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Abstract

Turbulent flows are ubiquitous in nature and engineering. Dissipation of kinetic
energy by turbulent flow around airplanes, ships, and submarines increases resistance
to their motion (drag). In this dissertation, we have designed flow control strategies for
enhancing performance of vehicles and other systems involving turbulent flows. While
traditional flow control techniques combine physical intuition with costly numerical sim-
ulations and experiments, we have developed control-oriented models of wall-bounded
shear flows that enable simulation-free and computationally-efficient design of flow con-
trollers.

Model-based approach to flow control design has been motivated by the realization
that progressive loss of robustness and consequential noise amplification initiate the
departure from the laminar flow. In view of this, we have used the Navier-Stokes equa-
tions with uncertainty linearized around the laminar flow as a control-oriented model
for transitional flows and we have shown that reducing the sensitivity of fluctuations
to external disturbances represents a powerful paradigm for preventing transition. In
addition, we have established that turbulence modeling in conjunction with judiciously
selected linearization of the flow with control can be used as a powerful control-oriented
model for turbulent flows.

We have illustrated the predictive power of our model-based control design in three
concrete problems: preventing transition by (i) a sensorless strategy based on traveling
waves and (ii) an optimal state-feedback controller based on local flow information; and
(iii) skin-friction drag reduction in turbulent flows by transverse wall oscillations. We
have developed analytical and computational tools based on perturbation analysis (in
the control amplitude) for control design by means of spatially- and temporally- periodic
flow manipulation in problems (i) and (iii), respectively. In problem (ii), we have utilized
tools for designing structured optimal state-feedback gains. Our theoretical results
supported by full-scale numerical simulations have revealed that the theory developed
in this dissertation for the linearized flow equations with uncertainty has considerable
ability to capture full-scale phenomena.
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Chapter 1

Introduction

The flow of fluids is among the most fascinating natural phenomena known to mankind.
It has captivated the curious minds across a variety of disciplines including art, physics,
mathematics, and engineering. For example, Vincent van Gogh, who was perhaps not
familiar with fluid mechanics, was inspired by the swirling sky to draw one of the most
famous paintings of all time, The starry night (see Figure 1.1(a)), which is suggestive
of the motion of galaxies and the vortical flow around submerged bodies. The scien-
tific visualization of fluid flows was pioneered in the fifteenth century by Leonardo da
Vinci who sketched the motion of water pouring into a pond (see Figure 1.1(b)) and
wrote [11]: “Observe the motion of the surface of the water, which resembles that of
hair, which has two motions, of which one is caused by the weight of the hair, the other
by the direction of the curls; thus the water has eddying motions, one part of which is
due to the principal current, the other to the random and reverse motion.” His observa-
tion is reminiscent of the famous Reynolds decomposition in turbulent flows, and of the
importance of what later became known as vortical flow structures [11]. The scientific
approach to studying fluid mechanics can be traced back to Archimedes who examined
the buoyancy in fluids at rest. Modern advancements in understanding fluid mechan-
ics was pioneered by scientists like Torricelli (barometer), Newton (viscosity), Pascal
(hydraulic fluids), Bernoulli (Bernoulli’s principle describing the relationship between
velocity, pressure, and potential in inviscid flows), Poiseuille and Hagen (viscous flows),
Reynolds, Kolmogorov, and Taylor (turbulence), Prandtl, Blasius, and von Kármán
(boundary layers), Euler, d’Alembert, Lagrange, Laplace, and Poisson (inviscid flows),
and Navier and Stokes (formulation of the Navier-Stokes equations for conservation of
linear momentum in Newtonian viscous flows); see Figure 1.2.

In this section, we provide a brief overview of the main concepts and ideas upon
which this dissertation is built. Our introductory presentation is organized as follows:
In § 1.1, the importance of controlling transitional and turbulent flows is discussed and
the key challenges are outlined. A brief overview of different flow control strategies is
provided in § 1.2. In § 1.3, we introduce the key ideas that are pursued in this thesis.
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(a) (b)

Figure 1.1: (a) The starry night by Vincent van Gogh in 1889 is suggestive of the
swirling motion of galaxies and flow around submerged bodies; (b) Sketch of the vortical
motion of water pouring into a pond, by Leonardo da Vinci (1452-1519).

Figure 1.2: Fluid mechanics pioneers.
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Figure 1.3: (Left) transition from laminar to turbulence over an aircraft wing (efluids
photo by Miguel Visbal). (Right) the energy exchange between the solid surface and
fluid is larger in a turbulent flow relative to a laminar flow. Therefore, turbulent flows
exhibit larger resistance to motion (drag) than laminar flows.

A preview of our main results and contributions is provided in § 1.4.

1.1 Transitional and turbulent flows

Consider the flow of air over a cross-section of an aircraft wing; see Figure 1.3 (left). The
ordered and smooth (laminar) flow at the leading edge becomes disordered and complex
(turbulent) as it moves over the wing. In laminar flows, fluid particles move in parallel
layers where there is no disruption between the layers, whereas in turbulent flows they
move in random unsteady fashion [12]. The velocity and pressure in a turbulent flow
undergo rapid variations with a broad range of spatial and temporal scales. The change
from laminar to turbulent flow is called transition to turbulence. Figure 1.3 (right) shows
that if a solid surface is placed in an inviscid fluid (an ideal fluid with zero viscosity),
the fluid does not interact with the surface. On the other hand, the flow particles in a
viscous fluid attach to the solid surface and result in an energy exchange between the
surface and the flow. The region around the surface where the energy exchange takes
place is called the boundary layer. A turbulent boundary layer exhibits a much larger
resistance to motion (drag) relative to a laminar boundary layer. This is because the
large fluctuations in a turbulent boundary layer yield large exchange of energy between
the surface and the flow.
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Figure 1.4: Skin-friction drag is responsible for approximately 50% and 90% fuel con-
sumption in air- and water- vehicles, respectively.

1.1.1 Engineering applications involving turbulent flows

In engineering applications, turbulence may be beneficial or disadvantageous. For ex-
ample, while turbulence provides desired mixing conditions for chemical processes and
combustion engines, it exhibits a much larger drag than a laminar flow. Therefore,
whether we want to promote or suppress turbulence depends on the specific applica-
tion. Here, we briefly discuss the effect of turbulence on air- and water- transportation,
and on energy generation from wind turbines.

Designing fuel-efficient air- and water- vehicles (see Figure 1.4) has become increas-
ingly important due to the global energy crisis. Turbulence around the wings of an
aircraft increases resistance to motion and results in larger fuel consumption. In par-
ticular, the skin-friction drag is responsible for 50% and 90% of fuel consumption in
passenger aircrafts and in submarines [11, 13], respectively. In view of this, there is a
critical demand for development and utilization of advanced theoretical and computa-
tional turbulence suppression techniques. Most of currently available strategies rely on
physical intuition along with extensive numerical and experimental studies. Progress in
this area has been hampered by the lack of understanding of complex flow dynamics and
the absence of tractable models and theoretical tools for analysis and control thereof. In
this thesis, we introduce a model-based approach to control of transitional and turbulent
flows which facilitates systematic design of efficient turbulence suppression techniques.

Another important application concerns renewable energy sources, such as wind
energy. The renewed interest in environmentally-friendly energy sources stems from the
desire to achieve fossil-fuel independence, thereby indirectly addressing both the global
warming and global energy crises. In order to produce cheaper electricity, wind turbines
are becoming progressively larger (see Figure 1.5) which poses significant technological
challenges for their design and control. During its operation, a wind turbine is subject
to severe uncertainties arising from atmospheric turbulence, near-ground effects, and
spatial variations in wind. These effects play an integral role in efficiency and longevity of
turbines. In addition, modeling aerodynamics of the turbine blades and the effects from
upstream wind turbines is extremely challenging. For example, the wake of upstream
turbines can deteriorate the operation of the downstream turbines; see Figure 1.5 (right).
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Figure 1.5: (Left) wind turbines are becoming progressively larger to increase efficiency
and reduce electricity cost. (Right) The wake from upstream turbines affects those
downstream of wind.

Therefore, enhancing the efficiency of wind farms relies heavily on distributed control
design, where the control objective is to improve the efficiency of the wind farm as a
whole rather than maximizing the efficiency of individual wind turbines.

1.1.2 Key challenges

Some of the main challenges for designing efficient flow control strategies include

(i) Understanding the physics of transitional and turbulent flows;

(ii) Designing flow control strategies;

(iii) Developing control-oriented models and analytical tools for flow control design.

(i) Understanding the physics of transitional and turbulent flows. Transition
to turbulence takes place at large Reynolds numbers. The Reynolds number is a dimen-
sionless parameter that determines the ratio of inertial to viscous forces in the flow; it
is proportional to the flow speed and a characteristic length that depends on the flow
geometry (e.g. diameter in pipe flow and height in channel flow), and it is inversely
proportional to the kinematic viscosity of the fluid. There is an abundance of exper-
imental and numerical studies for better understanding the transitional and turbulent
flows; for example, see the survey papers [3,14,15] for transitional flows and the survey
papers [16–19] for turbulent flows. The critical Reynolds number above which transition
takes place depends on the experimental conditions such as the amount of background
disturbances, flow uniformity, and wall-roughness. Figure 1.6 shows a diagram of dif-
ferent paths to transition [3]. Deviation from laminar flow is initiated in the presence
of environmental disturbances, such as non-uniformity or turbulence in the free-stream,
acoustic noise, and wall roughness. The initial stage of transition is related to the so-
called flow receptivity [20] to these disturbances. The receptivity determines the flow
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Figure 1.6: The paths from receptivity to transition (figure taken from [3]).

structures that emerge from the external disturbances. Depending on the amplitude
and spatial shape of these structures, several paths from receptivity to breakdown to
transition have been identified; these paths may occur individually or simultaneously.
For infinitesimally small disturbances, the breakdown relies on emergence of primary
modes; these are the least linearly stable modes of the flow also known as the Tollmien-
Schlichting (TS) waves. The primary modes can become unstable as Reynolds number
grows and result in breakdown to turbulence. Another possibility is that the primary
modes with large initial amplitudes trigger three-dimensional (secondary) instabilities
via nonlinear interactions. The secondary instabilities take place at Reynolds number
that are smaller than the Reynolds number for which the flow becomes linearly unstable.

The scenarios that do not require emergence of unstable primary modes are called
bypass scenarios. Direct bypass may occur when the primary disturbances are so large
that breakdown takes place without secondary instabilities. On the other hand, recent
research has emphasized that bypass transition may take place as a consequence of
transient growth of linearly stable modes [4,21–23]. This is because the velocity fluctu-
ations can undergo large transient growth owing to the non-normality of the linearized
flow dynamics [24–26]. The dominant flow structures that emerge as a consequence of
transient growth of non-normal modes are in the form of streaky structures that are
elongated in the streamwise direction and are periodic in the spanwise direction.
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The mechanisms for emergence of streamwise streaks are by now well-understood.
It was shown that these structures are not a consequence of linear instability, rather
they are closely related to lack of robustness which manifests itself in large sensitivity
of flow fluctuations to external disturbances and modeling imperfections [7, 25, 27, 28];
see § 1.3.1 for details. Recently, sensitivity analysis has also been used to better un-
derstand the possibility for transition to elastic turbulence in viscoelastic fluids. The
energy amplification and spatio-temporal frequency responses in channel flows of vis-
coelastic fluids was studied in [29,30], and it was shown that elasticity can amplify the
disturbances even when inertial effects are small. Analysis of the transient responses in
viscoelastic fluids was used to draw parallels between streamwise-constant inertial flows
of Newtonian fluids and streamwise-constant creeping flows of viscoelastic fluids [31].
In addition, it was shown that strong nonmodal amplification of disturbances provides
a possible route for the early stages of a bypass transition to elastic turbulence [32].

The omnipresence of streamwise streaks in wall-bounded shear flows (such as the
flow around aircrafts) has motivated several researchers to closely analyze their proper-
ties. An experimental investigation of transition over a boundary layer on a flat plate
subject to free-stream turbulence was conducted in [4]; see Figure 1.7. The turbulence
in the free-stream was generated by placing a mesh upstream of the leading edge of
the plate, and the flow was visualized by smoke. It was shown that the streamwise
streaks emerge in the presence of relatively small magnitudes of free-stream turbulence.
When the magnitude of free-stream turbulence was increased, some streaks developed
streamwise waviness which lead to their breakdown and formation of turbulent spots.
Similar structures are also observed in direct numerical simulations (DNS) of transi-
tional boundary layers [5, 33]; see Figure 1.8.

The prevailing point of view is that secondary instability of the streaks leads to
their breakdown [34]. It has been postulated that the streaks’ waviness is due to non-
linear interactions between the three-dimensional fluctuations that evolve around the
streaks [34, 35]. However, numerical simulations of boundary layers subject to free-
stream turbulence suggest that streak-breakdown may happen even in the absence of
these instabilities [22,36]. Over the last decade, there has been a lot of effort for better
understanding the role of streaks receptivity to external disturbances (such as noise and
wall-roughness) in breakdown to turbulence [37–41].

In this thesis, we develop and utilize control-oriented models that enable analytical
study of transitional and turbulent flows; see § 1.3 for more details.

(ii) Designing flow control strategies. Flow control is based on manipulating the
flow for the purpose of achieving desired objectives such as preventing/delaying transi-
tion, reducing skin-friction drag in turbulent flows, and preventing separation in laminar
or turbulent boundary layers. The difficulty in designing strategies for flow manipula-
tion arises from the inherent limitations on sensing and actuating authority. These
limitations are at least twofold: (a) The sensors and actuators are typically mounted
on a solid surface. Consequently, the sensors can only measure local flow quantities and
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streamwise streaks turbulent spots

Failure of classical linear stability analysis 
for wall-bounded shear flows

•
 

Classical theory assumes 2D disturbances

•
 

Experiments suggest transition to more complex flow is 
inherently 3D: streamwise streaks

Flow type Classical prediction Experiment

Plane Poiseuille 5772 ~ 1000

Plane Couette ∞ ~ 350
Pipe flow ∞ ~ 2200-100000

•
 

Critical Reynolds number for instability

M. Matsubara and P. H. Alfredsson, 
J. Fluid Mech. 430 (2001) 149

Boundary layer flow with free-stream turbulence

Flow

Figure 1.7: Experiment and flow visualization of transitional boundary layer over a flat
plate [4] The bottom row shows the top view of the flow where x is the flow direction
and z is the spanwise direction.

