the corresponding

eigenvectors. Using the change of variables

x̂ := UTx, ŷ := UTy, ψ̂T =
[
x̂T ŷT

]
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it is easy to verify that

dψ̂ =

[
−mI − 1

µ
Λ̂ −I

Λ̂ 0

]
ψ̂dt+

[
dŵ1

dŵ2

]
where dŵ1 and dŵ2 are the increments of independent Wiener process with covariance s1It
and s2Λ̂t, respectively. In addition, the average modes associated with the primal and dual
variables a = (xT1)1/n and b = (yT1)1/n satisfy

da = −ma dt+ dwa, b = 0

and the variance amplification is determined by

J = Ja + J̄ = lim
t→∞

E[‖x̂‖2] + E[a2] = trace(X1) +
s1

2m

where X =

[
X1 X2

XT
2 X3

]
is the corresponding state covariance matrix at the steady state

[
−mI − 1

µ
Λ̂ −I

Λ̂ 0

]
X + X

[
−mI − 1

µ
Λ̂ Λ̂

−I 0

]
=

[ −s1I 0

0 −s2Λ̂

]
The result follows from noting that X1, X2, and X3 are all diagonal and

X1 =
s1 + s2

2
(mI + Λ̂)−1, X2 =

−s2

2
I.

�

For quadratic optimization problems, Proposition 1 demonstrates that, in addition to
the strong-convexity module of the function f , the topology of the network also impacts the
variance amplification. In the limit as m goes to 0, while the variance of the average mode
Ja becomes unbounded, the mean-square deviation from the average mode remains bounded
and is captured by the sum of reciprocals of the eigenvalues of the graph Laplacian. This
dependence of variance amplification on the spectral properties of L is identical to the one
observed in standard consensus algorithms [43], [93].

5.6 Concluding remarks
We have examined the noise amplification of proximal primal-dual gradient flow dynamics
that can be used to solve non-smooth composite optimization problems. For quadratic
problems, we have employed algebraic Lyapunov equations to establish analytical expressions
for the noise amplification. We have also utilized the theory of IQCs to characterize tight
upper bounds in terms of a solution to an LMI. Our results show that stochastic performance
of the primal-dual dynamics is inversely proportional to the strong-convexity module of the
smooth part of the objective function. The ongoing work focuses on examining the impact
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of network topology on the noise amplification in distributed settings and on extension of
our results to discrete-time versions of primal-dual algorithms.
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Part II

Convergence and sample complexity of gradient methods
for the data-driven control
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Chapter 6

Random search for continuous-time LQR

Model-free reinforcement learning attempts to find optimal control actions for an unknown
dynamical system by directly searching over the parameter space of controllers. However,
the statistical properties and convergence behavior of these approaches are often poorly un-
derstood because of the nonconvex nature of the underlying optimization problems and the
lack of exact gradient computation. In this chapter, we take a step towards demystifying
the performance and efficiency of such methods by focusing on the standard infinite-horizon
linear quadratic regulator problem for continuous-time systems with unknown state-space
parameters. We establish exponential stability for the ordinary differential equation (ODE)
that governs the gradient-flow dynamics over the set of stabilizing feedback gains and show
that a similar result holds for the gradient descent method that arises from the forward
Euler discretization of the corresponding ODE. We also provide theoretical bounds on the
convergence rate and sample complexity of the random search method with two-point gra-
dient estimates. We prove that the required simulation time for achieving ε-accuracy in the
model-free setup and the total number of function evaluations both scale as log (1/ε).

6.1 Introduction
In many emerging applications, control-oriented models are not readily available and classical
approaches from optimal control may not be directly applicable. This challenge has led to the
emergence of Reinforcement Learning (RL) approaches that often perform well in practice.
Examples include learning complex locomotion tasks via neural network dynamics [18] and
playing Atari games based on images using deep-RL [19].

RL approaches can be broadly divided into model-based [130], [131] and model-free [20],
[21]. While model-based RL uses data to obtain approximations of the underlying dynamics,
its model-free counterpart prescribes control actions based on estimated values of a cost
function without attempting to form a model. In spite of the empirical success of RL in
a variety of domains, our mathematical understanding of it is still in its infancy and there
are many open questions surrounding convergence and sample complexity. In this chapter,
we take a step towards answering such questions with a focus on the infinite-horizon Linear
Quadratic Regulator (LQR) for continuous-time systems.

The LQR problem is the cornerstone of control theory. The globally optimal solution can
be obtained by solving the Riccati equation and efficient numerical schemes with provable
convergence guarantees have been developed [83]. However, computing the optimal solution
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becomes challenging for large-scale problems, when prior knowledge is not available, or in the
presence of structural constraints on the controller. This motivates the use of direct search
methods for controller synthesis. Unfortunately, the nonconvex nature of this formulation
complicates the analysis of first- and second-order optimization algorithms. To make matters
worse, structural constraints on the feedback gain matrix may result in a disjoint search
landscape limiting the utility of conventional descent-based methods [84]. Furthermore, in
the model-free setting, the exact model (and hence the gradient of the objective function) is
unknown so that only zeroth-order methods can be used.

In this chapter, we study convergence properties of gradient-based methods for the
continuous-time LQR problem. In spite of the lack of convexity, we establish (a) exponen-
tial stability of the ODE that governs the gradient-flow dynamics over the set of stabilizing
feedback gains; and (b) linear convergence of the gradient descent algorithm with a suitable
stepsize. We employ a standard convex reparameterization for the LQR problem [85], [86]
to establish the convergence properties of gradient-based methods for the nonconvex formu-
lation. In the model-free setting, we also examine convergence and sample complexity of the
random search method [22] that attempts to emulate the behavior of gradient descent via
gradient approximations resulting from objective function values. For the two-point gradient
estimation setting, we prove linear convergence of the random search method and show that
the total number of function evaluations and the simulation time required in our results to
achieve ε-accuracy are proportional to log (1/ε).

For the discrete-time LQR, global convergence guarantees were recently provided in [13]
for gradient decent and the random search method with one-point gradient estimates. The
authors established a bound on the sample complexity for reaching the error tolerance ε that
requires a number of function evaluations that is at least proportional to (1/ε4) log (1/ε).
If one has access to the infinite-horizon cost values, the number of function evaluations for
the random search method with one-point gradient estimates can be improved to 1/ε2 [132].
In contrast, we focus on the continuous-time LQR and examine the two-point gradient es-
timation setting. The use of two-point gradient estimates reduces the required number of
function evaluations to 1/ε [132]. We significantly improve this result by showing that the
required number of function evaluations is proportional to log (1/ε). Similarly, the simula-
tion time required in our results is proportional to log (1/ε); this is in contrast to [13] that
requires poly (1/ε) simulation time and [132] that assumes an infinite simulation time. Fur-
thermore, our convergence results hold both in terms of the error in the objective value and
the optimization variable (i.e., the feedback gain matrix) whereas [13] and [132] only prove
convergence in the objective value. We note that the literature on model-free RL is rapidly
expanding and recent extensions to Markovian jump linear systems [133], H∞ robustness
analysis through implicit regularization [134], learning distributed LQ problems [135], and
output-feedback LQR [136] have been made.

Our presentation is structured as follows. In Section 6.2, we revisit the LQR problem
and present gradient-flow dynamics, gradient descent, and the random search algorithm.
In Section 6.3, we highlight the main results of the chapter. In Section 6.4, we utilize
convex reparameterization of the LQR problem and establish exponential stability of the
resulting gradient-flow dynamics and gradient descent method. In Section 6.5, we extend
our analysis to the nonconvex landscape of feedback gains. In Section 6.6, we quantify the
accuracy of two-point gradient estimates and, in Section 6.7, we discuss convergence and
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sample complexity of the random search method. In Section 6.8, we provide an example
to illustrate our theoretical developments and, in Section 6.9, we offer concluding remarks.
Most technical details are relegated to the appendices.

Notation

We use vec(M) ∈ Rmn to denote the vectorized form of the matrix M ∈ Rm×n obtained by
concatenating the columns on top of each other. We use ‖M‖2

F = 〈M,M〉 to denote the
Frobenius norm, where 〈X, Y 〉 := trace (XTY ) is the standard matricial inner product. We
denote the largest singular value of linear operators and matrices by ‖ · ‖2 and the spectral
induced norm of linear operators by ‖ · ‖S

‖M‖2 := sup
M

‖M(M)‖F
‖M‖F

, ‖M‖S := sup
M

‖M(M)‖2

‖M‖2

.

We denote by Sn ⊂ Rn×n the set of symmetric matrices. For M ∈ Sn, M � 0 means M is
positive definite and λmin(M) is the smallest eigenvalue. We use Sd−1 ⊂ Rd to denote the
unit sphere of dimension d − 1. We denote the expected value by E[·] and probability by
P(·). To compare the asymptotic behavior of f(ε) and g(ε) as ε goes to 0, we use f = O(g)
(or, equivalently, g = Ω(f)) to denote lim supε→ 0 f(ε)/g(ε) < ∞; f = Õ(g) to denote
f = O(g logkg) for some integer k; and f = o(ε) to signify limε→ 0 f(ε)/ε = 0.

6.2 Problem formulation
The infinite-horizon LQR problem for continuous-time LTI systems is given by

minimize
x, u

E
[ ∫ ∞

0

(xT (t)Qx(t) + uT (t)Ru(t)) dt

]
(6.1a)

subject to ẋ = Ax + Bu, x(0) ∼ D (6.1b)

where x(t) ∈ Rn is the state, u(t) ∈ Rm is the control input, A and B are constant matrices of
appropriate dimensions, Q and R are positive definite matrices, and the expectation is taken
over a random initial condition x(0) with distribution D. For a controllable pair (A,B), the
solution to (6.1) is given by

u(t) = −K?x(t) = −R−1BTP ?x(t) (6.2a)

where P ? is the unique positive definite solution to the Algebraic Riccati Equation (ARE)

ATP ? + P ?A + Q − P ?BR−1BTP ? = 0. (6.2b)

When the model is known, the LQR problem and the corresponding ARE can be solved
efficiently via a variety of techniques [137]–[140]. However, these methods are not directly
applicable in the model-free setting, i.e., when the matrices A and B are unknown. Exploiting
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the linearity of the optimal controller, we can alternatively formulate the LQR problem as a
direct search for the optimal linear feedback gain, namely

minimize
K

f(K) (6.3a)

where

f(K) :=

{
trace

(
(Q+KTRK)X(K)

)
, K ∈ SK

∞, otherwise. (6.3b)

Here, the function f(K) determines the LQR cost in (6.1a) associated with the linear state-
feedback law u = −Kx,

SK := {K ∈ Rm×n |A − BK is Hurwitz} (6.3c)

is the set of stabilizing feedback gains and, for any K ∈ SK ,

X(K) :=

∫ ∞
0

E
[
x(t)xT (t)

]
=

∫ ∞
0

e(A−BK)t Ω e(A−BK)T t dt (6.4a)

is the unique solution to the Lyapunov equation

(A − BK)X + X(A − BK)T + Ω = 0 (6.4b)

and Ω := E [x(0)xT (0)]. To ensure f(K) = ∞ for K /∈ SK , we assume Ω � 0. This
assumption also guarantees K ∈ SK if and only if the solution X to (6.4b) is positive
definite.

In problem (6.3), the matrix K is the optimization variable, and (A, B, Q � 0, R � 0,
Ω � 0) are the problem parameters. This alternative formulation of the LQR problem has
been studied for both continuous-time [83] and discrete-time systems [13], [141] and it serves
as a building block for several important control problems including optimal static-output
feedback design [142], optimal design of sparse feedback gain matrices [71], [143]–[147], and
optimal sensor/actuator selection [121], [148]–[150].

For all stabilizing feedback gains K ∈ SK , the gradient of the objective function is
determined by [142], [143]

∇f(K) = 2(RK − BTP (K))X(K). (6.5)

Here, X(K) is given by (6.4a) and

P (K) =

∫ ∞
0

e(A−BK)T t (Q+KTRK) e(A−BK)t dt (6.6a)

is the unique positive definite solution of

(A − BK)TP + P (A − BK) = −Q − KTRK. (6.6b)
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To simplify our presentation, for anyK ∈ Rm×n, we define the closed-loop Lyapunov operator
AK : Sn → Sn as

AK(X) := (A − BK)X + X(A − BK)T . (6.7a)

For K ∈ SK , both AK and its adjoint

A∗K(P ) = (A − BK)TP + P (A − BK) (6.7b)

are invertible and X(K), P (K) are determined by

X(K) = −A−1
K (Ω), P (K) = −(A∗K)−1(Q + KTRK).

In this chapter, we first examine the global stability properties of the gradient-flow dy-
namics

K̇ = −∇f(K), K(0) ∈ SK (GF)

associated with problem (6.3) and its discretized variant,

Kk+1 := Kk − α∇f(Kk), K0 ∈ SK (GD)

where α > 0 is the stepsize. Next, we build on this analysis to study the convergence of a
search method based on random sampling [22], [151] for solving problem (6.3). As described
in Algorithm 1, at each iteration we form an empirical approximation ∇f(K) to the gradient
of the objective function via simulation of system (6.1b) for randomly perturbed feedback
gains K ± Ui, i = 1, . . . , N , and update K via,

Kk+1 := Kk − α∇f(Kk), K0 ∈ SK . (RS)

We note that the gradient estimation scheme in Algorithm 1 does not require knowledge of
system matrices A and B in (6.1b) but only access to a simulation engine.

6.3 Main results
Optimization problem (6.3) is not convex [84]; see Appendix D.1 for an example. The
function f(K), however, has two important properties: uniqueness of the critical points
and the compactness of sublevel sets [152], [153]. Based on these, the LQR objective error
f(K) − f(K?) can be used as a maximal Lyapunov function (see [154] for a definition
and [155], [156] as examples) to prove asymptotic stability of gradient-flow dynamics (GF)
over the set of stabilizing feedback gains SK . However, this approach does not provide
any guarantee on the rate of convergence and additional analysis is necessary to establish
exponential stability; see Section 6.5 for details.

6.3.1 Known model

We first summarize our results for the case when the model is known. In spite of the
nonconvex optimization landscape, we establish the exponential stability of gradient-flow
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Algorithm 1 Two-point gradient estimation
Require: Feedback gainK ∈ Rm×n, state and control weight matrices Q and R, distribution
D, smoothing constant r, simulation time τ , number of random samples N .
for i = 1, . . . , N do

– Define perturbed feedback gains Ki,1 := K + rUi and Ki,2 := K − rUi, where vec(Ui)
is a random vector uniformly distributed on the sphere

√
mnSmn−1.

– Sample an initial condition xi from distribution D.
– For j ∈ {1, 2}, simulate system (6.1b) up to time τ with the feedback gain Ki,j and
initial condition xi to form

f̂i,j =

∫ τ

0

(xT (t)Qx(t) + uT (t)Ru(t)) dt.

end for
Ensure: The gradient estimate

∇f(K) =
1

2rN

N∑
i= 1

(
f̂i,1 − f̂i,2

)
Ui.

dynamics (GF) for any stabilizing initial feedback gain K(0). This result also provides an
explicit bound on the rate of convergence to the LQR solution K?.

Theorem 1 For any initial stabilizing feedback gain K(0) ∈ SK, the solution K(t) to
gradient-flow dynamics (GF) satisfies

f(K(t)) − f(K?) ≤ e−ρ t (f(K(0)) − f(K?))
‖K(t) − K?‖2

F ≤ b e−ρ t ‖K(0) − K?‖2
F

where the convergence rate ρ and constant b depend on K(0) and the parameters of the LQR
problem (6.3).

The proof of Theorem 1 along with explicit expressions for the convergence rate ρ and
constant b are provided in Section 6.5.1. Moreover, for a sufficiently small stepsize α, we
show that gradient descent method (GD) also converges over SK at a linear rate.

Theorem 2 For any initial stabilizing feedback gain K0 ∈ SK, the iterates of gradient de-
scent (GD) satisfy

f(Kk) − f(K?) ≤ γk
(
f(K0) − f(K?)

)
‖Kk − K?‖2

F ≤ b γk ‖K0 − K?‖2
F

where the rate of convergence γ, stepsize α, and constant b depend on K0 and the parameters
of the LQR problem (6.3).

102



6.3.2 Unknown model

We now turn our attention to the model-free setting. We use Theorem 2 to carry out the
convergence analysis of the random search method (RS) under the following assumption on
the distribution of initial condition.

Assumption 1 Let the distribution D of the initial conditions have i.i.d. zero-mean unit-
variance entries with bounded sub-Gaussian norm, i.e., for a random vector v ∈ Rn that is
distributed according to D, E[vi] = 0 and ‖vi‖ψ2 ≤ κ, for some constant κ and i = 1, . . . , n;
see Appendix D.10 for the definition of ‖ · ‖ψ2.

Our main convergence result holds under Assumption 1. Specifically, for a desired accu-
racy level ε > 0, in Theorem 3 we establish that iterates of (RS) with constant stepsize (that
does not depend on ε) reach accuracy level ε at a linear rate (i.e., in at most O(log (1/ε))
iterations) with high probability. Furthermore, the total number of function evaluations and
the simulation time required to achieve an accuracy level ε are proportional to log (1/ε).
This significantly improves the existing results for discrete-time LQR [13], [132] that require
O(1/ε) function evaluations and poly(1/ε) simulation time.

Theorem 3 (Informal) Let the initial condition x0 ∼ D of the LTI system in (6.1b) obey
Assumption 1. Also let the simulation time τ and the number of samples N used by Algo-
rithm 1 satisfy

τ ≥ θ1 log (1/ε) and N ≥ c
(
1 + β4κ4 θ1 log6n

)
n

for some β > 0 and desired accuracy ε > 0. Then, we can choose a smoothing parameter r <
θ3

√
ε in Algorithm 1 and the constant stepsize α such that the random search method (RS)

that starts from any initial stabilizing feedback gain K0 ∈ SK achieves f(Kk) − f(K?) ≤ ε
in at most

k ≤ θ4 log
(
(f(K0) − f(K?))/ε

)
iterations with probability not smaller than 1 − c′k(n−β + N−β + Ne−

n
8 + e−c

′N). Here, the
positive scalars c and c′ are absolute constants and θ1, . . . , θ4 > 0 depend on K0 and the
parameters of the LQR problem (6.3).

The formal version of Theorem 3 along with a discussion of parameters θi and stepsize
α is presented in Section 6.7.

6.4 Convex reparameterization
The main challenge in establishing the exponential stability of (GF) arises from nonconvexity
of problem (6.3). Herein, we use a standard change of variables to reparameterize (6.3) into
a convex problem, for which we can provide exponential stability guarantees for gradient-
flow dynamics. We then connect the gradient flow on this convex reparameterization to its
nonconvex counterpart and establish the exponential stability of (GF).
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6.4.1 Change of variables

The stability of the closed-loop system with the feedback gain K ∈ SK in problem (6.3) is
equivalent to the positive definiteness of the matrix X(K) given by (6.4a). This condition
allows for a standard change of variables K = Y X−1, for some Y ∈ Rm×n, to reformulate
the LQR design as a convex optimization problem [85], [86]. In particular, for any K ∈ SK
and the corresponding matrix X, we have

f(K) = h(X, Y ) := trace (QX + Y TRYX−1)

where h(X, Y ) is a jointly convex function of (X, Y ) for X � 0. In the new variables,
Lyapunov equation (6.4b) takes the affine form

A(X) − B(Y ) + Ω = 0 (6.8a)

where A and B are the linear maps

A(X) := AX + XAT , B(Y ) := B Y + Y TBT . (6.8b)

For an invertible map A, we can express the matrix X as an affine function of Y

X(Y ) = A−1(B(Y ) − Ω) (6.8c)

and bring the LQR problem into the convex form

minimize
Y

h(Y ) (6.9)

where

h(Y ) :=

{
h(X(Y ), Y ), Y ∈ SY
∞, otherwise

and SY := {Y ∈ Rm×n |X(Y ) � 0} is the set of matrices Y that correspond to stabilizing
feedback gains K = Y X−1. The set SY is open and convex because it is defined via a positive
definite condition imposed on the affine map X(Y ) in (6.8c). This positive definite condition
in SY is equivalent to the closed-loop matrix A−B Y (X(Y ))−1 being Hurwitz.

Remark 1 Although our presentation assumes invertibility of A, this assumption comes
without loss of generality. As shown in Appendix D.2, all results carry over to noninvertible
A with an alternative change of variables A = Â+BK0, K = K̂ +K0, and K̂ = Ŷ X−1, for
some K0 ∈ SK.

6.4.2 Smoothness and strong convexity of h(Y )

Our convergence analysis of gradient methods for problem (6.4.1) relies on the L-smoothness
and µ-strong convexity of the function h(Y ) over its sublevel sets SY (a) := {Y ∈ SY |h(Y ) ≤
a}. These two properties were recently established in [121] where it was shown that over any
sublevel set SY (a), the second-order term

〈
Ỹ ,∇2h(Y ; Ỹ )

〉
in the Taylor series expansion of
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h(Y + Ỹ ) around Y ∈ SY (a) can be upper and lower bounded by quadratic forms L‖Ỹ ‖2
F

and µ‖Ỹ ‖2
F for some positive scalars L and µ. While an explicit form for the smoothness

parameter L along with an existence proof for the strong convexity modulus µ were presented
in [121], in Proposition 1 we establish an explicit expression for µ in terms of a and parameters
of the LQR problem. This allows us to provide bounds on the convergence rate for gradient
methods.

Proposition 1 Over any non-empty sublevel set SY (a), the function h(Y ) is L-smooth and
µ-strongly convex with

L =
2a‖R‖2

ν

(
1 +

a‖A−1B‖2√
νλmin(R)

)2

(6.10a)

µ =
2λmin(R)λmin(Q)

a (1 + a2η)2 (6.10b)

where the constants

η :=
‖B‖2

λmin(Q)λmin(Ω)
√
ν λmin(R)

(6.10c)

ν :=
λ2

min(Ω)

4

(
‖A‖2√
λmin(Q)

+
‖B‖2√
λmin(R)

)−2

(6.10d)

only depend on the problem parameters.

Proof: See Appendix D.3. �

6.4.3 Gradient methods over SY
The LQR problem can be solved by minimizing the convex function h(Y ) whose gradient is
given by [121, Appendix C]

∇h(Y ) = 2RY (X(Y ))−1 − 2BTW (Y ) (6.11a)

where W (Y ) is the solution to

AT W + WA = (X(Y ))−1 Y TRY (X(Y ))−1 − Q. (6.11b)

Using the strong convexity and smoothness properties of h(Y ) established in Proposition 1,
we next show that the unique minimizer Y ? of the function h(Y ) is the exponentially stable
equilibrium point of the gradient-flow dynamics over SY ,

Ẏ = −∇h(Y ), Y (0) ∈ SY . (GFY)
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Proposition 2 For any Y (0) ∈ SY , the gradient-flow dynamics (GFY) are exponentially
stable, i.e.,

‖Y (t) − Y ?‖2
F ≤ (L/µ) e−2µ t ‖Y (0) − Y ?‖2

F

where µ and L are the strong convexity and smoothness parameters of the function h(Y ) over
the sublevel set SY (h(Y (0))).

Proof: The derivative of the Lyapunov function candidate V (Y ) := h(Y ) − h(Y ?) along
the flow in (GFY) satisfies

V̇ =
〈
∇h(Y ), Ẏ

〉
= −‖∇h(Y )‖2

F ≤ −2µV. (6.12)

Inequality (6.12) is a consequence of the strong convexity of the function h(Y ) and it
yields [157, Lemma 3.4]

V (Y (t)) ≤ e−2µ t V (Y (0)). (6.13)

Thus, for any Y (0) ∈ SY , h(Y (t)) converges exponentially to h(Y ?). Moreover, since h(Y )
is µ-strongly convex and L-smooth, V (Y ) can be upper and lower bounded by quadratic
functions and the exponential stability of (GFY) over SY follows from Lyapunov theory [157,
Theorem 4.10]. �
In Section 6.5, we use the above result to prove exponential/linear convergence of gradient
flow/descent for the nonconvex optimization problem (6.3). Before we proceed, we note that
similar convergence guarantees can be established for the gradient descent method with a
sufficiently small stepsize α,

Y k+1 := Y k − α∇h(Y k), Y 0 ∈ SY (GY)

Since the function h(Y ) is L-smooth over the sublevel set SY (h(Y 0)), for any α ∈ [0, 1/L]
the iterates Y k remain within SY (h(Y 0)). This property in conjunction with the µ-strong
convexity of h(Y ) imply that Y k converges to the optimal solution Y ? at a linear rate of
γ = 1− αµ.

6.5 Control design with a known model
The asymptotic stability of (GF) is a consequence of the following properties of the LQR
objective function [152], [153]:

1. The function f(K) is twice continuously differentiable over its open domain SK and
f(K)→∞ as K →∞ and/or K → ∂SK .

2. The optimal solution K? is the unique equilibrium point over SK , i.e., ∇f(K) = 0 if
and only if K = K?.
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In particular, the derivative of the maximal Lyapunov function candidate V (K) := f(K)−
f(K?) along the trajectories of (GF) satisfies

V̇ =
〈
∇f(K), K̇

〉
= −‖∇f(K)‖2

F ≤ 0

where the inequality is strict for all K 6= K?. Thus, Lyapunov theory [154] implies that,
starting from any stabilizing initial condition K(0), the trajectories of (GF) remain within
the sublevel set SK(f(K(0))) and asymptotically converge to K?.

Similar arguments were employed for the convergence analysis of the Anderson-Moore
algorithm for output-feedback synthesis [152]. While [152] shows global asymptotic stability,
it does not provide any information on the rate of convergence. In this section, we first
demonstrate exponential stability of (GF) and prove Theorem 1. Then, we establish linear
convergence of the gradient descent method (GD) and prove Theorem 2.

6.5.1 Gradient-flow dynamics: proof of Theorem 1

We start our proof of Theorem 1 by relating the convex and nonconvex formulations of
the LQR objective function. Specifically, in Lemma 1, we establish a relation between the
gradients ∇f(K) and ∇h(Y ) over the sublevel sets of the objective function SK(a) := {K ∈
SK | f(K) ≤ a}.
Lemma 1 For any stabilizing feedback gain K ∈ SK(a) and Y := KX(K), we have

‖∇f(K)‖F ≥ c ‖∇h(Y )‖F (6.14a)

where X(K) is given by (6.4a), the constant c is determined by

c =
ν
√
ν λmin(R)

2 a2 ‖A−1‖2 ‖B‖2 + a
√
ν λmin(R)

(6.14b)

and the scalar ν given by Eq. (6.10d) depends on the problem parameters.

Proof: See Appendix D.4. �

Using Lemma 1 and the exponential stability of gradient-flow dynamics (GFY) over
SY , established in Proposition 2, we next show that (GF) is also exponentially stable. In
particular, for any stabilizing K ∈ SK(a), the derivative of V (K) := f(K) − f(K?) along
the gradient flow in (GF) satisfies

V̇ = −‖∇f(K)‖2
F ≤ −c2 ‖∇h(Y )‖2

F ≤ −2µ c2 V (6.15)

where Y = KX(K) and the constants c and µ are provided in Lemma 1 and Proposition 1,
respectively. The first inequality in (6.15) follows from (6.14a) and the second follows from
f(K) = h(Y ) combined with ‖∇h(Y )‖2

F ≥ 2µV (which in turn is a consequence of the strong
convexity of h(Y ) established in Proposition 1).

Now, since the sublevel set SK(a) is invariant with respect to (GF), following [157,
Lemma 3.4], inequality (6.15) guarantees that system (GF) converges exponentially in the
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objective value with rate ρ = 2µc2. This concludes the proof of part (a) in Theorem 1. In
order to prove part (b), we use the following lemma which connects the errors in the objective
value and the optimization variable.

Lemma 2 For any stabilizing feedback gain K, the objective function f(K) in problem (6.3)
satisfies

f(K) − f(K?) = trace
(
(K −K?)TR (K −K?)X(K)

)
where K? is the optimal solution and X(K) is given by (6.4a).

Proof: See Appendix D.4. �

From Lemma 2 and part (a) of Theorem 1, we have

‖K(t) − K?‖2
F ≤

f(K(t)) − f(K?)

λmin(R)λmin(X(K(t)))

≤ e−ρ t
f(K(0)) − f(K?)

λmin(R)λmin(X(K(t)))
≤ b′ e−ρ t ‖K(0) − K?‖2

F (6.16)

where b′ := ‖R‖2‖X(K(0))‖2/(λmin(R)λmin(X(K(t)))). Here, the first and third inequalities
follow form basic properties of the matrix trace combined with Lemma 2 applied with K =
K(t) and K = K(0), respectively. The second inequality follows from part (a) of Theorem 1.

Finally, to upper bound parameter b′, we use Lemma 15 presented in Appendix D.11
that provides the lower and upper bounds ν/a ≤ λmin(X(K)) and ‖X(K)‖2 ≤ a/λmin(Q) on
the matrix X(K) for any K ∈ SK(a), where the constant ν is given by (6.10d). Using these
bounds and the invariance of SK(a) with respect to (GF), we obtain

b′ ≤ b :=
a2 ‖R‖2

ν λmin(R)λmin(Q)
(6.17)

which completes the proof of part (b).

Remark 2 (Gradient domination) Expression (6.15) implies that the objective function
f(K) over any given sublevel set SK(a) satisfies the Polyak-Łojasiewicz (PL) condition [89]

‖∇f(K)‖2
F ≥ 2µf (f(K) − f(K?)) (6.18)

with parameter µf := µ c2, where µ and c are functions of a that are given by (6.10b)
and (6.14b), respectively. This condition is also known as gradient dominance and it was
recently used to show convergence of gradient descent for discrete-time LQR problem [13].

6.5.2 Geometric interpretation

The solution Y (t) to gradient-flow dynamics (GFY) over the set SY induces the trajectory

Kind(t) := Y (t)(X(Y (t)))−1 (6.19)
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over the set of stabilizing feedback gains SK , where the affine functionX(Y ) is given by (6.8c).
The induced trajectory Kind(t) can be viewed as the solution to the differential equation

K̇ = g(K) (6.20a)

where g: SK → Rm×n is given by

g(K) :=
(
KA−1(B(∇h(Y (K))))−∇h(Y (K))

)
(X(K))−1. (6.20b)

Here, the matrix X = X(K) is given by (6.4a) and Y (K) = KX(K). System (6.20) is
obtained by differentiating both sides of Eq. (6.19) with respect to time t and applying
the chain rule. Figure 6.1 illustrates an induced trajectory Kind(t) and a trajectory K(t)
resulting from gradient-flow dynamics (GF) that starts from the same initial condition.

Moreover, using the definition of h(Y ), we have

h(Y (t)) = f(Kind(t)). (6.21)

Thus, the exponential decay of h(Y (t)) established in Proposition 2 implies that f decays
exponentially along the vector field g, i.e., for Kind(0) 6= K?, we have

f(Kind(t)) − f(K?)

f(Kind(0)) − f(K?)
=

h(Y (t)) − h(Y ?)

h(Y (0)) − h(Y ?)
≤ e−2µ t.

This inequality follows from inequality (6.13), where µ denotes the strong-convexity modulus
of the function h(Y ) over the sublevel set SY (h(Y (0))); see Proposition 1. Herein, we provide
a geometric interpretation of the exponential decay of f under the trajectories of (GF) that
is based on the relation between the vector fields g and −∇f .

Differentiating both sides of Eq. (6.21) with respect to t yields

‖∇h(Y )‖2 = 〈−∇f(K), g(K)〉 . (6.22)

Thus, for each K ∈ SK , the inner product between the vector fields −∇f(K) and g(K) is
nonnegative. However, this is not sufficient to ensure exponential decay of f along (GF).
To address this challenge, our proof utilizes inequality (6.14a) in Lemma 1. Based on the
equation in (6.22), we observe that (6.14a) can be equivalently restated as

‖ − ∇f(K)‖F
‖Π−∇f(K)(g(K))‖F

=
‖∇f(K)‖2

F

〈−∇f(K), g(K)〉 ≥ c2

where Πb(a) denotes the projection of a onto b. Thus, Lemma 1 ensures that the ratio
between the norm of the vector field −∇f(K) associated with gradient-flow dynamics (GF)
and the norm of the projection of g(K) onto −∇f(K) is uniformly lower bounded by a
positive constant. This lower bound is the key geometric feature that allows us to deduce
exponential decay of f along the vector field −∇f from the exponential decay of the vector
field g.
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Figure 6.1: Trajectories K(t) of (GF) (solid black) and Kind(t) resulting from Eq. (6.19)
(dashed blue) along with the level sets of the function f(K).

6.5.3 Gradient descent: proof of Theorem 2

Given the exponential stability of gradient-flow dynamics (GF) established in Theorem 1,
the convergence analysis of gradient descent (GD) amounts to finding a suitable stepsize
α. Lemma 3 provides a Lipschitz continuity parameter for ∇f(K), which facilitates finding
such a stepsize.