Figure 1.8: Direct numerical simulations of transitional boundary layer over a flat plate.
The panels from top to bottom show the streamwise velocity, respectively, outside, on
the edge, and inside the boundary layer (photo courtesy of T. Zaki taken from [5]).



9

determination of the flow quantities away from the solid surface requires flow modeling
and estimation. In addition, since the actuators can perturb the flow only locally, a re-
lated question is design of actuating techniques that can target and modify the relevant
flow features. (b) Even though the flow is continuous, the sensors and actuators have
limited spatial range. In view of this, the sensors and actuators are often placed on a few
isolated spatial locations, or on a discrete lattice for distributed sensing and actuating
capabilities. In § 1.2, we present an overview of different flow control strategies.

(iii) Developing control-oriented models and analytical tools for flow control
design. A key step in designing efficient control strategies for transitional and turbulent
flows is to develop models of complex flow dynamics that are amenable to control design
and optimization. The predictions of classical hydrodynamic stability theory are at odds
with experimental observations for wall-bounded shear flows. As discussed earlier, recent
research has demonstrated the importance of understanding how uncertainty influences
the dynamics of fluid flows. This observation suggests that turbulence is not solely a
consequence of flow instabilities; rather, it is related to large sensitivity of the flow fields
to the disturbances naturally present in the environment. Over the last two decades,
there has been a significant amount of effort for model-based flow control design using
techniques from linear systems theory; for example, see [42]. In this thesis, we develop
and verify control-oriented models that contain essential features of transitional and
turbulent flows and, yet, are simple enough for convenient control design.

1.1.3 Thesis objectives

The objectives of this thesis are:

(a) developing control-oriented models of transitional and turbulent flows;

(b) designing model-based sensorless and feedback flow control strategies for prevent-
ing transition;

(c) designing model-based sensorless flow control strategies for skin-friction drag re-
duction in turbulent flows;

(d) developing analytical tools that enable computationally-efficient flow control de-
sign by means of temporally- or spatially- periodic flow manipulation.

1.2 Flow control strategies

Controlling turbulent flows is a viable approach for reducing the unfavorable effects
of turbulence such as large skin-friction drag [11, 43–45]. In this section, we briefly
overview two general categories of flow control techniques that are based on sensorless
and feedback strategies.



10

(a) (b)

Figure 1.9: (a) An array of distributed hot-film shear-stress sensors and wall-deformation
actuators for feedback flow control [6]; (b) Sketch of a localized control strategy where
the actuator placed at (r, s) uses information from only the nearest neighbors on the
two-dimensional lattice.

1.2.1 Feedback control strategies

Owing to recent developments in micro-electro-mechanical (MEMS) devices, feedback
control of turbulence has become possible using wall-mounted arrays of sensors and
actuators [6, 46–48]. The relevant flow quantities such as velocity, pressure, and shear
stresses are measured by sensors and the flow is actuated by wall-deformation actua-
tors and compliant surfaces via a feedback rule. Feedback strategies for control of fluid
flows involve individual system components that are capable of sensing, computation,
and actuation (see Figure 1.9(a)). Therefore, an important question in design of flow
controllers is related to the interconnection structure between these components. A cen-
tralized controller yields best performance at the expense of excessive communication
and computation. A fully decentralized controller, while advantageous from a commu-
nications perspective, may sacrifice performance. A reasonable middle ground between
these competing approaches is offered by localized strategies where each component
exchanges information with a limited number of nearby components. For example, Fig-
ure 1.9(b) illustrates a situation where information from only the nearest neighbors is
used. In Chapter 3 of this thesis, we have designed a localized optimal controller for
preventing transition to turbulence.

1.2.2 Sensorless control strategies

Skin-friction drag reduction by sensorless mechanisms is a promising technology for
implementation. Despite significant advances in the area of MEMS devices for flow
actuation and sensing, the development of distributed arrays of sensors and actuators
for active feedback control is still in its early stages. Furthermore, measurement of the



11

(a) (b)

(c) (d)

Figure 1.10: (a) Photograph of a shark dermal denticle; (b) Sketch of a riblet-mounted
surface with x denoting the flow direction; (c) Transverse wall oscilations; and (d) Wall
transpiration in the form of streamwise traveling wave.
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relevant flow quantities in the high-Reynolds-number flows may be inefficient or even
infeasible owing to the smallness of the length and time scales [11, 49]. Sensorless flow
control represents a much simpler alternative to feedback flow control with wall-mounted
arrays of sensors and actuators. These mechanisms rely on the understanding of the
basic flow physics and control designs without measurement of the relevant flow quan-
tities. Some of these strategies are nature-inspired [50]. For example, the shark skin is
covered in denticles (see Figure 1.10(a)) which help sharks swim much faster than their
body mass would allow if the flow around them was turbulent. The skin patterns can be
modeled as micro-grooves of a regular geometric shape mounted over a flat surface called
riblets [51] (see Figure 1.10(b)). Other examples of the sensorless schemes include trans-
verse wall oscillations and wall transpiration in the form of streamwise traveling waves
(see Figures 1.10(c) and 1.10(d)). All these strategies are characterized by the absence
of sensing capabilities. In other words, control is implemented without measurement of
the relevant flow quantities and disturbances. Rather, the dynamical properties of the
underlying system are changed by either modifying geometry (riblets) or base veloc-
ity (traveling waves). Although several numerical and experimental studies show that
properly designed sensorless strategies may yield significant turbulence suppression, an
obstacle to fully utilizing these approaches is the absence of a theoretical framework
for their design and optimization. In this thesis, we have used control-oriented mod-
els to design sensorless strategies based on traveling waves for controlling the onset of
turbuence (Chapter 2), and to design wall oscillations for controlling turbulent flows
(Chapter 4).

1.3 Model-based flow control

Many control strategies based on either sensorless or feedback designs have been suc-
cessfully tested and verified in numerical simulations and experiments. For example, a
number of simulations on turbulent drag reduction by means of spanwise wall oscilla-
tion was conducted by [9]. However, conducting experiments and simulations for control
design and optimization is often prohibitively expensive or time-consuming. In partic-
ular, simulating the full Navier-Stokes (NS) equations becomes increasingly difficult as
Reynolds number increases. In addition, the development of a supporting theory that
would provide guidelines for a selection of control parameters, e.g. wall geometry or
traveling wave parameters, has been lacking. Even though DNS and experiments offer
valuable insight into flow control strategies, their utility can be significantly enhanced
by developing a model-based framework for flow control design. This has motivated a
significant body of research that utilizes models obtained from the linearized Navier-
Stokes equations in conjunction with tools from linear systems theory for flow control
design [42, 44, 52–63]. In this thesis, we develop models of transitional and turbulent
wall-bounded shear flows that govern the dynamics of fluctuations in the presence of
control. The wall geometry or traveling wave parameters enter as coefficients (that
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multiply system’s state), and the free-stream turbulence or surface roughness enter as
stochastic excitations into these equations. We demonstrate the predictive power of
these models using DNS.

1.3.1 Control-oriented modeling

Control-oriented models should describe the essential physics of the underlying system,
yet be simple enough to allow convenient control design. The models that we develop
are not able to emulate the full complexity of turbulence in wall-bounded shear flows.
On the other hand, the more realistic models of turbulence, e.g. the full nonlinear
Navier-Stokes equations used in the DNS studies, do not lend themselves easily to a
thorough theoretical analysis. In view of this, we assess flow control strategies using the
least complex models that capturer the essential features that are commonly observed
in experimental and numerical studies. Our approach is in concert with a standard
practice in control theory, where the design is performed on a simple model that rep-
resents an adequate approximation of the controlled system. Once the controller has
been designed, it is usually tested on either the real system or the high fidelity compu-
tational model. These results are used to refine the model and, if necessary, redesign
the controller. Ideally, the control-oriented models will contain statistical description of
flow disturbances that optimally approximate experimentally and numerically generated
turbulent flow statistics.

We build on recent research that has demonstrated the utility of stochastically forced
Navier-Stokes equations linearized around the laminar velocity profile to reveal the
dominant flow structures at the early stages of transition [7,27,28]. Consider the flow of
incompressible Newtonian fluids between two infinite plates; see Figure 1.11(a). Here,
x, y, and z are streamwise, spanwise, and wall-normal coordinates, respectively, and the
corresponding velocity components and forcing directions are denoted by (u, v, w) and
(d1, d2, d3). The evolution of fluctuations up to first order is governed by the linearized
Navier-Stokes equation around the laminar parabolic velocity U(y) = 1− y2

ψt(x, y, z, t) = Aψ(x, y, z, t) + B d(x, y, z, t),

v(x, y, z, t) = C ψ(x, y, z, t).
(1.1)

Here, v = [u v w ]T is the output vector, d = [ d1 d2 d3 ]T is the input vector, and
ψ = [ v η ]T is the state vector where η = uz − wx is the wall-normal vorticity, and t is
time. The subscripts denote spatial and temporal derivatives, e.g. ψt = ∂ψ/∂t, and A,
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B, and C are integro-differential operators

A =

[
∆−1

(
(1/Rc)∆

2 +
(
U ′′ − U∆

)
∂x
)

0
−U ′ ∂z (1/Rc)∆ − U ∂x

]
,

B =
[
B1 B2 B3

]
=

[
−∆−1∂xy ∆−1(∂xx + ∂zz) −∆−1∂yz

∂z 0 −∂x

]
,

C =

 Cu
Cv
Cw

 = (∂xx + ∂zz)
−1

 −∂xy ∂z

∂xx + ∂zz 0

−∂yz −∂x

 ,
(1.2)

where ∆ = ∂xx + ∂yy + ∂zz is the Laplacian, and {v(x, y = ±1, z, t) = v′(x, y =
±1, z, t) = η(x, y = ±1, z, t) = 0}. Here, Rc = Uch/ν is the Reynolds number based
on the centerline streamwise velocity Uc and the channel half height h, ν is the kinematic
viscosity, and U ′ = dU/dy.

Applying spatial Fourier transform in invariant directions, x and z, brings the evo-
lution model to a set of linear equations parameterized by the streamwise and spanwise
wavenumbers κ = (κx, κz)

ψt(y,κ, t) = A(κ)ψ(y,κ, t) + B(κ) d(y,κ, t),

v(y,κ, t) = C(κ)ψ(y,κ, t).
(1.3)

Note that the same symbols are used for denoting the functions and operators in physical
and frequency spaces (the distinction should be clear from the context). The operators
A, B, and C in frequency space are given by

A =

[
∆−1

(
(1/Rc)∆

2 + iκx
(
U ′′ − U∆

))
0

− iκzU
′ (1/Rc)∆ − iκxU

]
,

B =
[
B1 B2 B3

]
=

[
−iκx∆−1∂y −κ2∆−1 −iκz∆

−1∂y
iκzI 0 −iκxI

]
,

C =

 Cu
Cv
Cw

 =
1

κ2

 iκx∂y − iκzI

κ2I 0

iκz∂y iκxI

 ,
(1.4)

where ∆ = ∂yy − κ2, ∆2 = ∂yyyy − 2κ2 ∂yy + κ4, {v(±1,κ, t) = v′(±1,κ, t) =
η(±1,κ, t) = 0}, I is the identity operator, and i =

√
−1.

One way to quantify the flow receptivity is by studying the spatio-temporal frequency
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(a)

(b)

Figure 1.11: (a) Three-dimensional pressure-driven channel flow; (b) Input-output
analysis of the Navier-Stokes equations linearized around laminar velocity.

Figure 1.12: The energy density (H2 norm) as a function of streamwise and spanwise
wavenumbers, E(κ), for the flow with no control at Rc = 2000 [7]. The axes and the
coloring are in logarithmic scale. The wavenumbers corresponding to the streamwise
streaks and the TS waves are highlighted.
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responses of system (1.3) [7] (see Figure 1.11(b)) d1

d2

d3


︸ ︷︷ ︸

d

amplification
−−−−−−−−−→

 u
v
w


︸ ︷︷ ︸

v

.

For example, the so-called H2 norm of system (1.3)-(1.4) can be interpreted as the
steady-state energy density of fluctuations in the presence of zero-mean white (in t and
y) stochastic disturbances, and can be obtained from

E(κ) = lim
t→∞

〈v(·,κ, t),v(·,κ, t)〉 .

Here, 〈·, ·〉 denotes the L2[−1, 1] inner product and averaging in time, i.e.,

〈v,v〉 = E
{∫ 1

−1
v∗(y,κ, t) v(y,κ, t) dy

}
,

E {v(·, t)} = lim
T →∞

1

T

∫ T

0
v(·, t + τ) dτ ,

where ∗ denotes the complex conjugate transpose. For the linear system (1.3)-(1.4), it
is a standard fact that the H2 norm is determined by

E(κ) = trace
(
X C+C

)
.

Here, + denotes the operator adjoint and X(κ) is obtained efficiently from the solution
to a κ-parameterized family of algebraic Lyapunov equations

A(κ)X(κ) + X(κ)A+(κ) = −B(κ)B+(κ). (1.5)

For the channel flow with Rc = 2000, the energy density E(κ) is shown in Figure 1.12 [7].
We see that the most energetic modes (dark red) take place at zero streamwise wavenum-
ber, and a spanwise wavenumber of order one. These modes correspond to the stream-
wise streaks that are observed at early stages of transition in experimental and numerical
studies. This illustrates the predictive power of the stochastically forced linearized model
for determining the most energetic flow structures in the early stages of transition. In
addition, Figure 1.12 shows that the least stable modes of the linearized model (1.3) are
located in the narrow light blue region corresponding to zero spanwise wavenumber and
streamwise wavenumber of order one. We see that relative to the streamwise streaks, the
least stable modes (TS waves) are orders of magnitude less amplified by the linearized
model. The TS waves can only be obtained in carefully controlled experiments where
background noise is very small and the flow is perturbed by the appropriate frequen-
cies. Therefore, the linear hydrodynamic stability theory cannot predict the dominant
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flow structures in transitional flows. This suggests that transition is not a problem of
linear instability, rather it is closely related to robustness of the flow dynamics to exter-
nal disturbances [7, 25, 27, 64]. In view of this, we develop control-oriented models for
transitional and turbulent flows.

1.3.2 Transitional flows

As discussed in § 1.3.1, transition is initiated by large flow receptivity to external dis-
turbances. This is supported by large transient growth in response to perturbations and
by large variance amplification in the presence of stochastic disturbances. In addition,
the dynamics of velocity fluctuations exhibit large sensitivity to modeling imperfections
which leads to small stability margins in the linearized model. In this thesis, we have
designed flow control strategies for controlling the onset of turbulence based on reducing
the large flow receptivity.

In Chapter 2, we have designed a sensorless control based on blowing and suction of
fluid at the walls in the form of streamwise traveling waves. Recent research has shown
the effectiveness of upstream traveling waves for drag reduction in turbulent flows [8]. It
has also been shown that traveling waves induce a nonzero bulk flux even in the absence
of a driving pressure gradient [65]. We have used the stochastically forced NS equations
linearized around the nominal velocity that is induced by wall-actuation to study the
effect of traveling wave parameters (amplitude, frequency, and speed of the wave) on flow
receptivity. The inherent periodicity of the resulting flows poses significant challenges
on their analysis even in the linearized case. We have overcome these challenges by using
perturbation analysis in the control amplitude. This is facilitated by considering small
wave amplitudes since large amplitudes require large control effort and, consequently,
result in poor net efficiency. Our results based on perturbation analysis are supported
by high fidelity numerical simulations, and they have illustrated that reducing the flow
receptivity represents a powerful paradigm for controlling the onset of turbulence. Our
results have revealed that downstream traveling waves prevent transition while upstream
waves promote transition even in the case where the flow with no control stays laminar.
In addition, we have shown that the properly selected downstream traveling waves
maintain the laminar flow with positive net efficiency.

In Chapter 3, we have designed an optimal state-feedback controller based on lo-
cal flow information for preventing transition to turbulence. The optimal state-feedback
control problem with no structural constraints on the feedback gains yields a centralized
solution meaning that the actuation depends on the flow information at all points in the
spatial domain. It was shown that the linearized NS equations can be used to design
optimal centralized state-feedback controllers for preventing transition by minimizing
the energy of velocity fluctuations in the flow subject to stochastic excitations [56, 57].
These authors used spatial truncation of the resulting feedback kernels to obtain ker-
nels with finite spatial spread. Spatial truncation is justified by the fact that for a wide
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class of systems governed by partial differential equations, the magnitude of the opti-
mal feedback kernels decays exponentially with spatial distance from the origin [66,67].
However, we have demonstrated the dangers of spatial truncation for obtaining a lo-
calized feedback controller in Chapter 3. For a channel flow with an array of sensors
and actuators on a two-dimensional discrete lattice along the walls, we have shown that
using the optimal centralized feedback gains while paying attention to the flow informa-
tion from only the nearest neighbors can destabilize the laminar flow. Our numerical
simulations have verified that truncation of centralized feedback gains can trigger tran-
sition to turbulence even in response to perturbations for which the flow with no control
remains laminar. In view of this, we have utilized tools for designing structured optimal
feedback gains [68,69] to design localized optimal feedback controllers. We have shown
that the localized optimal controller can guarantee stability and achieve similar recep-
tivity reduction to the optimal centralized controller. Our simulations have illustrated
the effectiveness of the localized optimal gains for preventing transition.

1.3.3 Turbulent flows

Control-oriented turbulence modeling is challenging because of the complex flow physics
that arises from intricate interactions between the turbulent fluctuations and the mean
velocity. Turbulent flow models describe the statistical properties of turbulence, such as
mean velocity and velocity correlations. The closure problem in turbulence necessitates
modeling of unknown higher order statistical moments of turbulence in terms of known
lower order moments. For example, the turbulent viscosity hypothesis expresses the
second order moments (Reynolds-stress terms) in terms of the mean velocities [70–
72]. One of the main challenges in modeling turbulent flows is obtaining the model
parameters. In the case of the turbulent viscosity hypothesis, the parameter that needs
to be determined is the turbulent viscosity profile (that gives the ratio between the
Reynolds-stresses and the elements of the rate-of-strain tensor).

We have built on recent research that demonstrates considerable predictive power
of linearized analysis even in turbulent flows [73–75]. These papers have shown that
the equations linearized around turbulent mean velocity, with molecular viscosity aug-
mented by turbulent viscosity, qualitatively capture features of turbulent flows with no
control. In Chapter 4, we have designed a control strategy based on wall oscillations
for skin-friction drag reduction in turbulent flows. For the flow subject to control, we
examine the class of linearized models considered by [73–75] and use turbulent viscosity
hypothesis to quantify the influence of turbulent fluctuations on the mean velocity.

The model that we have developed approximates the turbulent mean velocity and
the fluctuations’ second-order statistics at the steady-state. This model has several
advantages over the current turbulent models which makes it especially suitable for
the purpose of control. Similar to the model for transitional flows, the evolution of
fluctuations around the turbulent mean flow is determined by linear partial-differential
equations that are driven by stochastic forcing. This enables efficient computation of
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the turbulent kinetic energy and the rate of turbulent dissipation at the steady-state by
solving Lyapunov equations. Moreover, by algebraizing the differential equations using
spatial Fourier transforms, the Lyapunov equations can be solved independently. As a
result, k and ε are computed in a fully parallel way. These quantities are next used to
compute the modification to the turbulent viscosity, the turbulent mean velocity, and
thereby the skin-friction drag in the flow with control.

Since the evolution model for flows subject to wall oscillations is time periodic, a
stationary stochastic forcing induces velocity fluctuations with cyclo-stationary statis-
tics. Computing these statistics is challenging even in the linearized case. Motivated
by the observation that large control amplitudes yield poor net efficiency, we have used
perturbation analysis (in the amplitude of oscillations) to quantify the effect of control
on the turbulent statistics in a computationally efficient manner.

1.4 Preview of main results and contributions

A brief overview of the main contributions of the thesis is provided in this section.
The numerical simulations of Chapters 2 and 3 are performed by Binh K. Lieu; his
contribution in writing the discussion of the results is also gratefully acknowledged.

• Chapter 2 presents a method for designing sensorless strategies for controlling
the onset of turbulence. In particular, we examine the efficacy of streamwise
traveling waves generated by a zero-net-mass-flux surface blowing and suction for
controlling the onset of turbulence in a channel flow. For small amplitude actu-
ation, we utilize weakly nonlinear analysis to determine base flow modifications
and to assess the resulting net power balance. Receptivity analysis of the velocity
fluctuations around this base flow is then employed to design the traveling waves.
Our simulation-free approach reveals that, relative to the flow with no control,
the downstream traveling waves with properly designed speed and frequency can
significantly reduce receptivity which makes them well-suited for controlling the
onset of turbulence. In contrast, the velocity fluctuations around the upstream
traveling waves exhibit larger receptivity to disturbances. Our theoretical predic-
tions, obtained by perturbation analysis (in the wave amplitude) of the linearized
Navier-Stokes equations with spatially periodic coefficients, are verified using full-
scale simulations of the nonlinear flow dynamics. In flows driven by a fixed pressure
gradient, a positive net efficiency as large as 25% relative to the uncontrolled tur-
bulent flow can be achieved with downstream waves. Furthermore, we show that
these waves can also relaminarize fully developed turbulent flows at low Reynolds
numbers. We conclude that the theory developed for the linearized flow equations
with uncertainty has considerable ability to predict full-scale phenomena.

• In Chapter 3, we study the design of localized optimal state-feedback controllers
for the problem of controlling the onset of turbulence in a channel flow. The
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actuation is generated by blowing and suction at the walls, and the actuators
are placed along a two-dimensional lattice of equally spaced points with each
actuator using information from only a limited number of nearby neighbors. We
utilize recently developed tools for designing structured optimal feedback gains
to reduce receptivity of velocity fluctuations to flow disturbances in the presence
of control. Our preliminary DNS result, conducted at a low Reynolds number,
show that this approach can indeed maintain the laminar flow. This is in contrast
to the localized strategies obtained by spatial truncation of optimal centralized
controllers, which may introduce instability and promote transition even in the
situations where the uncontrolled flow stays laminar.

• Chapter 4 develops a model-based and simulation-free approach to skin-friction
drag reduction in turbulent flows using transverse wall oscillations. Over the last
two decades, both experiments and simulations have demonstrated that transverse
wall oscillations with properly selected amplitude and frequency can reduce tur-
bulent drag by as much as 40%. In this thesis, we develop a model-based approach
for designing oscillations that suppress turbulence in a channel flow. We utilize
judiciously selected linearization of the flow with control in conjunction with tur-
bulence modeling to determine skin-friction drag in a simulation-free manner. The
turbulent viscosity hypothesis and the k-ε model are used to quantify the effect
of fluctuations on the mean velocity in the flow subject to control. In contrast to
the traditional approach that relies on numerical simulations, we determine the
turbulent viscosity from the second order statistics of the linearized model driven
by white-in-time stochastic forcing. The spatial power spectrum of the forcing is
selected to ensure that the linearized model for the flow with no control repro-
duces the turbulent energy spectrum. The resulting correction to the turbulent
mean velocity induced by small amplitude wall movements is then used to identify
the optimal frequency of drag reducing oscillations. In addition, the control net
efficiency and the turbulent flow structures that we obtain agree well with the
results of numerical simulations and experiments. This demonstrates the predic-
tive power of our model-based approach to controlling turbulent flows and paves
the way for successful flow control at higher Reynolds numbers than currently
possible.

• Chapter 5 summarizes the thesis contributions and provides an outlook for future
research.



Chapter 2

Controlling the onset of
turbulence by streamwise
traveling waves

The problem of turbulence suppression in a channel flow using feedback control with
wall-mounted arrays of sensors and actuators has recently received a significant atten-
tion. This problem is viewed as a benchmark for turbulence suppression in a variety
of geometries, including boundary layers. Also, there has been mounting evidence that
the linearized Navier-Stokes (NS) equations represent a good control-oriented model
for the dynamics of transition. Recent research suggests that, in wall-bounded shear
flows, one must account for modeling imperfections in the linearized NS equations since
they are exceedingly sensitive to external excitations and unmodelled dynamics; for
example, see [7, 25, 27, 64]. This has motivated several research groups to use the lin-
earized NS equations for model-based design of estimators and controllers in a channel
flow [42, 53–62]. These results suggest that the proper turbulence suppression design
paradigm is that of disturbance attenuation or robust stabilization rather than modal
stabilization.

An alternative approach to feedback flow control relies on the understanding of the
basic flow physics and the open-loop implementation of controls (i.e., without measure-
ment of the relevant flow quantities and disturbances). Examples of sensorless strate-
gies include: wall geometry deformation such as riblets, transverse wall oscillations, and
control of conductive fluids using the Lorentz force. Although several numerical and
experimental studies show that properly designed sensorless strategies may yield signif-
icant drag reduction, an obstacle to fully utilizing these physics-based approaches is the
absence of a theoretical framework for their design and optimization.

An enormous potential of sensorless strategies was exemplified by [8], where direct
numerical simulations (DNS) were used to show that a surface blowing and suction in
the form of an upstream traveling wave (UTW) results in a sustained sub-laminar drag

21



22

in a fully developed turbulent channel flow. The underlying mechanism for obtaining
drag smaller than in a laminar flow is the generation of the wall region Reynolds shear
stresses of the opposite signs compared to what is expected based on the mean shear. By
assuming that a wall actuation only influences the velocity fluctuations, [8] determined
an explicit solution to the two dimensional NS equations linearized around parabolic
profile; they further used an expression for skin-friction drag in fully developed channel
flows [76, 77], and showed that the drag is increased with the downstream traveling
waves (DTWs) and decreased with the upstream traveling waves.

A comparison of laminar and turbulent channel flows with and without control was
presented by [78], where a criterion for achieving sub-laminar drag was derived. This
study considered effectiveness of streamwise traveling waves at high Reynolds numbers
and discussed why such controls can achieve sub-laminar drag. Another recent study [65]
emphasized that the UTWs introduce a larger flux compared to the uncontrolled flow
which motivated the authors to characterize the observed mechanism as a pumping
rather than as a drag reduction. It was shown that, even with no driving pressure
gradient, blowing and suction along the walls induces pumping action in a direction
opposite to that of the wave propagation. By considering flows in the absence of velocity
fluctuations [65] showed that it costs more to drive a fixed flux with wall-transpiration
type of actuation than with standard pressure gradient type of actuation. A fundamental
limitation on the balance of power in a channel flow was recently examined by [79]; this
study showed that any transpiration-based control strategy that results in a sub-laminar
drag necessarily has negative net efficiency compared to the laminar flow with no control.
Furthermore, [80] showed that a lower bound on the net driving power in a duct flow with
arbitrary constant streamline curvature is determined by the power required to drive the
Stokes flow. It was thus concluded that the flow has to be relaminarized in order to be
driven with the smallest net power. However, since the difference between the turbulent
and laminar drag coefficients grows quadratically with the Reynolds number, [78] argued
that relaminarization may not be possible in strongly inertial flows. An alternative
approach is to design a controller that reduces skin-friction drag in turbulent flows;
provided that the control power is less than the saved power, a positive net efficiency
can still be achieved.

In this chapter, we show that a positive net efficiency can be achieved in a channel
flow subject to streamwise traveling waves if the controlled flow stays laminar while
the uncontrolled flow becomes turbulent. Starting from this observation, we develop
a framework for design of the traveling waves that are capable of (i) improving dy-
namical properties of the flow; and (ii) achieving positive net efficiency. We quantify
receptivity of the NS equations linearized around UTWs and DTWs to stochastic dis-
turbances by computing the ensemble average energy density of the statistical steady-
state. Motivated by our desire to have low cost of control we confine our study to small
amplitude blowing and suction along the walls. This also facilitates derivation of an
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explicit formula for energy amplification (in flows with control) using perturbation anal-
ysis techniques. Our simulation-free design reveals that the UTWs are poor candidates
for preventing transition; conversely, we demonstrate that properly designed DTWs are
capable of substantially reducing receptivity of three dimensional fluctuations (includ-
ing streamwise streaks and Tollmien-Schlichting (TS) waves). This indicates that the
DTWs can be used as an effective means for controlling the onset of turbulence. More-
over, we show the existence of DTWs that result in a positive net efficiency compared
to the uncontrolled flow that becomes turbulent. Our theoretical predictions are ver-
ified in using DNS of the NS equations. Thus, our work (i) demonstrates that the
theory developed for the linearized equations with uncertainty has considerable ability
to capture full-scale phenomena; and (ii) exhibits the predictive power of the proposed
perturbation-analysis-based method for designing traveling waves.