Lemma 3 Over any non-empty sublevel set SK(a), the function gradient ∇f(K) is Lipschitz
continuous with parameter

Lf :=
2a‖R‖2

λmin(Q)
+

8a3‖B‖2

λ2
min(Q)λmin(Ω)

( ‖B‖2

λmin(Ω)
+

‖R‖2√
νλmin(R)

)
where ν given by (6.10d) depends on the problem parameters.

Proof: See Appendix D.4. �

Let Kα := K−α∇f(K), α ≥ 0 parameterize the half-line starting from K ∈ SK(a) with
K 6= K? along −∇f(K) and let us define the scalar βm := max β such that Kα ∈ SK(a), for
all α ∈ [0, β]. The existence of βm follows from the compactness of SK(a) [152]. We next
show that βm ≥ 2/Lf .

For the sake of contradiction, suppose βm < 2/Lf . From the continuity of f(Kα) with
respect to α, it follows that f(Kβs) = a. Moreover, since −∇f(K) is a descent direction of
the function f(K), we have βm > 0. Thus, for α ∈ (0, βm],

f(Kα) − f(K) ≤ −α(2 − Lfα)

2
‖∇f(K)‖2

F < 0.

Here, the first inequality follows from the Lf -smoothness of f(K) over SK(a) (Descent
Lemma [158, Eq. (9.17)]) and the second inequality follows from ∇f(K) 6= 0 in conjunction
with βm ∈ (0, 2/Lf ). This implies f(Kβm) < f(K) ≤ a, which contradicts f(Kβm) = a.
Thus, βm ≥ 2/Lf .
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We can now use induction on k to show that, for any stabilizing initial condition K0 ∈
SK(a), the iterates of (GD) with α ∈ [0, 2/Lf ] remain in SK(a) and satisfy

f(Kk+1) − f(Kk) ≤ −α(2 − Lfα)

2
‖∇f(Kk)‖2

F . (6.23)

Inequality (6.23) in conjunctions with the PL condition (6.18) evaluated at Kk guarantee
linear convergence for gradient descent (GD) with the rate γ ≤ 1−αµf for all α ∈ (0, 1/Lf ],
where µf is the PL parameter of the function f(K). This completes the proof of part (a) of
Theorem 2.

Using part (a) and Lemma 2, we can make a similar argument to what we used for the
proof of Theorem 1 to establish part (b) with constant b in (6.17). We omit the details for
brevity.

Remark 3 Using our results, it is straightforward to show linear convergence of Kk+1 =
Kk − αHk

1∇f(Kk)Hk
2 with K0 ∈ SK and small enough stepsize, where Hk

1 and Hk
2 are

uniformly upper and lower bounded positive definite matrices. In particular, the Kleinman
iteration [137] is recovered for α = 0.5, Hk

1 = R−1, and Hk
2 = (X(Kk))−1. Similarly,

convergence of gradient descent may be improved by choosing Hk
1 = I and Hk

2 = (X(Kk))−1.
In this case, the corresponding update direction provides the continuous-time variant of the
so-called natural gradient for discrete-time systems [159].

6.6 Bias and correlation in gradient estimation
In the model-free setting, we do not have access to the gradient ∇f(K) and the random
search method (RS) relies on the gradient estimate ∇f(K) resulting from Algorithm 1.
According to [13], achieving ‖∇f(K)−∇f(K)‖F ≤ ε may take N = Ω(1/ε4) samples using
one-point gradient estimates. Our computational experiments (not included in this chapter)
also suggest that to achieve ‖∇f(K)−∇f(K)‖F ≤ ε, N must scale as poly (1/ε) even when
a two-point gradient estimate is used. To avoid this poor sample complexity, in our proof we
take an alternative route and give up on the objective of controlling the gradient estimation
error. By exploiting the problem structure, we show that with a linear number of samples
N = Õ(n), where n is the number of states, the estimate ∇f(K) concentrates with high
probability when projected to the direction of ∇f(K).

Our proof strategy allows us to significantly improve upon the existing literature both
in terms of the required function evaluations and simulation time. Specifically, using the
random search method (RS), the total number of function evaluations required in our results
to achieve an accuracy level ε is proportional to log (1/ε) compared to at least (1/ε4) log (1/ε)
in [13] and 1/ε in [132]. Similarly, the simulation time that we require to achieve an accuracy
level ε is proportional to log (1/ε); this is in contrast to poly (1/ε) simulation times in [13]
and infinite simulation time in [132].

Algorithm 1 produces a biased estimate ∇f(K) of the gradient ∇f(K). Herein, we first
introduce an unbiased estimate ∇̂f(K) of ∇f(K) and establish that the distance ‖∇̂f(K)−
∇f(K)‖F can be readily controlled by choosing a large simulation time τ and an appropriate
smoothing parameter r in Algorithm 1; we call this distance the estimation bias. Next, we
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show that with N = Õ(n) samples, the unbiased estimate ∇̂f(K) becomes highly correlated
with ∇f(K). We exploit this fact in our convergence analysis.

6.6.1 Bias in gradient estimation due to finite simulation time

We first introduce an unbiased estimate of the gradient that is used to quantify the bias.
For any τ ≥ 0 and x0 ∈ Rn, let

fx0,τ (K) :=

∫ τ

0

(
xT (t)Qx(t) + uT (t)Ru(t)

)
dt

denote the τ -truncated version of the LQR objective function associated with system (6.1b)
with the initial condition x(0) = x0 and feedback law u = −Kx for all K ∈ Rm×n. Note
that for any K ∈ SK and x(0) = x0 ∈ Rn, the infinite-horizon cost

fx0(K) := fx0,∞(K) (6.24a)

exists and it satisfies f(K) = Ex0 [fx0(K)]. Furthermore, the gradient of fx0(K) is given
by (cf. (6.5))

∇fx0(K) = 2 (RK − BTP (K))Xx0(K) (6.24b)

where Xx0(K) = −A−1
K (x0x

T
0 ) is determined by the closed-loop Lyapunov operator in (6.7)

and P (K) = −(A∗K)−1(Q + KTRK). Note that the gradients ∇f(K) and ∇fx0(K) are
linear in X(K) = −A−1

K (Ω) and Xx0(K), respectively. Thus, for any zero-mean random
initial condition x(0) = x0 with covariance E[x0x

T
0 ] = Ω, the linearity of the closed-loop

Lyapunov operator AK implies

Ex0 [Xx0(K)] = X(K), Ex0 [∇fx0(K)] = ∇f(K).

Let us define the following three estimates of the gradient

∇f(K) :=
1

2rN

N∑
i= 1

(fxi,τ (K + rUi)− fxi,τ (K − rUi))Ui

∇̃f(K) :=
1

2rN

N∑
i= 1

(fxi(K + rUi)− fxi(K − rUi))Ui

∇̂f(K) :=
1

N

N∑
i= 1

〈∇fxi(K), Ui〉Ui

(6.25)

where Ui ∈ Rm×n are i.i.d. random matrices with vec(Ui) uniformly distributed on the
sphere

√
mnSmn−1 and xi ∈ Rn are i.i.d. initial conditions sampled from distribution D.

Here, ∇̃f(K) is the infinite-horizon version of the output ∇f(K) of Algorithm 1 and ∇̂f(K)
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provides an unbiased estimate of ∇f(K). To see this, note that by the independence of Ui
and xi we have

Exi,Ui
[
vec(∇̂f(K))

]
= EU1 [〈∇f(K), U1〉 vec(U1)]

= EU1 [vec(U1)vec(U1)T ]vec(∇f(K)) = vec(∇f(K))

and thus E[∇̂f(K)] = ∇f(K). Here, we have utilized the fact that for the uniformly
distributed random variable vec(U1) over the sphere

√
mnSmn−1, EU1 [vec(U1)vec(U1)T ] = I.

6.6.1.1 Local boundedness of the function f(K)

An important requirement for the gradient estimation scheme in Algorithm 1 is the stability
of the perturbed closed-loop systems, i.e., K ± rUi ∈ SK ; violating this condition leads to
an exponential growth of the state and control signals. Moreover, this condition is necessary
and sufficient for ∇̃f(K) to be well defined. In Proposition 3, we establish a radius within
which any perturbation of K ∈ SK remains stabilizing.

Proposition 3 For any stabilizing feedback gain K ∈ SK, we have {K̂ ∈ Rm×n | ‖K̂−K‖2 <
ζ} ⊂ SK where

ζ := λmin(Ω)/(2 ‖B‖2 ‖X(K)‖2)

and X(K) is given by (6.4a).

Proof: See Appendix D.5. �

If we choose the parameter r in Algorithm 1 to be smaller than ζ, then the sample
feedback gains K ± rUi are all stabilizing. In this chapter, we further require that the
parameter r is small enough so that K±rUi ∈ SK(2a) for all K ∈ SK(a). Such upper bound
on r is provided in the next lemma.

Lemma 4 For any U ∈ Rm×n with ‖U‖F ≤
√
mn and K ∈ SK(a), K + r(a)U ∈ SK(2a)

where r(a) := c̃/a for some positive constant c̃ that depends on the problem data.

Proof: See Appendix D.5. �
Note that for any K ∈ SK(a), and r ≤ r(a) in Lemma 4, ∇̃f(K) is well defined because
K + rUi ∈ SK(2a) for all i.

6.6.1.2 Bounding the bias

Herein, we establish an upper bound on the difference between the output ∇f(K) generated
by Algorithm 1 and the unbiased estimate ∇̂f(K) of the gradient ∇f(K). We accomplish
this by bounding the difference between these two quantities and ∇̃f(K) through the use of
the triangle inequality

‖∇̂f(K) − ∇f(K)‖F ≤ ‖∇̃f(K) − ∇f(K)‖F + ‖∇̂f(K) − ∇̃f(K)‖F . (6.26)
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The first term on the right-hand side of (6.26) arises from a bias caused by the finite simu-
lation time in Algorithm 1. The next proposition quantifies an upper bound on this term.

Proposition 4 For any K ∈ SK(a), the output of Algorithm 1 with parameter r ≤ r(a)
(given by Lemma 4) satisfies

‖∇̃f(K)−∇f(K)‖F ≤
√
mnmaxi ‖xi‖2

r
κ1(2a) e−κ2(2a)τ

where κ1(a) > 0 is a degree 5 polynomial and κ2(a) > 0 is inversely proportional to a and
they are given by (D.17).

Proof: See Appendix D.6. �

Although small values of r may result in a large error ‖∇̃f(K)−∇f(K)‖F , the exponential
dependence of the upper bound in Proposition 4 on the simulation time τ implies that this
error can be readily controlled by increasing τ . In the next proposition, we handle the second
term in (6.26).

Proposition 5 For any K ∈ SK(a) and r ≤ r(a) (given by Lemma 4), we have

‖∇̂f(K) − ∇̃f(K)‖F ≤
(rmn)2

2
`(2a) max

i
‖xi‖2

where the function `(a) > 0 is a degree 4 polynomial and it is given by (D.21).

Proof: See Appendix D.7. �
The third-derivatives of the functions fxi(K) are utilized in the proof of Proposition 5. It is
also worth noting that unlike ∇f(k) and ∇̃f(K), the unbiased gradient estimate ∇̂f(K) is
independent of the parameter r. Thus, Proposition 5 provides a quadratic upper bound on
the estimation error in terms of r.

6.6.2 Correlation between gradient and gradient estimate

As mentioned earlier, one approach to analyzing convergence for the random search method
in (RS) is to control the gradient estimation error ∇f(K) − ∇f(K) by choosing a large
number of samples N . For the one-point gradient estimation setting, this approach was
taken in [13] for the discrete-time LQR (and in [15] for the continuous-time LQR) and has
led to an upper bound on the required number of samples for reaching ε-accuracy that grows
at least proportionally to 1/ε4. Alternatively, our proof exploits the problem structure and
shows that with a linear number of samples N = Õ(n), where n is the number of states, the
gradient estimate ∇̂f(K) concentrates with high probability when projected to the direction
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of ∇f(K). In particular, in Propositions 7 and 8 we show that the following events occur
with high probability for some positive scalars µ1, µ2,

M1 :=
{〈
∇̂f(K),∇f(K)

〉
≥ µ1‖∇f(K)‖2

F

}
(6.27a)

M2 :=
{
‖∇̂f(K)‖2

F ≤ µ2‖∇f(K)‖2
F

}
. (6.27b)

To justify the definitions of these events, we first show that if they both take place then the
unbiased estimate ∇̂f(K) can be used to decrease the objective error by a geometric factor.

Proposition 6 [Approximate GD] If the matrix G ∈ Rm×n and the feedback gain K ∈ SK(a)
are such that

〈G,∇f(K)〉 ≥ µ1‖∇f(K)‖2
F (6.28a)

‖G‖2
F ≤ µ2‖∇f(K)‖2

F (6.28b)

for some positive scalars µ1 and µ2, then K − αG ∈ SK(a) for all α ∈ [0, µ1/(µ2Lf )], and

f(K − αG) − f(K?) ≤ γ (f(K) − f(K?))

with γ = 1 − µfµ1α. Here, Lf and µf are the smoothness and the PL parameters of the
function f over SK(a).

Proof: See Appendix D.8. �

Remark 4 The fastest convergence rate guaranteed by Proposition 6, γ = 1−µfµ2
1/(Lfµ2),

is achieved with the stepsize α = µ1/(µ2Lf ). This rate bound is tight in the sense that if
G = c∇f(K), for some c > 0, we recover the standard convergence rate γ = 1 − µf/Lf of
gradient descent.

We next quantify the probability of the events M1 and M2. In our proofs, we exploit modern
non-asymptotic statistical analysis of the concentration of random variables around their
average. While in Appendix D.10 we set notation and provide basic definitions of key
concepts, we refer the reader to a recent book [160] for a comprehensive discussion. Herein,
we use c, c′, c′′, etc. to denote positive absolute constants.

6.6.2.1 Handling M1

We first exploit the problem structure to confine the dependence of ∇̂f(K) on the random
initial conditions xi into a zero-mean random vector. In particular, for any K ∈ SK and
x0 ∈ Rn,

∇f(K) = EX, ∇fx0(K) = EXx0
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where E := 2(RK − BTP (K)) ∈ Rm×n is a fixed matrix, X = −A−1
K (Ω), and Xx0 =

−A−1
K (x0x

T
0 ). This allows us to represent the unbiased estimate ∇̂f(K) of the gradient as

∇̂f(K) =
1

N

N∑
i= 1

〈EXxi , Ui〉Ui = ∇̂1 + ∇̂2 (6.29a)

∇̂1 =
1

N

N∑
i= 1

〈E(Xxi −X), Ui〉Ui (6.29b)

∇̂2 =
1

N

N∑
i= 1

〈∇f(K), Ui〉Ui. (6.29c)

Note that ∇̂2 does not depend on the initial conditions xi. Moreover, from E[Xxi ] = X and
the independence of Xxi and Ui, we have E[∇̂1] = 0 and E[∇̂2] = ∇f(K).

In Lemma 5, we show that
〈
∇̂1,∇f(K)

〉
can be made arbitrary small with a large

number of samples N . This allows us to analyze the probability of the event M1 in (6.27).

Lemma 5 Let U1, . . . , UN ∈ Rm×n be i.i.d. random matrices with each vec(Ui) uniformly
distributed on the sphere

√
mnSmn−1 and let X1, . . . , XN ∈ Rn×n be i.i.d. random matrices

distributed according to M(xxT ). Here, M is a linear operator and x ∈ Rn is a random
vector whose entries are i.i.d., zero-mean, unit-variance, sub-Gaussian random variables with
sub-Gaussian norm less than κ. For any fixed matrix E ∈ Rm×n and positive scalars δ and
β, if

N ≥ C (β2κ2/δ)2 (‖M∗‖2 + ‖M∗‖S)2 n log6n (6.30)

then, with probability not smaller than 1− C ′N−β − 4Ne−
n
8 ,∣∣∣∣∣ 1

N

N∑
i= 1

〈E (Xi −X) , Ui〉 〈EX,Ui〉
∣∣∣∣∣ ≤ δ‖EX‖F‖E‖F

where X := E[X1] =M(I).

Proof: See Appendix D.9. �

In Lemma 6, we show that
〈
∇̂2,∇f(K)

〉
concentrates with high probability around its

average ‖∇f(K)‖2
F .

Lemma 6 Let U1, . . . , UN ∈ Rm×n be i.i.d. random matrices with each vec(Ui) uniformly
distributed on the sphere

√
mnSmn−1. Then, for any W ∈ Rm×n and t ∈ (0, 1],

P

{
1

N

N∑
i= 1

〈W,Ui〉2 < (1 − t)‖W‖2
F

}
≤ 2 e−cNt

2

.
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Proof: See Appendix D.9. �

In Proposition 7, we use Lemmas 5 and 6 to address M1.

Proposition 7 Under Assumption 1, for any stabilizing feedback gain K ∈ SK and positive
scalar β, if

N ≥ C1
β4κ4

λ2
min(X)

(
‖(A∗K)−1‖2 + ‖(A∗K)−1‖S

)2
n log6n

then the event M1 in (6.27) with µ1 := 1/4 satisfies P(M1) ≥ 1−C2N
−β − 4Ne−

n
8 − 2e−C3N .

Proof: We use Lemma 5 with δ := λmin(X)/4 to show that∣∣∣〈∇̂1,∇f(K)
〉∣∣∣ ≤ δ ‖EX‖F ‖E‖F ≤

1

4
‖EX‖2

F =
1

4
‖∇f(K)‖2

F . (6.31a)

holds with probability not smaller than 1− C ′N−β − 4Ne−
n
8 . Furthermore, Lemma 6 with

t := 1/2 implies that 〈
∇̂2,∇f(K)

〉
≥ 1

2
‖∇f(K)‖2

F (6.31b)

holds with probability not smaller than 1 − 2e−cN . Since ∇̂f(K) = ∇̂1 + ∇̂2, we can use
a union bound to combine (6.31a) and (6.31b). This together with a triangle inequality
completes the proof. �

6.6.2.2 Handling M2

In Lemma 7, we quantify a high probability upper bound on ‖∇̂1‖F/‖∇f(K)‖. This lemma
is analogous to Lemma 5 and it allows us to analyze the probability of the event M2 in (6.27).

Lemma 7 Let Xi and Ui with i = 1, . . . , N be random matrices defined in Lemma 5, X :=
E[X1], and let N ≥ c0n. Then, for any E ∈ Rm×n and positive scalar β,

1

N
‖

N∑
i= 1

〈E (Xi −X) , Ui〉Ui‖F ≤ c1β κ
2(‖M∗‖2 + ‖M∗‖S)‖E‖F

√
mn log n

with probability not smaller than 1− c2(n−β +Ne−
n
8 ).

Proof: See Appendix D.10. �

In Lemma 8, we quantify a high probability upper bound on ‖∇̂2‖F/‖∇f(K)‖.
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Lemma 8 Let U1, . . . , UN ∈ Rm×n be i.i.d. random matrices with vec(Ui) being uniformly
distributed on the sphere

√
mnSmn−1 and let N ≥ Cn. Then, for any W ∈ Rm×n,

P
{

1

N
‖

N∑
j= 1

〈W,Uj〉Uj‖F > C ′
√
m‖W‖F

}
≤ 2Ne−

mn
8 + 2e−ĉN .

Proof: See Appendix D.10. �

In Proposition 8, we use Lemmas 7 and 8 to address M2.

Proposition 8 Let Assumption 1 hold. Then, for any K ∈ SK, scalar β > 0, and N ≥
C4n, the event M2 in (6.27) with µ2 := C5

(
βκ2 ‖(A∗K)−1‖2 + ‖(A∗K)−1‖S

λmin(X)

√
mn log n+

√
m
)2

satisfies

P(M2) ≥ 1− C6(n−β +Ne−
n
8 + e−C7N).

Proof: We use Lemma 7 to show that, with probability at least 1− c2(n−β + Ne−
n
8 ), ∇̂1

satisfies

‖∇̂1‖F ≤ c1βκ
2(‖(A∗K)−1‖2 + ‖(A∗K)−1‖S)‖E‖F

√
mn log n ≤

c1βκ
2 ‖(A∗K)−1‖2 + ‖(A∗K)−1‖S

λmin(X)
‖∇f(K)‖F

√
mn log n.

Furthermore, we can use Lemma 8 to show that, with probability not smaller than 1 −
2Ne−

mn
8 − 2e−ĉN , ∇̂2 satisfies

‖∇̂2‖F ≤ C ′
√
m‖∇f(K)‖F .

Now, since ∇̂f(K) = ∇̂1+∇̂2, we can use a union bound to combine the last two inequalities.
This together with a triangle inequality completes the proof. �

6.7 Model-free control design
In this section, we prove a more formal version of Theorem 3.

Theorem 4 Consider the random search method (RS) that uses the gradient estimates of
Algorithm 1 for finding the optimal solution K? of LQR problem (6.3). Let the initial condi-
tion x0 obey Assumption 1 and let the simulation time τ , the smoothing constant r, and the
number of samples N satisfy

τ ≥ θ′(a) log
1

rε
, r < min{r(a), θ′′(a)

√
ε}, N ≥ c1(1 + β4κ4 θ(a) log6n)n (6.32)
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for some β > 0 and a desired accuracy ε > 0. Then, for any initial condition K0 ∈
SK(a), (RS) with the constant stepsize α ≤ 1/(32µ2(a)Lf ) achieves f(Kk)− f(K?) ≤ ε with
probability not smaller than 1− kp− 2kNe−n in at most

k ≤
(

log
f(K0) − f(K?)

ε

)/(
log

1

1 − µf (a)α/8

)
iterations. Here, p := c2(n−β +N−β +Ne−

n
8 + e−c3N), µ2 := c4 (

√
m+ βκ2θ(a)

√
mn log n)

2,
c1, . . . , c4 are positive absolute constants, µf and Lf are the PL and smoothness parameters
of the function f over the sublevel set SK(a), θ, θ′, θ′′ are positive functions that depend only
on the parameters of the LQR problem, and r(a) is given by Lemma 4.

Proof: The proof combines Propositions 4, 5, 6, 7, and 8. We first show that for any
r ≤ r(a) and τ > 0,

‖∇f(K) − ∇̂f(K)‖F ≤ σ (6.33)

with probability not smaller than 1− 2Ne−n, where

σ := c5(κ2 + 1)

(
n
√
m

r
κ1(2a)e−κ2(2a)τ +

r2m2n
5
2

2
`(2a)

)
.

Here, r(a), κi(a), and `(a) are positive functions that are given by Lemma 4, Eq. (D.17),
and Eq. (D.21), respectively.

Under Assumption 1, the vector v ∼ D satisfies [160, Eq. (3.3)],

P
{
‖v‖ ≤ c5(κ2 + 1)

√
n
}
≥ 1− 2e−n.

Thus, for the random initial conditions x1, . . . , xN ∼ D, we can apply the union bound
(Boole’s inequality) to obtain

P
{

max
i
‖xi‖ ≤ c5(κ2 + 1)

√
n
}
≥ 1 − 2Ne−n. (6.34)

Now, we combine Propositions 4 and 5 to write

‖∇f(K)− ∇̂f(K)‖F ≤
(√

mn

r
κ1(2a)e−κ2(2a)τ +

(rmn)2

2
`(2a)

)
max
i
‖xi‖2 ≤ σ.

The first inequality is obtained by combining Propositions 4 and 5 through the use of the
triangle inequality, and the second inequality follows from (6.34). This completes the proof
of (6.33).

Let θ(a) be a uniform upper bound on

‖(A∗K)−1‖2 + ‖(A∗K)−1‖S
λmin(X)

≤ θ(a)
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for all K ∈ SK(a); see Appendix D.12 for a discussion on θ(a). Since, the number of samples
satisfies (6.32), for any given K ∈ SK(a), we can combine Propositions 7 and 8 with a union
bound to show that 〈

∇̂f(K),∇f(K)
〉
≥ µ1‖∇f(K)‖2

F (6.35a)

‖∇̂f(K)‖2
F ≤ µ2‖∇f(K)‖2

F (6.35b)

holds with probability not smaller than 1− p, where µ1 = 1/4, and µ2 and p are determined
in the statement of the theorem.

Without loss of generality, let us assume that the initial error satisfies f(K0)−f(K?) > ε.
We next show that 〈

∇f(K0),∇f(K0)
〉
≥ µ1

2
‖∇f(K0)‖2

F (6.36a)

‖∇f(K0)‖2
F ≤ 4µ2‖∇f(K0)‖2

F (6.36b)

holds with probability not smaller than 1− p− 2Ne−n.
Since the function f is gradient dominant over the sublevel set SK(a) with parame-

ter µf , combining f(K0) − f(K?) > ε and (6.18) yields ‖∇f(K0)‖F ≥
√

2µfε. Also,
let the positive scalars θ′(a) and θ′′(a) be such that for any pair of τ and r satisfying
τ ≥ θ′(a) log(1/(rε)) and r < min{r(a), θ′′(a)

√
ε}, the upper bound σ in (6.33) becomes

smaller than σ ≤
√

2µfε min {µ1/2,
√
µ2}. The choice of θ′ and θ′′ with the above prop-

erty is straightforward using the definition of σ. Combining ‖∇f(K0)‖F ≥
√

2µfε and
σ ≤

√
2µfε min {µ1/2,

√
µ2} yields

σ ≤ ‖∇f(K0)‖F min {µ1/2,
√
µ2}. (6.37)

Using the union bound, we have〈
∇f(K0),∇f(K0)

〉
=
〈
∇̂f(K0),∇f(K0)

〉
+
〈
∇f(K0)− ∇̂f(K0),∇f(K0)

〉
(a)

≥ µ1‖∇f(K0)‖2
F − ‖∇f(K0)− ∇̂f(K0)‖F‖∇f(K0)‖F

(b)

≥ µ1‖∇f(K0)‖2
F − σ‖∇f(K0)‖F

(c)

≥ µ1

2
‖∇f(K0)‖2

F

with probability not smaller than 1− p− 2Ne−n. Here, (a) follows from combining (6.35a)
and the Cauchy-Schwartz inequality, (b) follows from (6.33), and (c) follows from (6.37).
Moreover,

‖∇f(K0)‖F
(a)

≤ ‖∇̂f(K0)‖F + ‖∇f(K0)− ∇̂f(K0)‖F
(b)

≤ √µ2‖∇f(K0)‖F + σ
(c)

≤ 2
√
µ2‖∇f(K0)‖F

where (a) follows from the triangle inequality, (b) from (6.33), and (c) from (6.37). This
completes the proof of (6.36).
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Inequality (6.36) allows us to apply Proposition 6 and obtain with probability not smaller
than 1 − p − 2Ne−n that for the stepsize α ≤ µ1/(8µ2Lf ), we have K1 ∈ SK(a) and also
f(K1)− f(K?) ≤ γ (f(K0)− f(K?)) , with γ = 1− µfµ1α/2, where Lf is the smoothness
parameter of the function f over SK(a). Finally, using the union bound, we can repeat this
procedure via induction to obtain that for some

k ≤
(

log
f(K0)− f(K?)

ε

)/(
log

1

γ

)
the error satisfies

f(Kk)− f(K?) ≤ γk
(
f(K0)− f(K?)

)
≤ ε

with probability not smaller than 1− kp− 2kNe−n. �

Remark 5 For the failure probability in Theorem 4 to be negligible, the problem dimension
n needs to be large. Moreover, to account for the conflicting term Ne−n/8 in the failure
probability, we can require a crude exponential bound N ≤ en/16 on the sample size. We also
note that although Theorem 4 only guarantees convergence in the objective value, similar to
the proof of Theorem 1, we can use Lemma 2 that relates the error in optimization variable,
K, and the error in the objective function, f(K), to obtain convergence guarantees in the
optimization variable as well.

Remark 6 Theorem 4 requires the lower bound on the simulation time τ in (6.32) to ensure
that, for any desired accuracy ε, the smoothing constant r satisfies r ≥ (1/ε) e−τ/θ

′(a). As
we demonstrate in the proof, this requirement accounts for the bias that arises from a finite
value of τ . Since this form of bias can be readily controlled by increasing τ , the above lower
bound on r does not contradict the upper bound r = O(

√
ε) required by Theorem 4. Finally,

we note that letting r → 0 can cause large bias in the presence of other sources of inaccuracy
in the function approximation process.

6.8 Computational experiments
We consider a mass-spring-damper system with s masses, where we set all mass, spring, and
damping constants to unity. In state-space representation (6.1b), the state x = [ pT vT ]T

contains the position and velocity vectors and the dynamic and input matrices are given by

A =

[
0 I
−T −T

]
, B =

[
0
I

]
where 0 and I are s× s zero and identity matrices, and T is a Toeplitz matrix with 2 on the
main diagonal and −1 on the first super and sub-diagonals.

6.8.1 Known model

To compare the performance of gradient descent methods (GD) and (GY) on K and Y , we
solve the LQR problem with Q = I+100 e1eT1 , R = I+1000 e4eT4 , and Ω = I for s ∈ {10, 20}
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masses (i.e., n = 2s state variables), where ei is the ith unit vector in the standard basis of
Rn.

Figure 6.2 illustrates the convergence curves for both algorithms with a stepsize selected
using a backtracking procedure that guarantees stability of the closed-loop system. Both
algorithms were initialized with Y 0 = K0 = 0. Even though Fig. 6.2 suggests that gradient
decent/flow on SK converges faster than that on SY , this observation does not hold in general.

(a) (b)

f
(K

k
)
−
f

(K
?
)

f
(K

0
)
−
f

(K
?
)

k k

Figure 6.2: Convergence curves for gradient descent (blue) over the set SK , and gradient
descent (red) over the set SY with (a) s = 10 and (b) s = 20 masses.

6.8.2 Unknown model

To illustrate our results on the accuracy of the gradient estimation in Algorithm 1 and the
efficiency of our random search method, we consider the LQR problem with Q and R equal
to identity for s = 10 masses (i.e., n = 20 state variables). We also let the initial conditions
xi in Algorithm 1 be standard normal and use N = n = 2s samples.

Figure 6.3 (a) illustrates the dependence of ‖∇̂f(K) − ∇f(K)‖F/‖∇̂f(K)‖F on the
simulation time τ for K = 0 and two values of the smoothing parameter r = 10−4 (blue)
and r = 10−5 (red). We observe an exponential decrease in error for small values of τ .
In addition, the error does not pass a saturation level which is determined by r. We also
see that, as r decreases, this saturation level becomes smaller. These observations are in
harmony with our theoretical developments; in particular, combining Propositions 4 and 5
through the use of the triangle inequality yields

‖∇̂f(K) − ∇f(K)‖F ≤
(√

mn

r
κ1(2a) e−κ2(2a)τ +

r2m2n2

2
`(2a)

)
max
i
‖xi‖2.

This upper bound clearly captures the exponential dependence of the bias on the simulation
time τ as well as the saturation level that depends quadratically on the smoothing parameter
r.

In Fig. 6.3 (b), we demonstrate the dependence of the total relative error ‖∇f(K) −
∇f(K)‖F/‖∇f(K)‖F on the simulation time τ for two values of the smoothing parameter
r = 10−4 (blue) and r = 10−5 (red), resulting from the use of N = n samples. We observe
that the distance between the approximate gradient and the true gradient is rather large.
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Figure 6.3: (a) Bias in gradient estimation and (b) total error in gradient estimation as
functions of the simulation time τ . The blue and red curves correspond to two values of the
smoothing parameter r = 10−4 and r = 10−5, respectively. (c) Convergence curve of the
random search method (RS).

This is exactly why prior analysis of sample complexity and simulation time is subpar to
our results. In contrast to the existing results which rely on the use of the estimation error
shown in Fig. 6.3 (b), our analysis shows that the simulated gradient ∇f(K) is close to the
gradient estimate ∇̂f(K). While ∇̂f(K) is not close to the true gradient ∇f(K), it is highly
correlated with it. This is sufficient for establishing convergence guarantees and it allows us
to significantly improve upon existing results [13], [132] in terms of sample complexity and
simulation time reducing both to O(log (1/ε)).

Finally, Fig. 6.3 (c) demonstrates linear convergence of the random search method (RS)
with stepsize α = 10−4, r = 10−5, and τ = 200 in Algorithm 1, as established in Theorem 4.
In this experiment, we implemented Algorithm 1 using the ode45 and trapz subroutines in
MATLAB to numerically integrate the state/input penalties with the corresponding weight
matrices Q and R. However, our theoretical results only account for an approximation error
that arises from a finite simulation horizon. Clearly, employing empirical ODE solvers and
numerical integration may introduce additional errors in our gradient approximation that
require further scrutiny.

6.9 Concluding remarks
We prove exponential/linear convergence of gradient flow/descent algorithms for solving the
continuous-time LQR problem based on a nonconvex formulation that directly searches for
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the controller. A salient feature of our analysis is that we relate the gradient-flow dynamics
associated with this nonconvex formulation to that of a convex reparameterization. This
allows us to deduce convergence of the nonconvex approach from its convex counterpart. We
also establish a bound on the sample complexity of the random search method for solving the
continuous-time LQR problem that does not require the knowledge of system parameters.
We have recently proved similar result for the discrete-time LQR problem [87].