This chapter represents an outgrowth of the study performed during the 2006 Center
for Turbulence Research Summer Program [81]. While [81] only focused on receptivity
of UTWs with large wavelength, our current study does a comprehensive analysis of
the influence of both UTWs and DTWs on the fluctuations’ kinetic energy and the
overall efficiency. We also note that linear stability and transient growth of traveling
waves were recently examined by [82]. For selected values of parameters, it was shown
that the UTWs destabilize the laminar flow for control amplitudes as small as 1.5 %
of the centerline velocity; on the other hand, the DTWs with phase speeds larger than
the centerline velocity remain stable even for large wave amplitudes. Moreover, the
UTWs (DTWs) exhibit larger (smaller) transient growth relative to the uncontrolled
flow. Our study confirms all of these observations; it also extends them at several
different levels. First, we pay close attention to a net efficiency by computing the net
power gained (positive efficiency) or lost (negative efficiency) in the presence of wall-
actuation. Second, we conduct much more detailed study of the influence of traveling
waves on velocity fluctuations; this is done by a thorough analysis of the influence
of the wave speed, frequency, and amplitude on receptivity of full three dimensional
fluctuations. Third, we confirm all of our theoretical predictions and highlight remaining
research challenges.

Our presentation is organized as follows: in § 4.1, we formulate the governing equa-
tions in the presence of traveling wave wall-actuation. The influence of control on the
nominal bulk flux and the nominal net efficiency is also discussed in this section. A
frequency representation of the NS equations linearized around base velocity induced
by traveling waves is presented in § 2.2. We further discuss a notion of the ensemble av-
erage energy density of the statistical steady-state and describe an efficient method for
determining this quantity in flows subject to small amplitude traveling waves. In § 2.3,
we employ perturbation analysis to derive an explicit formula for energy amplification.
This formula is used to identify the values of wave frequency and speed that reduce
receptivity of the linearized NS equations; we show that the essential trends are cap-
tured by perturbation analysis up to a second order in traveling wave amplitude. We
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Figure 2.1: A pressure driven channel flow with blowing and suction along the walls.

also discuss influence of amplitude on energy of velocity fluctuations and reveal physical
mechanisms for energy amplification. A brief summary of the main results along with
an overview of remaining research challenges is provided in § 2.5.

2.1 Steady-state analysis

2.1.1 Governing equations

Consider a channel flow governed by the non-dimensional incompressible NS equations

ut̄ = − (u ·∇) u − ∇P + (1/Rc)∆u + F, 0 = ∇·u, (2.1)

with the Reynolds number defined in terms of the centerline velocity of the parabolic
laminar profile Uc and channel half-height δ, Rc = Uc δ/ν. The kinematic viscosity is
denoted by ν, the velocity vector is given by u, P is the pressure, F is the body force,
∇ is the gradient, and ∆ = ∇ ·∇ is the Laplacian. The spatial coordinates and time
are represented by (x̄, ȳ, z̄) and t̄, respectively.

In addition to a constant pressure gradient, Px̄, the flow is exposed to a zero-net-
mass-flux surface blowing and suction in the form of a streamwise traveling wave (see
Figure 3.1 for illustration). In the absence of the nominal body force, F̄ ≡ 0, base
velocity ub = (U, V, W ) represents the steady-state solution to (4.1) subject to

V (ȳ = ±1) = ∓2α cos (ωx(x̄ − c t̄)), F̄ ≡ 0,

U(±1) = Vȳ(±1) = W (±1) = 0, Px̄ = − 2/Rc,
(2.2)

where ωx, c, and α, respectively, identify frequency, speed, and amplitude of the traveling
wave. Positive values of c define a DTW, whereas negative values of c define a UTW.
The time dependence in V (±1) can be eliminated by the Galilean transformation, (x =
x̄ − ct̄, y = ȳ, z = z̄, t = t̄). This change of coordinates does not influence the spatial
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differential operators, but it transforms the time derivative to ∂t̄ = ∂t−c ∂x, which adds
an additional convective term to the NS equations

ut = cux − (u ·∇) u − ∇P + (1/Rc)∆u + F, 0 = ∇·u. (2.3)

In new coordinates, i.e. in the frame of reference that travels with the wave, the wall-
actuation (2.2) induces a two dimensional base velocity, ub = (U(x, y), V (x, y), 0),
which represents the steady-state solution to (2.3). Note that the spatially periodic
wall actuation, V (y = ±1) = ∓2α cos (ωxx), induces base velocity which is periodic in
x.

The equations describing dynamics (up to a first order) of velocity fluctuations
v = (u, v, w) around base velocity, ub, are obtained by decomposing each field in (2.3)
into the sum of base and fluctuating parts, i.e., {u = ub + v, P = P + p, F = 0 + d},
and by neglecting the quadratic term in v

vt = cvx − (ub ·∇) v − (v ·∇) ub − ∇p + (1/Rc)∆v + d, 0 = ∇·v. (2.4)

Note that the boundary conditions (2.2) are satisfied by base velocity and, thus, velocity
fluctuations acquire homogeneous Dirichlet boundary conditions.

2.1.2 Base flow

Let us first consider a surface blowing and suction of a small amplitude α. In this
case, a weakly nonlinear analysis can be employed to solve (2.3) subject to (2.2) and
determine the corrections to base parabolic profile; similar approach was previously
used by [65, 81]. We only present the equations for corrections up to a second order
in α; similar equations can be obtained for higher order corrections. Stream functions,
Ψ1,±1(y), can be used to determine the first harmonic in Fourier series representation
of the base velocity (cf. (2.5))

U1,±1(y) = Ψ′1,±1(y), V1,±1(y) = ∓iωxΨ1,±1(y),

where Ψ1,±1(y) are solutions to

(1/Rc)∆
2
ωx Ψ1,±1 ± iωx ((c − U0) ∆ωx Ψ1,±1 + U ′′0 Ψ1,±1) = 0,

Ψ1,−1(±1) = ±i/ωx, Ψ1,1(±1) = ∓i/ωx, Ψ′1,±1(±1) = 0.

Here, ∆ωx = ∂yy−ω2
x with Dirichlet boundary conditions and ∆2

ωx = ∂yyyy−2ω2
x∂yy+ω4

x

with Cauchy boundary conditions. Moreover, U2,0 is obtained by equating terms of order
α2 in the streamwise averaged x-momentum equation

(1/Rc)U
′′
2,0 = V1,1 U

′
1,−1 − U1,1 V

′
1,−1 + V1,−1 U

′
1,1 − U1,−1 V

′
1,1, U2,0(±1) = 0.



26

(a) (b)

Figure 2.2: Second order correction to the nominal flux, UB,2(c, ωx), for (a) upstream
waves; and (b) downstream waves in Poiseuille flow with Rc = 2000. Note: the level
sets are obtained using a sign-preserving logarithmic scale; e.g., 5 and −3 should be
interpreted as UB,2 = 105 and UB,2 = −103, respectively.

Therefore, up to a second order in control amplitude α, U(x, y) and V (x, y) can be
represented as

U(x, y) = U0(y) + αU1(x, y) + α2 U2(x, y) + O(α3),

V (x, y) = αV1(x, y) + α2 V2(x, y) + O(α3),

where U0(y) = 1− y2 denotes base velocity in Poiseuille flow and

U1(x, y) = U1,−1(y) e−iωxx + U1,1(y) eiωxx,

V1(x, y) = V1,−1(y) e−iωxx + V1,1(y) eiωxx,

U2(x, y) = U2,0(y) + U2,−2(y) e−2iωxx + U2,2(y) e2iωxx,

V2(x, y) = V2,−2(y) e−2iωxx + V2,2(y) e2iωxx.

(2.5)

[65] recently showed that, in the absence of driving pressure gradient, the traveling
waves induce nominal bulk flux (i.e., pumping) in the direction opposite to the direction
in which the wave travels. While the first order of correction to the base velocity
is purely oscillatory, the quadratic interactions in the NS equations introduce mean
flow correction U2,0(y) at the level of α2. The nominal bulk flux is determined by

UB = (1/2)
∫ 1
−1 U(y) dy where the overline denotes averaging over horizontal directions.

In the presence of a pressure gradient, the nominal flux in flow with no control is
UB,0 = (1/2)

∫ 1
−1 U0(y) dy = 2/3, and the second order correction (in α) to UB is given

by UB,2 = (1/2)
∫ 1
−1 U2,0(y) dy. Figure 2.2 shows UB,2 as a function of wave frequency,

ωx, and wave speed, c, in Poiseuille flow with Rc = 2000. Except for a narrow region
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(a) (b)

Figure 2.3: (a) The nominal flux, UB(α); and (b) the nominal skin-friction drag coeffi-
cient, Cf (α), for a pair of UTWs and a pair of DTWs in Poiseuille flow with Rc = 2000.
The results are obtained by solving (2.3) subject to (2.2), in the steady-state, using
Newton’s method; UB and Cf of the uncontrolled laminar and turbulent flows are also
shown for comparison.

in the vicinity of c = 0, the upstream and downstream waves increase and reduce the
nominal flux, respectively. Furthermore, for a given wave speed c, the magnitude of the
induced flux increases as the wave frequency is decreased.

Figure 2.3 is obtained by finding the steady-state solution of (2.3) subject to (2.2)
using Newton’s method. Originally, we have used base flow resulting from the weakly
nonlinear analysis to initialize Newton iterations; robustness of our computations is
confirmed using initialization with many different incompressible base flow conditions.
The nominal flux and its associated nominal drag coefficient for a UTW with c = −2
and ωx = 0.5, and a DTW with c = 5 and ωx = 2 are shown in this figure. The flux
and drag coefficient of both laminar and turbulent flows with no control are also given
for comparison. The nominal skin-friction drag coefficient is defined as [70]

Cf = 2 τw/U
2
B = −2Px/U

2
B,

where τw is the nondimensional average wall-shear stress. For the fixed pressure gra-
dient, Px = −2/Rc, the nominal skin-friction drag coefficient is inversely proportional
to square of the nominal flux and, in uncontrolled laminar flow with Rc = 2000, we
have Cf = 4.5 × 10−3. The UTWs produce larger nominal flux (and, consequently,
smaller nominal drag coefficient) compared to both laminar and turbulent uncontrolled
flows. On the other hand, the DTWs yield smaller nominal flux (and, consequently,
larger nominal drag coefficient) compared to uncontrolled laminar flow. In situations
where flow with no control becomes turbulent, however, the DTWs with amplitudes
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smaller than a certain threshold value may have lower nominal drag coefficient than the
uncontrolled turbulent flow; e.g., for a DTW with c = 5 and ωx = 2 this threshold value
is given by α = 0.16 (cf. Figure 2.3(b)).

2.1.3 Nominal net efficiency

For the fixed pressure gradient, the difference between the flux of the controlled and the
uncontrolled flows results in production of a driving power (per unit horizontal area of
the channel)

Πprod = −2Px (UB,c − UB,u),

where UB,c and UB,u are the nominal flux of the controlled and uncontrolled flows,
respectively. On the other hand, the required control power exerted at the walls (per
unit horizontal area of the channel) is given by [83]

Πreq = V P
∣∣
y=−1

− V P
∣∣
y= 1

. (2.6)

The control net efficiency is determined by the difference of the produced and required
powers [9]

Πnet = Πprod − Πreq,

where Πnet signifies the net power gained (positive Πnet) or lost (negative Πnet), in the
presence of wall-actuation.

For small control amplitudes, the produced power can be represented as

Πprod = Πprod,0 + α2 Πprod,2 + O(α4),

where
Πprod,0 = −2Px (UB,0 − UB,u), Πprod,2 = −2Px UB,2.

The nominal required control power can be determined from (2.6) by evaluating the
horizontal average of the product between base pressure, P , and base wall-normal ve-
locity, V , at the walls. Since, at the walls, the nonzero component of V contains only
first harmonic in x (cf. (2.5)), we need to determine the first harmonic (in x) of P to
compute Πreq. Base pressure can be obtained by solving the two dimensional Poisson
equation

Pxx + Pyy = − (Ux Ux + 2Vx Uy + Vy Vy) , (2.7)

where P satisfies the following Neumann boundary conditions

Py|y=±1 = ((Vxx + Vyy) /Rc + c Vx)|y=±1 .

These are determined by evaluating the y-momentum equation at the walls. For small
values of α, weakly nonlinear analysis, in conjunction with the expressions for U and V
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given in § 2.1.2, can be employed to solve (2.7) for base pressure

P (x, y) = αP1(x, y) + O(α2),

P1(x, y) = P1,−1(y) e−iωxx + P1,1(y) eiωxx,

where P1,−1 and P1,1 are determined from

P ′′1,±1(y) − ω2
x P1,±1(y) = ∓2 iωxV1,±1(y)U ′0(y),

P ′1,−1(±1) = (V ′′1,−1(±1) − ω2
x V1,−1(±1))/Rc − c iωxV1,−1(±1),

P ′1,1(±1) = (V ′′1,1(±1) − ω2
x V1,1(±1))/Rc + c iωxV1,1(±1).

Here, the prime denotes the partial derivative with respect to y, and the required power
can be represented as

Πreq = α2 Πreq,2 + O(α4),

Πreq,2 = (P1,−1V1,1 + P1,1V1,−1)|y=−1 − (P1,−1V1,1 + P1,1V1,−1)|y= 1 .

Since the second order correction to the nominal produced power, Πprod,2, is directly
proportional to UB,2, Πprod,2 is positive for UTWs and negative for DTWs. It turns
out that smaller choices of ωx result in larger produced (for UTWs) or lost (for DTWs)
power. One of the main points of this chapter, however, is to show that it may be
misleading to rely on the produced power as the only criterion for selection of control
parameters; in what follows, we demonstrate that the required control power as well as
the dynamics of velocity fluctuations need to be taken into account when designing the
traveling waves.

2.1.4 Nominal efficiency of laminar controlled flows

We next examine the nominal efficiency of laminar controlled flows. Since we are
interested in expressing the nominal efficiency relative to the power required to drive flow
with no control, we provide comparison with both laminar and turbulent uncontrolled
flows. The net efficiency in fraction of the power required to drive the uncontrolled
laminar flow is determined by

%Πnet = Πnet/Π0 = −α2 |π2(Rc; c, ωx)| + O(α4), (2.8)

where Π0 = −2Px UB,0 and π2 = (Πprod,2−Πreq,2)/Π0. It can be shown that the second
order correction to %Πnet, π2, is negative for all choices of c and ωx (see Figure 2.4).
This is because the required power for maintaining the traveling wave grows faster
than the produced power as α is increased. In addition, Figure 2.4 shows that |π2| is
minimized for small wave speeds and for ωx ∈ (1, 4). Formula (2.8) demonstrates that
the control net efficiency is negative whenever the uncontrolled flow stays laminar (cf.
Figure 2.5(a)). This is a special case of more general results by [79] and [80] which have
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(a) (b)

Figure 2.4: Second order correction to the nominal net efficiency, π2(c, ωx), for (a)
upstream waves; and (b) downstream waves in Poiseuille flow with Rc = 2000. Note:
the level sets are obtained using a sign-preserving logarithmic scale; e.g., −4 should be
interpreted as π2 = −104.

(a) (b)

Figure 2.5: The steady-state net efficiency, %Πnet, of laminar controlled flows as a
function of control amplitude α for a UTW with (c = −2, ωx = 0.5) and a DTW
with (c = 5, ωx = 2) at Rc = 2000. The results are obtained by assuming that the
uncontrolled flow (a) remains laminar; and (b) becomes turbulent.
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established that any transpiration-based control strategy necessarily has negative net
efficiency compared to the laminar uncontrolled flow.

On the other hand, the net efficiency of the laminar controlled flow in fraction of
the power required to drive the uncontrolled turbulent flow is determined by

%Πnet =
Πnet

Πturb
=

UB,0
UB,turb

1−
UB,turb
UB,0︸ ︷︷ ︸
>0

− α2 |π2(Rc, c, ωx)|

 + O(α4), (2.9)

where Πturb = −2Px UB,turb. Since the bulk flux of the uncontrolled turbulent flow is
smaller than that of the uncontrolled laminar flow (i.e., UB,turb < UB,0), it is possible to
obtain a positive net efficiency for sufficiently small values of α. Note that formula (2.9)
is derived under the assumption that the controlled flow stays laminar while the un-
controlled flow becomes turbulent. Clearly, this formula represents an idealization since
it assumes that laminar flow can be maintained by both UTWs and DTWs even with
infinitesimal control amplitudes. It also indicates that increasing the control amplitude
always decreases the nominal net efficiency. In a nutshell, the control amplitude needs
to be large enough to maintain a laminar flow but increasing the control amplitude be-
yond certain value brings the efficiency down and eventually leads to negative efficiency.
If the efficiency is negative, maintaining a laminar flow does not lead to any net benefit
in the presence of control. This is further illustrated in Figure 2.5(b) where Newton’s
method is used to show that a positive net efficiency can be achieved for control am-
plitudes smaller than a certain threshold value (e.g., α < 0.05 for the DTW with c = 5
and ωx = 2). In addition, the net efficiency monotonically decreases as α is increased,
as predicted by the weakly nonlinear analysis up to a second order in α (cf. (2.9)).

An estimate for the maximum value of α for which a positive net efficiency is attain-
able can be obtained by solving the following equation (obtained using weakly nonlinear
analysis)

(1− UB,turb/UB,0) − α2
max |π2(Rc, c, ωx)| = 0. (2.10)

Figure 2.6 shows αmax as a function of ωx for different values of c. The dotted curves
denote the approximation for αmax obtained using (2.10). The values of αmax (solid
curves) obtained using Newton’s method are also shown for comparison; we see that the
predictions based on the second order correction capture the essential trends and provide
good estimates for αmax (especially for large wave speeds and for wave frequencies
between 0.1 and 10). Figures 2.5 and 2.6 are obtained by assuming that the flow with
control stays laminar while the flow with no control becomes turbulent. Whether or
not the traveling waves can control the onset of turbulence depends on the velocity
fluctuations; addressing this question requires analysis of the dynamics, which is a topic
of § 2.2 and § 2.3, where we examine receptivity of velocity fluctuations around UTWs
and DTWs to stochastic disturbances.
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Figure 2.6: The wave amplitude, αmax, for which the nominal net efficiency, %Πnet, is
positive at Rc = 2000 for (a) a pair of UTWs; and (b) a pair of DTWs. The solid curves
are computed using Newton’s method, and the dotted curves are computed using (2.10).
The results are obtained by assuming that the controlled flow stays laminar while the
uncontrolled flow becomes turbulent.

2.2 Dynamics of fluctuations around traveling waves

2.2.1 Evolution model with forcing

A standard conversion of (2.4) to the wall-normal velocity (v)/vorticity (η) formulation
removes the pressure from the equations and yields the following evolution model with
forcing

Eψt(x, y, z, t) = F ψ(x, y, z, t) + Gd(x, y, z, t),

v(x, y, z, t) = C ψ(x, y, z, t).
(2.11)

This model is driven by the body force fluctuation vector d = (d1, d2, d3), which can
account for flow disturbances. We refer the reader to a recent review article [64] and
a monograph [84] for a comprehensive discussion explaining why it is relevant to study
influence of these excitations on velocity fluctuations. The internal state of (2.11) is
determined by ψ = (v, η), with Cauchy (both Dirichlet and Neumann) boundary con-
ditions on v and Dirichlet boundary conditions on η. All operators in (2.11) are matrices
of differential operators in three coordinate directions x, y, and z. Operator C in (2.11)
captures a kinematic relation between ψ and v, operator G describes how forcing enters
into the evolution model, whereas operators E and F determine internal properties of
the linearized NS equations (e.g., modal stability). While operators E, G, and C do
not depend on base velocity, operator F is base-velocity-dependent and, hence, it deter-
mines changes in the dynamics owing to changes in ub (see § 2.2.2). Moreover, for base
velocity of § 2.1.2, F inherits spatial periodicity in x from ub and it can be represented
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Figure 2.7: A Bloch wave d(x, y, z, t) defined in (2.12) is obtained by the superposition
of weighted Fourier exponentials with frequencies (θn, κz) |n∈Z, with weights determined
by d̄n(y, κz, t).

as

F = F0 +

∞∑
l= 1

αl
l∑

r
2
=−l

eirωxxFl,r,

where F0 and Fl,r are spatially invariant operators in the streamwise and spanwise

directions and
∑l

r
2
=−l

signifies that r takes the values {−l,−l + 2, . . . , l − 2, l}. This

expansion isolates spatially invariant and spatially periodic parts of operator F , which
is well-suited for representation of (2.11) in the frequency domain.

2.2.2 Frequency representation of the linearized model

Owing to the structure of the linearized NS equations, the differential operators E,
G, and C are invariant with respect to translations in horizontal directions. On the
other hand, operator F is invariant in z and periodic in x. Thus, the Fourier transform
in z can be applied to algebraize the spanwise differential operators. In other words,
the normal modes in z are the spanwise waves, eiκzz, where κz denotes the spanwise
wavenumber. On the other hand, the appropriate normal modes in x are given by the
so-called Bloch waves [85,86], which are determined by a product of eiθx and the 2π/ωx
periodic function in x, with θ ∈ [0, ωx). Based on the above, each signal in (2.11) (for
example, d) can be expressed as

d(x, y, z, t) = eiκzzeiθx d̄(x, y, κz, t)

d̄(x, y, κz, t) = d̄(x+ 2π/ωx, y, κz, t)

}
κz ∈ R, θ ∈ [0, ωx),
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where only real parts are to be used for representation of physical quantities. Expressing
d̄(x, y, κz, t) in Fourier series yields (see Figure 2.7 for an illustration)

d(x, y, z, t) =
∞∑

n=−∞
d̄n(y, κz, t) ei(θnx+κzz),

θn = θ + nωx,
κz ∈ R, θ ∈ [0, ωx),

(2.12)

where {d̄n(y, κz, t)}n∈Z are the coefficients in the Fourier series expansions of d̄(x, y, κz, t).
The frequency representation of the linearized NS equations is obtained by substi-

tuting (2.12) into (2.11)

∂tψθ(y, κz, t) = Aθ(κz)ψθ(y, κz, t) + Bθ(κz) dθ(y, κz, t),

vθ(y, κz, t) = Cθ(κz)ψθ(y, κz, t).
(2.13)

This representation is parameterized by κz and θ and ψθ(y, κz, t) denotes a bi-infinite
column vector, ψθ(y, κz, t) = col {ψ(θn, y, κz, t)}n∈Z. The same definition applies to
dθ(y, κz, t) and vθ(y, κz, t). On the other hand, for each κz and θ, Aθ(κz), Bθ(κz), and
Cθ(κz) are bi-infinite matrices whose elements are one dimensional integro-differential
operators in y. The structure of these operators depends on frequency representation
of E, F , G, and C in (2.11). In short, Bθ(κz) and Cθ(κz) are block-diagonal operators
and

Aθ = A0θ +
∞∑
l= 1

αlAlθ,

where A0θ and Alθ are structured operators. The particular structure of A0θ and Alθ
is exploited in perturbation analysis of the energy amplification for small control am-
plitudes α in § 2.2.4. The details of the frequency representation are explained next.

We first describe how base velocity modified by the traveling waves enters in evolu-
tion model (2.11). Frequency representation of the evolution model is discussed next.
It turns out that the components of base velocity determine coefficients of operator F
in (2.11). For base velocity, ub = (U(x, y), V (x, y), 0), F is a 2× 2 block-operator with
components

F 11 = (1/Rc)∆
2 + ((∆U)− (U − cI)∆)∂x − (∆V )∂y − V∆∂y −

2Vx∂xy + Ux(∆− 2∂xx) − (∆Vy) + (2(∆V )∂x + ∆Vx +

Vx(∆− 2∂yy) − 2Ux∂xy) (∂xx + ∂zz)
−1∂xy,

F 12 = − (2(∆V )∂x + ∆Vx + Vx(∆− 2∂yy) − 2Ux∂xy) (∂xx + ∂zz)
−1∂z,

F 21 = −
(
Uy∂z + Vx(∂xx + ∂zz)

−1∂yyz
)
,

F 22 = (1/Rc)∆ − (Ux + (U − cI)∂x + V ∂y) − Vx(∂xx + ∂zz)
−1∂xy,
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where (∂xx + ∂zz)
−1 is defined by

(∂xx + ∂zz)
−1 : f 7→ g ⇔

{
f = (∂xx + ∂zz)g

= gxx + gzz.

Frequency representation (2.13) of the linearized evolution model (2.11) can be de-
termined using the following simple rules [87]:

(a) A spatially invariant operator L with Fourier symbol L(κx) has a block-diagonal
representation Lθ = diag {L(θn)}n∈Z. For example, if L = ∂x, then Lθ =
diag {i(θ + nωx)I}n∈Z. Operators E, G, C, F0, and Fl,r in (2.11) are spatially
invariant and, thus, their representations are block-diagonal.

(b) A spatially periodic function T (x) with Fourier series coefficients {Tn}n∈Z has a
θ-independent block-Toeplitz representation

T = toep
{
· · · , T2, T1, T0 , T−1, T−2, · · ·

}
=



. . .

T0 T−1 T−2

T1 T0 T−1

T2 T1 T0

. . .

 ,

where the box denotes the element on the main diagonal of T . For example,
T (x) = e−irx has a block-Toeplitz representation T = Sr with the only non-zero
element T−r = I.

(c) A representation of the sums and cascades of spatially periodic functions and
spatially invariant operators is readily determined from these special cases. For
example, a matrix representation of operator e−irx∂x is given by Sr diag {i(θ +
nωx)I}n∈Z.

Based on these, we get the following representations for Aθ, Bθ, and Cθ in (2.13)

Aθ = E−1
θ Fθ = E−1

θ F0θ +

∞∑
l= 1

αl
l∑

r
2
=−l

E−1
θ S−rFl,rθ = A0θ +

∞∑
l= 1

αlAlθ,

Bθ = E−1
θ Gθ, Gθ = diag {G(θn)}n∈Z, Cθ = diag {C(θn)}n∈Z,

where we have used the fact that Eθ = diag {E(θn)}n∈Z is an invertible operator. For
convenience of later algebraic manipulations, we rewrite Alθ as Alθ =

∑l

r
2
=−l
S−rAl,rθ

where Al,rθ = diag {Al,r(θn)}n∈Z = diag {E−1(θn+r)Fl,r(θn)}n∈Z. In other words, for
a given l ≥ 1 operator Alθ has non-zero blocks only on rth sub-diagonals with r ∈
{−l,−l + 2, . . . , l − 2, l}. The frequency symbols of the operators E(θn), G(θn), C(θn),
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and Fl,r(θn) are given by

F 11
0 (θn, κz) = (1/Rc)∆

2 + iθn(U ′′0 − (U0 − c)∆), F 12
0 (θn, κz) = 0,

F 21
0 (θn, κz) = −iκzU

′
0, F

22
0 (θn, κz) = (1/Rc)∆ − iθn(U0 − c),

and

F 11
l,r (θn, κz) = iθn ((∆rωx Ul,r) − Ul,r ∆ − 2i(rωx)Vl,r∂y) −

((∆rωx Vl,r) + V ∆) ∂y + irωxUl,r(∆ + 2θ2
n) + irωx(∆rωx Ul,r)−

(θn/κ
2) (2θn ((−∆rωx Vl,r)∂y + irωxUl,r∂yy) −

rωx ((∆rωx Vl,r) + Vl,r(∆ − 2∂yy)) ∂y) ,

F 12
l,r (θn, κz) = (κz/κ

2) (2θn ((−∆rωx Vl,r) + irωxUl,r∂y) −
rωx ((∆rωx Vl,r) + Vl,r(∆− 2∂yy))) ,

F 21
l,r (θn, κz) = − iκz

(
U ′l,r − (irωx/κ

2)Vl,r∂yy

)
,

F 22
l,r (θn, κz) = −Vl,r∂y − irωxUl,r + iθn

(
(irωx/κ

2)Vl,r∂y − Ul,r
)
,

where κ2 = θ2
n + κ2

z, ∆ = ∂yy − κ2 and ∆rωx = ∂yy − (rωx)2 with Dirichlet boundary
conditions, and ∆2 = ∂yyyy− 2κ2∂yy +κ4 with Cauchy boundary conditions. Operators
E, G, and C are given by

E(θn, κz) =

[
∆ 0
0 I

]
, G(θn, κz) =

[
−iθn∂y −κ2I −iκz∂y

iκzI 0 −iθnI

]
,

C(θn, κz) =

 i(θn/κ
2)∂y −i(κz/κ

2)I
I 0

i(κz/κ
2)∂y i(θn/κ

2)I

 .
2.2.3 Energy density of the linearized model

Frequency representation (2.13) contains a large amount of information about linearized
dynamics. For example, it can be used to assess stability properties of the base flow.
However, since the early stages of transition in wall-bounded shear flows are not appro-
priately described by the stability properties of the linearized equations (for example,
see [64, 84]), we perform receptivity analysis of stochastically forced model (2.13) to
assess the effectiveness of the proposed control strategy. Namely, we set the initial con-
ditions in (2.13) to zero and study the responses of the linearized dynamics to uncertain
body forces. When the body forces are absent, the response of stable flows decays asymp-
totically to zero. However, in the presence of stochastic body forces, the linearized NS
equations are capable of maintaining high levels of the steady-state variance [7, 27, 28].
Our analysis quantifies the effect of imposed streamwise traveling waves on the asymp-
totic levels of variance and describes how receptivity changes in the presence of control.
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We note that there are substantial differences between the problem considered here and
in [7]; these differences arise from lack of homogeneity in the streamwise direction which
introduces significant computational challenges which we discus below. Furthermore,
even though our study is similar in spirit to [88], current work studies dynamics of
fluctuations around spatially periodic base velocity, whereas [88] considered dynamics
of fluctuations around time periodic base velocity. Theoretical framework for quantify-
ing receptivity in these two conceptually different cases was developed by [87] and [89],
respectively.