Our ongoing research directions include: (i) providing theoretical guarantees for the
convergence of gradient-based methods for sparsity-promoting as well as structured control
synthesis; and (ii) extension to nonlinear systems via successive linearization techniques.
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Chapter 7

Random search for discrete-time LQR

Model-free reinforcement learning techniques directly search over the parameter space of
controllers. Although this often amounts to solving a nonconvex optimization problem, for
benchmark control problems simple local search methods exhibit competitive performance.
To understand this phenomenon, we study the discrete-time Linear Quadratic Regulator
(LQR) problem with unknown state-space parameters. In spite of the lack of convexity,
we establish that the random search method with two-point gradient estimates and a fixed
number of roll-outs achieves ε-accuracy in O(log (1/ε)) iterations. This significantly improves
existing results on the model-free LQR problem which require O(1/ε) total roll-outs.

7.1 Introduction
We study the sample complexity and convergence of random search method for the infinite-
horizon discrete-time LQR problem. Random search method is a derivative-free optimization
algorithm that directly searches over the parameter space of controllers using approximations
of the gradient obtained through simulation data. Despite its simplicity, this approach has
been used to solve benchmark control problems with state-of-the-art sample efficiency [22],
[151]. However, even for the standard LQR problem, many open theoretical questions sur-
round convergence properties and sample complexity of this method mainly because of the
lack of convexity.

For discrete-time LQR problem, global convergence guarantees were recently provided for
gradient descent and the random search method with one-point gradient estimates [13]. The
key observation was that the LQR cost satisfies the Polyak-Łojasiewicz (PL) condition which
can ensure convergence of gradient descent at a linear rate even for nonconvex problems. This
reference also established a bound on the sample complexity of random search for reaching
the error tolerance ε that requires a number of function evaluations that is proportional
to (1/ε4) log(1/ε). Extensions to the continuous-time LQR [15], [88], the H∞ regularized
LQR [134], and Markovian jump linear systems [133] have also been made.

Assuming access to the infinite horizon cost, the number of function evaluations for the
random search method with one-point estimates was improved to 1/ε2 in [132]. Moreover,
this work showed that the use of two-point estimates reduces the number of function eval-
uations to 1/ε. Apart from the PL property, these results do not exploit structure of the
LQR problem. Our recent work [14] focused on the continuous-time LQR problem, and
established that the random search method with two-point gradient estimates converges to
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the optimal solution at a linear rate with high probability. In this chapter, we extend the
results of [14] to the discrete-time case. Relative to the existing literature, our results of-
fer a significant improvement both in terms of the required number of function evaluations
and simulation time. Specifically, the total number of function evaluations to achieve an
ε-accuracy is proportional to log (1/ε) compared to at least (1/ε4) log (1/ε) in [13] and 1/ε
in [132]. Similarly, the required simulation time is proportional to log (1/ε); this is in contrast
to [13] which requires poly (1/ε) simulation time.

7.2 State-feedback characterization
Consider the LTI system

xt+1 = Axt + But, x0 = ζ (7.1a)

where xt ∈ Rn is the state, ut ∈ Rm is the control input, A and B are constant matrices,
and x0 = ζ is a zero-mean random initial condition with distribution D. The LQR problem
associated with system (7.1a) is given by

minimize
x, u

E

[
∞∑
t= 0

(xt)TQxt + (ut)TRut

]
(7.1b)

where Q and R are positive definite matrices and the expectation is taken over ζ ∼ D. For
a controllable pair (A,B), the solution to (7.1) takes a state-feedback form,

ut = −K?xt = −(R + BTP ?B)−1BTP ?Axt

where P ? is the unique positive definite solution to the Algebraic Riccati Equation (ARE) ,

ATP ?A + Q − ATP ?B(R + BTP ?B)−1BTP ?A = P ?.

When the model parameters A and B are known, the ARE can be solved efficiently via
a variety of techniques [138], [161]. However, these techniques are not directly applicable
when the matrices A and B are not known. One approach to dealing with the model-free
scenario is to use the linearity of the optimal controller and reformulate the LQR problem
as an optimization over state-feedback gains,

minimize
K

f(K) := E [fζ(K)] (7.2)

where fζ(K) :=
〈
Q+KTRK,Xζ(K)

〉
= ζTP (K)ζ and the matrices P (K) and Xζ(K) are

given by

P (K) :=
∞∑
t= 0

((A−BK)T )t(Q+KTRK)(A−BK)t

Xζ(K) :=
∞∑
t= 0

(A−BK)t ζζT ((A−BK)T )t. (7.3)
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Here, fζ(K) determines the LQR cost in (7.1b) associated with the feedback law u = −Kx
and the initial condition x0 = ζ. A necessary and sufficient condition for the boundedness
of fζ(K) for all ζ ∈ Rn is closed-loop stability,

K ∈ SK := {K ∈ Rm×n | ρ(A − BK) < 1} (7.4)

where ρ(·) is the spectral radius.
For any K ∈ SK , the matrices P (K) and Xζ(K) are well-defined and are, respectively,

determined by the unique solutions to the Lyapunov equations

A∗K(P ) = −Q − KTRK, AK(Xζ) = −ζζT . (7.5)

Here, AK , A∗K : Sn → Sn

AK(X) = (A − BK)X(A − BK)T − X (7.6a)
A∗K(P ) = (A − BK)TP (A − BK) − P (7.6b)

determine the adjoint pairs of invertible closed-loop Lyapunov operators acting on the set of
symmetric matrices Sn ⊂ Rn×n.

The invertibility of AK and A∗K for K ∈ SK allows us to express the LQR objective
function in (7.2) as

f(K) =

{ 〈
Q+KTRK,X(K)

〉
= 〈Ω, P (K)〉 , K ∈ SK

∞, otherwise

where

X(K) := E [Xζ(K)] = −A−1
K (Ω) (7.7)

and Ω := E[ζζT ] is the covariance matrix of the initial condition. We assume Ω � 0 to
ensure that the random vector ζ ∼ D has energy in all directions. This condition guarantees
f(K) = ∞ for all K /∈ SK . Finally, it is well known that for any K ∈ SK , the cone of
positive definite matrices is closed under the action of −A−1

K and −(A∗K)−1. Thus, from the
positive definiteness of the matrices Q+KTRK and Ω, it follows that P (K), X(K) � 0 for
all K ∈ SK . In (7.2), K is the optimization variable, and (A, B, Q � 0, R � 0, Ω � 0) are
the problem parameters.

For any feedback gain K ∈ SK , it can be shown that [162]

∇fζ(K) = E(K)Xζ(K), ∇f(K) = E(K)X(K) (7.8a)

where

E(K) := 2
(
(R +BTP (K)B)K − BTP (K)A

)
(7.8b)

is a fixed matrix that does not depend on the random initial condition ζ. Thus, the ran-
domness of the gradient ∇fζ(K) arises from the random matrix Xζ(K).
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Remark 1 The LQR problem for continuous-time systems can be treated in a similar way.
In this case, although the Lyapunov operator AK has a different definition, the form of the
objective function in terms of the matrices X(K) and P (K) and also the form of the gradient
in terms of X(K) and E(K) remain unchanged. While this similarity allows for our results
to hold for both continuous and discrete-time systems, in this chapter we only focus on the
latter and refer to [14] for a treatment of continuous-time systems.

7.3 Random search
The formulation of the LQR problem given by (7.2) has been studied for both continuous-
time [83], [88] and discrete-time systems [13], [141]. In this chapter, we analyze the sample
complexity and convergence properties of the random search method for solving problem (7.2)
with unknown model parameters. At each iteration k ∈ N, the random search method calls
Algorithm 2 that forms an empirical approximation ∇f(Kk) to the gradient of the objective
function via finite-time simulation of system (7.1a) for randomly perturbed feedback gains
Kk ± Ui, i = 1, . . . , N .

Algorithm 2 does not require knowledge of matrices A and B but only access to a two-
point simulation engine. The two-point setting means that for any pair of points K and K ′,
the simulation engine can return the random values fζ,τ (K) and fζ,τ (K ′) for some random
initial condition x0 = ζ, where

fζ,τ (K) :=
τ∑

t= 0

(xt)TQxt + (ut)TRut (7.9)

is a finite-time random function approximation associated with system (7.1a), starting from
a random initial condition x0 = ζ, with the state feedback u = −Kx running up to time τ .
This is in contrast to the one-point setting in which, at each query, the simulation engine
can receive only one specified point K and return the random value fζ,τ (K).

Starting from an initial feedback gain K0 ∈ SK , the random search method uses the
gradient estimates obtained via Algorithm 2 to update the iterates according to

Kk+1 := Kk − α∇f(Kk), K0 ∈ SK (RS)

for some stepsize α > 0. The stabilizing assumption on the initial iterateK0 ∈ SK is required
in our analysis as we select the input parameters of Algorithm 2 and the stepsize so that all
iterates satisfy Kk ∈ SK .

For convex problems, the gradient estimates obtained in the two-point setting are known
to yield faster convergence rates than the one-point setting [163]. However, the two-point
setting requires simulations of the system for two different feedback gain matrices under the
same initial condition.
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Algorithm 2 Gradient estimation
Require: Feedback gainK ∈ Rm×n, state and control weight matrices Q and R, distribution
D, smoothing constant r, simulation time τ , number of random samples N .
for i = 1 to N do

– Define two perturbed feedback gains Ki,1 := K + rUi and Ki,2 := K − rUi, where
vec(Ui) is a random vector uniformly distributed on the sphere

√
mnSmn−1.

– Sample an initial condition ζ i from distribution D.
– For j ∈ {1, 2}, simulate system (7.1a) up to time τ with the feedback gain Ki,j and
initial condition ζi to form fζi,τ (Ki,j) as in Eq. (7.9).

end for
Ensure: The two-point gradient estimate

∇f(K) :=
1

2rN

N∑
i= 1

(
fζi,τ (Ki,1) − fζi,τ (Ki,2)

)
Ui.

7.4 Main result
We analyze the sample complexity and convergence of the random search method (RS) for
the model-free setting. Our main convergence result exploits two key properties of the LQR
objective function f , namely smoothness and the Polyak-Łojasiewicz (PL) condition over its
sublevel sets SK(a) := {K ∈ SK | f(K) ≤ a} where a is a positive scalar. In particular, it
can be shown that, restricted to any sublevel set SK(a), the function f is Lf (a)-smooth and
satisfies the PL condition with parameter µf (a), i.e.,

f(K
′
) − f(K) ≤ 〈∇f(K), K ′ −K〉 +

Lf (a)

2
‖K −K ′‖2

F

f(K) − f(K?) ≤ 1

2µf (a)
‖∇f(K)‖2

F

for all K and K ′ such that the line segment between them belongs to SK(a), where Lf (a)
and µf (a) are positive rational functions of a. This result has been established for both
continuous-time [88] and discrete-time [13], [141] LQR problems. We also make the following
assumption on the statistical properties of the initial condition.

Assumption 1 (Initial distribution) Let the distribution D of the initial condition have
i.i.d. zero-mean unit-variance entries with bounded sub-Gaussian norm. For a random vector
ζ ∈ Rn distributed according to D, this implies E[ζ] = 0, E[ζζT ] = I, and ‖ζi‖ψ2 ≤ κ, for
some constant κ and i = 1, . . . , n, where ‖ · ‖ψ2 denotes the sub-Gaussian norm [160].

We now state our main theoretical result.

Theorem 1 Consider the random search method (RS) that uses the gradient estimates of
Algorithm 2 for finding the optimal solution K? of problem (7.2). Let the initial condition
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x0 ∼ D obey Assumption 1 and let the simulation time τ and the number of samples N in
Algorithm 2 satisfy

τ ≥ θ′(a) log (1/ε), N ≥ c
(
1 + β4κ4 θ(a) log6n

)
n,

for some β > 0 and a desired accuracy ε > 0. Then, we can choose a smoothing parameter
r < θ′′(a)

√
ε in Algorithm 2 such that, for any initial condition K0 ∈ SK(a), method (RS)

with the constant stepsize α = 1/(ω(a)Lf (a)) achieves f(Kk)− f(K?) ≤ ε in at most

k ≤ −log
(
ε−1 (f(K0)− f(K?))

)
/log (1− µf (a)α/8)

iterations. This holds with probability not smaller than

1− c′k(n−β +N−β +Ne−
n
8 + e−c

′N).

Here, ω(a) := c′′(
√
m+ βκ2θ(a)

√
mn log n)

2
, the positive scalars c, c′, and c′′ are absolute

constants, µf (a) and Lf (a) are the PL and smoothness parameters of f over the sublevel set
SK(a), and θ, θ′, and θ′′ are positive polynomials that depend only on the parameters of the
LQR problem.

For a desired accuracy level ε > 0, Theorem 1 shows that the random search iterates (RS)
with constant stepsize (that does not depend on ε) reach an accuracy level ε at a linear rate
(i.e., in at most O(log (1/ε)) iterations) with high probability. Furthermore, the total number
of function evaluations and the simulation time required to achieve an accuracy level ε are
proportional to log (1/ε). As stated earlier, this significantly improves the existing results
for discrete-time LQR [13], [132] that require O(1/ε) function evaluations and poly(1/ε)
simulation time.

7.5 Proof sketch
In this section, we present a sketch of our proof strategy for the main result of the chapter.
The smoothness of the objective function along with the PL condition are sufficient for the
gradient descent method with a suitable stepsize α,

Kk+1 := Kk − α∇f(Kk), K0 ∈ SK (GD)

to achieve linear convergence even for nonconvex problems [89]. These properties were
recently used to show convergence of gradient descent for both discrete-time [13] as well as
continuous-time [88] LQR problems. In the model-free setting, the gradient descent method
is not directly implementable because computing the gradient ∇f(K) requires knowledge of
system parameters A and B. The random search method (RS) resolves this issue by using
the gradient estimate ∇f(K) obtained via Algorithm 2. One approach to the convergence
analysis of random search is to first use a large number of samples N in order to make the
estimation error small, and then relate the iterates of (RS) to that of gradient descent. It
has been shown that achieving ‖∇f(K)−∇f(K)‖F ≤ ε takes N = O(1/ε4) samples [13]; see
also [15, Theorem 3] for the continuous-time LQR. This upper bound unfortunately leads to
a sample complexity bound that grows polynomially with 1/ε. To improve this result, we
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∇f(K)

G

Figure 7.1: The intersection of the half-space and the ball parameterized by µ1 and µ2,
respectively, in Proposition 1. If an update direction G lies within this region, then taking
one step along −G with a constant stepsize α yields a geometric decrease in the objective
value.

take an alternative route and give up on the objective of controlling the gradient estimation
error. In particular, by exploiting the problem structure, we show that with a fixed number of
samples N = Õ(n), where n denotes the number of states, the estimate ∇f(K) concentrates
with high probability when projected to the direction of ∇f(K).

In what follows, we first establish that for any ε > 0, using a simulation time τ =
O(log (1/ε)) and an appropriate smoothing parameter r in Algorithm 2, the estimate ∇f(K)

can be made ε-close to an unbiased estimate ∇̂f(K) of the gradient with high probability,
‖∇f(K) − ∇̂f(K)‖F ≤ ε, where the definition of ∇̂f(K) is given in Eq. (7.12). We call
this distance the estimation bias. We then show that, for a large number of samples N , our
unbiased estimate ∇̂f(K) becomes highly correlated with the gradient. In particular, we
establish that the following two events

M1 :=
{〈
∇̂f(K),∇f(K)

〉
≥ µ1‖∇f(K)‖2

F

}
(7.10a)

M2 :=
{
‖∇̂f(K)‖2

F ≤ µ2‖∇f(K)‖2
F

}
(7.10b)

occur with high probability for some positive scalars µ1 and µ2. To justify the definition
of these events, let us first demonstrate that the gradient estimate ∇̂f(K) can be used to
decrease the objective error by a geometric factor if both M1 and M2 occur.

Proposition 1 If G ∈ Rm×n and K ∈ SK(a) are such that 〈G,∇f(K)〉 ≥ µ1‖∇f(K)‖2
F

and ‖G‖2
F ≤ µ2‖∇f(K)‖2

F for some scalars µ1, µ2 > 0, then K − αG ∈ SK(a) for all
α ∈ [0, µ1/(µ2Lf (a))], and f(K − αG) − f(K?) ≤

(
1 − µf (a)µ1α

)(
f(K) − f(K?)

)
, where

Lf (a) and µf (a) are the smoothness and PL parameters of f over SK(a).

Proposition 1 demonstrates that, conditioned on the events M1 and M2, the unbiased
estimate ∇̂f(K) yields a simple descent-based algorithm that has linear convergence. Fig. 7.1
illustrates the region parameterized by µ1 and µ2 in Proposition 1. This region has a different
geometry than ε-neighborhoods of the gradient. A gradient estimate G can have an accuracy
of O(∇f(K)) and still belong to this region. We leverage this fact in our convergence analysis
which only requires the gradient estimate ∇̂f(K) to be in such a region for certain parameters
µ1 and µ2 and not necessarily within an ε-neighborhood of the gradient.

131



7.5.1 Controlling the bias

Herein, we define the unbiased estimate ∇̂f(K) of the gradient and establish an upper bound
on its distance to the output ∇f(K) of Algorithm 2

∇f(K) :=
1

2rN

N∑
i= 1

(
fζi,τ (K + rUi)− fζi,τ (K − rUi)

)
Ui

∇̃f(K) :=
1

2rN

N∑
i= 1

(
fζi(K + rUi)− fζi(K − rUi)

)
Ui

∇̂f(K) :=
1

N

N∑
i= 1

〈
∇fζi(K), Ui

〉
Ui (7.12)

Here, Ui ∈ Rm×n are i.i.d. random matrices whose vectorized form vec(Ui) are uniformly
distributed on the sphere

√
mnSmn−1 and ζ i ∈ Rn are i.i.d. random initial conditions sampled

from distribution D. Note that ∇̃f(K) is the infinite horizon version of ∇f(K) and ∇̂f(K)

is an unbiased estimate of ∇f(K). The fact that E[∇̂f(K)] = ∇f(K) follows from

Eζi,Ui
[
vec(∇̂f(K))

]
= EU1 [〈∇f(K), U1〉 vec(U1)]

= EU1 [vec(U1)vec(U1)T ]vec(∇f(K)) = vec(∇f(K)).

Local boundedness of the function f(K): An important requirement for the gradient
estimation scheme in Algorithm 2 is the stability of the perturbed closed-loop systems, i.e.,
K ± rUi ∈ SK ; violating this condition leads to an exponential growth of the state and
control signals. Moreover, this condition is necessary and sufficient for ∇̃f(K) to be well
defined. It can be shown that for any sublevel set SK(a), there exists a positive radius r such
that K + rU ∈ SK for all K ∈ SK(a) and U ∈ Rm×n with ‖U‖F ≤

√
mn. In this chapter,

we further require that r is small enough so that K ± rUi ∈ SK(2a) for all K ∈ SK(a). Such
upper bound on r can be provided using the upper bound on the cost difference established
in [13, Lemma 24]. A similar result has been established for the continuous-time LQR
problem using the small-gain theorem and the KYP lemma [14].

Lemma 1 For any K ∈ SK(a) and U ∈ Rm×n with ‖U‖F ≤
√
mn, K + r(a)U ∈ SK(2a),

where r(a) := c̃/a for some constant c̃ > 0 that depends on the problem data.

Note that for any K ∈ SK(a) and r ≤ r(a) in Lemma 1, ∇̃f(K) is well defined since
the feedback gains K ± rUi are all stabilizing. We next establish an upper bound on the
difference between the output ∇f(K) of Algorithm 2 and the unbiased estimate ∇̂f(K)
of the gradient ∇f(K). We accomplish this by bounding the difference between these two
quantities and ∇̃f(K) using the triangle inequality

‖∇̂f(K) − ∇f(K)‖F ≤ ‖∇̃f(K) − ∇f(K)‖F + ‖∇̂f(K) − ∇̃f(K)‖F . (7.13)
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Proposition 2 provides an upper bound on each term on the right-hand side of the above
inequality.

Proposition 2 For any K ∈ SK(a) and r ≤ r(a), where r(a) is given by Lemma 1,

‖∇̃f(K)−∇f(K)‖F ≤
√
mnη

r
κ1(2a) (1− κ2(2a))τ

‖∇̂f(K)− ∇̃f(K)‖F ≤
(rmn)2η

2
`(2a)

where η := maxi ‖ζ i‖2, and `(a) > 0, κ1(a) > 0, and 1 > κ2(a) > 0 are rational functions
that depend on the problem data.

The first term on the right-hand side of (7.13) corresponds to a bias arising from the finite-
time simulation. Proposition 2 shows that although small values of r may result in a large
‖∇̃f(K) − ∇f(K)‖F , because of the exponential dependence of the upper bound on the
simulation time τ , this error can be controlled by increasing τ . In addition, since ∇̂f(K) is
independent of the parameter r, this result provides a quadratic bound on the estimation
error in terms of r. It is also worth mentioning that the third derivative of the function
fζ(K) is utilized in obtaining the second inequality.

7.5.2 Correlation of ∇̂f(K) and ∇f(K)

We establish that under Assumption 1 on the initial distribution, with large enough number
of samples N = Õ(n), the events M1 and M2 with µ1 := 1/4 and

µ2 := Cm

(
βκ2 ‖(A∗K)−1‖2 + ‖(A∗K)−1‖S

λmin(X(K))

√
n log n+ 1

)2

(7.14)

occur with high probability, where κ is an upper bound on the ψ2-norm of the entries of
ζ i, β > 0 is a parameter that determines the failure probability, C is a positive absolute
constant, and for an operatorM,

‖M‖2 := sup
M

‖M(M)‖F
‖M‖F

, ‖M‖S := sup
M

‖M(M)‖2

‖M‖2

.

We note that these parameters do not depend on the desired accuracy-level ε. Moreover,
since the sub-level sets of the function f(K) are compact [141], ‖(A∗K)−1‖ is a continuous
function ofK, andX(K) � Ω, we can uniformly upper bound µ2 over any sublevel set SK(a).
Such bound has also been discussed and analytically quantified for the continuous-time LQR
problem [14].

Our approach to accomplishing the above task exploits the problem structure, which
allows for confining the dependence of ∇̂f(K) on the random initial conditions ζ i into the
zero-mean random matrices Xζi − X, where Xζi := Xζi(K) and X := X(K) are given
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by (7.3) and (7.7), respectively. In particular, for any given feedback gain K ∈ SK , we can
use the form of gradient (7.8) to write

∇̂f(K) =
1

N

N∑
i= 1

〈
EXζi , Ui

〉
Ui = ∇̂1 + ∇̂2

where ∇̂1 := (1/N)
∑N

i= 1

〈
E (Xζi −X), Ui

〉
Ui, ∇̂2 := (1/N)

∑N
i= 1 〈∇f(K), Ui〉Ui, and the

matrix E := E(K) is given by (7.8b). It is now easy to verify that E[∇̂1] = 0 and E[∇̂2] =

∇f(K). Furthermore, only the term ∇̂1 depends on the initial conditions ζ i.

7.5.2.1 Quantifying the probability of M1

We exploit results from modern high-dimensional statistics on the non-asymptotic analysis of
the concentration of random quantities around their mean [160]. Our approach to analyzing
the event M1 consists of two steps. First, we establish that the zero-mean random vari-
able

〈
∇̂1,∇f(K)

〉
highly concentrates around zero with a large enough number of samples

N = Õ(n). Our proof technique relies on the Hanson-Wright inequality [164, Theorem 1.1].
Next, we study the concentration of the random variable

〈
∇̂2,∇f(K)

〉
around its mean

‖∇f(K)‖2
F . The key enabler here is the Bernstein inequality [160, Corollary 2.8.3]. This

leads to the next proposition.

Proposition 3 Under Assumption 1, for any stabilizing feedback gain K ∈ SK and positive
scalar β, if

N ≥ C1
β4κ4

λ2
min(X)

(
‖(A∗K)−1‖2 + ‖(A∗K)−1‖S

)2
n log6n

then the event M1 in (7.10) with µ1 := 1/4 satisfies

P(M1) ≥ 1− C2N
−β − 4Ne−

n
8 − 2e−C3N .

7.5.2.2 Quantifying the probability of M2

Similarly, we analyze the event M2 in two steps. We establish upper bounds on the ratio
‖∇̂i‖F/‖∇f(K)‖F , for i = {1, 2}, that hold with high probability, and use the triangle
inequality

‖∇̂1‖F
‖∇f(K)‖F

+
‖∇̂i‖F
‖∇f(K)‖F

≥ ‖∇̂f(K)‖F
‖∇f(K)‖F

.

Our results are summarized in the next proposition.

Proposition 4 Under Assumption 1, for any K ∈ SK, scalar β > 0, and N ≥ C4n, the
event M2 in (7.10) with µ2 given by (7.14) satisfies P(M2) ≥ 1− C6(n−β +Ne−

n
8 + e−C7N).
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Figure 7.2: (a) Bias in gradient estimation; (b) total error in gradient estimation as functions
of the simulation time τ . The blue and red curves correspond to two values of the smoothing
parameter r = 10−4 and r = 10−6, respectively. (c) Convergence curve of the random search
method (RS).

7.6 Computational experiments
We consider a system with s = 10 inverted pendula on force-controlled carts that are con-
nected by springs and dampers; see Fig. 7.3. We set all masses, pendula lengths, spring
and damping constants to unity and let the state vector x := [θT ωT pT vT ]T contain the
angle and angular velocity of pendula as well as position and velocity of masses. Linearizing
around the equilibrium point yields the continuous-time system ẋ = Acx+Bcu, where

Ac =


0 I 0 0

20I 0 T T

0 0 0 I

−10I 0 −T −T

 , Bc =


0

−I
0

I

 .
Here, 0 and I are s× s zero and identity matrices, and T is a Toeplitz matrix with 2 on
the main diagonal, −1 on the first upper and lower sub-diagonals, and zero elsewhere. We
discretize this system with sampling time ts = 0.1, which yields Eq. (7.1a) with A = eActs

and B =
∫ ts

0
eActBcdt. Since the open-loop system is unstable, we use a stabilizing feedback

gain K0 = [−50I − 10I − 5I − 5I] as a starting point for the random search method
and choose Q = blkdiag(10I, I, I, I) and R = I in the LQR cost. We also let the initial
conditions ζ i in Algorithm 2 be standard normal and use N = n = 2s samples.
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Figure 7.3: An interconnected system of inverted pendula on carts.

〈∇̂f(K),∇f(K)〉/‖∇f(K)‖2F ‖∇̂f(K)‖2F /‖∇f(K)‖2F
Figure 7.4: Histograms of two algorithmic quantities associated with the events M1 and M2

given by (7.10). The red lines demonstrate that M1 with µ1 = 0.1 and M2 with µ2 = 35
occur in more than 99% of trials.

Figure 7.2 (a) illustrates the dependence of the relative error

‖∇̂f(K) − ∇f(K)‖F/‖∇̂f(K)‖F

on the simulation time τ for K = K0 = [−50I −10I −5I −5I] and two values of smoothing
parameter r = 10−4 (blue) and r = 10−6 (red). We see an exponential decrease in error
for small values of τ and note that the error does not pass a saturation level determined
by the smoothing parameter r > 0. We also observe that as r decreases, this saturation
level becomes smaller. These observations are in harmony with the results established in
Proposition 2. This should be compared and contrasted with Fig. 7.2 (b), which demonstrates
that the relative error with respect to the true gradient does not vanish with increase in the
simulation time τ .

In spite of this significant error, the key observation that allows us to establish the linear
convergence of random search method in Theorem 1 is that the gradient estimate has high
correlation with the true gradient. Figure 7.4 shows histograms of two algorithmic quantities
associated with the events M1 and M2 given by (7.10). The red lines demonstrate that M1

with µ1 = 0.1 and M2 with µ2 = 35 occur in more than 99% of trials; cf. Propositions 3
and 4.

Figure 7.2 (c) illustrates the convergence curve of the random search method (RS) with
stepsize α = 10−5, r = 10−5, and τ = 1000 in Algorithm 2. This figure confirms linear
convergence of (RS) established in Theorem 1.
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7.7 Concluding remarks
In this chapter, we studied the convergence and sample complexity of the random search
method with two-point gradient estimates for the discrete-time LQR problem. Despite non-
convexity, we established that the random search method with a fixed number of roll-outs
N = Õ(n) per iteration achieves ε-accuracy in O(log (1/ε)) iterations. This significantly
improves existing results on the model-free LQR which require O(1/ε) total roll-outs. Our
ongoing research directions include: (i) providing theoretical guarantees for the convergence
of gradient-based methods for sparsity-promoting and structured control synthesis [71]; and
(ii) extension to nonlinear systems via successive linearization techniques.
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Chapter 8

Lack of gradient domination for linear quadratic
Gaussian problems with incomplete state information

Policy gradient algorithms in model-free reinforcement learning have been shown to achieve
global exponential convergence for the Linear Quadratic Regulator problem despite the lack
of convexity. However, extending such guarantees beyond the scope of standard LQR and
full-state feedback has remained open. A key enabler for existing results on LQR is the so-
called gradient dominance property of the underlying optimization problem that can be used
as a surrogate for strong convexity. In this chapter, we take a step further by studying the
convergence of gradient descent for the Linear Quadratic Gaussian problem and demonstrate
through examples that LQG does not satisfy the gradient dominance property. Our study
shows the non-uniqueness of equilibrium points and thus disproves the global convergence
of policy gradient methods for LQG.

8.1 Introduction
Modern reinforcement learning algorithms have shown great empirical performance in solving
continuous control problems [18] with unknown dynamics. However, despite the recent
surge in research, convergence and sample complexity of these methods are not yet fully
understood. This has recently motivated a significant body of literature on data-driven
control to focus on the Linear Quadratic Regulator (LQR) problem with unknown model
parameters with the primary purpose of providing insight into the behavior and performance
of RL algorithms in more challenging settings.

The LQR problem is the cornerstone of control theory. The globally optimal solution to
LQR is given by a static linear feedback and, for problems with known models, the solution
can be obtained by solving the celebrated Riccati equation using efficient numerical schemes
with provable convergence guarantees [83]. In the data-driven setting, existing techniques
are mainly divided into two categories, model-based [130] and model-free [21]. While model-
based techniques use data to obtain approximations of the underlying dynamics, model-free
methods directly search over the parameter space of controllers using the reward/cost values
without attempting to form a model.

Among model-free approaches, simple random search, which emulates the behavior of
gradient descent by forming estimates of the gradient via cost evaluations, has been shown
to achieve sub-linear sample complexity for LQR [132]. This can be even further improved to
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a logarithmic complexity if one can access the so-called two-point gradient estimates [14], [87].
These results build on the fact that the gradient descent itself achieves linear convergence
for both discrete [13] and continuous-time LQR problems [88] despite lack of convexity. A
key enabler for these results is the so-called gradient dominance property of the underlying
optimization problem that can be used as a surrogate for strong convexity [89].

In this chapter, we take a step further by studying the convergence of gradient descent
for the Linear Quadratic Gaussian (LQG) problem with incomplete state information. The
separation principle states that the solution to the LQG problem is given by an observer-
based controller, which consists of a Kalman filter and the corresponding LQR solution. This
problem is also closely related to the output-feedback problem for distributed control, which
is known to be fundamentally more challenging than LQR. In particular, the output-feedback
problem has been shown to involve an optimization domain with exponential number of
connected components [84], [90]. In contrast, the standard LQG problem allows for dynamic
controllers and do not impose structural constraints on the controller.

Motivated by the convergence properties of gradient descent on LQR, we reformulate
the LQG problem as a joint optimization of the control and observer feedback gains whose
domain, unlike the output feedback problem is connected. We derive analytical expressions
for the gradient of the LQG cost function with respect to gain matrices and demonstrate
through examples that LQG does not satisfy the gradient dominance property. In particular,
we show that, in addition to the global solution, the gradient vanishes at the origin for open-
loop stable systems. Our study disproves global exponential convergence of policy gradient
methods for LQG. The analysis of the optimization landscape of the LQG problem with
unknown system parameters has also been recently provided in [165], where the authors
relate the existence of multiple equilibrium points to the non-minimality of the controller
transfer function.

The rest of the chapter is structured as follows. In Section 8.2, we formulate the LQG
problem and provide background information. In Section 8.3, we derive an analytical ex-
pression for the gradient. In Section 8.4, we discuss the lack of gradient domination and
non-uniqueness of equilibrium points. We present numerical experiments in Section 8.5 and
finally provide concluding remarks in Section 8.6.

8.2 Linear Quadratic Gaussian
Consider the stochastic LTI system

ẋ = Ax + Bu + w, y = Cx + v (8.1a)

where x(t) ∈ Rn is the state, u(t) ∈ Rm is the control input, y(t) ∈ Rp is the measured
output, A, B, and C are constant matrices, and w(t) and v(t) are independent zero-mean
Gaussian white noise processes with covariance functions E[w(t)wT (τ)] = δ(t− τ)Σw and
E[v(t)vT (τ)] = δ(t− τ)Σv. Here, δ is the Dirac delta (impulse) function and we assume
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Σw,Σv � 0 are positive definite matrices. The Linear Quadratic Gaussian (LQG) problem
associated with system (8.1a) is given by

minimize
u(t)∈Y(t)

lim
t→∞

E
[
xT (t)Qx(t) + uT (t)Ru(t)

]
(8.1b)

where Q and R are positive definite matrices and Y(t) is the set of functions that depend
only on the available information up to time t, i.e., the measured outputs y(s) with s ≤ t.