Let us assume that a stable system (2.13) is subject to a zero-mean white stochastic
process (in y and t), dθ(y, κz, t). Then, for each κz and θ, the ensemble average energy
density of the statistical steady-state is determined by

Ē(θ, κz) = lim
t→∞

〈vθ(·, κz, t),vθ(·, κz, t)〉

= trace
(

lim
t→∞

E {vθ(·, κz, t)⊗ vθ(·, κz, t)}
)
,

where 〈·, ·〉 denotes the L2[−1, 1] inner product and averaging in time, i.e.,

〈vθ,vθ〉 = E
{∫ 1

−1
v∗θ(y, κz, t) vθ(y, κz, t) dy

}
,

E {v(·, t)} = lim
T →∞

1

T

∫ T

0
v(·, t + τ) dτ ,

(2.14)

and vθ⊗vθ is the tensor product of vθ with itself. We note that Ē(θ, κz) determines the
asymptotic level of energy (i.e., variance) maintained by a stochastic forcing in (2.13).
Typically, this quantity is computed by running DNS of the NS equations until the
statistical steady-state is reached. However, for linearized system (2.13), the energy
density Ē(θ, κz) can be determined using the solution to the following operator Lyapunov
equation [87]

Aθ(κz)Xθ(κz) + Xθ(κz)A+
θ (κz) = −Bθ(κz)B+

θ (κz), (2.15)

as
Ē(θ, κz) = trace

(
Xθ(κz) C+

θ (κz) Cθ(κz)
)
.

Here, + denotes the adjoint of an operator, and Xθ(κz) represents the autocorrelation
operator of ψθ, that is

Xθ(κz) = lim
t→∞

E {ψθ(·, κz, t)⊗ψθ(·, κz, t)} .
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Since C+
θ (κz) Cθ(κz) is an identity operator, we have

Ē(θ, κz) = trace (Xθ(κz)) =

∞∑
n=−∞

trace (Xd(θn, κz)) , (2.16)

where Xd(θn, κz) denotes the elements on the main diagonal of operator Xθ. We note
that Ē also has an interesting deterministic interpretation; namely, if vθ(·, κz, t) denotes
the impulse response of (2.13), then

Ē(θ, κz) =

∫ ∞
0

trace (vθ(·, κz, t)⊗ vθ(·, κz, t)) dt.

Thus, the same quantity can be used to assess receptivity of the linearized NS equations
to exogenous disturbances of either stochastic or deterministic origin.

2.2.4 Perturbation analysis of energy density

Solving (2.15) is computationally expensive; a discretization of the operators (in y) and
truncation of the bi-infinite matrices convert (2.15) into a large-scale matrix Lyapunov
equation. Our computations suggest that in order to obtain convergence of

Ē(θ, κz) ≈
N∑

n=−N
trace (Xd(θn, κz)) ,

a choice of N between ten (for ωx ∼ O(1)) and a few thousands (for ωx ∼ O(0.01))
is required. Since we aim to conduct a detailed study of the influence of streamwise
traveling waves on dynamics of velocity fluctuations, determining energy density for a
broad range of traveling wave parameters, κz and θ still poses significant computational
challenges.

Instead, we employ an efficient perturbation analysis based approach introduced
by [90] for solving equation (2.15). For our problem, this approach turns out to be
at least 20 times faster than the truncation approach. This method is well-suited for
systems with small amplitude spatially periodic terms and it converts (2.15) into a set
of conveniently coupled system of operator-valued Lyapunov and Sylvester equations.
A finite dimensional approximation of these equations yields a set of algebraic matrix
equations whose order is determined by the product between the number of fields in
the evolution model (here 2, the wall-normal velocity and vorticity) and the size of
discretization in y. While consideration of small wave amplitudes simplifies analysis by
providing an explicit expression for energy density, it is also motivated by our earlier
observation that large values of α introduce high cost of control which is not desirable
from a physical point of view.
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For sufficiently small values of α, the solution of (2.15) can be expressed as a pertur-
bation series Xθ =

∑∞
m= 0 α

mXmθ. After substituting into (2.15) and collecting equal
power in α, we have

α0 : A0θ X0θ + X0θA+
0θ = −Bθ B+

θ ,

αm : A0θ Xmθ + XmθA+
0θ = −

m∑
l= 1

(
Alθ Xm−lθ + Xm−lθA+

lθ

)
, m ≥ 1

(2.17)

Since operator A0θ is block-diagonal, Xmθ inherits the same structure as the right-hand-
side of (2.17). One can show that Xmθ has non-zero blocks only on the first s ≤ m odd
(for odd m) or even (for even m) upper and lower sub-diagonals. Up to a second order
in α, we have

X0θ = X0,0θ,

X1θ = S1X1,1θ + X+
1,1θ S−1,

X2θ = S2X2,2θ + X2,0θ, + X+
2,2θ S−2,

(2.18)

where Xm,sθ = diag {Xm,s(θn)}n∈Z and Sr is defined in § 2.2.2. Substituting into (2.17)
yields

A0θ X0,0θ + X0,0θA+
0θ = −Bθ B+

θ ,

A0θ S1X1,1θ + S1X1,1θA+
0θ = −

(
S1A1,−1θ X0,0θ + X0,0θA+

1,1θ S1

)
,

A0θ X2,0θ + X2,0θA+
0θ = −

(
A2,0θ X0,0θ + X0,0θA+

2,0θ + S−1A1,1θ S1X1,1θ +

S1A1,−1θ X+
1,1θ S−1 + S1X1,1θA+

1,−1θ S−1 + X+
1,1θ S−1A+

1,1θ S1

)
.

(2.19)
Finally, each block on the main diagonal of Xm,sθ in (2.19) is obtained from

A0(θn)X0,0(θn) +X0,0(θn)A+
0 (θn) = −B(θn)B+(θn),

A0(θn−1)X1,1(θn) +X1,1(θn)A+
0 (θn) = −

(
A1,−1(θn)X0,0(θn) +X0,0(θn−1)A+

1,1(θn−1)
)
,

A0(θn)X2,0(θn) +X2,0(θn)A+
0 (θn) = −

(
A2,0(θn)X0,0(θn) +X0,0(θn)A+

2,0(θn) +

A1,1(θn−1)X1,1(θn) +A1,−1(θn+1)X+
1,1(θn+1) +

X1,1(θn+1)A+
1,−1(θn+1) +X+

1,1(θn)A+
1,1(θn−1)

)
.

Therefore, the energy density of system (2.11) can be represented as

Ē(θ, κz;Rc, α, c, ωx) = Ē0(θ, κz;Rc, ωx) +
∞∑
l= 1

α2l Ē2l(θ, κz;Rc, c, ωx), 0 < α� 1.

(2.20)
Thus, only terms with even powers in α contribute to Ē, which in controlled flow
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Figure 2.8: Energy density Ẽ0(κx, κz) of the uncontrolled Poiseuille flow with Rc =
2000. The plot is given in the log-log-log scale.

depends on six parameters. Since our objective is to identify trends in energy density,
we confine our attention to a perturbation analysis up to a second order in α. We
briefly comment on the influence of higher order corrections in § 2.3.3 where it is shown
that the essential trends are correctly predicted by the second order of correction. A
method for numerically determining the adjoint of the underlying operators is provided
in Appendix A.

2.3 Energy amplification in Poiseuille flow with Rc = 2000

In this section, we study energy amplification of stochastically forced linearized NS
equations in Poiseuille flow controlled with streamwise traveling waves. Equation (2.20)
reveals the dependence of the energy density on traveling wave amplitude α, for 0 < α�
1. However, since the operators in (2.13) depend on the spatial wavenumbers (θ and
κz), Rc, ωx, and c, the energy density is also a function of these parameters. Finding the
optimal triple (α, c, ωx) that maximally reduces the energy of the velocity fluctuations
is outside the scope of the current study; instead, we identify the values of c and ωx
that are capable of reducing receptivity in the presence of small amplitude streamwise
traveling waves. Since we are interested in energy amplification of the transitional
Poiseuille flow, we choose Rc = 2000 in all of our subsequent computations. This value
is selected because it is between the critical Reynolds number at which linear instability
takes place, Rc = 5772, and the value at which transition is observed in experiments
and DNS, Rc ≈ 1000. The same Reynolds number was used by [8] in their DNS study.
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2.3.1 Energy density of flow with no control

We briefly comment on the energy density in uncontrolled Poiseuille flow with Rc =
2000; for an in-depth treatment see [7]. The appropriate normal modes in the uncon-
trolled flow are purely harmonic streamwise and spanwise waves, eiκxx eiκzz, where κx
denotes the streamwise wavenumber. Figure 2.8 illustrates the energy density of the
uncontrolled flow as a function of κx and κz, which we denote by Ẽ0(κx, κz). The stream-
wise constant fluctuations with O(1) spanwise wavenumbers carry most energy in flow
with no control. Namely, the largest value of Ẽ0(κx, κz) occurs at (κx = 0, κz ≈ 1.78),
which means that the most amplified flow structures (the streamwise streaks) are in-
finitely elongated in the streamwise direction and have the spanwise length scale of
approximately 3.5δ, where δ is the channel half-height. We note that these input-
output resonances do not correspond to the least-stable modes of the linearized NS
equations. Rather, they arise because of the coupling from the wall-normal velocity
v to the wall-normal vorticity η. Physically, this coupling is a product of the vortex
tilting (lift-up) mechanism [91]; the base shear is tilted in the wall-normal direction by
the spanwise changes in v, which lead to a nonmodal amplification of η. This mech-
anism does not take place either when the base shear is zero (i.e., U ′ = 0), or when
there are no spanwise variations in v (i.e., κz = 0). On the other hand, the least-stable
modes (TS waves) of uncontrolled flow create a local peak in Ẽ0(κx, κz) around (κz = 0,
κx ≈ 1.2), with a magnitude significantly lower compared to the magnitude achieved by
the streamwise constant flow structures. Finally, we note that the uncontrolled energy
density Ē0(θ, κz;ωx) as appeared in (2.20) can be obtained from Ẽ0(κx, κz) using the
following expression

Ē0(θ, κz;ωx) =

∞∑
n=−∞

Ẽ0(θn, κz) =

∞∑
n=−∞

Ẽ0(θ + nωx, κz).

In other words, for fixed ωx and θ, Ē0(θ, κz;ωx) represents the energy density of velocity
fluctuations that are composed of all wavenumbers κx = {θ+nωx}n∈Z. In comparison,
Ẽ0(κx, κz) is the energy density of velocity fluctuations composed of a single wavenumber
κx (see Figure 2.9 for an illustration).

2.3.2 Energy amplification of flow with control

We next consider energy amplification of velocity fluctuations in Poiseuille flow with
Rc = 2000 in the presence of both UTWs and DTWs. As shown in § 2.2.4, for small
amplitude blowing and suction along the walls, the perturbation analysis yields an
explicit formula for energy amplification (cf. (2.20)),

Ē(θ, κz;α, c, ωx)

Ē0(θ, κz;ωx)
= 1 + α2 g2(θ, κz; c, ωx) + O(α4), 0 < α� 1.
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Figure 2.9: For fixed ωx and θ, Ē0(θ, κz;ωx) represents energy density of fluc-
tuations composed of all wavenumbers θn = {θ + nωx}n∈Z; Ē0(θ, κz;ωx) =∑∞

n=−∞ Ẽ0(θ + nωx, κz).

Thus, for small wave amplitudes the influence of control can be assessed by evaluating
function g2 = Ē2/Ē0 that quantifies energy amplification up to a second order in α.
Sign of g2 determines whether energy density is increased or decreased in the presence
of control; positive (negative) values of g2 identify wave speed and frequency that in-
crease (decrease) receptivity. Since function g2 is sign-indefinite with vastly different
magnitudes, it is advantageous to visualize g2 using a sign-preserving logarithmic scale

ĝ2 = sign(g2) log10(1 + |g2|).

For example, ĝ2 = 5 or ĝ2 = −3, respectively, signify Ē2 = 105 Ē0 or Ē2 = −103 Ē0.
Since ĝ2(θ, κz; c, ωx) depends on four parameters, for visualization purposes, we confine
our attention to cross-sections of ĝ2 by fixing two of the four parameters. We first study
energy amplification of the modes with κz = 1.78 and κz = 0 as a function of c and
ωx; these spanwise wavenumbers are selected in order to capture influence of control on
streamwise streaks and TS waves, respectively. Since, in uncontrolled flow, streamwise
streaks (respectively, TS waves) occur at κx = 0 (respectively, κx = 1.2), fluctuations
with θ = 0 (respectively, θ(ωx) = 1.2−ωxb1.2/ωxc) are considered; these values of θ are
chosen to make sure that streamwise streaks (respectively, TS waves) represent modes
of the controlled flow as well. (Here, bac denotes the largest integer not greater than a.)
We then analyze the energy amplification of disturbances with different values of θ and
κz for a fixed set of control parameters c and ωx. Our analysis illustrates the ability of
properly designed traveling waves to weaken the intensity of both most energetic and
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least stable modes of the uncontrolled flow. Direct numerical simulations of § 2.4 show
that this can be done with positive net efficiency.

Since most amplification in flow with no control occurs for fluctuations with (κx = 0,
κz = 1.78), it is relevant to first study the influence of controls on these most energetic
modes. In flow with control, the streamwise-constant flow structures are imbedded in
the fundamental mode, i.e. fluctuations with θ = 0 (cf. § 2.2.2). As the plots of ĝ2(c, ωx)
in Figures 2.10(a) and 2.10(c) reveal, the values of c and ωx determine whether these
structures are amplified or attenuated by the traveling waves. Up to a second order in
α, the control parameters associated with the dark regions in these two figures reduce
the energy amplification of the uncontrolled flow. As evident from Figure 2.10(a), only
a narrow range of UTWs with ωx . 0.1 is capable of reducing the energy amplifica-
tion. However, since the required power for maintaining the nominal flow for such low
frequency controls is prohibitively large (cf. Figure 2.10(b)), the choice of UTWs for
transition control is not favorable from efficiency point of view (receptivity reduction
by these UTWs is further discussed in § 2.3.3). On the other hand, a large range of
DTW parameters with c & 1 and ωx & 0.1 is capable of making the controlled flow
less sensitive to stochastic excitations (cf. Figure 2.10(c)). Moreover, Figure 2.10(d)
shows that the ωx & 0.1 region contains the smallest required power for sustaining the
DTWs. These two features identify properly designed DTWs as suitable candidates for
controlling the onset of turbulence with positive net efficiency (as confirmed by DNS
in § 2.4).

It is noteworthy that traveling waves with parameters considered in [8] (i.e., ωx =
{0.5, 1, 1.5, 2} and −4 < c < 0) increase amplification of the most energetic modes of the
uncontrolled flow (cf. Figure 2.10(a)). This is in agreement with a recent study of [82]
where a transient growth larger than that of the laminar uncontrolled flow was observed
for UTWs with c = {−1,−2} and ωx = 1.5. Furthermore, it is shown in § 2.4 that such
UTWs promote turbulence even for initial conditions for which the uncontrolled flow
stays laminar.

The above analysis illustrates the ability of the DTWs to weaken the intensity of the
most energetic modes of the uncontrolled flow; this is achieved by reducing receptivity to
stochastic disturbances. However, an important aspect in the evaluation of any control
strategy is to consider the influence of controls on all of the system’s modes. In view of
this, we next discuss how control affects the full three dimensional fluctuations. Since
for a given ωx the energy amplification is symmetric around θ = ωx/2, it suffices to
only consider the modes with θ ∈ [0, ωx/2]. Figure 2.11 shows ĝ2(θ, κz) for a UTW with
(c = −2, ωx = 0.5), and three DTWs with (c = 3, ωx = 1.5), (c = 5, ωx = 0.5), and
(c = 5, ωx = 2). As evident from Figure 2.10, the selected UTW increases amplification
of the fundamental mode with κz = 1.78; on the other hand, all three DTWs reduce
energy amplification of modes with (θ = 0, κz = 1.78). Figure 2.11 further reveals
that the largest change in amplification for all of these traveling waves takes place at
(θ = 0, κz ≈ 1.78), which is precisely where the uncontrolled flow contains most energy.
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upstream: upstream:

(a) (b)

downstream: downstream:

(c) (d)

Figure 2.10: (a) and (c): Second order correction to the energy amplification, ĝ2(c, ωx),
of the modes with (θ, κz) = (0, 1.78), in the presence of (a) UTWs; and (c) DTWs in
Poiseuille flow with Rc = 2000. (b) and (d): Second order correction to the nominal
required power, Πreq,2(ωx; c), for (b) UTWs; and (d) DTWs. The dot and the square,
respectively, denote (c = −2, ωx = 0.5) (as selected in [8]) and (c = 5, ωx = 2). Note:
the plots on the left are obtained using a sign-preserving logarithmic scale; e.g., ĝ2 = 5
and ĝ2 = −3 should be interpreted as Ē2 = 105 Ē0 and Ē2 = −103 Ē0, respectively.
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(a) (c = −2, ωx = 0.5) (b) (c = 3, ωx = 1.5)

(c) (c = 5, ωx = 0.5) (d) (c = 5, ωx = 2)

Figure 2.11: Second order correction to the energy amplification, ĝ2(θ, κz), for traveling
waves with (a) (c = −2, ωx = 0.5); (b) (c = 3, ωx = 1.5); (c) (c = 5, ωx = 0.5); and (d)
(c = 5, ωx = 2) in Poiseuille flow with Rc = 2000.

This observation suggests presence of resonant interactions between the traveling waves
and the most energetic modes of the uncontrolled flow. Additionally, as can be seen
from Figures 2.11(a) and 2.11(d), the energy of modes with κz ≈ 0 is reduced by a
UTW with (c = −2, ωx = 0.5) and a DTW with (c = 5, ωx = 2) for all θ. On
the other hand, Figure 2.11(b) shows that a DTW with (c = 3, ωx = 1.5) increases
amplification of fluctuations with (0.1 . θ . 0.4, κz ≈ 0); similarly, receptivity of
fluctuations with (0.05 . θ . 0.45, κz ≈ 0) is increased by a DTW with (c = 2,
ωx = 0.5) (cf. Figure 2.11(c)). Thus, from the four considered cases, only a DTW with
(c = 5, ωx = 0.5) can be used to inhibit intensity of full three dimensional velocity
fluctuations (i.e., for all values of θ and κz).

While the fundamental mode is most influential in determining the effect of control
on the energy amplification, Figures 2.11(b) and 2.11(c) indicate that the modes with
θ 6= 0 and large spanwise wavelengths (i.e., κz ≈ 0) can be significantly amplified by



46

upstream: downstream:

(a) (b)

Figure 2.12: Second order correction to the energy amplification, ĝ2(c, ωx), of the modes
with (θ(ωx), κz) = (1.2 − ωxb1.2

ωx
c, 0), in the presence of (a) UTWs; and (b) DTWs in

Poiseuille flow with Rc = 2000. The dot and the square, respectively, denote (c = −2,
ωx = 0.5) and (c = 5, ωx = 2).

the traveling waves. We thus take a closer look at how control affects the spanwise
constant fluctuations. The TS waves are characterized by (κx = 1.2, κz = 0) and,
for a given ωx, they are imbedded in the modes of the controlled flow for fluctuations
with θ(ωx) = 1.2− ωxb1.2/ωxc. Figure 2.12 shows the second order correction ĝ2(c, ωx)
to the energy amplification of the modes with κz = 0 subject to both UTWs and
DTWs. Note that Figure 2.12 correctly captures the increased intensity of the TS
waves by DTWs with (c = 3, ωx = 1.5) and (c = 5, ωx = 0.5), as already observed in
Figures 2.11(b) and 2.11(c). We also see that the traveling waves considered in [8] reduce
energy of the TS waves (we recall that these promote amplification of the streamwise
streaks; cf. Figures 2.10(a) and 2.12(a)). On the other hand, the DTW with c = 5 and
ωx = 2 decreases energy amplification of both streamwise streaks and TS waves (cf.
Figures 2.10(c) and 2.12(b)). The values of c and ωx capable of reducing the energy
amplification (up to a second order in α) of both most energetic and least stable modes
of the uncontrolled flow are marked by the dark region in Figure 2.13.

2.3.3 Effect of control amplitude on energy amplification

We next discuss influence of control amplitude on the energy amplification. We show
that perturbation analysis (up to a second order in α) correctly predicts the essential
trends. This is done by comparing perturbation analysis results with computations
obtained using large-scale truncation of the operators in Lyapunov equation (2.15).

The limit of the perturbation series (2.20) can be obtained by applying Shanks trans-
formation [92, 93] on the perturbation-analysis-based correction coefficients in (2.20).
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upstream: downstream:

(a) (b)

Figure 2.13: The dark regions identify values of wave speed and frequency that, up to
a second order in α, suppress the energy amplification of both most energetic and least
stable modes in Poiseuille flow with Rc = 2000 subject to: (a) UTWs; and (b) DTWs.

This transformation represents an effective means for providing convergence (respec-
tively, faster convergence) to a divergent (respectively, slowly convergent) series [94],
see Appendix B for more details. It turns out that Shanks transformation significantly
increases the maximum value of α for which series (2.20) converges. Figure 2.14 shows
the energy density of the fundamental mode, as a function of κz, in the uncontrolled
Poiseuille flow with Rc = 2000 and a flow subject to a DTW with (c = 5, ωx = 2,
α = 0.025). The controlled flow results are obtained using truncation of series (2.20)
up to a second order in α, and Shanks transformation up to a fourth order in α. Note
that even though the second order correction overestimates the amount of receptivity
reduction, it correctly captures the essential trends.

Figure 2.15 compares energy density of the fundamental mode in uncontrolled Poiseuille
flow with Rc = 2000, and in the controlled flows subject to: (a) a UTW with c = −2
and ωx = 0.5, Figure 2.15(a); and (b) a DTW with c = 5 and ωx = 2, Figure 2.15(b).
The controlled flow results are obtained using Shanks transformation up to a fourth
order in α, and they closely match the large-scale truncation results (hollow circles).
Figure 2.15(b) shows that the properly designed DTWs with amplitudes equal to 5 %,
10 %, and 20 % of the base centerline velocity reduce the largest energy density of the
uncontrolled flow by approximately 28 %, 60 %, and 80 %, respectively. It is notewor-
thy that substantial reduction is obtained at the expense of relatively small increase
(compared to the laminar flow) in the nominal drag coefficient, which approximately
increases by 1 %, 4 %, and 13 %. Further increase in the amplitude of a DTW with
c = 5 and ωx = 2 results even in larger receptivity reduction. We demonstrate in § 2.4
that this approach can be successfully used for controlling the onset of turbulence in
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Figure 2.14: Energy density, Ē(κz), of the fundamental mode θ = 0 in Poiseuille flow
with Rc = 2000 and (c = 5, ωx = 2, α = 0.025). The controlled flow results are obtained
using perturbation analysis up to a second order in α, and Shanks transformation up
to a fourth order in α.

upstream: downstream:

(a) (b)

Figure 2.15: Energy density, Ē(κz), of the fundamental mode θ = 0 in Poiseuille flow
with Rc = 2000 subject to: (a) a UTW with c = −2 and ωx = 0.5; and (b) a DTW
with c = 5 and ωx = 2. Shanks transformation up to a fourth order in α is used in
computations. The truncation results (hollow circles) are obtained for (a) α = 0.016;
and (b) α = 0.1.
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Figure 2.16: Energy density, Ē(κz), of the fundamental mode θ = 0 in Poiseuille flow
with Rc = 2000 subject to a UTW with c = −5 and ωx = 0.03. Shanks transformation
up to a fourth order in α is used in computations.

flows subject to large initial disturbances. However, the power required for maintaining
laminar flow under these conditions is prohibitively large, which limits the advantage
of using DTWs for transition control from efficiency point of view.

In contrast to DTWs, Figure 2.15(a) demonstrates that the UTW with c = −2 and
ωx = 0.5 increases receptivity. We note that all of these trends are correctly captured
by the second order correction (in α) to the energy amplification and that our results
agree with the transient growth study of [82]. Furthermore, large energy amplification
of the UTWs may be thought of as a precursor to flow instability; namely, it turns out
that the UTWs destabilize the flow for α > 0.03 which is a smaller value compared to
the amplitudes chosen in [8] (α = 0.05 and α = 0.125, respectively).

As described in § 2.3.2, Figure 2.10(a) suggests that the UTWs with ωx . 0.1 can
reduce the intensity of the most energetic modes of the uncontrolled flow. Here, we
demonstrate that such UTWs lead to a very modest receptivity reduction. Figure 2.16
illustrates that a UTW with (c = −5, ωx = 0.03, α = 0.025) reduces energy amplification
by about 8 %. On the other hand, modal stability analysis can be used to show that
amplitudes as small as α ≈ 0.03 make the flow linearly unstable. Therefore, relative to
flow with no control, the UTWs at best exhibit similar receptivity to disturbances.

For control amplitudes shown in Figures 2.15 and 2.16, we have verified stability of
fluctuations around base velocities in both UTWs and DTWs by computing the eigen-
values of the large-scale truncation of operator Aθ(κz) in (2.13). Compared to solving
the truncated version of Lyapunov equation (2.15), perturbation analysis in conjunction
with Shanks transformation provides much more efficient way for determining energy
amplification. For example, while it takes four days on a PC to obtain the truncated
results (hollow circles) in Figure 2.15(b), the Shanks approximation is computed in four
hours on the same PC. Moreover, once the correction coefficients in (2.20) have been
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determined, the energy amplification for a reasonably wide range of control amplitudes
can be obtained at no further cost.