8.2.1 Separation principle

It is well-known that if the pair (A,B) is controllable and (A,C) is observable, the solution
to (8.1) is given by an observer-based controller of the form

˙̂x = A x̂ + B u − L(ŷ − y)

ŷ = C x̂, u = −Kx̂
(8.2)

where x̂(t) ∈ Rn is the state estimate, and L ∈ Rn×p and K ∈ Rm×n are the observer and
controller feedback gain matrices, respectively [83], [166]. The separation principle states that
the optimal gains K? and L? correspond to solutions to two decoupled problems associated
with (8.1), namely the linear quadratic regulator

minimize
K

lim
t→∞

E
[
xT (t)Qx(t) + uT (t)Ru(t)

]
(8.3)

subject to (8.1a) with the full-state feedback u = −Kx, and the Kalman filter, which seeks
to

minimize
L

lim
t→∞

E
[
‖e(t)‖2

]
(8.4a)

subject to the error dynamics

ė = (A− LC) e − Lv + w (8.4b)

where e := x − x̂ is the state estimation error. The solutions to these two problems (and
also to the original LQG problem) are given by

K? = R−1BTP ?
c , L?T = Σ−1

v CX?
o (8.5)

where P ?
c and X?

o are the unique solutions to the decoupled pair of Algebraic Riccati Equa-
tions (ARE)

ATP ?
c + P ?

c A + Q − P ?
c BR

−1BTP ?
c = 0

AX?
o + X?

oA
T + Σw − X?

oC
TΣ−1

v CX?
o = 0.
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8.2.2 Characterization based on gain matrices

In this chapter, we analyze the LQG problem as optimization of feedback gain matrices K
and L. In particular, the closed-loop dynamics in (8.1a) and (8.2) can be jointly described
by

ξ̇ = AL ξ + µ (8.6)

where ξ :=
[
xT eT

]T ∈ R2n consists of the state and error signals,

µ :=
[
wT wT − vTLT

]T
is white noise, and the closed-loop matrix AL is given by

AL :=

[
A−BK BK

0 A− LC

]
. (8.7)

The closed-loop representation given by (8.6) allows us to reformulate the LQG problem as
an optimization over the set Sc × So of stabilizing gain matrices, where

Sc := {K ∈ Rm×n |A − BK is Hurwitz}
So := {L ∈ Rn×p |A − LC is Hurwitz}. (8.8)

In particular, the LQG problem in (8.1b) amounts to

minimize
K,L

f(K,L) := 〈Ω, X〉 (8.9)

where X = lim
t→∞

E
[
ξ(t)ξT (t)

]
is the steady-state covariance matrix associated with closed-

loop system (8.6) and it can be determined by solving the algebraic Lyapunov equation

ALX + XATL + Σ = 0. (8.10)

Here, the positive semi-definite matrices Ω, Σ are given by

Ω :=

[
Q+KTRK −KTRK
−KTRK KTRK

]
(8.11a)

Σ :=

[
Σw Σw
Σw Σw + LΣvL

T

]
. (8.11b)

The matrix Ω accounts for the weight matrices in the cost function (8.1b) and the matrix Σ
determines the covariance function Σδ(t− τ) of µ.
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8.3 Gradient method
In this section, we introduce the gradient method on the LQG objective function over the
set of stabilizing gain matrices Sc × So and discuss its convergence properties.

Lemma 1 For any stabilizing pair of gain matrices (K,L) ∈ Sc × So, the gradient of the
LQG objective function f in (8.9) is given by

∇Kf(K,L) = 2(RK −BT P̂1)X̂1 − 2BT P̂2X̂
T
2

∇Lf(K,L) = 2P3(LΣv − X3C
T ) − 2P T

2 X2C
T

where the matrices

X =

[
X1 X2

XT
2 X3

]
, X̂ =

[
X̂1 X̂2

X̂T
2 X̂3

]

P =

[
P1 P2

P T
2 P3

]
, P̂ =

[
P̂1 P̂2

P̂ T
2 P̂3

] (8.12)

are the unique solutions to the Lyapunov equations

ALX + XATL + Σ = 0 (8.13a)

ÂL X̂ + X̂ÂTL + Σ̂ = 0 (8.13b)

ATL P + PAL + Ω = 0 (8.13c)

ÂTL P̂ + P̂ ÂL + Ω̂ = 0. (8.13d)

Here, the matrices AL, and Ω and Σ are given by (8.7) and (8.11), respectively, and

ÂL :=

[
A−BK LC

0 A− LC

]
(8.14a)

Ω̂ :=

[
Q+KTRK Q

Q Q

]
(8.14b)

Σ̂ :=

[
LΣvL

T −LΣvLT
−LΣvLT Σw + LΣvL

T

]
. (8.14c)

Proof: To obtain ∇Lf(K,L), we use the Taylor series expansion of f(K,L + L̃) around
(K,L) and collect first-order terms. From (8.9), we have

f(K,L+ L̃)− f(K,L) ≈
〈
∇Lf(K,L), L̃

〉
=
〈

Ω, X̃
〉

(8.15a)
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where X̃ is the unique solution to

ALX̃ + X̃ATL = −ÃLX − XÃTL − Σ̃

=

[
0 X2C

T L̃T

L̃CXT
2 L̃CX3 +X3C

T L̃T

]
− Σ̃ =: Φ (8.15b)

Here, the first equality is obtained by differentiating Lyapunov equation (8.10), and the
second follows by noting that

ÃL =

[
0 0

0 −L̃C

]
, Σ̃ =

[
0 0

0 L̃ΣvL
T + LΣvL̃

T

]
.

Using the adjoint identity and (8.15), we obtain that〈
∇Lf(K,L), L̃

〉
= 〈−Φ, P 〉

where P is given by (8.13c). Rearranging terms completes the proof for ∇Lf(K,L).
In order to obtain ∇Kf(K,L), we use a slightly different representation of the objective

function. In particular, if we let ξ̂ :=
[
x̂T eT

]T , it is easy to verify that the closed-loop
system satisfies

˙̂
ξ = ÂL ξ̂ + µ̂

where the closed-loop matrix ÂL is given by (8.14a) and µ̂ =
[
vTLT wT − vTLT

]T . Fur-
thermore, it is straightforward to verify that for any stabilizing gain matrices K ∈ Sc and
L ∈ So, the LQG cost in (8.1b) is given by

f(K,L) :=
〈

Ω̂, X̂
〉

(8.16)

where X̂ = lim
t→∞

E
[
ξ̂(t)ξ̂T (t)

]
is the unique solution to the algebraic Lyapunov equation given

by (8.13b) and and the matrices Ω̂ and Σ̂ are given by (8.14). Now, using this representation,
the same technique as in the first part of the proof can be used to obtain ∇Lf(K,L). This
completes the proof. �

Using the explicit formula of the gradient in Lemma 1, the gradient descent method over
the set of stabilizing gain matrices Sc × So follows the update rule

Kk+1 := Kk − α∇Kf(Kk, Lk), K0 ∈ Sc
Lk+1 := Lk − α∇Lf(Kk, Lk), L0 ∈ So

(GD)

where α > 0 is the stepsize.
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8.3.1 Non-separability of gradients

For the LQG problem, unlike the optimal solution that satisfies the separation principle, we
observe from Lemma 1 that the gradient is not separable as ∇Kf and ∇Lf depend on both
L and K. To provide more insight, let us examine the value of gradient over two special
subsets of the domain Sc×So, namely Sc×{L?}, where L? is the optimal Kalman gain, and
{K?} × So, where K? is the optimal control feedback gain in (8.5).

8.3.1.1 Optimal observer gain L = L?

In this case, from (8.5) and the corresponding Riccati equation, it follows that

LΣv = X?
oC

T (8.17)

where X?
o is the unique positive definite solution to the Lyapunov equation

(A − LC)X?
o + X?

o (A − LC)T = −Σw − LΣvLT .

Expanding (8.13a) and (8.13b), we observe that X3 and X̂3 also satisfy the above Lyapunov
equation. Thus, since A− LC is Hurwitz, it follows that

X?
o = X3 = X̂3. (8.18)

In addition, combining equations (8.13b), (8.17), and (8.18) yields

(A−BK)X̂2 + X̂2(A− LC)T = 0. (8.19)

Now, since K ∈ Sc and L ∈ So, we obtain that X̂2 = 0. Form this equation in conjunction
with (8.17) and (8.18), we obtain that the following terms in the gradient vanish

BT P̂2X̂
T
2 = 0, P3(LΣv − X3C

T ) = 0 (8.20a)

and thus the gradient simplifies to

∇Kf(K,L?) = 2(RK −BT P̂1)X̂1

∇Lf(K,L?) = − 2P T
2 X2C

T .

Remark 1 As we demonstrate in the proof of Lemma 1, for any stabilizing gains L and K,
the matrix X̂2 is given by

X̂2 = lim
t→∞

E
[
e(t)x̂T (t)

]
.

Thus, the equality X̂2 = 0 can be directly established using the orthogonality principle which
states that the optimal estimator is orthogonal to the estimation error.

144



8.3.1.2 Optimal control gain K = K?

Similar to the previous case, from (8.5) and the corresponding Riccati equation, it follows
that

RK = BTP ?
c

where P ?
c is the unique positive definite solution to the Lyapunov equation

(A − BK)P ?
c + P ?

c (A − BK)T = −Q − KTRK.

Combining this equations with (8.13c) and (8.13d) yields P̂1 = P ?
c and P2 = 0. Thus, we

have

(RK −BT P̂1)X̂1 = 0, P T
2 X2C

T = 0 (8.20b)

which yields

∇Kf(K?, L) = − 2BT P̂2X̂
T
2

∇Lf(K?, L) = 2P3(LΣv − X3C
T ).

We observe that ∇Kf(K?, L) and ∇Lf(K,L?) do not vanish and thus the sets Sc×{L?}
and {K?} × So are not invariant with respect to gradient descent. Therefore, unlike the
optimal solutions, the gradient of the LQG objective function may not be decoupled.

8.4 Lack of gradient domination
Recently, it has been shown that the gradient descent method achieves linear convergence
for the LQR problem with full-state feedback in both discrete [13] and continuous-time [88]
settings. These results build on the key observation that the full-state feedback LQR cost
in (8.3) as a function of the feedback gains, denoted by g(K), satisfies the Polyak-Łojasiewicz
(PL) condition over its sub-levelsets, i.e.

‖∇g(K)‖2
F ≥ µg (g(K) − g(K?)) (8.21)

for some constant µg > 0. The PL condition, also known as gradient dominance, can be
used as a surrogate to strong convexity to ensure convergence of gradient descent at a linear
rate even for nonconvex problems. This observation raises the question of whether the LQG
problem is also gradient dominant.

In addition, it has been recently shown that the set of stabilizing gains for the case of
static output feedback, i.e. u = −Ky, y = Cx consists of multiple connected components
and local minima [90], which hinders the convergence of local search algorithms. However,
in contrast to the static output feedback problem, the joint optimization of the controller
and observer feedback gains for the LQG, as studied in this chapter, involves the connected
domain Sc × So.
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We now demonstrate that despite the connectivity of the optimization domain, this for-
mulation yet suffers from the existence of non-optimal equilibrium points and thus lack of
gradient domination.

8.4.1 Non-uniqueness of critical points

The nonconvexity of the function f suggests the possibility of having multiple critical points
∇f(K,L) = 0. In this section, we demonstrate that this is in fact the case by providing
two of such points for the LQG problem in the general form. This should be compared and
contrasted to the full-state feedback LQR problem which, despite nonconvexity, has been
shown to have a unique critical point.

Global minimizer

The most obvious critical point is the unique global minimizer of f , which is given by (8.5).
To verify this, note that for the optimal gains L? and K?, we have equations (8.20a)
and (8.20b), respectively. Using these equations, and the form of gradient in Lemma 1,
it immediately follows that ∇f(K?, L?) = 0.

The origin for stable systems

To find another critical point, let us assume for simplicity that the system is open-loop stable.
We next show that the origin (K,L) = (0, 0) is also a critical point, i.e., ∇f(0, 0) = 0.

For (K,L) = (0, 0), from (8.13b) it follows that X̂1 = X̂2 = 0. In addition, from (8.13c),
it follows that P2 = P3 = 0. Combining these equalities and the form of gradient in Lemma 1
ensures ∇f(0, 0) = 0.

The existence of the sub-optimal critical point (K,L) = (0, 0) also implies that gradient
domination may not hold for the LQG problem.

8.5 An example
We consider the mass-spring-damper system in Figure 8.1 with s masses to demonstrate the
performance of gradient descent given by (GD) on the LQG problem over the set Sc × So
of stabilizing gains. We set all spring and damping constants as well as masses to unity. In
state-space representation (8.1a), the state vector x = [ pT vT ]T contains the position and
velocity of masses and the measured output y = p is the position only. In this example, the
dynamic, input, and output matrices are given by

A =

[
0 I
−T −T

]
, B =

[
0
I

]
, C =

[
I 0

]
where 0 and I are zero and identity matrices of suitable size, and T is a Toeplitz matrix with
2 on the main diagonal, −1 on the first super and sub-diagonals, and 0 elsewhere.

We solve the LQG problem with Q = Σw = I, R = Σv = I for s = 50 masses, i.e., n = 2s
state variables. The algorithm was initialized with scaled matrices of all ones K0 = (L0)T =
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Figure 8.2: Convergence curve of gradient descent for s = 50.

10−51. Figure 8.2 illustrates the convergence curves of gradient descent with a stepsize
selected using a backtracking-based procedure initialized with α0 = 10−3 that guarantees
stability of the feedback loop and ensures descent. The optimal solution K?, L? is obtained
using (8.5) and the corresponding Riccati equations.

8.6 Concluding remarks
Motivated by the recent results on the global exponential convergence of policy gradient
algorithms for the model-free LQR problem, in this chapter we studied the standard LQG
problem as optimization over controller and observer feedback gains. We present an explicit
formulae for the gradient and demonstrate that for open-loop stable systems, in addition to
the unique global minimizer, the origin is also a critical point for the LQG problem, thus
disproving the gradient dominance property. Numerical experiments for the convergence of
gradient descent are also provided. Our work is ongoing to identify conditions under which
gradient decent can solve the LQG problem at a linear rate.
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Appendix A

Supporting proofs for Chapter 2

A.1 Quadratic problems

A.1.1 Proof of Theorem 1

For gradient descent, Âi = 1− αλi and B̂i = 1 are scalars and the solution to (2.9) is given
by

P̂i := σ2pi =
σ2

1 − (1 − αλi)2
=

σ2

αλi(2 − αλi)
.

For the accelerated methods, we note that for any Âi and B̂i of the form

Âi =

[
0 1
ai bi

]
, B̂i =

[
0
1

]
the solution P̂i to Lyapunov equation (2.9) is given by

P̂i = σ2

[
pi bipi/(1− ai)

bipi/(1− ai) pi

]
where

pi :=
ai − 1

(ai + 1)(bi + ai − 1)(bi − ai + 1)
. (A.1)

The parameters ai and bi for Nesterov’s algorithm are {ai = −β(1−αλi); bi = (1+β)(1−αλi)}
and for the heavy-ball method we have {ai = −β; bi = 1 + β − αλi}. Now, since Ĉi = 1 for
gradient descent and Ĉi = [ 1 0 ] for the accelerated algorithms, it follows that for all three
algorithms we have Ĵ(λi) := trace (ĈiP̂iĈ

T
i ) = σ2pi. Finally, if we use the expression for pi

for gradient descent and substitute for ai and bi in (A.1) for the accelerated algorithms, we
obtain the expressions for Ĵ in the statement of the theorem.
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A.1.2 Proof of Proposition 1

To show that Ĵna(λ)/Ĵgd(λ) is a decreasing function of λ ∈ [m,L], we split this ratio into the
sum of two homographic functions Ĵna(λ)/Ĵgd(λ) = σ1(λ) + σ2(λ), where

σ1(λ) :=
4αgdβ

αna(3β + 1)(1− β)

1− αgd

2
λ

1 + αnaβ
1−β λ

, σ2(λ) :=
αgd

αna(3β + 1)

1− αgd

2
λ

1− αna(2β+1)
2+2β

λ
. (A.2)

Now, if we substitute the parameters provided in Table 2.2 into (A.2), it follows that the
signs of the derivatives dσ1/dλ and dσ2/dλ satisfy

sign (
dσ1

dλ
) = sign (−αnaβ

1−β −
αgd

2
) = sign (−κ+ κ

√
3κ+ 1 +

√
3κ+ 1− 1

m (3κ+ 1) (κ+ 1)
) < 0, ∀κ > 1

sign (
dσ2

dλ
) = sign (αna(2β+1)

2+2β
− αgd

2
) = sign (− 2

(
κ−
√

3κ+ 1 + 1
)

m (3κ+ 1)3/2 (κ+ 1)
) < 0, ∀κ > 1.

Furthermore, since the critical points of the functions σ1(λ) and σ2(λ) are not in [m,L],

λcrt1 = − m(3κ+ 1)√
3κ+ 1− 2

< 0 < m, λcrt2 =
m (3κ+ 1)

√
3κ+ 1

3
√

3κ+ 1− 2
> mκ = L

we conclude that both σ1 and σ2 are decreasing functions over the interval [m,L]. We next
prove (2.13a) and (2.13b).

It is straightforward to verify that both Ĵgd(λ) and Ĵna(λ) are quasi-convex functions over
the interval [m,L] and that the respective minima are attained at the critical point λ = 1/α.
Quasi-convexity also implies

max
λ∈ [m,L]

Ĵ(λ) = max {Ĵ(m), Ĵ(L)}. (A.3)

Now, letting α = 2/(L + m) in the expression for Ĵgd gives Ĵgd(m) = Ĵgd(L) = (κ +
1)2/(4κ) which in conjunction with (A.3) complete the proof for (2.13a). Finally, since the
ratio Ĵna(λ)/Ĵgd(λ) is decreasing, we have Ĵna(L)/Ĵgd(L) ≤ Ĵna(m)/Ĵgd(m). Combining this
inequality with Ĵgd(m) = Ĵgd(L) and (A.3) completes the proof of (2.13b).

A.1.3 Proof of Theorem 3

From Proposition 1, it follows that

Ĵna(L)

Ĵgd(L)
≤ Ĵna(λi)

Ĵgd(λi)
≤ Ĵna(m)

Ĵgd(m)
(A.4a)

for all λi and

n−1∑
i=1

Ĵgd(λi) ≤ (n− 1)Ĵgd(m) = (n− 1)Ĵgd(L). (A.4b)
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For the upper bound, we have

Jna

Jgd

=

∑n
i=1 Ĵna(λi)∑n
i=1 Ĵgd(λi)

≤
Ĵna(L) + Ĵna(m)

Ĵgd(m)

∑n−1
i=1 Ĵgd(λi)

Ĵgd(L) +
∑n−1

i=1 Ĵgd(λi)
≤ Ĵna(L) + (n − 1)Ĵna(m)

Ĵgd(L) + (n − 1)Ĵgd(m)

where the first inequality follows from (A.4a). The second inequality can be verified by
multiplying both sides with the product of the denominators and using Ĵgd(m) = Ĵgd(L),
Ĵna(m) ≥ Ĵna(L), and (A.4b). Similarly, for the lower bound we can write

Jna

Jgd

=

∑n
i=1 Ĵna(λi)∑n
i=1 Ĵgd(λi)

≥
Ĵna(m) + Ĵna(L)

Ĵgd(L)

∑n
i=2 Ĵgd(λi)

Ĵgd(m) +
∑n

i=2 Ĵgd(λi)
≥ Ĵna(m) + (n − 1)Ĵna(L)

Ĵgd(m) + (n − 1)Ĵgd(L)
.

Again, the first inequality follows from (A.4a) and the second inequality can be verified by
multiplying both sides with the product of the denominators and using Ĵgd(m) = Ĵgd(L),
Ĵna(m) ≥ Ĵna(L), and (A.4b).

A.1.4 Proof of the bounds in (2.16)
From Proposition 1, we have

Ĵna(m) =
b4(b2 − 2 b+ 2)

32 (b− 1)3 , Ĵna(L) =
9 b4(b2 + 2 b− 2)

32 (b2 − 1) (2 b− 1) (b2 − b+ 1)

where b :=
√

3κ+ 1 > 2. The upper and lower bounds on Ĵna(m) are obtained as follows

b3

32
≤ b4((b− 1)2 + 1)

32 (b− 1)3 = Ĵna(m) ≤ b3(b+ c1(b))(b2 − 2 b+ 2 + c2(b))

32 (b− 1)3 =
b3

8

where the positive quantities c1(b) := b− 2 and c2(b) := b2 − 2b are added to yield a simple
upper bound. Similarly, for Ĵna(L) we have

9b

64
=

(9/32) b4(b2 + 2 b− 2)

((b2 − 1) + 1) ((2 b− 1) + 1) (b2 − b+ 1 + c3(b))
≤ Ĵna(L)

9b

8
=

(9/32) b4(b2 + 2 b− 2 + c4(b))

(b2 − 1)(2 b− 1− c5(b))(b2 − b+ 1− c6(b))
≥ Ĵna(L)

where the positive quantities c3(b) := 3b − 3, c4(b) := b2 − 2b, c5(b) := b − 1, and c6(b) :=
(1/2)b2 − b+ 1 are introduced to obtain tractable bounds.
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A.2 General strongly convex problems

A.2.1 Proof of Lemma 1

Let us define the positive semidefinite function V (ψ) := ψTXψ and let η := [ψT uT ]T . Using
LMI (2.23) and (2.22), we can write

‖zt‖2 = (ηt)T
[
CT
z Cz 0
0 0

]
ηt

≤ −(ηt)T
[
ATX A−X ATX Bu

BT
u X A BT

u X Bu

]
ηt − λ (ηt)T

[
CT
y 0

0 I

]
Π

[
Cy 0
0 I

]
ηt

= (ηt)T
([

X 0
0 0

]
−
[
AT

BT
u

]
X

[
AT

BT
u

]T )
ηt − λ

[
yt

ut

]T
Π

[
yt

ut

]
≤ V (ψt) − V (ψt+1) + 2σ(ψt)TATX Bw w

t

+ σ2(wt)TBT
w X Bw w

t + 2σ(ut)TBT
u X Bw w

t.

Since wt is a zero-mean white input with identity covariance which is independent of ut
and xt, if we take the average of the above inequality over t and expectation over different
realizations of wt, we obtain

1

T̄

T̄∑
t= 1

E
(
‖zt‖2

)
≤ 1

T̄
E
(
V (ψ1) − V (ψT̄+1)

)
+ σ2trace (BT

wXBw)

Therefore, letting T̄ →∞ and using X � 0 lead to J ≤ σ2trace (BT
w X Bw), which completes

the proof.

A.2.2 Proof of Lemma 2

In order to prove Lemma 2, we present a technical lemma which along the lines of results
of [56] provides us with an upper bound on the difference between the objective value at two
consecutive iterations.

Lemma 1 Let f ∈ FLm and κ := L/m. Then, Nesterov’s accelerated method, with the nota-
tion introduced in Section 2.4, satisfies

f(xt+2) − f(xt+1) ≤ 1

2

(
N1

[
ψt

ut

]
+

[
σwt

0

])T [
L I I
I 0

](
N1

[
ψt

ut

]
+

[
σwt

0

])
+

1

2

(
N2

[
ψt

ut

])T [ −mI I
I 0

] (
N2

[
ψt

ut

])
where N1 and N2 are defined in Lemma 2.
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Proof: For any f ∈ FLm, the Lipschitz continuity of ∇f implies

f(xt+2) − f(yt) ≤ 1

2

[
xt+2 − yt

∇f(yt)

]T [
L I I
I 0

] [
xt+2 − yt

∇f(yt)

]
(A.5)

and the strong convexity of f yields

f(yt) − f(xt+1) ≤ 1

2

[
yt − xt+1

∇f(yt)

]T [ −mI I
I 0

] [
yt − xt+1

∇f(yt)

]
. (A.6)

Moreover, the state and output equations in (2.5) lead to[
xt+2 − yt

∇f(yt)

]
= N1

[
ψt

ut

]
+

[
σwt

0

]
,

[
yt − xt+1

∇f(yt)

]
= N2

[
ψt

ut

]
. (A.7)

Summing up (A.5) and (A.6) and substituting for the terms
[
xt+2 − yt

∇f(yt)

]
and

[
xt+2 − yt

∇f(yt)

]
from (A.7) completes the proof. �

Let us define the positive semidefinite function V (ψ) := ψTXψ and let η := [ψT uT ]T .
Similar to the first part of the proof of Lemma 1, we can use LMI (2.24) and inequality (2.19)
to write

‖zt‖2 ≤ V (ψt) − V (ψt+1) + 2σ(ψt)TATX Bw w
t

+ σ2(wt)TBT
w X Bw w

t + 2σ(ut)TBT
u X Bw w

t − (ηt)TM ηt. (A.8)

From Lemma 1, it follows that

(ηt)TM ηt ≥ 2
(
f(xt+2) − f(xt+1)

)
− σ2L ‖wt‖2 − 2

[
σwt

0

]T [
L I I
I 0

]
N1η

t. (A.9)

Now, combining inequalities (A.8) and (A.9) yields

‖zt‖2 ≤ V (ψt) − V (ψt+1) + 2σ(ψt)TATX Bw w
t + σ2(wt)TBT

w X Bw w
t

+ 2σ(ut)TBT
u X Bw w

t − 2λ2

(
f(xt+2) − f(xt+1)

)
+ λ2σ

2L‖wt‖2 + 2λ2

[
σwt

0

]T [
L I I
I 0

]
N1η

t. (A.10)

Since wt is a zero-mean white input with identity covariance which is independent of ut and
xt, taking the expectation of the last inequality yields

E
(
‖zt‖2

)
≤ E

(
V (ψt)− V (ψt+1)

)
+ σ2trace (BT

w X Bw)

+ 2λ2 E
(
f(xt+1) − f(xt+2)

)
+ nσ2Lλ2
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and taking the average over the first T̄ iterations results in

1

T̄

T̄∑
t= 1

E
(
‖zt‖2

)
≤ 1

T̄
E
(
V (ψ1) − V (ψT̄+1)

)
+ σ2trace (BT

w X Bw) +
2λ2

T̄
E
(
f(x2) − f(xT̄+2)

)
+ nσ2Lλ2.

Finally, using positive definiteness of the function V , strong convexity of the function f , and
letting T̄ →∞, it follows that J ≤ σ2(nLλ2 + trace (BT

wX Bw)) as required.

A.2.3 Proof of Theorem 5

Using Theorem (1), it is straightforward to show that for gradient descent and Nesterov’s
method with the parameters provided in Table 2.1, the function f(x) := m

2
‖x‖2 leads to the

largest variance amplification J among the quadratic objective functions within FLm. This
yields the lower bounds

qgd = Jgd ≤ J?gd, qna = Jna ≤ J?na

with Jgd and Jna corresponding to f(x) = m
2
‖x‖2. We next show that Jgd ≤ qgd.

To obtain the best upper bound on Jgd using Lemma 1, we minimize trace (BT
wXBw)

subject to LMI (2.23), X � 0, and λ ≥ 0. For gradient descent, if we use the representation
in (2.21c), then the negative definiteness of the (1, 1)-block of LMI (2.23) implies that

X � 1

αm(2 − αm)
I =

κ2

2κ− 1
I. (A.11)

It is straightforward to show that the pair

X =
κ2

2κ− 1
I, λ =

1− αm
m(2− αm)(L−m)

(A.12)

is feasible as the LMI (2.23) becomes[
0 0
0 −1

m2(2κ− 1)
I

]
� 0.

Thus, X and λ given by (A.12) provide a solution to LMI (2.23). Therefore, inequality (A.11)
is tight and it provides the best achievable upper bound

Jgd ≤ trace (BT
w X Bw) =

nκ2

2κ − 1
.
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Finally, we show Jna ≤ 4.08qna by finding a sub-optimal feasible point for (2.26). Let

X :=

[
x1I x0I
x0I x2I

]
with

x1 :=
1

s(κ)

(
2κ3.5 − 8κ3 + 11κ2.5 + 5κ2 − 14κ1.5 + 8κ− 2κ0.5

)
x0 :=

−1

s(κ)

(
2κ1.5

(
κ0.5 − 1

)3 (
κ0.5 + 1

))
x2 :=

κ1.5

s(κ)

(
2κ2 − 3κ+ 5κ0.5 − 2

)
, s(κ) := 8κ2 − 6κ1.5 − 2κ+ 3κ0.5 − 1

and let λ1 := (κ/L)2/(2κ − 1) and λ2 := −x0/(Ls(κ)). We first show that (λ1, λ2, X) is
feasible for problem (2.26). It is straightforward to verify that s(κ), x1s(κ), x2s(κ), and
−x0s(κ) (which are polynomials of degree less than 7 in

√
κ) are all positive for any κ ≥ 1.

Hence, x1 > 0, x2 > 0 and λ2 > 0. It is also easy to see that λ1 > 0 and that the determinant
of X satisfies

det(X) =
κ2n

s2n(κ)

(
28κ3.5−65κ3 +56κ2.5 +25κ2−88κ1.5 +70κ−26κ0.5 +4

)n
> 0, ∀κ ≥ 1

which yieldsX � 0. Moreover, it can be shown that the left-hand-side of LMI (2.24) becomes[
0 0 0
0 0 0
0 0 −λ1I

]
� 0.

Therefore, the point (λ1, λ2, X) is feasible to problem (2.26) and

Jna ≤ p(κ) := nLλ2 + nx2 =
n

s(κ)

(
4κ3.5 − 4κ3 − 3κ2.5 + 9κ2 − 4κ1.5

)
.

Comparing p with qna, it can be verified that, for all κ ≥ 1, 4.08qna(κ) ≥ p(κ), which
completes the proof.

A.2.4 Proof of Theorem 6

Without loss of generality, let σ = 1 and

G :=
n∑

i= 1

max{Ĵ(λi), Ĵ(λ′i)} (A.13)

where λi are the eigenvalues of the Hessian of the objective function f and λ′i = m+L−λi is
the mirror image of λi with respect to (m+L)/2. Since J =

∑
i Ĵ(λi), if λi are symmetrically
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distributed over the interval [m,L] i.e., (λ1, · · · , λn) = (λ′n, · · · , λ′1), then for any parameters
α and β we have

J ≤ G ≤ 2J. (A.14)

Equation (A.14) implies that any bound on G simply carries over to J within an accuracy of
constant factors. Thus, we focus on G and establish one of its useful properties in the next
lemma that allows us to prove Theorem 6.

Lemma 2 The heavy-ball method with any stabilizing parameter β satisfies

2(1 + β)

L+m
= argmin

α
ρ(α, β) (A.15)

where ρ is the rate of linear convergence. Furthermore, if the Hessian of the quadratic
objective function f has a symmetric spectrum over the interval [λ1, λn] = [m,L], then

2(1 + β)

L+m
= argmin

α
G(α, β).

Proof: The linear convergence rate ρ is given by ρ = max1≤ i≤n ρ̂(λi), where ρ̂(λ) is the
largest absolute value of the roots of the characteristic polynomial

det(zI − Â) = z2 + (αλ− 1− β)z + β

associated with the heavy-ball method and the eigenvalue λ of the Hessian of the objective
function f ; See (2.8) for the form of Â. Thus, we have

ρ̂(λ) =

{ √
β if ∆ < 0

1
2
|1 + β − αλ|+ 1

2

√
∆ otherwise

where ∆ := (1 + β − αλ)2 − 4β. This can be simplified to

ρ̂ =

{ √
β if (1−√β)2 ≤ αλ ≤ (1 +

√
β)2

1
2
|1 + β − αλ|+ 1

2

√
∆ otherwise.

It is straightforward to show that ρ̂ and Ĵ with σ = 1 are explicit quasi-convex functions
of µ := αλ which are symmetric with respect to µ = 1 + β. Quasi-convexity of ρ̂ yields

ρ = max {ρ̂(λ1), ρ̂(λn)} = max {ρ̂(λ1), ρ̂(λ′1)}.

Let α](β) = 2(1 + β)/(L + m). For any eigenvalue λi, from the symmetry of the spectrum,
we have

α](β)λi − (1 + β) = (1 + β) − α](β)λ′i

meaning that α](β)λi and α](β)λ′i are the mirror images with respect to the middle point
1 + β. Thus, from the quasi-convexity and symmetry of the functions ρ̂ and Ĵ , it follows
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that α](β) minimizes ρ as well as max {Ĵ(λi), Ĵ(λ′i)} for all i, which completes the proof. �

Since gradient descent is obtained from the heavy-ball method by letting β = 0, from
Lemma 2 it immediately follows that αgd = 2/(L+m) given in Table 2.2 optimizes both Ggd

and the convergence rate ρgd. This fact combined with (A.14) yields

2 Jgd(α?gd(c)) ≥ Ggd(α?gd(c)) ≥ Ggd(αgd) ≥ Jgd(αgd) (A.16)

where α?gd(c) is given by (2.28b). This completes the proof for gradient descent.
We next use Lemma 2 to establish a bound on the parameter β?hb(c) that allows us to

prove the result for the heavy-ball method as well.

Lemma 3 There exists a positive constant a such that

β?hb(c) ≥ 1 − a√
κ

(A.17)

where β?hb(c) is given by (2.28a).

Proof: We first show that for any parameters α and β, the convergence rate ρ of the
heavy-ball method given by (2.27) is lower bounded by

ρ ≥


√
β if β ≥ (

√
κ−1√
κ+1

)2

(1+β)(L−m)+
√

(1+β)2(L−m)2−4β(L+m)2

2(L+m)
otherwise.

(A.18)

The convergence rate satisfies

ρ = max
1≤ i≤n

ρ̂(λi) = max
λ∈{m,L}

ρ̂(λ)

where the function ρ̂(λ) is given by (see proof of Lemma 2 for the proof of this statement)

ρ̂(λ) =

{ √
β if (1−√β)2 ≤ αλ ≤ (1 +

√
β)2

1
2
|1 + β − αλ|+ 1

2

√
∆ otherwise

and ∆ := (1 + β − αλ)2 − 4β. According to Lemma 2, α = 2(1 + β)/(L+m) optimizes the
rate ρ. This value of α yields

ρ̂(m) = ρ̂(L) =


√
β if κ ≤ (1+

√
β)2

(1−
√
β)2

1
2
|1 + β − α?λ|+ 1

2

√
∆

∣∣∣∣
λ=m

otherwise

or equivalently

ρ̂(m) = ρ̂(L) =


√
β if β ≥ (

√
κ−1√
κ+1

)2

(1+β)(L−m)+
√

(1+β)2(L−m)2−4β(L+m)2

2(L+m)
otherwise

(A.19)
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which completes the proof of inequality (A.18). Now, if β ≥ (
√
κ−1)2/(

√
κ+1)2, then (A.17)

with a = 2 follows immediately. Otherwise, from (A.18) we obtain

ρ ≥ (1 + β)(L−m) +
√

(1 + β)2(L−m)2 − 4β(L+m)2

2(L+m)

which yields

β ≥ v(ρ) := ρ (L−m
L+m

− ρ)/(1 − L−m
L+m

ρ). (A.20)

The convergence rate ρ satisfies (
√
κ−1)2/(

√
κ+1)2 ≤ ρ ≤ 1−c/√κ, where the lower bound

follows from the optimal rate provided in Table 2.2 and the upper bound follows from the
definition in (2.28a). Moreover, the derivative dv

dρ
= 0 vanishes only at ρ = (

√
κ−1)/(

√
κ+1).

Thus, we obtain a lower bound on β as

β ≥ v(ρ) ≥ min {v((

√
κ− 1√
κ+ 1

)2), v(1− c/√κ), v(

√
κ− 1√
κ+ 1

)}. (A.21)

A simple manipulation of (A.21) allows us to find a constant a that satisfies (A.17), which
completes the proof. �
Let (α̂, β̂) be the optimal solution of the optimization problem

minimize
α, β

G(α, β)

subject to ρ ≤ 1 − c/
√
κ

where G is defined in (A.13). We next show that there exists a scalar c′ > 0 such that

G(α̂, β̂) ≥ c′J(αhb, βhb) (A.22)

where αhb and βhb are provided in Table 2.2. Let α̂(β) := 2(1 + β)/(L + m). It is straight-
forward to verify that

J(α̂(β), β) =
1− β2

hb

1− β2
J(αhb, βhb) (A.23)

171



which allows us to write

G(α̂, β̂)
(i)
= min

β
G(α̂(β), β) (A.24)

subject to ρ ≤ 1− c/√κ
(ii)
≥ min

β
J(α̂(β), β)

subject to ρ ≤ 1− c/√κ
(iii)
= min

β

1− β2
hb

1− β2
J(αhb, βhb)

subject to ρ ≤ 1− c/√κ
(iv)
≥ 1− β2

hb

1− (1− a√
κ
)2
J(αhb, βhb).

Here, (i) determines partial minimization with respect to α which follows from Lemma 2; (ii)
follows from (A.14); (iii) follows from (A.23), and (iv) follows from Lemma 3. Furthermore,
it is easy to show the existence of a constant scalar c′ such that

1− β2
hb

1− (1− a√
κ
)2
≥ c′. (A.25)

Inequality (A.22) follows from combining (A.25) and (A.24). Finally, we obtain that

J(α?gd, β
?
gd) ≥ 1

2
G(α?gd, β

?
gd) ≥ 1

2
G(α̂, β̂) ≥ c′

2
J(αgd, βgd)

where the first inequality follows from (A.14), the second follows from the definition of (α̂, β̂),
and the last inequality is given by (A.22). This completes the proof for the heavy-ball method
in Theorem 6.

A.3 Fundamental lower bounds

A.3.1 Proof of Theorem 7

We first prove (2.29a). Without loss of generality, let the noise magnitude σ = 1. We define
the trivial lower bound

J ≥ Ĵ? := max {Ĵ(m), Ĵ(L)} (A.26)

and show that
Ĵ?

1− ρ ≥ (
κ+ 1

8
)2. Let f̃(x1, x2) := 1

2
(mx2

1 + Lx2
2). The eigenvalues of the

Hessian matrix ∇2f̃ are given by m and L which are clearly symmetric over the interval
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[m,L]. Thus, for any given value of β, m, and L, we can use Lemma 2 with the objective
function f̃ to obtain

α̂(β) :=
2(1 + β)

L+m
= argmin

α
Ĵ?(α, β) = argmin

α
ρ(α, β).

For the stepsize α̂(β), the rate of convergence ρ is given by (A.19), i.e.,

ρ =


√
β if β ≥ (

√
κ−1√
κ+1

)2

(1+β)(L−m)+
√

(1+β)2(L−m)2−4β(L+m)2

2(L+m)
otherwise

(A.27)

and the lower bound Ĵ? is given by

Ĵ? = Ĵ(m) = Ĵ(L) =
(L+m)2

4Lm(1− β2)
. (A.28)

Therefore, we obtain a lower bound on Ĵ?/(1− ρ) as

Ĵ?(α, β)

1− ρ(α, β)
≥ ν(β) :=

Ĵ?(α̂(β), β)

1− ρ(α̂(β), β)

=


(L+m)2

4Lm(1−β2)(1−
√
β)

if β ≥ (
√
κ−1√
κ+1

)2

(L+m)3

2Lm(1−β2)
(

(1−β)L+(3+β)m−
√

(1+β)2(L−m)2−4β(L+m)2
) otherwise

(A.29)

where the last equality follows from (A.27) and (A.28). It can be shown that v(β) attains
its minimum at β = (

√
κ− 1)2/(

√
κ+ 1)2; see Figure A.1 for an illustration. Therefore,

v

β

Figure A.1: The β-dependence of the function v in (A.29) for L = 100 and m = 1.

ν(β) ≥ (L+m)2

4Lm(1− β2)(1−√β)

∣∣∣∣
β=(

√
κ−1√
κ+1

)2
=

(L+m)2

4Lm(1 + β)(1 +
√
β)(1−√β)2

∣∣∣∣
β=(

√
κ−1√
κ+1

)2

≥ (L+m)2

16Lm(1−√β)2

∣∣∣∣
β=(

√
κ−1√
κ+1

)2
=

(κ+ 1)2(
√
κ+ 1)2

64κ
≥
(
κ+ 1

8

)2
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which completes the proof of (2.29a). We next prove (2.29b) for σ = α.
We analyze the two cases α > 1/L and α ≤ 1/L separately. If α > 1/L, inequality (2.29b)

directly follows from inequality (2.29a)

Jhb

1 − ρ
≥ σ2

(
κ+ 1

8

)2

= α2

(
κ+ 1

8

)2

≥
( κ

8L

)2

.

Here, the first inequality is given by (2.29a) and the second inequality holds since α > 1/L.
Now suppose α ≤ 1/L. The convergence rate of Polyak’s method is given by maxi ρ̂(λi),

where

ρ̂(λ) =

{ √
β if (1−√β)2 ≤ αλ ≤ (1 +

√
β)2

1
2
|1 + β − αλ|+ 1

2

√
∆ otherwise

and ∆ := (1 + β − αλ)2 − 4β (see the proof of Lemma 2). Thus, for σ = α, we have the
trivial lower bound

J

1− ρ ≥
Ĵ(m)

1− ρ̂(m)
=

α(1 + β)

m (1 − β) (2(1 + β) − αm) (1− ρ̂(m))

≥ p(α, β) :=
α

2m (1 − β) (1− ρ̂(m))

=


α

2m (1 − β)
(
1−√β

) , β ∈ [(1−√αm)2, 1)

α

m (1 − β)
(

1− β + αm−
√

∆
) , β ∈ [0, (1−√αm)2).

Here, the first inequality follows from combining J =
∑

i Ĵ(λi) and maxi ρ̂(λi), and the
second inequality follows from αm ≤ αL ≤ 1. We next show that for any fixed α, the
function p(α, ·) attains its minimum at β = (1 − √αm)2. Before we do so, note that this
fact allows us to use partial minimization with respect to β and obtain

p(α, β) ≥ p(α, (1−√αm)2) =
1

2m2 (2−√αm)
≥ 1

4m2
≥ (

κ

2L
)2

which completes the proof of (2.29b).
For any fixed α, it is straightforward to verify that p(α, β) is increasing with respect to

β over [(1−√αm)2, 1). Thus, it suffices to show that p(α, β) is decreasing with respect to
β over [0, (1−√αm)2). To simplify the presentation, let us define the new set of parameters

q := s (s+ x− δ) , s := 1− β, x := αm

δ :=
√

∆ =
√

(1 + β − αm)2 − 4β =
√

(s+ x)2 − 4x.
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It is now straightforward to verify that p(α, β) = α/(mq) for β ∈ [(1 − √αm)2, 1). It
thus follows that p(α, β) is decreasing with respect to β over [0, (1−√αm)2) if and only if
q′ = dq/ds ≤ 0 for s ∈ (

√
x(2−√x), 1]. The derivative is given by

q′ =
1

δ

(
(2s+ x)δ − 2s2 − 3sx− x2 + 4x

)
.

Thus, we have

q′ ≤ 0 ⇐⇒ (2s+ x)δ ≤ 2s2 + 3sx+ x2 − 4x. (A.30)

It is easy to verify that both sides of the inequality in (A.30), namely, (2s + x)δ and 2s2 +
3sx+x2−4x are positive for the specified range of s ∈ (

√
x(2−√x), 1]. Thus, we can square

both sides and obtain that

q′ ≤ 0 ⇐⇒ (2s+ x)2δ2 ≤ (2s2 + 3sx+ x2 − 4x)2

(i)⇐⇒ (2s+ x)2
(
(s+ x)2 − 4x

)
≤ (2s2 + 3sx+ x2 − 4x)2

(ii)⇐⇒ 8sx2 + 4x3 ≤ 16x2 ⇐⇒ 8s+ 4x ≤ 16.

where (i) follows from the definition of δ and (ii) is obtained by expanding both sides and
rearranging the terms. Finally, the inequality 8s + 4x ≤ 16 clearly holds since s ≤ 1 and
x ≤ 1. This proves that p(α, ·) attains its minimum at β = (1−√αm)2.

A.3.2 Proof of Theorem 8

For the heavy-ball method, the result follows from combining Theorem 7 and the inequality
1 − ρ > c/

√
κ. Next, we present three additional lemmas that allow us to prove the result

for Nesterov’s method.
The following lemma provides a lower bound on the function Ĵ(m) associated with Nes-

terov’s method which depends on κ and β.

Lemma 4 For any strongly convex quadratic problem with condition number κ > 2 and the
smallest eigenvalue of the Hessian m, the function Ĵ associated with Nesterov’s accelerated
method with any stabilizing pair of parameters 0 < α, 0 < β < 1, and σ = 1 satisfies

Ĵ(m) ≥ κ2

24(1− β)κ+ 32β
. (A.31)

Proof: We first show that Nesterov’s method with 0 < α and 0 < β < 1 is stable if and
only if

m <
2β + 2

ακ (2β + 1)
. (A.32)
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The rate of linear convergence is given by ρ = max1≤i≤n ρ̂(λi), where ρ̂(λ) is the largest
absolute value of the roots of the characteristic polynomial

det(zI − Â) = z2 − (1 + β)(1− αλ)z + β(1− αλ)

associated with Nesterov’s method and the eigenvalue λ of the Hessian of the objective
function f ; See (2.8) for the form of Â. For α > 0 and 0 < β < 1, it can be shown that

ρ̂(λ) =

{ √
β(1− αλ) if αλ ∈ ((1−β

1+β
)2, 1)

1
2
|(1 + β)(1− αλ)|+ 1

2

√
(1 + β)2(1− αλ)2 − 4β(1− αλ) otherwise.

(A.33)

The stability of the algorithm is equivalent to ρ̂(λi) < 1 for all eigenvalues λi. For any positive
stepsize α and parameter β ∈ (0, 1), it can be shown that the function ρ̂(λ) is quasi-convex
and ρ̂(λ) = 1 if and only if λ ∈ {0, 2β+2

α(2β+1)
}. This fact along with 0 < m ≤ λi ≤ L = κm

imply that ρ̂(λi) < 1 for all λi ∈ [m,L] if and only if κm ≤ 2β+2
α(2β+1)

which completes the
proof of (A.32).

For Nesterov’s method, it is straightforward to show that the function Ĵ(λ) is quasi-
convex over the interval [0, 2β+2

α(2β+1)
] and that it attains its minimum at λ = 1/α. Also,

from (A.32), for κ > 2 we obtain

m ≤ 2β + 2

ακ(2β + 1)
≤ 1

α

and thus,

Ĵ(m) ≥ Ĵ(
2β + 2

ακ(2β + 1)
)

=
(2 β + 1)κ2 (κ− 2 β + 2 β κ)

4 (β + 1) (κ− 1) (2 β + κ+ β κ− 2 β2 κ+ 2 β2)
≥ κ2

24 (1− β)κ+ 32β

where the last inequality follows from the fact that β ∈ (0, 1). �

The next lemma presents a lower bound on any accelerating parameter β for Nesterov’s
method.

Lemma 5 For Nesterov’s method, under the conditions of Theorem 8, there exist positive
constants c3 and c4 such that for any κ > c3,

β > 1 − c4√
κ
. (A.34)
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Proof: For any α > 0 and β ∈ (0, 1), Nesterov’s method converges with the rate ρ =
max1≤ i≤n ρ̂(λi), where ρ̂(λ) is given by (A.33). We treat the two cases (1−β)/(1+β)2 < αm
and (1− β)/(1 + β)2 ≥ αm separately. For (1− β)/(1 + β)2 < αm, we have

(1− β)2 ≤ 4(
1− β
1 + β

)2 < 4αm = 4
αL

κ
≤ 8

κ
(A.35)

where the last inequality follows from (A.32). Therefore, we obtain β ≥ 1 −
√

8/
√
κ as

required. Now, suppose (1− β)/(1 + β)2 ≥ αm. The convergence rate ρ satisfies

ρ ≥ 1

2
(1 + β)(1− αm) +

1

2

√
(1 + β)2(1− αm)2 − 4β(1− αm).

Thus,

ρ2 − ρ(1 + β)(1− αm) + β(1− αm) > 0

which yields a lower bound on β,

β ≥ ν(ρ, αm) :=
ρ(1− αm− ρ)

(1− ρ)(1− αm)
. (A.36)

In what follows, we establish a lower bound for ν. For a fixed αm, the critical point of ν(ρ)
is given by ρ1 := 1−√αm, i.e., ∂ν/∂ρ = 0 for ρ = ρ1. Furthermore, the optimal rate from
Table 2.2 and the condition on convergence rate in Theorem 8 for any κ > c1 yield upper
and lower bounds ρ3 < ρ < ρ2, where ρ2 := 1− c2/

√
κ and ρ3 := 1− 2/

√
3κ+ 1. Thus, the

lower bound on ν is given by

β ≥ ν(ρ, αm) ≥ min {ν(ρ1, αm), ν(ρ2, αm), ν(ρ3, αm)}. (A.37)

From the stability condition (A.32), we have

αm < 2/κ (A.38)

Furthermore, it can be shown that for any given ρ ∈ (0, 1) the function ν(ρ, αm) is decreasing
with respect to αm. This fact combined with (A.37) and (A.38) yield

β ≥ min {ν(ρ1, αm), ν(ρ2, 2/κ), ν(ρ3, 2/κ)}. (A.39)
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If we substitute for ρ1. ρ2, and ρ3 their values as functions of κ and use αm < 2/κ, then the
result follows immediately. In particular,

ν(ρ1, αm) =
1−√αm
1 +
√
αm

≥ 1−
√

2/κ

1 +
√

2/κ
=

√
κ−
√

2√
κ+
√

2
≥ 1− 2

√
2√
κ

ν(ρ2, 2/κ) = 1−
( 2
c2

+ c2)
√
κ− 4

κ− 2
≥ 1−

( 2
c2

+ c2)
√
κ

, ∀κ ≥ (
1

c2

+
c2

2
)2

ν(ρ3, 2/κ) = 1− 5κ− 4
√

3κ+ 1 + 1

(κ− 2)
√

3κ+ 1
≥ 1− 5√

κ
, ∀κ ≥ 9

which completes the proof. �

The next lemma provides a lower bound on Jna/(1 − ρ) for Nesterov’s method with
σ = α ≤ 1/L.

Lemma 6 Nesterov’s accelerated method with any stabilizing pair of parameters 0 < α ≤
1/L and 0 < β < 1, and σ = α satisfies

Jna

1− ρ ≥
1

8
(
κ

L
)2.

Proof: The convergence rate of Nesterov’s method is given by maxi ρ̂(λi), where

ρ̂(λ) =

{ √
β(1− αλ) if αλ ∈ ((1−β

1+β
)2, 1)

1
2
|(1 + β)(1− αλ)|+ 1

2

√
∆ otherwise

and ∆ := (1 + β)2(1 − αλ)2 − 4β(1 − αλ); see equation (A.33). Thus, we have the trivial
lower bound

J

1− ρ ≥
Ĵ(m)

1− ρ̂(m)
=

α (1 + β(1 − αm))

m (1 − β(1 − αm)) (2(1 + β) − (2β + 1)αm) (1− ρ̂(m))

≥ p(α, β) :=
α

4m (1 − β(1 − αm)) (1− ρ̂(m))

=


α

4m (1 − β(1− αm))
(

1−
√
β(1− αm)

) , β ∈ [γ, 1)

α

2m (1 − β(1− αm))
(

2− (1 + β)(1− αm)−
√

∆
) , β ∈ [0, γ)

(A.40)

where γ :=
1−√αm
1 +
√
αm

. Here, the first inequality can be obtained by combining J =
∑

i Ĵ(λi)

and maxi ρ̂(λi), and the second inequality follows from the fact that 0 < αm ≤ 1 and
0 ≤ β < 1. We next show that for any fixed α, the function p(α, ·) attains its minimum at
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β = γ. Before we do so, note that this fact allows us to do partial minimization with respect
to β and obtain

p(α, β) ≥ p(α, γ) =
1

4m2 (2−√αm)
≥ 1

8m2
≥ 1

8
(
κ

L
)2.

For any fixed α, it is straightforward to verify that p(α, β) is increasing with respect to β
over [γ, 1). Thus, it suffices to show that p(α, β) is decreasing with respect to β over [0, γ).
To simplify the presentation, let us define

q := (1− s)(2− x− s− δ), x := 1− αm, s := βx

δ :=
√

∆ =
√

(1 + β)2(1− αm)2 − 4β(1− αm) =
√

(x+ s)2 − 4s.

It is now straightforward to verify that p(α, β) = α/(2mq) for β ∈ [0, γ). It thus follows
that p(α, β) is decreasing with respect to β over [0, γ) if and only if q′ = dq/ds ≥ 0 for
s ∈ [0, (1−

√
1− x)2). The derivative is given by

q′ =
1

δ

(
(x+ 2s− 3)δ + (1− s)(2− x− s) + δ2

)
.

Thus, we have

q′ ≥ 0 ⇐⇒ (1− s)(2− x− s) + δ2 ≥ (3− x− 2s)δ. (A.41)

It is easy to verify that both sides of the inequality in (A.41), namely, (1− s)(2−x− s) + δ2

and (3− x− 2s)δ are positive for the specified range of s ∈ [0, (1−
√

1− x)2). Thus, we can
square both sides and obtain that

q′ ≥ 0 ⇐⇒
(
(1− s)(2− x− s) + δ2

)2 ≥ (3− x− 2s)2δ2

(i)⇐⇒
(
(1− s)(2− x− s) + (x+ s)2 − 4s

)2 ≥ (3− x− 2s)2
(
(x+ s)2 − 4s

)
(ii)⇐⇒ 4(x− 1)2(2s+ x+ 1) ≥ 0.

where (i) follows from the definition of δ and (ii) is obtained by expanding both sides and
rearranging the terms. Finally, the inequality 4(x − 1)2(2s + x + 1) ≥ 0 trivially holds
which completes the proof. �

We are now ready to prove Theorem 8 for Nesterov’s method. The inequality in (2.30a)
directly follows from combining (A.31) in Lemma 4 and (A.34) in Lemma 5. To show
inequality (2.30b), we treat the two cases α > 1/L and α ≤ 1/L separately. If α > 1/L,
then (2.30b) directly follows from (2.30a)

Jna = α2Jna

σ2
= Ω(

κ
3
2

L2
).
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Now suppose α ≤ 1/L. We can use Lemma 6 to obtain

Jna ≥ (1− ρ)
k2

8L2
≥ c√

κ

k2

8L2
= Ω(

κ
3
2

L2
).

Here, the first inequality follows from Lemma 6 and the second inequality follows from the
acceleration assumption ρ ≤ 1− c/√κ. This completes the proof.

A.4 Consensus over d-dimensional torus networks
The proof of Theorem 9 uses the explicit expression for the eigenvalues of torus in (2.33)
to compute the variance amplification J̄ =

∑
i 6=0 Ĵ(λi) for all three algorithms. Several

technical results that we use in the proof are presented next.
We borrow the following lemma, which provides tight bounds on the sum of reciprocals

of the eigenvalues of a d-dimensional torus network, from [43, Appendix B].

Lemma 7 The eigenvalues λi of the graph Laplacian of the d-dimensional torus Tdn0
with

n0 � 1 satisfy ∑
0 6= i∈Zdn0

1

λi
= Θ(B(n0))

where the function B is given by

B(n0) =

{ 1

d− 2
(nd0 − n2

0), d 6= 2

nd0 log n0, d = 2.

We next use Lemma 7 to establish an asymptotic expression for the variance amplification
of the gradient descent algorithm for a d-dimensional torus.

Lemma 8 For the consensus problem over a d-dimensional torus Tdn0
with n0 � 1, the

performance metric J̄gd corresponding to gradient decent with the stepsize α = 2/(L + m)
satisfies

J̄gd = Θ(B(n0))

where the function B is given in Lemma 7.
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Proof: Using the expression for the noise amplification of gradient descent from Theorem 1,
we have

J̄gd =
∑

0 6= i∈Zdn0

1

αλi(2 − αλi)

=
1

2α

∑
0 6= i∈Zdn0

1

λi
+

1
2
α
− λi

=
1

2α

∑
0 6= i∈Zdn0

1

λi
+

1

λmax + λmin − λi

≈ 1

α

∑
0 6= i∈Zdn0

1

λi
≈ 2d

∑
0 6= i∈Zdn0

1

λi
.

The first approximation follows from the facts that the eigenvalues satisfy

0 < λi ≤ λmax + λmin ≈ 4d

and that their distribution is asymptotically symmetric with respect to λ = 2d. The second
approximation follows from

α =
2

L + m
=

2

λmax + λmin

≈ 1

2d
.

The bounds for the sum of reciprocals of λi provided in Lemma 7 can now be used to com-
plete the proof. �

The following lemma establishes a relationship between the variance amplifications of
Nesterov’s method and gradient descent. This relationship allows us to compute tight bounds
on Jna by splitting it into the sum of two terms. The first term depends linearly on Jgd

which is already computed in Lemma 8 and the second term can be evaluated separately
using integral approximations for consensus problem on torus networks. This result holds
in general for the scenarios in which the largest eigenvalue L = Θ(1) is bounded and the
smallest eigenvalue m goes to zero causing the condition number κ to go to infinity.

Lemma 9 For a strongly convex quadratic problem with mI � Q � LI and condition
number κ := L/m ≥ κ0, the ratio between variance amplifications of Nesterov’s algorithm
and gradient descent with the parameters given in Table 2.2 satisfies the asymptotic bounds

c1√
κ
≤ Jna − D

Jgd

≤ c2, D :=
2

(3β + 1)α2
na

n∑
i= 1

1

λ2
i + 1−β

αnaβ
λi
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where κ0, c1, and c2 are positive constants. Furthermore, depending on the distribution of
the eigenvalues of the Laplacian matrix, D can take values between

c3

κ
≤ D

Jgd

≤ c4

√
κ (A.42)

where c3 and c4 are positive constants.

Proof: We can split Ĵna(λ)/Ĵgd(λ) into the sum of two decreasing homographic func-
tions σ1(λ) + σ2(λ), where σ1 and σ2 are defined in (A.2); see the proof of Proposition 1.
Furthermore, for κ� 1, these functions attain their extrema over the interval [m,L] at

σ1(L) ≈ 9

8κ
, σ1(m) ≈ 3

√
3κ

8
, σ2(L) ≈ 9

√
3

16
√
κ
, σ2(m) ≈ 3

8
(A.43)

where we have kept the leading terms. It is straightforward to verify that

n∑
i=1

σ1(λi)Ĵgd(λi) = 2
(3β+1)α2

na

n∑
i= 1

1

λ2i +
1−β
αnaβ

λi
= D.

This equation in conjunction with (A.43), yield inequalities in (A.42). Moreover, we obtain
that

Jna −D
Jgd

=

∑n
i=1 σ2(λi)Ĵgd(λi)∑n

i=1 Ĵgd(λi)
.

This also implies that, asymptotically,

Jna −D
Jgd

= O

(
max
λ∈[m,L]

σ2(λ)

)
= O(1)

Jna −D
Jgd

= Ω

(
min

λ∈[m,L]
σ2(λ)

)
= Ω(

1√
κ

)

which completes the proof. �

The next two lemmas provide us with asymptotic bounds on summations of the form∑
i 1/(λ

2
i + µλi), where λi are the eigenvalues of the graph Laplacian matrix of a torus

network. These bounds allow us to combine Lemma 8 and Lemma 9 to evaluate the variance
amplification of Nesterov’s accelerated algorithm.

Lemma 10 For an integer q � 1 and any positive a = O(q3), we have

∑
0 6= i∈Zdq

1

‖i‖4 + a‖i‖2
≈ qd−4

∫ 1

1/q

rd−1

r4 + wr2
dr

where ω = a/q2.
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Proof: The function h(x) := ‖x‖4 + ω‖x‖2 is strictly increasing over the positive orthant
(x � 0) and h((1/q)1) goes to 0 as q goes to infinity where 1 ∈ Rd is the vector of all ones.
Therefore, using the lower and upper Riemann sum approximations, it is straightforward to
show that∫

· · ·
∫

∆≤‖x‖≤1

1

h(x)
dx1 · · · dxd ≈ ∆d

∑
06=i∈Zdq

1(∑d
l=1(∆il)2

)2

+ ω
∑d

l=1(∆il)2

where ∆ = 1/q is the incremental step in the Riemann approximation. Therefore, since
ω = a∆2, we can write∑

06=i∈Zdq

1

‖i‖4 + a‖i‖2
≈ ∆4−d

∫
· · ·
∫

∆≤‖x‖≤1

1

h(x)
dx1 · · · dxd.

Finally, we obtain the result by transforming the integral into a d-dimensional system with
polar coordinates, i.e.,∫

· · ·
∫

∆≤‖x‖≤1

1

h(x)
dx1 · · · dxd ≈

∫ 1

∆

rd−1

r4 + ωr2
dr.

�

Lemma 11 Let λi be the eigenvalues of the Laplacian matrix for the d-dimensional torus
Tdn0

. In the limit of large n0, for any µ = O(n0), we have

∑
0 6= i∈Zdn0

1

λ2
i + µλi

= Θ

(
nd0

∫ 1

1
n0

rd−1

r4 + ωr2
dr

)
(A.44)

where ω = Θ(µ).

Proof: Let ζ :=
∑

06=i∈Zdn0

1

λ2
i + µλi

, where λi are the eigenvalues of the Laplacian matrix,

λi = 2
d∑

l= 1

(
1− cos(il

2π

n0

)

)
.

Since 1− cos(· − π) is an even function, for large n0,

ζ ≈ 2d
∑

06=i∈Zdq

1

λ2
i + µλi
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where q = bn0/2c. It is well-known that the function 1−cos(x) can be bounded by quadratic
functions as x2/π2 ≤ 1 − cos(x) ≤ x2 for any x ∈ [−π, π]. Now, since for any i ∈ Zdq ,
il

2π
n0
∈ [0, π] for all l, we can use these quadratic bounds to obtain

ζ ≈ n4
0

∑
06=i∈Zdq

1

‖i‖4 + cµn2
0‖i‖2

(A.45)

where c is a bounded constant. Finally, equation (A.44) follows from Lemma 10 where we
let a = cµn2

0 and q ≈ n0/2. �

The following proposition characterizes the network-size-normalized asymptotic variance
amplification of noisy consensus algorithms for d-dimensional torus networks. This result is
used to prove Theorem 9.

Proposition 1 Let L ∈ Rn×n be the graph Laplacian of the d-dimensional undirected torus
Tdn0

with n = nd0 � 1 nodes. For convex quadratic optimization problem (2.31), the network-
size-normalized asymptotic variance amplification J̄/n of the first-order algorithms on the
subspace 1⊥ is determined by

d = 1 d = 2 d = 3 d = 4 d = 5

Gradient Θ(n) Θ(log n) Θ(1) Θ(1) Θ(1)

Nesterov Θ(n2) Θ(
√
n log n) Θ(n1/6) Θ(log n) Θ(1)

Polyak Θ(n2) Θ(
√
n log n) Θ(n1/3) Θ(n1/4) Θ(n1/5).

Proof: We prove the result for the three algorithms separately.

1. For gradient descent, the result follows from dividing the asymptotic bounds established
in Lemma 8 with the total number of nodes n = nd0.

2. For Nesterov’s algorithm, we use the relation established in Lemma 9 to write

J̄na/n −
c

n

∑
i

1

λ2
i + µλi

= O
(
J̄gd/n

)
(A.46a)

J̄na/n −
c

n

∑
i

1

λ2
i + µλi

= Ω
(
J̄gd/(n

√
κ)
)

(A.46b)

where c = 2/ ((3β + 1)α2
na) ≈ 9d2/2 and µ = (1 − β)/(αnaβ) = Θ(1/

√
κ) = Θ(n−1

0 );
see equation (2.34). We can use Lemma 11 to compute the second term

1

n

∑
0 6= i∈Zdn0

1

λ2
i + µλi

= Θ

(∫ 1

1
n0

rd−1

r4 + ωr2
dr

)
(A.47)
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where ω = Θ(µ) = Θ(n−1
0 ). Evaluating the above integral for different values of d ∈ N

and letting ω = Θ(n−1
0 ), it is straightforward to show that

∫ 1

1
n0

rd−1

r4 + ωr2
dr =


Θ(n2

0) d = 1
Θ(n0 log n0) d = 2
Θ(
√
n0) d = 3

Θ(log n0) d = 4
Θ(1) d = 5.

Finally, the result follows from the asymptotic values for J̄gd/n (shown in Part 1) and
substituting for the second term on the left-hand-side of equation (A.46) from the above
asymptotic values and using n = nd0. We note that we used the following integrals to
evaluate J̄na,

∫
1

r4 + ωr2
dr = −

tan−1(
r√
ω

)

ω3/2
− 1

rω∫
r

r4 + ωr2
dr = − log (r2 + ω)− 2 log (r)

2ω∫
r2

r4 + ωr2
dr =

tan−1 (
r√
ω

)

√
ω∫

r3

r4 + ωr2
dr = 1

2
log(r2 + ω)∫

r4

r4 + ωr2
dr = r −√ω tan−1(

r√
ω

).

3. The result for the heavy-ball method directly follows from the first part of the proof,
the relationship between variance amplifications of gradient descent and the heavy-ball
method in Theorem 2, and equation (2.34).

�

We now use Proposition 1 to proof Theorem 9 as follows.

A.4.1 Proof of Theorem 9

As stated in (2.34), the condition number satisfies κ = Θ(n2/d) and the result follows from
combining this asymptotic relation with those provided in Proposition 1.

A.4.2 Computational experiments

To complement our asymptotic theoretical results, we compute the performance measure J̄
in (2.32) for the consensus problem over d-dimensional torus Tdn0

with n = nd0 nodes for dif-
ferent values of n0 and d. We use expression (2.33) for the eigenvalues of the graph Laplacian
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J̄
/n

κ κ κ κ

(a) d = 1 (b)d = 2 (c) d = 3 (d)d = 4

Figure A.2: The dependence of the network-size normalized performance measure J̄/n of the
first-order algorithms for d-dimensional torus Tdn0

with n = nd0 nodes on condition number κ.
The blue, red, and black curves correspond to the gradient descent, Nesterov’s method, and
the heavy-ball method, respectively. Solid curves mark the actual values of J̄/n obtained
using the expressions in Theorem 1 and the dashed curves mark the trends established in
Theorem 9.

L to evaluate the formulae provided in Theorem 1 for each algorithm. Figure A.2 illustrates
network-size normalized variance amplification J̄/n vs. condition number κ and verifies the
asymptotic relations provided in Theorem 9. It is noteworthy that, even though our analy-
sis is asymptotic in the condition number (i.e., it assumes that κ � 1), our computational
experiments exhibit similar scaling trends for small values of κ as well.
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Appendix B

Supporting proofs for Chapter 3

B.1 Settling time
If ρ denotes the linear convergence rate, Ts = 1/(1 − ρ) quantifies the settling time. The
inequality in (3.5) shows that cρt ≤ ε provides a sufficient condition for reaching the accuracy
level ε with ‖ψt‖2/‖ψ0‖2 ≤ ε. Taking the logarithm of cρt ≤ ε and using the first-order
Taylor series approximation log (1 − x) ≈ −x around x = 0 yields a sufficient condition on
the number of iterations t for an algorithm to reach ε-accuracy,

t ≥ log (ε/c)/ log (1− 1/Ts) ≈ Ts log (c/ε).

In continuous time, the sufficient condition for reaching ε-accuracy ce−ρt ≤ ε yields t ≥
log (c/ε)/ρ, and Ts = 1/ρ can be used to asses the settling time.

B.2 Convexity of modal contribution Ĵ

To show the convexity of Ĵ , we use the fact that the function g(x) =
∏d

i=1 x
−1
i is convex over

the positive orthant Rd
++. This can be verified by noting that its Hessian satisfies

∇2g(x) = g(x)
(
diag(x) + xxT

)
� 0

where diag(·) is the diagonal matrix. By Theorem 5, we have

Ĵ

σ2
w

=
d + l

2 d h l
=

1

2h d
+

1

2h l

where we have dropped the dependence on λ for simplicity. The functions 1/(2hd) and
1/(2hl) are both convex over the positive orthant d, h, l > 0. Thus, Ĵ is convex with respect
to (d, h, l). In addition, since d, h, and l are all affine functions of a and b, we can use the
equivalence relation in (3.30a) to conclude that Ĵ is also convex in (b, a) over the stability
triangle ∆. Finally, since b(λ) and a(λ) are affine in λ, it follows that for any stabilizing
parameters, Ĵ is also convex with respect to λ over the interval [m,L].
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Convexity of Ĵ allows us to use first-order conditions to find its minimizer. In particular,
since for σw = 1

∂Ĵ

∂d
= − 1

2hd2
,

∂Ĵ

∂l
= − 1

2hl2
,

∂Ĵ

∂h
= − l + d

2h2dl

∂d

∂a
=

∂l

∂a
= −∂h

∂a
=

∂d

∂b
= −∂l

∂b
= 1,

∂h

∂b
= 0

it is easy to verify that ∂Ĵ/∂a = ∂Ĵ/∂b = 0 at a = b = 0. Thus, Ĵ takes its minimum
Ĵmin = σ2

w over the stability triangle ∆ at a = b = 0, which corresponds to d = h = l = 1.

B.3 Proofs of Section 3.4

B.3.1 Proof of Lemma 2

We start by noting that ρ(M) ≤ ρ if and only if ρ(M ′) ≤ 1 where M ′ := M/ρ. The
characteristic polynomial associated with M ′, Fρ(z) = z2 + (b/ρ)z + a/ρ2, allows us to use
similar arguments to those presented in the proof of Lemma 1 to show that

ρ(M ′) ≤ 1 ⇐⇒ (b/ρ, a/ρ2) ∈ ∆1 (B.1)

where ∆1 := {(b, a) | |b| − 1 ≤ a ≤ 1} is the closure of the set ∆ in (3.21b). Finally, the
condition on the right-hand side of (B.1) is equivalent to (b, a) ∈ ∆ρ, where ∆ρ is given
by (3.22b).

Remark 1 The eigenvalues of the matrix M in (3.20a) are given by (−b±
√
b2 − 4a)/2, and

the sign of b2− 4a determines if the eigenvalues are real or complex. The condition a = b2/4
defines a parabola that passes through the vertices Xρ = (−2ρ, ρ2) and Yρ = (2ρ, ρ2) of the
triangle ∆ρ and is tangent to the edges XρZρ and YρZρ for all ρ < 1; see Figure B.1. For
the optimal values of parameters provided in Table 3.1, we can combine this observation and
the information in Figure 3.3 to conclude that while all eigenvalues of the matrix A in (3.4a)
are real for gradient descent, they can be both real and complex for Nesterov’s accelerated
algorithm, and they come in complex-conjugate pairs for heavy-ball method.

B.3.2 Proof of Equation (3.28c)
According to Figure 3.3, in order to find the largest ratio d(L)/d(m) over the ρ-linear conver-
gence set ∆ρ for Nesterov’s accelerated method, we need to check the pairs of points {E,E ′}
that lie on the boundary of the triangle ∆ρ, whose line segment EE ′ passes through the
origin O. If one of the end points E lies on the edge XρYρ, then depending on whether the
other end point E ′ lies on the edge XρZρ or YρZρ, we can continuously increase the ratio
dE/dE′ by moving E toward the vertices Yρ or Xρ, respectively. Thus, this case reduces to
checking only the ratio dE/dE′ for the line segments XρX

′
ρ and YρY ′ρ , where

X ′ρ = (2ρ/3,−ρ2/3), Y ′ρ = (−2ρ/3,−ρ2/3) (B.2)
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• •

•

X Y

Z

• •

•

Xρ Yρ

Zρ

b

a

Figure B.1: The green and orange subsets of the stability triangle ∆ (dashed-red) correspond
to complex conjugate and real eigenvalues for the matrix M in (3.20a), respectively. The
blue parabola a = b2/4 corresponds to the matrix M with repeated eigenvalues and it is
tangent to the edges XρZρ and YρZρ of the ρ-linear convergence triangle ∆ρ (solid red).

• •

•
••

Xρ Yρ

Zρ

X ′
ρY ′

ρ

• •E
E ′ • b

a

Figure B.2: The points X ′ρ and Y ′ρ as defined in (B.2) along with an arbitrary line segment
EE ′ passing through the origin in the (b, a)-plane.

are the intersections of OXρ with YρZρ, and OYρ with XρZρ; see Figure B.2. Regarding the
case when neither E nor E ′ lies on the edge XρYρ, let us assume without loss of generality
that E and E ′ lie on YρZρ and XρZρ, respectively. In this case, we can parameterize the
ratio using

dE
dE′

=
(1 + c)(1/(1− ρ)− c)
(1− c)(1/(1 + ρ) + c)

, c ∈ [−1/2, 1/2] (B.3)

where cρ determines the slope of EE ′. The general shape of this function is provided in
Figure B.3. It is easy to verify that dE/dE′ takes its maximum over c ∈ [−1/2, 1/2] at one
of the boundaries. Thus, this case also reduces to checking only the ratio dE/dE′ for the line
segments XρX

′
ρ and YρY ′ρ . We complete the proof by noting that

dX′ρ
dXρ

=
(1 + ρ)(3 − ρ)

3(1 − ρ)2
,

dYρ
dY ′ρ

=
3(1 + ρ)2

(3 + ρ)(1 − ρ)

satisfy dX′ρ/dXρ > dYρ/dY ′ρ .
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1
2

1
2

c = −1
1+ρ c = 1

c

dE
dE′

Figure B.3: The ratio dE/dE′ in (B.3) for Nesterov’s method, where E and E ′ lie on the
edges YρZρ and XρZρ of the ρ-linear convergence triangle ∆ρ, and c ρ determines the slope
of EE ′ which passes through the origin.

B.4 Proofs of Section 3.5

B.4.1 Proof of Lemma 4

We show that the parameters (α, β, γ) in (3.32) place the points (b(m), a(m)) and (b(L), a(L))
on the edges XρZρ and YρZρ of the ρ-linear convergence triangle ∆ρ, respectively. In partic-
ular, we can use a scalar c ∈ [−1, 1] to parameterize the end points as

(b(m), a(m)) = (−(1 + c)ρ, cρ2), (b(L), a(L)) = ((1 + c)ρ, cρ2).

Using the definition of a and b in (3.18c), we can solve the above equations for (α, β, γ)
to verify the desired parameters. Thus, the algorithm achieves the convergence rate ρ. In
addition the points c = 0 and c = 1 recover gradient descent and heavy-ball method with
the parameters that optimize the convergence rate; see Table 3.1.

Furthermore, h, d, and l in (3.29) are given by

h(m) = h(L) = 1 − cρ2

d(m) = l(L) = (1 − ρ)(1 − cρ)

l(m) = d(L) = (1 + ρ)(1 + cρ)

(B.4a)

and the condition number is determined by

κ =
αL

αm
=

d(L)

d(m)
=

l(m)

d(m)
. (B.4b)

Combining (B.4b) with (B.4a), and rearranging terms yields the desired expression for c in
terms of ρ and κ.

The analytical expressions in Theorem 5 imply that for the parameters in (3.32), the
function Ĵ(λ) is symmetric over [m,L], i.e., Ĵ(λ) = Ĵ(m + L − λ) for all λ ∈ [m,L].
In addition, as we demonstrate in Appendix B.2, Ĵ(λ) is convex. Thus, Ĵ(λ) attains its
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maximum at λ = m and λ = L and we can use the expression for Ĵ(λ) in Theorem 5 to
obtain the maximum value,

Ĵ(m) =
σ2
w(d(m) + (m))

2h(m)d(m)l(m)
=

σ2
w(κ + 1)

2h(m)l(m)
(B.4c)

where the second equality follows from (B.4b). Combining (B.4a) and (B.4c) yields the
expression for Ĵ(m).

Also, symmetry and convexity imply that Ĵ(λ) attains its minimum at the midpoint
λ = λ̂ := (m + L)/2 = (1 + β)/α. This point corresponds to (b(λ̂), a(λ̂)) = (0, cρ2) in the
(b, a)-plane and it thus satisfies

h(λ̂) = 1 − cρ2, d(λ̂) = l(λ̂) = 1 + cρ2. (B.4d)

Using (B.4d) to evaluate the expression for Ĵ(λ) at the point λ = λ̂ yields the desired
minimum value.

B.4.2 Proof of Proposition 2

Using the expressions established in Lemma 4, it is straightforward to verify that

Ĵ(m)× Ts = σ2
w p1c(ρ)κ(κ + 1)

Ĵ(λ̂)× Ts = σ2
w κ p2c(ρ)

and that, for the gradient noise model (σw = ασ), we have

Ĵ(m)× Ts = σ2 p3c(ρ)κ(κ + 1)

Ĵ(λ̂) = σ2 κ p2c(ρ)

where the functions p1c(ρ)-p4c(ρ) are given by (3.36). Thus, the expressions for Jmax and Jmin

follow from Corollary 2. The bounds on p1c(ρ)-p4c(ρ) follow from the fact that, for ρ ∈ (0, 1),
we have

qc(ρ) =
1− cρ
1− cρ2

∈
{

[1/(1 + cρ), 1] c ∈ [0, 1]
[1/2, 2] c ∈ [−1, 0].

This completes the proof.

B.4.3 Proof of Proposition 3

Using the expressions established in Lemma 4, it is straightforward to verify that

Ĵ(m) = σ2
w p5c(ρ) (1 + 1/κ)Ts

Ĵ(λ̂) = σ2
wp6c(ρ)Ts/κ

where p5c and p6c are given by Proposition 3. Thus, the expressions for Jmax and Jmin follow
from Corollary 2. The bounds on p5c and p6c also follow from c ∈ [−1, 0] and ρ ∈ (0, 1).
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B.4.4 Proof of Proposition 4

We show that (α, β, γ) correspond to the parameterized family of Nesterov-like algorithms in
which the end points of the line segment (b(λ), a(λ)), λ ∈ [m,L], lie on the edges XρZρ and
YρZρ of the ρ-linear convergence triangle ∆ρ. In particular, we can use a scalar c ∈ [0, 1/2]
to parameterize the lines passing through the origin via a = −cρb. This yields

(b(m), a(m)) = (−ρ/(1 − c), cρ2/(1 − c))

(b(L), a(L)) = (ρ/(1 + c),−cρ2/(1 + c)).

Using the definitions of a and b in (3.18c), we can solve the above equations for (α, β, γ) to
verify the desired parameters. Thus, the algorithm achieves the convergence rate ρ and the
extreme points c = 0 and c = 1/2 recover gradient descent and Nesterov’s method with the
parameters provided in Table 3.1 that optimize settling times.

In Lemma 1, we establish expressions for the convergence rate and largest/smallest modal
contributions to noise amplification in terms of the condition number for this family of
parameters.

Lemma 1 For the class of functions QLm with condition number κ = L/m, the extreme
values Ĵmax and Ĵmin of Ĵ(λ) over [m,L] associated with the two-step momentum algorithm
in (3.2) with parameters (3.38) satisfy

Ĵmax = Ĵ(m) =
σ2
w(1 − c)2(rκ + 1)

2(1− c− cρ2)(1 + ρ)(1− c+ cρ)

≥ Ĵ(L) =
σ2
w(1 + c)2(1 + c− cρ2)

(1− ρ2)(1 + c− cρ)(1 + c+ cρ)(1 + c+ cρ2)

and Ĵmin = Ĵ(1/α) = σ2
w, where the scalar r ∈ [1, 3] is given by

r := (1 + c)(1− c+ cρ)/ ((1− c)(1 + c− cρ))

and the scalar c ∈ [0, 1/2] is given by Proposition 4.

Proof: The values of h, d, and l in (3.29) are given by

h(m) = (1 − c − cρ2)/(1 − c) h(L) = (1 + c + cρ2)/(1 + c)

d(m) = (1 − ρ)(1 − c − cρ)/(1 − c) d(L) = (1 + ρ)(1 + c − cρ)/(1 + c)

l(m) = (1 + ρ)(1 − c + cρ)/(1 − c) l(L) = (1 − ρ)(1 + c + cρ)/(1 + c)

(B.5a)

and the condition number is determined by

κ =
αL

αm
=

d(L)

d(m)
=

l(m)

rd(m)
(B.5b)

where we let r := l(m)/d(L). By combining this identity with the expressions in (B.5a), and
rearranging terms, we can obtain the desired quadratic equation for c in terms of ρ and κ. To
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see that r ∈ [1, 3], from Figure 3.3 we observe that as we change the orientation from gradient
descent (c = 0) to Nesterov’s method with parameters that optimize the convergence rate
(c = 1/2), l(m) and 1/d(L) monotonically increase. Thus, r is also increasing in c, and its
smallest and largest values are obtained for c = 0 and c = 1/2, respectively, which yields
1 ≤ r ≤ 3(1 + ρ)/(3− ρ) ≤ 3.

As we demonstrate in Appendix B.2, Ĵ as a function of (b, a) takes its minimum Ĵmin = σ2
w

at the origin. In addition, for each c ∈ [0, 1/2], the line segment (b(λ), a(λ)), λ ∈ [m,L],
passes through the origin at λ = 1/α. Thus, the minimum of Ĵ(λ) occurs at λ = 1/α and is
given by Ĵmin = σ2

w.
We next show that Ĵ(m) is the larges value of Ĵ(λ) over [m,L]. Since Ĵ(λ) is a convex

function of λ (see Appendix B.2), it attains its maximum at one of the boundary points
λ = m and λ = L. To show Ĵ(m) > Ĵ(L), we first obtain expressions for Ĵ(m) and Ĵ(L)
in terms of ρ and c by combining (B.5a) with the analytical expression for Ĵ in Theorem 5.
By properly rearranging terms and simplifying fractions, we can obtain the equivalence

Ĵ(m) ≥ Ĵ(L) ⇐⇒ c4ρ4 − c4ρ2 − c2ρ2 − c2 + 1 ≥ 0.

For ρ ∈ [0, 1] and c ∈ [0, 1/2], it is easy to verify that the inequality on the right-hand holds.
To obtain the maximum value, we use Theorem 5 to write

Ĵ(m)

σ2
w

=
d(m) + (m)

2h(m)d(m)l(m)
=

rκ + 1

2h(m)l(m)
(B.5c)

Combining (B.5a) with (B.5c) yields the desired value for Ĵ(m). �

Lemma 1 allows us to derive analytical expressions for the largest and smallest values
that J takes over f ∈ QLm.

Corollary 1 The parameterized family of Nesterov-like methods (3.38) satisfies

Jmax = (n − 1)Ĵ(m) + Ĵ(L)

Jmin = Ĵ(m) + Ĵ(L) + (n − 2)Ĵ(1/α)

where Ĵ(m), Ĵ(L), Ĵ(1/α) are given by Lemma 1, and Jmax, Jmin are the extreme values of
J when the algorithm is applied to f ∈ QLm with condition number κ = L/m.

Proof: The result follows from combining Lemma 1 and the expression J =
∑n

i=1 Ĵ(λi)
established in Theorem 5. In particular, J is maximized when Q has n− 1 eigenvalues at m
and one at L, and it is minimized when, apart from the extreme eigenvalues m and L, the
rest are at λ = 1/α. �

We next establish order-wise tight upper and lower bounds on Ĵmax/(1−ρ) and Ĵmin/(1−ρ)
in terms of κ.
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Lemma 2 For the parameterized family of Nesterov-like methods (3.38), the largest and
smallest modal contributions to variance amplification established in Lemma 1 satisfy

σ2
wω1r κ(r κ + 1) ≤ Ĵmax × Ts ≤ σ2

wω2r κ(r κ + 1)

σ2
w

√
3κ+ 1/2 ≤ Ĵmin × Ts ≤ σ2

w(κ + 1)/2

where the scalar ω1 := (1 + ρ)−3(1 − c)2(1 − c + cρ)−2/2, ω2 := (1 + ρ)ω1, and we have
(1 + ρ)−5 ≤ ω1 ≤ (1 + ρ)−3.

Proof: To obtain the upper and lower bounds on Ĵmax×Ts = Ĵ(m)×Ts, we combine (B.5b)
and (B.5c) to write

Ĵ(m) =
rκ(rκ + 1)

2h(m)(l(m))2/d(m)

where we set σw = 1. This equation in conjunction with the trivial inequalities

1 ≤ (1 − ρ)h(m)/d(m) ≤ 1 + ρ

allows us to write

rκ(rκ + 1)

2(1 + ρ)l2(m)
≤ Ĵ(m)

1 − ρ
≤ rκ(rκ + 1)

2l2(m)
. (B.6)

Combining (B.5a) and (B.6) yields the desired bounds on Ĵmax/(1−ρ). Finally, the bounds on
Ĵmin×Ts = σ2

w/(1−ρ) can be obtained by noting that Ts = 1/(1−ρ) ∈ [
√

3κ+ 1/2, (κ+1)/2]
as shown in Lemma 1. �
Similar to the heavy-ball-like methods, Ĵmax × Ts = Θ(κ2). However, the upper and lower
bounds on Ĵmin × Ts scale linearly with κ and

√
κ, respectively. We next use this result to

bound J × Ts and complete the proof of Proposition 4. In particular, we have

(n− 1)ω1rκ(rκ + 1) +

√
3κ+ 1

2
≤ Jmax × Ts

σ2
w

≤ nω2rκ(rκ + 1)

ω1rκ(rκ + 1) + (n− 1)

√
3κ+ 1

2
≤ Jmin × Ts

σ2
w

≤ ω2rκ(rκ + 1) + (n− 1)
κ+ 1

2

where the scalar r ∈ [1, 3], and ω1 and ω2 are given by Lemmas 1 and 2, respectively. To
see this, note that as shown in the proof of Corollary 1, J/(1 − ρ) is maximized when Q
has n − 1 eigenvalues at m and one at L, and is minimized when, apart from the extreme
eigenvalues m and L, the rest are placed at λ = 1/α. Employing the bounds on Ĵmax = Ĵ(m)
and Ĵmin = Ĵ(1/α) provided by Lemma 2 and noting that Ĵ(L) ∈ [Ĵmin, Ĵmax] completes the
proof.
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B.5 Proofs of Section 3.6

B.5.1 Proof of Lemma 5

Stability can be verified using the Routh-Hurwitz criterion applied to the characteristic poly-
nomial F (s) = det (sI −M) = s2 + bs + a. Similarly, conditions for ρ-exponential stability
can be obtained by applying the Routh-Hurwitz criterion to the characteristic polynomial
Fρ(s) associated with the matrix M + ρI, i.e.,

Fρ(s) = s2 + (b − 2ρ)s + ρ2 − ρb + a

and noting that strict inequalities become non-strict as we require < (eig(M + ρI)) to be
non-positive.

B.5.2 Proof of Proposition 5

The ρ-exponential stability of (3.41b) with α = 1/L is equivalent to the inclusion of the line
segment (b(λ), a(λ)), λ ∈ [m,L], in the triangle ∆ρ in (3.44), where a(λ) and b(λ) are given
by (3.42c). In addition, using the convexity of ∆ρ, this condition further reduces to the end
points (b(L), a(L)) and (b(m), a(m)) belonging to ∆ρ. Now since a(L) = 1, a(m) = 1/κ, the
above condition implies

amax/amin ≥ κ (B.7)

where amax and amin are the largest and smallest values that a can take among all (b, a) ∈ ∆ρ.
It is now easy to verify that amax = 1 and amin = ρ2 correspond to the edge YρZρ and the
vertex Xρ of ∆ρ, respectively; see Figure 3.5. Thus, inequality (B.7) yields the upper bound
ρ ≤ 1/

√
κ and we can achieve this rate with,

(b(m), a(m)) = Xρ, (b(L), a(L)) = Ev (B.8)

where Ev := (bv, 1) = (2ρ + v(ρ − 1/ρ), 1), v ∈ [0, 1], parameterizes the edge YρZρ. Solving
the equations in (B.8) for γ and β yields the optimal values of parameters. Finally, letting
γ = 0 and γ = β yields the conditions on v for the heavy-ball and Nesterov’s method,
respectively. The condition κ ≥ 4 for Nesterov’s method stems from the fact that, for
α = 1/L, setting γ = β yields b(L) = 1. Thus, we have the necessary condition 2ρ ≤ 1 to
ensure (b(L), a(L)) ∈ ∆ρ; see Figure 3.6. This completes the proof.

B.5.3 Proof of Theorem 7

Let G := (bG, aG) be the point on the edge XρZρ of the triangle ∆ρ in (3.44) such that

aG = a(m), bG = a(m)/ρ + ρ.
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Using (b(m), a(m)) ∈ ∆ρ, it is easy to verify that bG ≥ b(m). This allows us to write

Ĵ(m)

ρ
=

1

2a(m)b(m) ρ
≥ 1

2a(m)bG ρ
=

1

2a(m)(a(m) + ρ2)
.

Combining the above inequality with a(m) = 1/κ and the upper bound ρ ≤ 1/
√
κ from

Lemma 5 yields

Ĵ(m)/ρ ≥ κ2/4. (B.9)

Noting that among the points in ∆ρ, the modal contribution Ĵ = 1/(2ab) takes its minimum
value

Ĵmin = 1/(2ρ+ 2/ρ) (B.10)

at the vertex Zρ = (1, ρ+ 1/ρ), we can write

J

ρ
=

Ĵ(m)

ρ
+

n−1∑
i= 1

Ĵ(λi)

ρ
≥ κ2

4
+

n − 1

2(1 + ρ2)

where we use (B.9) to lower bound the first term Ĵ(m)/ρ. This completes the proof of (3.48b).
To prove the lower bound in (3.48a), we consider a quadratic objective function for which

the Hessian has n−1 eigenvalues at λ = m and one eigenvalue at λ = L. For such a function,
we can write

Jmax ≥ J = Ĵ(m)(n − 1) + Ĵ(L).

Finally, we lower bound the right hand-side using (B.9) and (B.10) to complete the proof.

B.6 Lyapunov equations and the steady-state variance
For the discrete-time LTI system in (3.4a), the covariance matrix P t := E

(
ψt(ψt)T

)
of the

state vector ψt satisfies the linear recursion

P t+1 = AP tAT + BBT (B.11a)

and its steady-state limit
P := lim

t→∞
E
[
ψt(ψt)T

]
(B.11b)

is the unique solution to the algebraic Lyapunov equation [41],

P = APAT + BBT . (B.11c)
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For stable LTI systems, performance measure (3.8) can be computed using

J = lim
t→∞

1

t

t∑
k= 0

trace
(
Zk
)

= trace (Z) (B.11d)

where Z = CPCT is the steady-state limit of the output covariance matrix

Zt := E
[
zt(zt)T

]
= CP tCT .

We can prove Theorem 5 by finding the solution P to (B.11c) for the two-step momentum
algorithm. The above results carry over to the continuous-time case with the only difference
that the Lyapunov equation for the steady-state covariance matrix of ψ(t) is given by

AP + PAT = −BBT .
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Appendix C

Supporting proofs for Chapter 4

C.1 Proofs of Section 4.2
We first present a technical lemma that we use in our proofs.

Lemma 1 For any ρ ∈ [1/e, 1), a(t) := tρt satisfies

argmax
t≥ 1

a(t) = −1/log(ρ), max
t≥ 1

a(t) = −1/(e log(ρ)).

Proof: Follows from the fact that da/dt = ρt(1 + t log(ρ)) vanishes at t = −1/ log(ρ). �

C.1.1 Proof of Lemma 1

For µ1 6= µ2, the eigenvalue decomposition of M is determined by

M =
1

µ2 − µ1

[
1 1
µ1 µ2

] [
µ1 0
0 µ2

] [
µ2 −1
−µ1 1

]
.

Computing the tth power of the diagonal matrix and multiplying throughout completes the
proof for µ1 6= µ2. For µ1 = µ2 =: µ, M admits the Jordan canonical form

M =

[
1 0
µ 1

] [
µ 1
0 µ

] [
1 0
−µ 1

]
and the proof follows from [

µ 1
0 µ

]t
=

[
µt t µt−1

0 µt

]
.
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C.1.2 Proof of Lemma 2

From Lemma 1, it follows

[
1 0

]
M t =

[
−
t−2∑
i= 0

µi+1
1 µt−1−i

2

t−1∑
i= 0

µi1µ
t−1−i
2

]

where µ1 and µ2 are the eigenvalues of M . Moreover,

|
t−2∑
i= 0

µi+1
1 µt−1−i

2 | ≤
t−2∑
i= 0

|µi+1
1 µt−1−i

2 | ≤
t−2∑
i= 0

ρt ≤(t− 1)ρt

|
t−1∑
i= 0

µi1µ
t−1−i
2 | ≤

t−1∑
i= 0

|µi1µt−1−i
2 | ≤

t−1∑
i= 0

ρt−1 ≤ tρt−1

by triangle inequality. Finally, for µ1 = µ2 ∈ R, we have ρ = |µ1| = |µ2| and the above
inequalities become equalities.

C.1.3 Proof of Theorem 1

Let µ1i and µ2i be the eigenvalues and let ρi = max {|µ1i|, |µ2i|} be the spectral radius of Ai.
We can use Lemma 2 with M := Ai to obtain

max
i≤ r
‖CiAti‖2

2 ≤ max
i≤ r

(
(t− 1)2ρ2t

i + t2ρ2t−2
i

)
≤ (t− 1)2ρ2t + t2ρ2t−2

(C.1)

where ρ := maxi≤r ρi. For the parameters provided in Table 4.1, the matrices A1 and Ar,
that correspond to the largest and smallest non-zero eigenvalues of Q, i.e., λ1 = L and
λr = m, respectively, have the largest spectral radius [93, Eq. (64)],

ρ = ρ1 = ρr ≥ ρi, i = 2, . . . , r − 1 (C.2)

and Ar has repeated eigenvalues. Thus, we can write

max
i≤ r
‖CiAti‖2

2 ≥ ‖
[

1 0
]
Atr‖2

2 =

(t− 1)2ρ2t
r + t2ρ2t−2

r = (t− 1)2ρ2t + t2ρ2t−2
(C.3)

where the first equality follows from Lemma 2 applied to M := Ar and the second equality
follows from (C.2). Finally, combining (C.1) and (C.3) with β < ρ and Proposition 1
completes the proof.

C.1.4 Proof of Theorem 2

Let a(t) := tρt. Theorem 1 implies J2(t) = ρ2a2(t − 1) + ρ−2a2(t) and, for t ≥ 1, J(t)
has only one critical point, which is a maximizer. Moreover, since dJ2(t)/dt is positive
at t = −1/ log(ρ) and negative at t = 1 − 1/ log(ρ), we conclude that the maximizer lies
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between −1/ log(ρ) and 1 − 1/ log(ρ). Regarding maxt J(t), we note that
√

2ρa(t − 1) ≤
J(t) ≤

√
2a(t)/ρ and the proof follows from maxt≥1 a(t) = −1/(e log(ρ)) (cf. Lemma 1).

C.1.5 Proof of Proposition 2

Since for all a ≤ 1, we have [167]

a ≤ − log (1− a) ≤ a/(1− a)

ρhb = 1− 2/(
√
κ+ 1) and ρna = 1− 2/(

√
3κ+ 1) satisfy

2/(
√
κ+ 1) ≤ − log(ρhb) ≤ 2/(

√
κ− 1)

2/
√

3κ+ 1 ≤ − log(ρna) ≤ 2/(
√

3κ+ 1− 2).

The conditions on κ ensure that ρhb and ρna are not smaller than 1/e and we combine the
above bounds with Theorem 2 to complete the proof.

C.2 Proof of Theorem 3
The condition x0 = x1 is equivalent to x̂0

i = x̂1
i in (4.5). Thus, for λi = 0, equation (4.12)

yields x̂ti = x̂0
i = x̂?i . For λi 6= 0, we have ψ̂0

i − ψ̂?i =
[
x̂0
i x̂0

i

]T and, hence,

‖xt − x?‖2

‖x0 − x?‖2

≤ max
i≤ r

|x̂ti − x̂?i |
|x̂t0 − x̂?i |

= max
i≤ r

∣∣∣∣CiAti [ 1
1

]∣∣∣∣ (C.4a)

where the equality follows from (4.10). To bound the right-hand side, we use Lemma 1 with
M = Ai to obtain

CiA
t
i

[
1
1

]
=
[

1 0
]
Ati

[
1
1

]
= ωt(µ1i, µ2i) (C.4b)

where µ1i and µ2i are the eigenvalues of Ai and

ωt(z1, z2) :=
t−1∑
i= 0

zi1z
t−1−i
2 −

t−1∑
i= 1

zi1z
t−i
2 (C.5)

for any t ∈ N and z1, z2 ∈ C.
For Nesterov’s accelerated method, the characteristic polynomial det(zI − Ai) = z2 −

(1 + β)hiz + βhi yields µ1i, µ2i = ((1 + β)hi ±
√

(1 + β)2h2
i − 4βhi)/2, where λi is the ith

the eigenvalue of Q and hi := 1− αλi. For the parameters provided in Table 4.1, it is easy
to show that:

• For λi ∈ [m, 1/α], we have hi ∈ [0, 4β/(1+β)2] and µ1i and µ2i are complex conjugates
of each other and lie on a circle of radius β/(1 + β) centered at z = β/(1 + β).

• For λi ∈ (1/α, L], µ1i and µ2i are real with opposite signs and can be sorted to satisfy
|µ2i| < |µ1i| with −1 ≤ µ1i ≤ 0 ≤ µ2i ≤ 1/3.
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The next lemma provides a unit bound on |ωt(µ1i, µ2i)| for both of the above cases.

Lemma 2 For any z = l cos(θ)eiθ ∈ C with |θ| ≤ π/2 and 0 ≤ l ≤ 1, and for any real
scalars (z1, z2) such that −1 ≤ z1 ≤ 0 ≤ z2 ≤ 1/3, and z2 < −z1, the function ωt in (C.5)
satisfies |ωt(z, z̄ )| ≤ 1 and |ωt(z1, z2)| ≤ 1 for all t ∈ N, where z̄ is the complex conjugate
of z.

Proof: Since ω1(z1, z2) = 1, we assume t ≥ 2. We first address θ = 0, i.e., z = l ∈ R and
ωt(z, z̄ ) = tlt−1− (t− 1)lt. We note that dωt/dl = t(t− 1)(lt−2− lt−1) = 0 only if l ∈ {0, 1}.
This in combination with l ∈ [0, 1] yield |ωt(l, l)| ≤ max{|ωt(1, 1)| , |ωt(0, 0)|} ≤ 1.

To address θ 6= 0, we note that b(t) := sin(tθ)/t satisfies

|b(t)| ≤ |sin(θ)| (C.6)

which follows from

|sin(tθ)| = |sin((t− 1)θ) cos(θ) + cos((t− 1)θ) sin(θ)| ≤ |sin((t− 1)θ)| + |sin(θ)| .

For z = l cos(θ)eiθ, we have

ωt(z, z̄ ) = (zt − z̄ t − zz̄ (zt−1 − z̄ t−1))/(z − z̄ )

= (l cos(θ))t−1(sin(tθ)− l cos(θ) sin((t− 1)θ))/sin(θ).

Thus, dωt/dl = 0 only if l = 0, 1, or l? := b(t)/(b(t−1) cos(θ)). Moreover, it is straightforward
to show that

ωt(z, z̄ ) =


0, l = 0

(cos(θ))t−1 cos((t− 1)θ), l = 1

(l? cos(θ))t−1b(t)/sin(θ), l = l?.

Combining this with (C.6) completes the proof for complex z.
To address the case of z1, z2 ∈ R, we note that

ωt(z1, z2) =
(
zt1(1 − z2) − zt2(1 − z1)

)
/(z1 − z2).

Thus, differentiating with respect to z1 yields

dωt
dz1

= (1− z2)
(t− 1)zt−1

1 − z2

∑t−2
i= 0 z

t−2−i
1 zi2

z1 − z2

.

Moreover, from |z2| < |z1|, it follows that

(t− 1)
∣∣zt−1

1

∣∣ > |z2|
t−2∑
i= 0

∣∣zt−2−i
1 zi2

∣∣ > ∣∣∣∣∣z2

t−2∑
i= 0

zt−2−i
1 zi2

∣∣∣∣∣ .
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Therefore, dωt/dz1 6= 0 over our range of interest for z1, z2. Thus, ωt(z1, z2) may take its
extremum only at the boundary z1 ∈ {0,−1}, i.e. |ωt(z1, z2)| ≤ max{|ωt(0, z2)| , |ωt(1, z2)|}.
Finally, it is easy to show that |ωt(0, z2)| =

∣∣zt−1
2

∣∣ < 1, and

|ωt(−1, z2)| =
∣∣(−1)t(z2 − 1) + 2zt2

∣∣/(1 + z2) ≤ 1.

�

We complete the proof of Theorem 3 by noting that the eigenvalues of the matrices Ai
for Nesterov’s algorithm with parameters provided in Table 4.1 satisfy the conditions in
Lemma 2.

C.3 Proofs of Section 4.3

C.3.1 Proof of Lemma 3

For any f ∈ FLm, the L-Lipschitz continuity of the gradient ∇f ,

f(xt+2) − f(yt) ≤ (∇f(yt))T (xt+2 − yt) +
L

2
‖xt+2 − yt‖2

2 (C.7a)

and the m-strong convexity of f ,

f(yt) − f(xt+1) ≤ (∇f(yt))T (yt − xt+1) − m

2
‖yt − xt+1‖2

2 (C.7b)

can be used to show that (4.20) for the solution of Nesterov’s accelerated algorithm (4.18).
In particular, for (4.18) we have ut := ∇f(yt) and

xt+2 − yt = −αut
yt − xt+1 = β(xt+1 − xt) =

[
−βI βI

]
ψt.

(C.8)

Substituting (C.8) into (C.7a) and (C.7b) and adding the resulting inequalities completes
the proof.

C.3.2 Proof of Lemma 4

Pre- and post-multiplication of LMI (4.21) by (ηt)T and ηt := [ (ψt)T (ut)T ]T yields

0 ≥ (ηt)T
[
ATX A−X ATX B
BT X A BT X B

]
ηt + θ1(ηt)TM1η

t + θ2(ηt)TM2η
t

≥ (ηt)T
[
ATX A−X ATX B
BT X A BT X B

]
ηt + θ2(ηt)TM2η

t

where the second inequality follows from (4.19c). This yields

0 ≤ V̂ (ψt) − V̂ (ψt+1) − θ2(ηt)TM2η
t (C.9)
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where V̂ (ψ) := ψTXψ. Also, since Lemma 3 implies

− (ηt)TM2η
t ≤ 2

(
f(xt+1) − f(xt+2)

)
(C.10)

combining (C.9) and (C.10) yields

V̂ (ψt+1) + 2θ2f(xt+2) ≤ V̂ (ψt) + 2θ2f(xt+1).

Thus, using induction, we obtain the uniform upper bound

V̂ (ψt) + 2θ2f(xt+1) ≤ V̂ (ψ0) + 2θ2f(x1). (C.11)

This allows us to bound V̂ by writing

λmin(X)‖ψ‖2
2 ≤ V̂ (ψ) ≤ λmax(X)‖ψ‖2

2. (C.12a)

We can also upper and lower bound f ∈ FLm as

m‖x‖2
2 ≤ 2f(x) ≤ L‖x‖2

2. (C.12b)

Finally, combining (C.11) and (C.12) yields

λmin(X)‖ψt‖2
2 + mθ2‖xt+1‖2

2 ≤ λmax(X)‖ψ0‖2
2 + Lθ2‖x1‖2

2.

We complete the proof by noting that ‖xt+1‖2 ≤ ‖ψt‖2.

C.3.3 Proof of Theorem 4

To prove (4.23a), we need to find a feasible solution for θ1, θ2 and X in terms of the condition
number κ. Let us define

X :=

[
x1I x0I
x0I x2I

]
= x2

[
β2I −βI
−βI I

]
θ2 := θ1(L+m)β/(1− β)

x2 := ((L+m)θ1 + θ2)/α = θ2/(αβ).

(C.13)

If (C.13) holds, it is easy to verify that X � 0 with λmin(X) = 0, λmax(X) = (1 + β2)x2 =
θ2(1+β2)/(αβ), and ATXA−X = 0. Moreover, the matrixW on the left-hand-side of (4.21)
is block-diagonal, W := diag (W1,W2), and negative semi-definite for all α ≤ 1/L, where

W1 = −m(2θ1LC
T
y Cy + θ2C

T
2 C2) � 0

W2 = − ((2− α(L+m)) θ1 + α(1− αL) θ2) I � 0.
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Thus, the choice of (θ1, θ2, X) in (C.13) satisfies the conditions of Lemma 4. Using the
expressions for the largest and smallest eigenvalues of the matrix X in equation (4.22) in
Lemma 4, leads to the upper bound for ‖xt‖2

2 in (4.23a). Furthermore, from (4.23a) we have

‖xt‖2
2 ≤ κ

(
1 + (1 + β2)/(αβL)

)
‖ψ0‖2

2

and the upper bound in (4.23c) follows from the fact that, for α and β in (4.23b), 1 + (1 +
β2)/(αβL) = 3 + 4/(κ− 1).

To obtain the lower bound in (4.23c), we employ our framework for quadratic objective
functions in Section 4.2. In particular, for the parameters α and β in (4.23b), the largest
spectral radius ρ(Ai) corresponds to An, which is associated with the smallest eigenvalue
λn = m of Q. Since An has repeated real eigenvalues ρ = 1− 1/

√
κ, using similar arguments

as in Theorem 1 for quadratic problems we obtain,

J(tmax) =
√

(tmax − 1)2ρ2tmax + t2maxρ
2(tmax−1)

≥
√

2 (tmax − 1) ρtmax ≥
√

2(
√
κ− 1)2/(e

√
κ)

which completes the proof.

204



Appendix D

Supporting proofs for Chapter 6

D.1 Lack of convexity of function f

The function f is nonconvex in general because its effective domain, namely, the set of
stabilizing feedback gains SK can be nonconvex. In particular, for A = 0 and B = −I, the
closed-loop A-matrix is given by A−BK = K. Now, let

K1 =

[
−1 2− 2ε
0 −1

]
, K2 =

[
−1 0

2− 2ε −1

]
, K3 =

K1 +K2

2
=

[
−1 1− ε

1− ε −1

]
(D.1)

where 0 ≤ ε � 1. It is straightforward to show that for ε > 0, the entire line-segment
K1K2 lies in SK . However, if we let ε → 0, while the endpoints K1 and K2 converge to
stabilizing gains, the middle point K3 converges to the boundary of SK . Thus, f(K1) and
f(K2) are bounded whereas f(K3) → ∞. This implies the existence of a point on the
line-segment K1K2 for some ε � 1 for which the function f has negative curvature. For
ε = 0.1, Fig. D.1 illustrates the value of the LQR objective function f(K(γ)) associated
with the above example and the problem parameters Q = R = Ω = I, where K(γ) :=
γK1 + (1− γ)K2 is the line-segment K1K2. We observe the negative curvature of f around
the middle point K3. Alternatively, we can verify the negative curvature using the second-
order term 〈J,∇2f(K); J〉 in the Taylor series expansion of f(K + J) around K given in
Appendix D.7. For the above example, letting J = (K1−K2)/‖K1−K2‖ yields the negative
value 〈J,∇2f(K3); J〉 = −135.27.

f
(K

(γ
))

γ

Figure D.1: The LQR objective function f(K(γ)), where K(γ) := γK1 + (1 − γ)K2 is the
line-segment between K1 and K2 in (D.1) with ε = 0.1.
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D.2 Invertibility of the linear map A
The invertibility of the map A is equivalent to the matrices A and −AT not having any
common eigenvalues. If A is non-invertible, we can use K0 ∈ SK to introduce the change
of variables K̂ := K − K0 and Ŷ := K̂X and obtain f(K) = ĥ(X, Ŷ ) := trace (Q0X +
X−1Ŷ TR Ŷ + 2Ŷ TRK0) for all K ∈ SK , where Q0 := Q + (K0)TRK0. Moreover, X and
Ŷ satisfy the affine relation A0(X) − B(Ŷ ) + Ω = 0, where A0(X) := (A − BK0)X +
X(A − BK0)T . Since the matrix A − BK0 is Hurwitz, the map A0 is invertible. This
allows us to write X as an affine function of Ŷ , X(Ŷ ) = A−1

0 (B(Ŷ )−Ω). Since the function
ĥ(Ŷ ) := ĥ(X(Ŷ ), Ŷ ) has a similar form to h(Y ) except for the linear term 2 trace (Ŷ TRK0),
the smoothness and strong convexity of h(Y ) established in Proposition 1 carry over to the
function ĥ(Y ).

D.3 Proof of Proposition 1
The second-order term in the Taylor series expansion of h(Y + Ỹ ) around Y is given by [121,
Lemma 2] 〈

Ỹ ,∇2h(Y ; Ỹ )
〉

= 2 ‖R 1
2 (Ỹ − KX̃)X−

1
2‖2

F (D.2)

where X̃ is the unique solution to A(X̃) = B(Ỹ ). We show that this term is upper and
lower bounded by L‖Ỹ ‖2

F and µ‖Ỹ ‖2
F , where L and µ are given by (6.10a) and (6.10b),

respectively. The proof for the upper bound is borrowed from [121, Lemma 1]; we include
it for completeness. We repeatedly use the bounds on the variables presented in Lemma 15;
see Appendix D.11.

Smoothness

For any Y ∈ SY (a) and Ỹ with ‖Ỹ ‖F = 1,〈
Ỹ ,∇2h(Y ; Ỹ )

〉
= 2‖R

1
2 (Ỹ − KX̃)X−

1
2‖2

F ≤ 2‖R‖2‖X−1‖2‖Ỹ − KA−1B(Ỹ )‖2
F

≤ 2 ‖R‖2

λmin(X)

(
‖Ỹ ‖F + ‖K‖2‖A−1B‖2‖Ỹ ‖F

)2

≤ 2a‖R‖2

ν

(
1 +

a‖A−1B‖2√
νλmin(R)

)2

=: L.

Here, the first and second inequalities are obtained from the definition of the 2-norm in
conjunction with the triangle inequality, and the third inequality follows from (D.36b)
and (D.36c). This completes the proof of smoothness.
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Strong convexity

Using the positive definiteness of matrices R and X, the second-order term (D.2) can be
lower bounded by 〈

Ỹ ,∇2h(Y ; Ỹ )
〉
≥ 2λmin(R)‖H‖2

F

‖X‖2

(D.3)

where H := Ỹ −KX̃. Next, we show that

‖H‖F
‖X̃‖F

≥ λmin(Ω)λmin(Ω)

a ‖B‖2

. (D.4)

We substitute H +KX̃ for Ỹ in A(X̃) = B(Ỹ ) to obtain

Γ = B(H) (D.5)

where Γ := AK(X̃). The closed-loop stability implies X̃ = A−1
K (Γ) and from Eq. (D.5) we

have

‖H‖F ≥
‖Γ‖F
‖B‖2

. (D.6)

This allows us to use Lemma 17, presented in Appendix D.12, to write

a‖Γ‖F ≥ λmin(Ω)λmin(Q)‖X̃‖F .

This inequality in conjunction with (D.6) yield (D.4). Next, we derive an upper bound on
‖Ỹ ‖F ,

‖Ỹ ‖F = ‖H + KX̃‖F ≤ ‖H‖F + ‖K‖F‖X̃‖F ≤ ‖H‖F
(
1 + a2η

)
(D.7)

where η is given by (6.10c) and the second inequality follows from (D.36d) and (D.4). Finally,
inequalities (D.3) and (D.7) yield〈

Ỹ ,∇2f(Y ; Ỹ )
〉

‖Ỹ ‖2
F

≥ 2λmin(R)‖H‖2
F

‖X‖2‖Ỹ ‖2
F

≥ 2λmin(R)

‖X‖2(1 + a2η)2
≥ 2λmin(R)λmin(Q)

a(1 + a2η)2
=: µ

(D.8)

where the last inequality follows from (D.36a).

D.4 Proofs for Section 6.5

Proof of Lemma 1

The gradients are given by ∇f(K) = EX and ∇h(Y ) = E + 2BT (P −W ), where E :=
2(RK − BTP ), P is determined by (6.6a), and W is the solution to (6.11b). Subtracting
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the equation in (6.11b) from (6.6b) yields AT (P −W ) + (P −W )A = −1
2

(
KTE + ETK

)
,

which in turn leads to

‖P −W‖F ≤ ‖A−1‖2‖K‖F‖E‖F ≤
a‖A−1‖2‖E‖F√

νλmin(R)

where the second inequality follows from (D.36d) in Appendix D.11. Thus, by applying the
triangle inequality to ∇h(Y ), we obtain

‖∇h(Y )‖F
‖E‖F

≤ 1 +
2a‖A−1‖2‖B‖2√

νλmin(R)
.

Moreover, using the lower bound (D.36c) on λmin(X), we have

‖∇f(K)‖F = ‖EX‖F ≥ (ν/a)‖E‖F .

Combining the last two inequalities completes the proof.

Proof of Lemma 2

For any pair of stabilizing feedback gains K and K̂ := K + K̃, we have [152, Eq. (2.10)],
f(K̂) − f(K) = trace

(
K̃T
(
R(K + K̂) − 2BT P̂

)
X
)
, where X = X(K) and P̂ = P (K̂) are

given by (6.4a) and (6.6a), respectively. Letting K̂ = K? in this equation and using the
optimality condition BT P̂ = RK̂ completes the proof.

Proof of Lemma 3

We show that the second-order term
〈
K̃,∇2f(K; K̃)

〉
in the Taylor series expansion of

f(K+ K̃) around K is upper bounded by Lf‖K̃‖2
F for all K ∈ SK(a). From [168, Eq. (2.3)],

it follows 〈
K̃,∇2f(K; K̃)

〉
= 2 trace (K̃TR K̃X − 2K̃TBT P̃X)

where P̃ = (A∗K)−1(C) and C := K̃T (BTP −RK) + (BTP −RK)T K̃. Here, X = X(K) and
P = P (K) are given by (6.4a) and (6.6a) respectively. Thus, using basic properties of the
matrix trace and the triangle inequality, we have〈

K̃,∇2f(K; K̃)
〉

‖K̃‖2
F

≤ 2‖X‖2

(
‖R‖2 +

2‖B‖2‖P̃‖F
‖K̃‖F

)
. (D.9)

Now, we use Lemma 17 to upper bound the norm of P̃ , ‖P̃‖F ≤ a‖C‖F/(λmin(Ω)λmin(Q)).
Moreover, from the definition of C, the triangle inequality, and the submultiplicative property
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of the 2-norm, we have ‖C‖F ≤ 2‖K̃‖F (‖B‖2‖P‖2 + ‖R‖2‖K‖2). Combining the last two
inequalities gives

‖P̃‖F
‖K̃‖F

≤ 2a

λmin(Ω)λmin(Q)
(‖B‖2‖P‖2 + ‖R‖2‖K‖2)

which in conjunction with (D.9) lead to〈
K̃,∇2f(K; K̃)

〉
‖K̃‖2

F

≤ 2‖X‖2

(
‖R‖2 +

4a

λmin(Ω)λmin(Q)
(‖B‖2

2‖P‖2 + ‖B‖2‖R‖2‖K‖2)

)
.

Finally, we use the bounds provided in Appendix D.11 to obtain〈
K̃,∇2f(K; K̃)

〉
‖K̃‖2

F

≤ 2a‖R‖2

λmin(Q)
+

8a3

λ2
min(Q)λmin(Ω)

(
‖B‖2

2

λmin(Ω)
+
‖B‖2‖R‖2√
νλmin(R)

)

which completes the proof.

D.5 Proofs for Section 6.6.1.1
We first present two technical lemmas.

Lemma 1 Let Z � 0 and let the Hurwitz matrix F satisfy[
δ2I + F TZ + ZF Z

Z −I

]
≺ 0. (D.10)

Then F + δ∆ is Hurwitz for all ∆ with ‖∆‖2 ≤ 1.

Proof: The matrix F + δ∆ is Hurwitz if and only if the linear map from w to x with the
state-space realization {ẋ = Fx + w + u, z = δx} in feedback with u = ∆z is input-output
stable. From the small-gain theorem [86, Theorem 8.2], this system is stable for all ∆ in the
unit ball if and only if the induced gain of the map u 7→ z with the state-space realization
{ẋ = Fx + u, z = δx} is smaller than one. The KYP Lemma [86, Lemma 7.4] implies that
this norm condition is equivalent to (D.10). �

Lemma 2 Let the matrices F , X � 0, and Ω � 0 satisfy

FX + XF T + Ω = 0. (D.11)

Then the matrix F + ∆ is Hurwitz for all ∆ that satisfy ‖∆‖2 < λmin(Ω)/(2‖X‖2).
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Proof: From (D.11), we obtain that F is Hurwitz and FX̂ + X̂F T + I � 0 where
X̂ := X/λmin(Ω). Multiplication of this inequality from both sides by X̂−1 and division
by 2 yields ZF +F TZ+2Z2 � 0 where Z := (2X̂)−1. For any positive scalar δ < λmin(Z) =
λmin(Ω)/(2‖X‖2) the last matricial inequality implies δ2I +ZF +F TZ +Z2 ≺ 0. The result
follows from Lemma 1 by observing that the last inequality is equivalent to (D.10) via the
use of Schur complement. �

Proof of Proposition 3

For any feedback gain K̂ such that ‖K̂ −K‖2 < ζ, the closed-loop matrix A−BK̂ satisfies
‖A−BK̂−(A−BK)‖2 ≤ ‖K−K̂‖2‖B‖2 < ζ‖B‖2. This bound on the distance between the
closed-loop matrices A−BK and A−BK̂ allows us to apply Lemma 2 with F := A−BK
and X := X(K) to complete the proof.

We next present a technical lemma.

Lemma 3 For any K ∈ SK and K̂ ∈ Rm×n such that ‖K̂ −K‖2 < δ, with

δ :=
1

4 ‖B‖F
min

{
λmin(Ω)

trace (X(K))
,

λmin(Q)

trace (P (K))

}
the feedback gain matrix K̂ ∈ SK, and

‖X(K̂) −X(K)‖F ≤ ε1‖K̂ −K‖2 (D.12a)

‖P (K̂) − P (K)‖F ≤ ε2‖K̂ −K‖2 (D.12b)

‖∇f(K̂) −∇f(K)‖F ≤ ε3‖K̂ −K‖2 (D.12c)

|f(K̂) − f(K)| ≤ ε4‖K̂ −K‖2 (D.12d)

where X(K) and P (K) are given by (6.4a) and (6.6a), respectively. Furthermore, the pa-
rameters εi which only depend on K and problem data are given by

ε1 := ‖X(K)‖2/δ

ε2 := 2 trace(P )(2 ‖P‖2‖B‖F + (δ + 2‖K‖2)‖R‖F )/λmin(Q)

ε4 := ε2‖Ω‖F
ε3 := 2(ε1‖K‖2 + 2‖X(K)‖2)‖R‖F + 2ε1(‖P (K)‖2 + 2ε2‖X(K)‖2)‖B‖F .

Proof: Note that δ ≤ ζ, where ζ is given in Proposition 3. Thus, we can use Proposition 3
to show that K̂ ∈ SK . We next prove (D.12a). For K and K̂ ∈ SK , we can represent
X = X(K) and X̂ = X(K̂) as the positive definite solutions to

(A − BK)X + X(A − BK)T + Ω = 0 (D.13a)
(A − BK̂)X̂ + X̂(A − BK̂)T + Ω = 0. (D.13b)
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Subtracting (D.13a) from (D.13b) and rearranging terms yield

(A − BK)X̃ + X̃(A − BK)T = BK̃X̂ + X̂(BK̃)T

where X̃ := X̂ −X and K̃ := K̂−K. Now, we use Lemma 16, presented in Appendix D.12,
with F := A − BK to upper bound the norm of X̃ = F(−BK̃X̂ − X̂(BK̃)T ), where the
linear map F is defined in (D.40), as follows

‖X̃‖F ≤ ‖F‖2‖BK̃X̂ + X̂(BK̃)T‖F ≤
trace(X)

λmin(Ω)
‖BK̃X̂ + X̂(BK̃)T‖F

≤ 2 trace(X)‖B‖F‖K̃‖2

λmin(Ω)

(
‖X‖2 + ‖X̃‖2

)
≤ 2 trace(X)‖B‖F‖K̃‖2‖X‖2

λmin(Ω)
+

1

2
‖X̃‖F . (D.14)

Here, the second inequality follows from Lemma 16, the third inequality follows from a com-
bination of the sub-multiplicative property of the Frobenius norm and the triangle inequality,
and the last inequality follows from ‖K̃‖ ≤ δ and ‖X̃‖2 ≤ ‖X̃‖F . Rearranging the terms
in (D.14) completes the proof of (D.12a).

We next prove (D.12b). Similar to the proof of (D.12a), subtracting the Lyapunov
equation (6.6b) from that of P̂ = P (K̂) yields (A − BK)T P̃ + P̃ (A − BK) = W where
P̃ := P̂ −P andW := (BK̃)T P̂ + P̂BK̃−K̃TR K̃−K̃TRK−KTR K̃. This allows us to use
Lemma 16, presented in Appendix D.12, with F := (A − BK)T to upper bound the norm
of P̃ = F(−W ), where the linear map F is defined in (D.40), as follows

‖P̃‖F ≤ ‖F‖2‖W‖F ≤
trace(F(Q+KTRK))

λmin(Q+KTRK)
‖W‖F

=
trace(P )

λmin(Q+KTRK)
‖W‖F ≤

trace(P )

λmin(Q)
‖W‖F .

Here, the second inequality follows from Lemma 16. This inequality in conjunction with
applying the triangle inequality to the definition of W yield

‖P̃‖F ≤
trace(P )

λmin(Q)
×(

‖(BK̃)T P̃ + P̃ BK̃‖F + ‖(BK̃)TP + P BK̃ − K̃TR K̃ − K̃TRK − KTR K̃‖F
)

≤ ‖P̃‖F
2

+
trace(P )

λmin(Q)

(
2‖P‖2‖B‖F + (δ + 2‖K‖2)‖R‖F

)
‖K̃‖2.

The second inequality is obtained by bounding the two terms on the left-hand side using basic
properties of norm, where, for the first term, ‖K̃‖2 ≤ δ ≤ λmin(Q)/(4‖B‖F trace (P (K)))
and, for the second term, ‖K̃‖2 ≤ δ. Rearranging the terms in above completes the proof
of (D.12b).
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We next prove (D.12c). It is straightforward to show that the gradient (6.5) satisfies

∇̃ := ∇f(K̂)−∇f(K) = 2R(K̃X +KX̃ + K̃X̃) − 2BT (P̃X + PX̃ + P̃ X̃)

where P := P (K) and P̃ := P̂ − P . The triangle inequality in conjunction with ‖X̃‖F ≤
ε1‖K̃‖2, ‖P̃‖F ≤ ε2‖K̃‖2, and ‖K̃‖2 < δ, yield ‖∇̃‖F/‖K̃‖2 ≤ 2‖R‖F (‖X‖2 + ε1(‖K‖2 +
δ)) + 2‖B‖F (ε2‖X‖2 + ε1(‖P‖2 + ε2δ)). Rearranging terms completes the proof of (D.12c).

Finally, we prove (D.12d). Using the definitions of f(K) in (6.3b) and P (K) in (6.6a), it
is easy to verify that f(K) = trace (P (K)Ω). Application of the Cauchy-Schwartz inequality
yields |f(K̂)− f(K)| = |trace (P̃Ω)| ≤ ‖P̃‖F‖Ω‖F , which completes the proof. �

Proof of Lemma 4

For any K ∈ SK(a), we can use the bounds provided in Appendix D.11 to show that c1/a ≤ δ
and ε4 ≤ c2a

2, where δ and ε4 are given in Lemma 3 and each ci is a positive constant that
depends on the problem data. Now, Lemma 3 implies f(K+r(a)U)−f(K) ≤ ε4r(a)‖U‖2 ≤ a
where r(a) := min{c1, 1/c2}/(a

√
mn). This inequality together with f(K) ≤ a complete the

proof.

D.6 Proof of Proposition 4
We first present two technical lemmas.

Lemma 4 Let the matrices F , X � 0, and Ω � 0 satisfy FX + XF T + Ω = 0. Then, for
any t ≥ 0,

‖eFt‖2
2 ≤ (‖X‖2/λmin(X)) e−(λmin(Ω)/‖X‖2) t.

Proof: The function V (x) := xTXx is a Lyapunov function for ẋ = F Tx because V̇ (x) =
−xTΩx ≤ −cV (x), where c := λmin(Ω)/‖X‖2. For any initial condition x0, this inequality
together with the comparison lemma [157, Lemma 3.4] yield V (x(t)) ≤ V (x0) e−ct. Noting
that xT (t) = xT0 eFt, we let x0 be the normalized left singular vector associated with the
maximum singular value of eFt to obtain

‖eFt‖2
2 = ‖x(t)‖2 ≤ V (x(t))

λmin(X)
≤ V (x0)

λmin(X)
e−ct

which along with V (x0) ≤ ‖X‖2 complete the proof. �

Lemma 5 establishes an exponentially decaying upper bound on the difference between
fx0(K) and fx0,τ (K) over any sublevel set SK(a) of the LQR objective function f(K).

Lemma 5 For any K ∈ SK(a) and v ∈ Rn, |fv(K) − fv,τ (K)| ≤ ‖v‖2κ1(a)e−κ2(a)τ , where
the positive functions κ1(a) and κ2(a), given by (D.17), depend on problem data.
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Proof: Since x(t) = e(A−BK)tv is the solution to (6.1b) with u = −Kx and the initial
condition x(0) = v, it is easy to verify that fv,τ (K) = trace

(
(Q+KTRK)Xv,τ (K)

)
and

fv(K) = trace
(
(Q + KTRK)Xv(K)

)
, where

Xv,τ (K) :=

∫ τ

0

e(A−BK)t vvT e(A−BK)T t dt

and Xv := Xv,∞. Using the triangle inequality, we have

‖Xv(K)−Xv,τ (K)‖F ≤ ‖v‖2

∫ ∞
τ

‖e(A−BK)t‖2
2 dt. (D.15)

Equation (6.4b) allows us to use Lemma 4 with F := A−BK, X := X(K) to upper bound
‖e(A−BK)t‖2, λmin(X)‖e(A−BK)t‖2

2 ≤ ‖X‖2 e−(λmin(Ω)/‖X‖2) t. Integrating this inequality over
[τ,∞] in conjunction with (D.15) yield

‖Xv(K)−Xv,τ(K)‖F ≤ ‖v‖2κ′1 e−κ
′
2τ (D.16)

where κ′1 := ‖X(K)‖2
2/(λmin(Ω)λmin(X(K))) and κ′2 := λmin(Ω)/‖X(K)‖2. Furthermore,

|fv(K)− fv,τ (K)| =
∣∣trace

(
(Q+KTRK) (Xv −Xv,τ )

)∣∣ ≤
(‖Q‖F + ‖R‖2‖K‖2

F )‖Xv −Xv,τ‖F ≤ ‖v‖2(‖Q‖F + ‖R‖2‖K‖2
F )κ′1e−κ

′
2τ

where we use the Cauchy-Schwartz and triangle inequalities for the first inequality and (D.16)
for the second inequality. Combining this result with the bounds on the variables provided
in Lemma 15 completes the proof with

κ1(a) :=

(
‖Q‖F +

a2‖R‖2

νλmin(R)

)
a3

νλmin(Ω)λ2
min(Q)

(D.17a)

κ2(a) := λmin(Ω)λmin(Q)/a (D.17b)

where the constant ν is given by (6.10d). �

Proof of Proposition 4

Since K ∈ SK(a) and r ≤ r(a), Lemma 4 implies that K±rUi ∈ SK(2a). Thus, fxi(K±rUi)
is well defined for i = 1, . . . , N , and

∇̃f(K)−∇f(K) =
1

2rN
×(∑

i

(
fxi(K + rUi)− fxi,τ (K + rUi)

)
Ui −

∑
i

(
fxi(K − rUi)− fxi,τ (K − rUi)

)
Ui

)
.
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Furthermore, since K ± rUi ∈ SK(2a), we can use triangle inequality and apply Lemma 5,
2N times, to bound each term individually and obtain

‖∇̃f(K)−∇f(K)‖F ≤ (
√
mn/r) max

i
‖xi‖2κ1(2a)e−κ2(2a)τ

where we used ‖Ui‖F =
√
mn. This completes the proof.

D.7 Proof of Proposition 5
We first establish bounds on the smoothness parameter of ∇f(K). For J ∈ Rm×n, v ∈ Rn,
and fv(K) given by (6.24a), let jv(K) := 〈J,∇2fv(K; J)〉 , denote the second-order term in
the Taylor series expansion of fv(K + J) around K. Following similar arguments as in [168,
Eq. (2.3)] leads to jv(K) = 2 trace (JT (RJ − 2BTD)Xv), where Xv and D are the solutions
to

AK(Xv) = −vvT (D.18a)
A∗K(D) = JT (BTP −RK) + (BTP −RK)TJ (D.18b)

and P is given by (6.6a). The following lemma provides an analytical expression for the
gradient ∇jv(K).

Lemma 6 For any v ∈ Rn and K ∈ SK, ∇jv(K) = 4
(
BTW1Xv + (RJ −BTD)W2 + (RK−

BTP )W3

)
, where Wi are the solutions to the linear equations

A∗K(W1) = JTRJ − JTBTD −DBJ (D.19a)
AK(W2) = BJXv +XvJ

TBT (D.19b)
AK(W3) = BJ W2 +W2J

TBT . (D.19c)

Proof: We expand jv(K + εK̃) around K and to obtain

jv(K + εK̃)− jv(K) = 2 ε trace (JT (RJ − 2BTD)X̃v)− 4 ε trace (JTBT D̃Xv) + o(ε).

Here, o(ε) denotes higher-order terms in ε, whereas X̃v, D̃, and P̃ are obtained by perturbing
Eqs. (D.18a), (D.18b), and (6.6b), respectively,

AK(X̃v) = BK̃Xv +XvK̃
TBT (D.20a)

A∗K(D̃) = K̃TBTD +DBK̃ + A∗K(D̃) = JT (BT P̃ −RK̃) + (BT P̃ −RK̃)TJ (D.20b)

A∗K(P̃ ) = K̃TBTP + PBK̃ −KTRK̃ − K̃TRK. (D.20c)
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Applying the adjoint identity on Eqs. (D.20a) and (D.20b) yields

jv(K + εK̃)− jv(K) ≈ 2ε trace ((BK̃Xv +XvK̃
TBT )W1)

− 2ε trace ((K̃TBTD +DBK̃ + JT (BT P̃ −RK̃) + (BT P̃ −RK̃)TJ)W2)

= 4ε trace (K̃TBTW1Xv)− 4ε trace (K̃T (BTD −RJ)W2)− 4ε trace (W2J
TBT P̃ )

where we have neglected o(ε) terms, and W1 and W2 are given by (D.19a) and (D.19b),
respectively. Moreover, the adjoint identity applied to (D.20c) allows us to simplify the last
term as,

2 trace (W2J
TBT P̃ ) = trace ((K̃TBTP + PBK̃ −KTRK̃ − K̃TRK)W3)

where W3 is given by (D.19c). Finally, this yields

j(K + εK̃)− j(K) ≈ 4ε trace (K̃T ((RK −BTP )W3 +BTW1Xv + (RJ −BTD)W2)).

�

We next establish a bound on ‖∇jv(K)‖F .

Lemma 7 Let K,K ′ ∈ Rm×n be such that the line segment K + t(K ′ − K) with t ∈ [0, 1]
belongs to SK(a) and let J ∈ Rm×n and v ∈ Rn be fixed. Then, the function jv(K) satisfies
|jv(K1)− jv(K2)| ≤ `(a)‖J‖2

F‖v‖2‖K1 −K2‖F , where l(a) is a positive function given by

`(a) := ca2 + c′a4 (D.21)

and c, c′ are positive scalars that depend only on problem data.

Proof: We show that the gradient ∇jv(K) given by Lemma 6 is upper bounded by
‖∇jv(K)‖F ≤ `(a)‖J‖2

F‖v‖2. Applying Lemma 17 on (D.18), the bounds in Lemma 15,
and the triangle inequality, we have ‖Xv‖F ≤ c1a‖v‖2 and ‖D‖F ≤ c2a

2‖J‖F , where c1 and
c2 are positive constants that depend on problem data. We can use the same technique to
bound the norms of Wi in Eq. (D.19), ‖W1‖F ≤ (c3a+ c4a

3)‖J‖2
F , ‖W2‖F ≤ c5a

2‖v‖2‖J‖F ,
‖W3‖F ≤ c6a

3‖v‖2‖J‖2
F , where c3, . . . , c6 are positive constants that depend on problem

data. Combining these bounds with the Cauchy-Schwartz and triangle inequalities applied
to ∇fv(K) completes the proof. �

D.7.1 Proof of Proposition 5

Since r ≤ r(a), Lemma 4 implies that K ± sU ∈ SK(2a) for all s ≤ r. Also, the mean-value
theorem implies that, for any U ∈ Rm×n and v ∈ Rn,

fv(K ± rU) = fv(K) ± r 〈∇fv(K), U〉 +
r2

2

〈
U,∇2fv(K ± s± U ;U)

〉
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where s± ∈ [0, r] are constants that depend on K and U . Now, if ‖U‖F =
√
mn, the above

identity yields

1

2r
(fv(K + rU)− fv(K − rU))− 〈∇fv(K), U〉

=
r

4
(
〈
U,∇2fv(K + s+U ;U)

〉
−
〈
U,∇2fv(K − s−U ;U)

〉
)

≤ r

4
(s+ + s−)‖U‖3

F `(2a) ‖v‖2 ≤ r2

2
mn
√
mn`(2a) ‖v‖2

where the first inequality follows from Lemma 7. Combining this inequality with the triangle
inequality applied to the definition of ∇̂f(K)− ∇̃f(K) completes the proof.

D.8 Proof of Proposition 6
From inequality (6.28a), it follows that G is a descent direction of the function f(K). Thus,
we can use the descent lemma [158, Eq. (9.17)] to show that K+ := K − αG satisfies

f(K+) − f(K) ≤ (Lfα
2/2) ‖G‖2

F − α 〈∇f(K), G〉 (D.22)

for any α for which the line segment between K+ and K lies in SK(a). Using (6.28), for any
α ∈ [0, 2µ1/(µ2Lf )], we have

(Lfα
2/2) ‖G‖2

F − α 〈∇f(K), G〉 ≤ (α (Lfµ2α− 2µ1)/2) ‖∇f(K)‖2
F ≤ 0 (D.23)

and the right-hand side of inequality (D.22) is nonpositive for α ∈ [0, 2µ1/(µ2Lf )]. Thus,
we can use the continuity of the function f(K) along with inequalities (D.22) and (D.23) to
conclude that K+ ∈ SK(a) for all α ∈ [0, 2µ1/(µ2Lf )], and

f(K+) − f(K) ≤ (α (Lfµ2α− 2µ1)/2) ‖∇f(K)‖2
F .

Combining this inequality with the PL condition (6.18), it follows that

f(K+)− f(K) ≤ −(µ1α/2) ‖∇f(K)‖2
F ≤ −µfµ1α (f(K)− f(K?))

for all α ∈ [0, c1/(c2Lf )]. Subtracting f(K?) and rearranging terms complete the proof.

D.9 Proofs of Section 6.6.2.1
We first present two technical results. Lemma 8 extends [164, Theorem 3.2] on the norm of
Gaussian matrices presented in Appendix D.10 to random matrices with uniform distribution
on the sphere

√
mnSmn−1.

Lemma 8 Let E ∈ Rm×n be a fixed matrix and let U ∈ Rm×n be a random matrix with
vec(U) uniformly distributed on the sphere

√
mnSmn−1. Then, for any s ≥ 1 and t ≥ 1,
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we have P(B) ≤ 2e−s
2q−t2n + e−mn/8, where B :=

{
‖ETU‖2 > c′ (s‖E‖F + t

√
n‖E‖2)

}
, and

q := ‖E‖2
F/‖E‖2

2 is the stable rank of E.

Proof: For a matrix G with i.i.d. standard normal entries, we have

‖ETU‖2 ∼
√
mn‖ETG‖2/‖G‖F .

Let the constant κ be the ψ2-norm of the standard normal random variable and let us define
two auxiliary events,

C1 := {√mn > 2‖G‖F}
C0 := {√mn ‖ETG‖2 > 2cκ2‖G‖F

(
s‖E‖F + t

√
n‖E‖2

)
}.

For c′ := 2cκ2, we have P(B) = P(C0) ≤ P(C1∪A) ≤ P(C1)+P(A), where the event A is given
by Lemma 13. Here, the first inequality follows from C0 ⊂ C1 ∪ A and the second follows
from the union bound. Now, since ‖ · ‖F is Lipschitz continuous with parameter 1, from
the concentration of Lipschitz functions of standard normal Gaussian vectors [160, Theorem
5.2.2], it follows that P(C1) ≤ e−mn/8. This in conjunction with Lemma 13 complete the
proof. �

Lemma 9 In the setting of Lemma 8, we have P
{
‖ETU‖F > 2

√
n ‖E‖F

}
≤ e−n/2.

Proof: We begin by observing that ‖ETU‖F = ‖vec(ETU)‖F = ‖
(
I ⊗ ET

)
vec(U)‖F ,

where ⊗ denotes the Kronecker product. Thus, it is easy to verify that ‖ETU‖F is a Lipschitz
continuous function of U with parameter ‖I ⊗ ET‖2 = ‖E‖2. Now, from the concentration
of Lipschitz functions of uniform random variables on the sphere

√
mnSmn−1 [160, Theorem

5.1.4], for all t > 0, we have P
{
‖ETU‖F >

√
E [‖ETU‖2

F ] + t
}
≤ e−t

2/(2‖E‖22). Now, since

E [‖ETU‖2
F ] = E [‖(I ⊗ ET ) vec(U)‖2

F ]

= E [trace ((I ⊗ ET )vec(U)vec(U)T (I ⊗ E))]

= trace ((I ⊗ ET )(I ⊗ E)) = n‖E‖2
F

we can rewrite the last inequality for t =
√
n‖E‖F to obtain

P {‖ETU‖F > 2
√
n ‖E‖F} ≤ e−n‖E‖

2
F /(2‖E‖

2
2) ≤ e−n/2

where the last inequality follows from ‖E‖F ≥ ‖E‖2. �
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Proof of Lemma 5

We define the auxiliary events

Di := {‖M∗(ETUi)‖2 ≤ c
√
n ‖M∗‖S‖E‖F} ∩ {‖M∗(ETUi)‖F ≤ 2

√
n‖M∗‖2‖E‖F}

for i = 1, . . . , N . Since

‖M∗(ETUi)‖2 ≤ ‖M∗‖S‖ETUi‖2

and

‖M∗(ETUi)‖F ≤ ‖M∗‖2‖ETUi‖F

we have

P(Di) ≥ P
(
{‖ETUi‖2 ≤ c

√
n‖E‖F} ∩ {‖ETUi‖F ≤ 2

√
n‖E‖F}

)
.

Applying Lemmas 8 and 9 to the right-hand side of the above events together with the union
bound yield P(Dc

i) ≤ 2e−n + e−mn/8 + e−n/2 ≤ 4e−n/8, where Dc
i is the complement of Di.

This in turn implies

P(Dc) = P(
N⋃
i= 1

Dc
i) ≤

N∑
i= 1

P(Dc
i) ≤ 4Ne−

n
8 (D.24)

where D := ∩iDi. We can now use the conditioning identity to bound the failure probability,

P{|a| > b} = P
{
|a| > b

∣∣D}P(D) + P
{
|a| > b

∣∣Dc
}
P(Dc)

≤ P
{
|a| > b

∣∣D}P(D) + P(Dc)

= P {|a1D| > b} + P(Dc)

≤ P {|a1D| > b} + 4Ne−n/8 (D.25)

where

a := (1/N)
∑
i

〈E (Xi −X) , Ui〉 〈EX,Ui〉

b := δ‖EX‖F‖E‖F

and 1D is the indicator function of D. It is now easy to verify that

P{|a1D| > b} ≤ P {|Y | > b}
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where

Y := (1/N)
∑
i

Yi

Yi := 〈E(Xi −X), Ui〉 〈EX,Ui〉1Di .

The rest of the proof uses the ψ1/2-norm of Y to establish an upper bound on P {|Y | > b}.
Since Yi are linear in the zero-mean random variables Xi − X, we have E[Yi|Ui] = 0.

Thus, the law of total expectation yields E[Yi] = E [E[Yi|Ui]] = 0. Therefore, Lemma 14
implies

‖Y ‖ψ1/2
≤ (c′/

√
N)(logN) max

i
‖Yi‖ψ1/2

. (D.26)

Now, using the standard properties of the ψα-norm, we have

‖Yi‖ψ1/2
≤ c′′‖ 〈E (Xi −X) , Ui〉1Di‖ψ1‖ 〈EX,Ui〉 ‖ψ1

≤ c′′′‖ 〈E (Xi −X) , Ui〉1Di‖ψ1‖EX‖F (D.27)

where the second inequality follows from [160, Theorem 3.4.6],

‖ 〈EX,Ui〉 ‖ψ1 ≤ ‖ 〈EX,Ui〉 ‖ψ2 ≤ c0‖EX‖F . (D.28)

We can now use

〈E(Xi −X), Ui〉 = 〈Xi −X,ETUi〉
= 〈M(xix

T
i ), ETUi〉 − 〈M(I), ETUi〉

= xTiM∗(ETUi)xi − trace (M∗(ETUi))

to bound the right-hand side of (D.27). This identity allows us to use the Hanson-Write
inequality (Lemma 12) to upper bound the conditional probability

P
{
|〈E (Xi −X) , Ui〉| > t

∣∣ Ui} ≤ 2e
−ĉmin{ t2

κ4‖M∗(ETUi)‖2F
,

t
κ2‖M∗(ETUi)‖2 }.

Thus, we have

P {|〈E (Xi −X) , Ui〉1Di | > t} = EUi
[
1Di Exi

[
1{|〈E(Xi−X),Ui〉|>t}

]]
= EUi

[
1DiP

{
|〈E (Xi −X) , Ui〉| > t

∣∣ Ui}]
≤ EUi

[
1Di2e

−ĉmin{ t2

κ4‖M∗(ETUi)‖2F
t

κ2‖M∗(ETUi)‖2 }
]

≤ 2e
−ĉmin{ t2

4nκ4‖M∗‖22‖E‖2F
t

c
√
nκ2‖M∗‖S‖E‖F

}
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where the definition of Di was used to obtain the last inequality. The above tail bound
implies [169, Lemma 11]

‖ 〈E (Xi −X) , Ui〉1Di‖ψ1 ≤ c̃κ2
√
n(‖M∗‖2 + ‖M∗‖S)‖E‖F . (D.29)

Using (6.30), it is easy to obtain the lower bound on the number of samples,

N ≥ C ′ (β2κ2/δ)2(‖M∗‖2 + ‖M∗‖S)2 n log6N.

We can now combine (D.26), (D.29) and (D.27) to obtain

‖Y ‖ψ1/2
≤ C ′κ2

√
n logN√
N

(‖M∗‖2 + ‖M∗‖S)‖E‖F‖EX‖F ≤
δ

β2 log2N
‖E‖F‖EX‖F

where the last inequality follows from the above lower bound onN . Combining this inequality
and (D.35) with t := δ‖E‖F‖EX‖F/‖Y ‖ψ1/2

yields P{|Y | > δ‖E‖F‖EX‖F} ≤ 1/Nβ, which
completes the proof.

Proof of Lemma 6

The marginals of a uniform random variable have bounded sub-Gaussian norm (see the
inequality in (D.28)). Thus, [160, Lemma 2.7.6] implies

‖ 〈W,Ui〉2 ‖ψ1 = ‖ 〈W,Ui〉 ‖2
ψ2
≤ ĉ‖W‖2

F

which together with the triangle inequality yield

‖ 〈W,Ui〉2 − ‖W‖2
F‖ψ1 ≤ c′‖W‖2

F .

Now since 〈W,Ui〉2 − ‖W‖2
F are zero-mean and independent, we can apply the Bernstein

inequality (Lemma 11) to obtain

P

{∣∣∣∣∣ 1

N

N∑
i= 1

〈W,Ui〉2 − ‖W‖2
F

∣∣∣∣∣ > t‖W‖2
F

}
≤ 2e−cNmin{t2,t} (D.30)

which together with the triangle inequality complete the proof.

D.10 Proofs for Section 6.6.2.2 and probabilistic toolbox
We first present a technical lemma.

Lemma 10 Let v1, . . . , vN ∈ Rd be i.i.d. random vectors uniformly distributed on the sphere√
d Sd−1 and let a ∈ Rd be a fixed vector. Then, for any t ≥ 0, we have

P

{
1

N
‖

N∑
j= 1

〈a, vj〉 vj‖ > (c+ c

√
d+ t√
N

)‖a‖
}
≤ 2e−t

2

+Ne−d/8 + 2e−ĉN .
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Proof: It is easy to verify that
∑

j 〈a, vj〉 vj = V v, where V := [v1 · · · vn] ∈ Rd×N is the
random matrix with the jth column given by vj and v := V Ta ∈ RN . Thus,

‖
∑
j

〈a, vj〉 vj‖ = ‖V v‖ ≤ ‖V ‖2‖v‖.

Now, let G ∈ Rd×N be a random matrix with i.i.d. standard normal Gaussian entries and
let Ĝ ∈ Rd×N be a matrix obtained by normalizing the columns of G as Ĝj :=

√
dGj/‖Gj‖,

where Gj and Ĝj are the jth columns of G and Ĝ, respectively. From the concentration of
norm of Gaussian vectors [160, Theorem 5.2.2], we have ‖Gj‖ ≥

√
d/2 with probability not

smaller than 1 − e−d/8. This in conjunction with a union bound yield ‖Ĝ‖2 ≤ 2‖G‖2 with
probability not smaller than 1 − Ne−d/8. Furthermore, from the concentration of Gaussian
matrices [160, Theorem 4.4.5], we have ‖G‖2 ≤ C(

√
N+
√
d+t) with probability not smaller

than 1−2e−t
2 . By combining this inequality with the above upper bound on ‖Ĝ‖2, and using

V ∼ Ĝ in conjunction with a union bound, we obtain

‖V ‖2 ≤ 2C(
√
N +

√
d + t) (D.31)

with probability not smaller than 1− 2e−t
2 −Ne−d/8. Moreover, using (D.30) in the proof of

Lemma 6, gives ‖v‖ ≤ C ′
√
N‖a‖ with probability not smaller than 1 − 2e−ĉN . Combining

this inequality with (D.31) and employing a union bound complete the proof. �

Proof of Lemma 7

We begin by noting that

‖
N∑
i=1

〈E (Xi −X) , Ui〉Ui‖F = ‖Uu‖ ≤ ‖U‖2‖u‖ (D.32)

where U ∈ Rmn×N is a matrix with the ith column vec(Ui) and u ∈ RN is a vector with the
ith entry 〈E (Xi −X) , Ui〉. Using (D.31) in the proof of Lemma 10, for s ≥ 0, we have

‖U‖2 ≤ c(
√
N +

√
mn + s) (D.33)

with probability not smaller than 1 − 2e−s
2 − Ne−mn/8. To bound the norm of u, we use

similar arguments as in the proof of Lemma 5. In particular, let Di be defined as above and
let D := ∩iDi. Then for any b ≥ 0,

P{‖u‖ > b} ≤ P {‖u1D‖ > b} + 4Ne−n/8 (D.34)
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where 1D is the indicator function of D; cf. (D.25). Moreover, it is straightforward to verify
that ‖u1D‖ ≤ ‖z‖, where the entries of z ∈ RN are given zi = ui1Di . Since ‖‖z‖2‖ψ1/2

=

‖∑i z
2
i ‖ψ1/2

, we have

‖
N∑
i= 1

z2
i ‖ψ1/2

(a)

≤ ‖
N∑
i= 1

z2
i − E[z2

i ]‖ψ1/2
+ N‖E[z2

1 ]‖ψ1/2

(b)

≤ c̄1‖z2
1‖ψ1/2

√
N logN + c̄2N‖z1‖2

ψ1

(c)

≤ c̄3N‖z1‖2
ψ1

(d)

≤ c̄4Nκ
4n(‖M∗‖2 + ‖M∗‖S)2‖E‖2

F .

Here, (a) follows from the triangle inequality, (b) follows from combination of Lemma 14,
applied to the first term, and E[z2

1 ] ≤ c̃0‖z1‖2
ψ1

(e.g., see [160, Proposition 2.7.1]) applied to
the second term, (c) follows from ‖z2

1‖ψ1/2
≤ c̃1‖z1‖2

ψ1
, and (d) follows from (D.29). This

allows us to use (D.35) with ξ = ‖z‖2 and t = r2 to obtain

P{‖z‖ > r
√
nNκ2(‖M∗‖2 + ‖M∗‖S)‖E‖F} ≤ c̄5e−r

for all r > 0. Combining this inequality with (D.34) yield

P
{
‖u‖ > r

√
nNκ2(‖M∗‖2 + ‖M∗‖S)‖E‖F

}
≤ c̄5 e−r + 4Ne−n/8.

Finally, substituting r = β log n in the last inequality and letting s =
√
mn in (D.33) yield

P

{
1

N
‖
∑
i

〈E (Xi −X) , Ui〉Ui‖F > c1β
√
mn log nκ2(‖M∗‖2 + ‖M∗‖S)‖E‖F

}
≤

c0n
−β + 2e−mn +Ne−mn/8 + 4Ne−n/8 ≤ c2(n−β +Ne−n/8)

where we used inequality (D.32), N ≥ c0n, and applied the union bound. This completes
the proof.

Proof of Lemma 8

This result is obtained by applying Lemma 10 to the vectors vec(Ui) and setting t =
√
mn.

Probabilistic toolbox

In this subsection, we summarize known technical results which are useful in establishing
bounds on the correlation between the gradient estimate and the true gradient. Herein, we
use c, c′, and ci to denote positive absolute constants. For any positive scalar α, the ψα-norm
of a random variable ξ is given by [170, Section 4.1], ‖ξ‖ψα := inft {t > 0 |E [ψα(|ξ|/t)] ≤ 1},
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where ψα(x) := ex
α − 1 (linear near the origin when 0 < α < 1 in order for ψα to be convex)

is an Orlicz function. Finiteness of the ψα-norm implies the tail bound

P {|ξ| > t‖ξ‖ψα} ≤ cαe−t
α

for all t ≥ 0 (D.35)

where cα is an absolute constant that depends on α; e.g., see [171, Section 2.3] for a proof.
The random variable ξ is called sub-Gaussian if its distribution is dominated by that of a
normal random variable. This condition is equivalent to ‖ξ‖ψ2 <∞. The random variable ξ
is sub-exponential if ‖ξ‖ψ1 < ∞. It is also well-known that for any random variables ξ and
ξ′ and any positive scalar α, ‖ξ ξ′‖ψα ≤ ĉα‖ξ‖ψ2α‖ξ′‖ψ2α and the above inequality becomes
equality with cα = 1 if α ≥ 1.

Lemma 11 (Bernstein inequality [160, Corollary 2.8.3]) Let the vectors ξ1, . . . , ξN be
independent, zero-mean, sub-exponential random variables with κ ≥ ‖ξi‖ψ1. Then, for any
scalar t ≥ 0, P{|(1/N)

∑
i ξi| > t} ≤ 2e−cN min{t2/κ2,t/κ}.

Lemma 12 (Hanson-Wright inequality [164, Theorem 1.1]) Let A be a fixed matrix
in RN×N and let x ∈ RN be a random vector with independent entries that satisfy E[xi] = 0,
E[x2

i ] = 1, and ‖xi‖ψ2 ≤ κ. Then, for any nonnegative scalar t, we have

P{
∣∣xTAx− E[xTAx]

∣∣ > t} ≤ 2e−cmin{t2/(κ4‖A‖2F ),t/(κ2‖A‖2)}.

Lemma 13 (Norms of random matrices [164, Theorem 3.2]) Let E be a fixed matrix
in Rm×n and let G ∈ Rm×n be a random matrix with independent entries that satisfy E[Gij] =
0, E[G2

ij] = 1, and ‖Gij‖ψ2 ≤ κ. Then, for any scalars s, t ≥ 1,

P(A) ≤ 2e−s
2q−t2n

where q := ‖E‖2
F/‖E‖2

2 is the stable rank of E and

A := {‖ETG‖2 > cκ2
(
s‖E‖F + t

√
n‖E‖2

)
}.

The next lemma provides us with an upper bound on the ψα-norm of sum of random
variables that is by Talagrand. This result is a straightforward consequence of combining
the results in [170, Theorem 6.21] and [172, Lemma 2.2.2]; see e.g. [173, Theorem 8.4] for a
formal argument.

Lemma 14 For any scalar α ∈ (0, 1], there exists a constant Cα such that for any sequence
of independent random variables ξ1, . . . , ξN we have

‖
∑
i

ξi − E
[∑

i

ξi
]
‖ψα ≤ Cα(max

i
‖ξi‖ψα)

√
N logN.

D.11 Bounds on optimization variables
Building on [152], in Lemma 15 we provide useful bounds on the matrices K, X = X(K),
P = P (K), and Y = KX(K).
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Lemma 15 Over the sublevel set SK(a) of the LQR objective function f(K), we have

trace (X) ≤ a/λmin(Q) (D.36a)
‖Y ‖F ≤ a/

√
λmin(R)λmin(Q) (D.36b)

ν/a ≤ λmin(X) (D.36c)
‖K‖F ≤ a/

√
νλmin(R) (D.36d)

trace (P ) ≤ a/λmin(Ω) (D.36e)

where the constant ν is given by (6.10d).

Proof: For K ∈ SK(a), we have

trace (QX + Y TRYX−1) ≤ a (D.37)

which along with trace (QX) ≥ λmin(Q)‖X1/2‖2
F yield (D.36a). To establish (D.36b), we

combine (D.37) with

trace (RYX−1Y T ) ≥ λmin(R)‖Y X−1/2‖2
F

to obtain ‖Y X−1/2‖2
F ≤ a/λmin(R). Thus, ‖Y ‖2

F ≤ a‖X‖2/λmin(R). This inequality along
with (D.36a) give (D.36b). To show the inequality in (D.36c), let v be the normalized
eigenvector corresponding to the smallest eigenvalue of X. Multiplication of Eq. (6.8a) from
the left and the right by vT and v, respectively, gives

vT (DX1/2 +X1/2DT ) v =
√
λmin(X) vT (D +DT ) v = −vTΩ v

where D := AX1/2 −BYX−1/2. Thus,

λmin(X) =
(vTΩ v)2

(vT (D +DT ) v)2
≥ λ2

min(Ω)

4 ‖D‖2
2

(D.38)

where we applied the Cauchy-Schwarz inequality on the denominator. Using the triangle
inequality and submultiplicative property of the 2-norm, we can upper bound ‖D‖2,

‖D‖2 ≤ ‖A‖2‖X1/2‖2 + ‖B‖2‖Y X−1/2‖2 ≤
√
a (‖A‖2/

√
λmin(Q) + ‖B‖2/

√
λmin(R))

(D.39)
where the last inequality follows from (D.36a) and the upper bound on ‖Y X−1/2‖2

F .
Inequality (D.36c), with ν given by (6.10d), follows from combining (D.38) and (D.39).

To show (D.36d), we use the upper bound on ‖Y X−1/2‖2
F , which is equivalent to

‖KX1/2‖2
F ≤ a/λmin(R)

to obtain
‖K‖2

F ≤ a/λmin(R)λmin(X) ≤ a2/(νλmin(R)).
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Here, the second inequality follows from (D.36c). Finally, to prove (D.36e), note that the
definitions of f(K) in (6.3b) and P in (6.6a) imply f(K) = trace (P Ω). Thus, from f(K) ≤ a,
we have trace (P ) ≤ a/λmin(Ω), which completes the proof.

�

D.12 The norm of the inverse Lyapunov operator
Lemma 16 provides an upper bound on the norm of the inverse Lyapunov operator for stable
LTI systems.

Lemma 16 For any Hurwitz matrix F ∈ Rn×n, the linear map F : Sn → Sn

F(W ) :=

∫ ∞
0

eFtW eF
T t dt (D.40)

is well defined and, for any Ω � 0,

‖F‖2 ≤ trace (F(I)) ≤ trace (F(Ω))/λmin(Ω). (D.41)

Proof: Using the triangle inequality and the sub-multiplicative property of the Frobenius
norm, we can write

‖F(W )‖F ≤
∫ ∞

0

‖eF tW eF
T t‖F dt ≤ ‖W‖F

∫ ∞
0

‖eF t‖2
F dt = ‖W‖F trace (F(I)) .

(D.42)

Thus, ‖F‖2 = max‖W‖F = 1 ‖F(W )‖F ≤ trace (F(I)) , which proves the first inequality
in (D.41). To show the second inequality, we use the monotonicity of the linear map F ,
i.e., for any symmetric matrices W1 and W2 with W1 � W2, we have F(W1) � F(W2). In
particular, λmin(Ω)I � Ω implies λmin(Ω)F(I) � F(Ω) which yields λmin(Ω) trace(F(I)) ≤
trace(F(Ω)) and completes the proof. �

We next use Lemma 16 to establish a bound on the norm of the inverse of the closed-loop
Lyapunov operator AK over the sublevel sets of the LQR objective function f(K).

Lemma 17 For any K ∈ SK(a), the closed-loop Lyapunov operators AK given by (6.7)
satisfies ‖A−1

K ‖2 = ‖(A∗K)−1‖2 ≤ a/λmin(Ω)λmin(Q).

Proof: Applying Lemma 16 with F = A−BK yields

‖A−1
K ‖2 = ‖(A∗K)−1‖2 ≤ trace(X)/λmin(Ω).

Combining this inequality with (D.36a) completes the proof. �
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Parameter θ(a) in Theorem 4

As discussed in the proof, over any sublevel set SK(a) of the function f(K), we require the
function θ in Theorem 4 to satisfy

(‖(A∗K)−1‖2 + ‖(A∗K)−1‖S)/λmin(X) ≤ θ(a)

for all K ∈ SK(a). Clearly, Lemma 17 in conjunction with Lemma 15 can be used to
obtain ‖(A∗K)−1‖2 ≤ a/(λmin(Q)λminΩ) and λ−1

min(X) ≤ a/ν, where ν is given by (6.10d).
The existence of θ(a), follows from the fact that there is a scalar M(n) > 0 such that
‖A‖S ≤M‖A‖2 for all linear operators A: Sn → Sn.
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Appendix E

Supporting proofs for Chapter 7

E.1 Proof of Proposition 1
Since G has a positive inner product with the gradient of the function f(K), we can use the
descent lemma [158, Eq. (9.17)] to show that K+ := K − αG satisfies

f(K+) − f(K) ≤ (Lf (a)α2/2) ‖G‖2
F − α 〈∇f(K), G〉 (E.1)

for any α for which the line segment between K+ and K lies in SK(a). Using the inequalities
in (7.11), for any α ∈ [0, 2µ1/(µ2Lf (a))], we have

(Lf (a)α2/2) ‖G‖2
F − α 〈∇f(K), G〉 ≤ (α (Lf (a)µ2α− 2µ1)/2) ‖∇f(K)‖2

F ≤ 0 (E.2)

and the right-hand side of inequality (E.1) is nonpositive for α ∈ [0, 2µ1/(µ2Lf (a))]. Thus,
we can use the continuity of the function f(K) along with inequalities (E.1) and (E.2) to
conclude that K+ ∈ SK(a) for all α ∈ [0, 2µ1/(µ2Lf (a))], and

f(K+)− f(K) ≤ (α (Lf (a)µ2α− 2µ1)/2) ‖∇f(K)‖2
F .

Combining this inequality with the PL condition, it follows that

f(K+)− f(K) ≤ −(µ1α/2) ‖∇f(K)‖2
F ≤ −µf (a)µ1α (f(K)− f(K?))

for all α ∈ [0, µ1/(µ2Lf (a))]. Subtracting f(K?) and rearranging terms complete the proof.

E.2 Proof of Proposition 2
We first present two technical lemmas.

Lemma 1 Let the matrices F , X � 0, and Ω � 0 satisfy

FXF T − X + Ω = 0.

Then, we have ‖F t‖2
2 ≤ cρt for all t ∈ N, where

c := ‖X‖2/λmin(X), ρ := 1− λmin(Ω)/‖X‖2.
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Proof: Using the trivial inequalities Ω � λmin(Ω)I and X � ‖X‖2I, we can write

FXF T = X − Ω � ρX

where ρ := 1− λmin(Ω)/‖X‖2. This matrix inequality implies that V (x) := xTXx is a Lya-
punov function for xt+1 = F Txt because V (xk+1) ≤ ρV (xk). Thus, for any initial condition
x0, we have V (xt) ≤ ρtV (x0) . Noting that xt = (F T )tx0, we let x0 be the normalized left
singular vector associated with the maximum singular value of F t to obtain

‖F t‖2
2 = ‖xt‖2 ≤ V (xt)

λmin(X)
≤ ρt

V (x0)

λmin(X)

which along with V (x0) ≤ ‖X‖2 complete the proof. �

Lemma 2 establishes an exponentially decaying upper bound on the difference between
fζ(K) = fζ,∞(K) and fζ,τ (K) over any sublevel set SK(a) of the LQR objective function
f(K).

Lemma 2 For any K ∈ SK(a) and ζ ∈ Rn,

|fζ(K)− fζ,τ (K)| ≤ ‖ζ‖2κ1(a)(1− κ2(a))τ

where κ1 and κ2 < 1 are positive rational functions that depend on the problem data.

Proof: Since xt = (A − BK)tζ is the solution to (7.1a) with u = −Kx and the initial
condition x0 = ζ, it is easy to verify that fζ,τ (K) =

〈
Q+KTRK,Xζ,τ (K)

〉
, where

Xζ,τ (K) :=
τ∑
t=0

(A−BK)t ζζT ((A−BK)T )t.

Using the triangle inequality, we have

‖Xζ(K)−Xζ,τ (K)‖F ≤ ‖ζ‖2

∞∑
t= τ

‖(A−BK)t‖2
2 (E.3)

where Xζ(K) = Xζ,∞(K) is given by (7.3). The Lyapunov equation in (7.5) allows us to use
Lemma 1 with F := A−BK, X := X(K) to upper bound ‖(A−BK)t‖2,

λmin(X)‖(A−BK)t‖2
2 ≤ ‖X‖2 (1− λmin(Ω)/‖X‖2)t.

Summing this inequality from t = τ onward in conjunction with (E.3) yield

‖Xζ(K)−Xζ,τ(K)‖F ≤ ‖ζ‖2κ′1 (1− κ′2)τ (E.4)
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where κ′1 := ‖X(K)‖2
2/(λmin(Ω)λmin(X(K))) and κ′2 := λmin(Ω)/‖X(K)‖2. Furthermore,

|fζ(K)− fζ,τ (K)| =
∣∣trace

(
(Q+KTRK) (Xζ −Xζ,τ )

)∣∣
≤ (‖Q‖F + ‖R‖2‖K‖2

F )‖Xζ −Xζ,τ‖F
≤ ‖ζ‖2(‖Q‖F + ‖R‖2‖K‖2

F )κ′1(1− κ′2)τ

where we use the Cauchy-Schwartz and triangle inequalities for the first inequality and (E.4)
for the second inequality. Combining this result with trivial upper bounds on the norms
‖K‖F , ‖X(K)‖2, and X(X) � Ω � 0 completes the proof. See [14, Lemma 23] for deriva-
tion of these bounds. �

We are now ready to prove the first inequality in Proposition 2. Since K ∈ SK(a) and
r ≤ r(a), Lemma 1 implies that K ± rUi ∈ SK(2a). Thus, fζi(K ± rUi) is well defined for
i = 1, . . . , N , and

∇̃f(K)−∇f(K) =
1

2rN
×∑

i

((
fζi(K + rUi)− fζi,τ (K + rUi)

)
Ui −

(
fζi(K − rUi)− fζi,τ (K − rUi)

)
Ui
)
.

Furthermore, since K ± rUi ∈ SK(2a), we can use triangle inequality and apply Lemma 2,
2N times, to bound each term individually and obtain

‖∇̃f(K) − ∇f(K)‖F ≤ (
√
mn/r) max

i
‖ζ i‖2κ1(2a)(1 − κ2(2a))τ

where we used ‖Ui‖F =
√
mn. This completes the proof of the first inequality. The proof

of the second inequality follows similar arguments as in [14, Propopsition 5], which exploits
the third derivatives of the functions fζ .
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