2.3.4 Energy amplification mechanisms

The energy of velocity fluctuations around a given base flow can also be obtained from
the Reynolds-Orr equation [84]. This equation can be used to elucidate the energy
amplification mechanisms and facilitate better understanding of the influence of UTWs
and DTWs on transitional channel flows. In this section, we consider the Reynolds-Orr
equation for the fundamental modes (i.e., modes with θ = 0; cf. equation (2.12)). Our
results reveal that, relative to the uncontrolled flow, the DTWs reduce the production
of kinetic energy, thereby enabling the smaller receptivity to disturbances. As opposed
to the DTWs, the UTWs increase the production of kinetic energy. For the streamwise-
periodic base flow, ub = (U(x, y), V (x, y), 0), the time evolution of the kinetic energy of
the fundamental modes, Ē(θ = 0, κz; t) = 〈vθ(·, κz, t),vθ(·, κz, t)〉 |θ= 0, is governed by

1

2

dĒ

dt
= −〈uθ,Uyvθ〉 − 〈vθ,Vyvθ〉 − 〈uθ,Uxuθ〉 − 〈vθ,Vxuθ〉 +

(1/Rc)
(
〈vθ,Dxxvθ〉 + 〈vθ, ∂yyvθ〉 − κ2

z 〈vθ,vθ〉
)

+ 〈vθ,dθ〉 , θ = 0,
(2.21)

where, for example, vθ = col {v(nωx, y, κz, t)}n∈Z for the fundamental modes. In (2.21),
Dxx is a diagonal operator with {(−nωx)2I}n∈Z on its main diagonal, I is the iden-
tity operator, 〈·, ·〉 denotes the L2[−1, 1] inner product and averaging in time (cf. equa-
tion (2.14)), and Uy, Vy, Ux, and Vx are block-Toeplitz operators whose rth sub-diagonals
are determined by the rth harmonic in the Fourier series representation of Uy(x, y),
Vy(x, y), Ux(x, y), and Vx(x, y) (see § 2.2.2 for details). The first four terms on the
right-hand-side of (2.21) denote the work of Reynolds stresses on the base shear and
they contribute to production of the kinetic energy. The next group of terms represents
viscous dissipation and the last term accounts for the direct work of the forcing on
the velocity fluctuations. It can be shown that the direct work of d on v is balanced
by a fixed portion of the viscous dissipation, and that the difference between the pro-
duction terms and the remaining dissipation terms determines the energy density (cf.
Figure 2.17).

In the steady-state limit, (2.21) can be used to obtain the following expression for
the energy density of the fundamental mode, Ē(0, κz) = limt→∞ Ē(0, κz; t),

Ē(0, κz) = Ēp(0, κz) + Ēd(0, κz).

Here, Ēp(0, κz) denotes the contribution of production terms to the energy density
and Ēd(0, κz) represents the joint contribution of viscous dissipation and the work of
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+, Ē0,p; ◦, Ē0,d; −, Ē0: +, Ē2,p; ◦, Ē2,d; −, Ē2: −, Ēp, Ēd; +, Ē0,p; ◦, Ē0,d:

(a) uncontrolled, ωx = 2 (b) DTW, c = 5, ωx = 2 (c) DTW, α = 0.025

(d) uncontrolled, ωx = 0.5 (e) UTW, c = −2, ωx = 0.5 (f) UTW, α = 0.015

Figure 2.17: Contribution of production and dissipation terms to energy density of
θ = 0 mode in Poiseuille flow with Rc = 2000 subject to (a)-(c) a DTW with (c = 5,
ωx = 2); and (d)-(f) a UTW with (c = −2, ωx = 0.5). (a,d) uncontrolled flow; (b,e)
second order corrections; and (c,f) controlled flows. In (c,f), the controlled flow results
are obtained using approximation up to a second order in α, and the uncontrolled flow
results are shown for comparison.
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disturbances

Ēp(0, κz) = −(Rc/κ
2
z) (〈uθ,Uyvθ〉 + 〈vθ,Vyvθ〉 + 〈uθ,Uxuθ〉 + 〈vθ,Vxuθ〉) ,

Ēd(0, κz) = (1/κ2
z) (〈vθ,Dxxvθ〉 + 〈vθ, ∂yyvθ〉) + (Rc/κ

2
z) 〈vθ,dθ〉 , θ = 0.

(2.22)

In flows subject to small amplitude traveling waves, a perturbation analysis can be
employed to study the effect of each term on the right-hand-side of (2.22) on the energy
density

Ē(0, κz) = Ē0(0, κz) + α2 Ē2(0, κz) + O(α4),

Ē0(0, κz) = Ē0,p(0, κz) + Ē0,d(0, κz),

Ē2(0, κz) = Ē2,p(0, κz) + Ē2,d(0, κz),

(2.23)

where all the above terms can be readily determined from the solution to the Lyapunov
equation (2.15).

Figure 2.17 illustrates Ēp(0, κz) and Ēd(0, κz) in the uncontrolled flow and in flows
subject to a DTW with (c = 5, ωx = 2) and a UTW with (c = −2, ωx = 0.5).
As expected, in the uncontrolled flow the joint contribution of dissipation and forc-
ing is negative while the contribution of production is positive (see Figures 2.17(a)
and 2.17(d)). The energy density (solid curve) is determined by the sum of Ē0,p and
Ē0,d, and it peaks at κz ≈ 1.78. The second order corrections (in α) to Ēp and Ēd are
shown in Figures 2.17(b) (for the DTW) and 2.17(e) (for the UTW). In flows subject
to a DTW, the correction to Ēp is negative while the correction to Ēd is positive. Fur-
thermore, the effect of Ē2,p dominates that of Ē2,d which implies that the DTW reduces
the energy density of the uncontrolled flow (solid curve in Figure 2.17(b) shows that a
DTW introduces a negative correction to Ē0). On the other hand, flows subject to a
UTW exhibit opposite trends; the correction to Ēp is positive, the correction to Ēd is
negative, and since Ē2,p has the dominant effect, the UTW increases the energy density
of the uncontrolled flow (solid curve in Figure 2.17(e) shows that a UTW introduces a
positive correction to Ē0). In Figures 2.17(c) and 2.17(f) perturbation analysis up to a
second order in α is used to show Ēp and Ēd (solid curves) for a DTW with α = 0.025
and for a UTW with α = 0.015. Relative to the uncontrolled flow (symbols), the DTW
decreases both production and dissipation terms. On the contrary, the UTW increases
both of these terms. For both UTWs and DTWs, production dominates dissipation and
determines whether the energy is increased or decreased. In addition, our computations
show that 〈uθ,Uyvθ〉 is orders of magnitude larger than the other production terms.
Moreover, 〈u, ∂yyu〉 completely dominates other dissipation terms. Therefore, the work
of the Reynolds stress uv against the base shear Uy is responsible for almost all of the
energy production and the maximum viscous dissipation is associated with the wall-
normal diffusion of the streamwise velocity fluctuation. These results are confirmed by
DNS of the NS equations in § 2.4.
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2.4 Direct numerical simulations

The effectiveness of DTWs and UTWs in preventing or enhancing transition is exam-
ined in this section. In contrast to the current practice, we do not use DNS as a design
tool; rather, we utilize them as a means for verification and validation of theoretical
predictions offered in this study. Namely, we use DNS to confirm that the DTWs with
parameters selected in § 2.3 can control the onset of turbulence and achieve positive net
efficiency relative to the uncontrolled flow that becomes turbulent. On the contrary, the
UTWs enhance transient growth and induce turbulence even when the uncontrolled flow
stays laminar. In spite of promoting turbulence, the UTWs with large amplitudes can
provide sub-laminar drag coefficient. However, we show that this comes at the expense
of poor net power balance in flows driven by a fixed pressure gradient. This is in agree-
ment with [65], where it was shown that it costs more to achieve the same amount of
pumping using wall-transpiration than pressure gradient type of actuation. Our numeri-
cal simulations show the predictive power of the theoretical framework developed in this
chapter and suggest that the linearized Navier-Stokes (NS) equations with uncertainty
represent an effective control-oriented model for maintaining the laminar flow.

The streamwise traveling waves, considered theoretically in § 2.3, are tested in DNS
of a 3D transitional Poiseuille flow in this work. All DNS calculations are obtained using
the code developed by [95]. A multistep semi-implicit Adams-Bashforth/Backward-
Differentiation (AB/BDE) scheme described in [96] is used for time discretization. The
AB/BDE treats the linear terms implicitly and the nonlinear terms explicitly. A spectral
method [97] is used for the spatial derivatives with Chebyshev polynomial expansion in
the wall-normal direction and Fourier series expansion in the streamwise and spanwise
directions. Aliasing errors from the evaluation of the nonlinear terms are removed by
the 3/2-rule when the horizontal FFTs are computed. We modified the code to account
for the streamwise traveling wave boundary conditions (2.2).

The NS equations are integrated in time with the objective of computing fluctua-
tions’ kinetic energy, skin-friction drag coefficient, and net power balance, § 2.4.2. The
velocity field is first initialized with the laminar parabolic profile in the absence of 3D
fluctuations, § 2.4.1; this yields the 2D base flow which is induced by the fixed pressure
gradient, Px = −2/Rc, and the boundary conditions (2.2). In simulations of the full 3D
flows (cf. § 2.4.2), an initial 3D perturbation is superimposed to the base velocity, ub.
As the initial perturbation, we consider a random velocity field developed by [95] which
has the ability to trigger turbulence by exciting all the relevant Fourier and Chebyshev
modes. This divergence-free initial condition is composed of random spectral coefficients
that decay exponentially and satisfy homogenous Dirichlet boundary conditions at the
walls. The flux and energy of the velocity fluctuations are computed at each time step.

A fixed pressure gradient is enforced in all simulations which are initiated at Rc =
2000; this value corresponds to the Reynolds number Rτ = 63.25 based on the friction
velocity, uτ . Owing to the fixed pressure gradient, the steady-state value of Rτ is
the same for all simulations, Rτ = 63.25. In addition, we consider a streamwise box
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Case Symbol c ωx α Lx/δ Lz/δ Ny Nx Nz

0 × − − − 2π 4π/3 65 50 50

1 � 5 2 0.035 2π 4π/3 65 50 50

2 ◦ 5 2 0.050 2π 4π/3 65 50 50

3 ♦ 5 2 0.125 2π 4π/3 65 50 50

4 / −2 0.5 0.015 8π 4π/3 65 200 50

5 O −2 0.5 0.050 8π 4π/3 65 200 50

6 M −2 0.5 0.125 8π 4π/3 65 200 50

Table 2.1: The computational domain and spatial discretization considered in simula-
tions of the uncontrolled flow, DTWs with (c = 5, ωx = 2, α = 0.035, 0.050, and 0.125),
and UTWs with (c = −2, ωx = 0.5, α = 0.015, 0.050, and 0.125). Symbols identify the
corresponding flow in figures that follow. The box sizes in the streamwise and spanwise
directions are denoted by Lx and Lz, respectively. The number of grid points in the
streamwise, wall-normal, and spanwise directions are represented by Ni, i = {x, y, z},
respectively.

length, Lx = 4π/ωx, for all controlled flow simulations. This box length captures
the streamwise modes κx = {0, ±ωx/2, ±ωx, ± 3ωx/2, . . .}; relative to § 2.3, these
modes correspond to the union of the fundamental (κx = {0, ±ωx, ±2ωx, . . .}) and
subharmonic (κx = {±ωx/2, ± 3ωx/2, . . .}) modes. In addition to the uncontrolled
flow, we consider three DTWs with (c = 5, ωx = 2, α = {0.035, 0.050, 0.125}), and
three UTWs with (c = −2, ωx = 0.5, α = {0.015, 0.050, 0.125}). The complete list of
the parameters along with the computational domain sizes and the number of spatial
grid points is shown in table 4.1. The total integration time is ttot = 1000 δ/Uc. We
have verified our simulations by making sure that the changes in results are negligible
by increasing the number of wall-normal grid points to Ny = 97.

2.4.1 Base flow and nominal net efficiency

Base velocity, ub = (U(x, y, t), V (x, y, t), 0), is computed using DNS of 2D Poiseuille flow
with Rτ = 63.25 in the presence of streamwise traveling wave boundary control (2.2).
Figure 2.18 shows the mean velocity profiles, U(y) (with overline denoting the average
over horizontal directions), in uncontrolled flow and in flows subject to selected DTWs
and UTWs; these results agree with the results obtained using Newton’s method. The
nominal bulk flux, which quantifies the area under U(y),

UB,N =
1

2

∫ 1

−1
U(y) dy,
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downstream: upstream:

(a) (b)

Figure 2.18: Mean streamwise base velocity, U(y), obtained in 2D simulations of the
uncontrolled Poiseuille flow with Rτ = 63.25, ×, and controlled flows subject to: (a)
DTWs with �, (c = 5, ωx = 2, α = 0.035); ◦, (c = 5, ωx = 2, α = 0.05); ♦, (c =
5, ωx = 2, α = 0.125); and (b) UTWs with /, (c = −2, ωx = 0.5, α = 0.015);
O, (c = −2, ωx = 0.5, α = 0.05); M, (c = −2, ωx = 0.5, α = 0.125).

and the nominal skin-friction drag coefficient for three UTWs and three DTWs are
reported in table 2.2. For fixed pressure gradient, Px = −2/Rc, the nominal skin-
friction drag coefficient is inversely proportional to square of the nominal flux, i.e.,

Cf,N = −2Px/U
2
B,N . (2.24)

As shown by [65], compared to the uncontrolled laminar flow, the nominal flux is re-
duced (increased) by DTWs (UTWs); according to (2.24), this results in larger (smaller)
nominal drag coefficients, respectively.

The above results suggest that properly chosen traveling waves can exhibit increased
flux compared to the uncontrolled flow. For fixed pressure gradient, this results in
production of a driving power

Πprod = −Px (UB,c − UB,u) (2LxLz),

where UB,c and UB,u denote the flux of the controlled and uncontrolled flows. The
normalized produced power %Πprod is expressed as a percentage of the power spent to
drive the uncontrolled flow, Πu = −Px UB,u (2LxLz),

%Πprod = 100 (UB,c − UB,u) /UB,u.

On the other hand, the input power required for maintaining the traveling waves is
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Case c ωx α UB,N 103 Cf,N %Πprod %Πreq %Πnet

0 − − − 0.6667 4.5000 0 0 0

1 5 2 0.035 0.6428 4.8404 −3.58 16.64 −20.22

2 5 2 0.050 0.6215 5.1778 −6.77 31.74 −38.51

3 5 2 0.125 0.4821 8.6050 −27.69 136.50 −164.19

4 −2 0.5 0.015 0.6703 4.4513 2.70 5.46 −2.76

5 −2 0.5 0.050 0.7791 3.2949 16.86 37.69 −20.83

6 −2 0.5 0.125 1.0133 1.9478 51.99 145.05 −93.06

Table 2.2: Nominal results in Poiseuille flow with Rτ = 63.25. The nominal flux, UB,N ,
and skin-friction drag coefficient, Cf,N , are computed using the base flow described
in § 2.4.1. The produced power, %Πprod, required power, %Πreq, and net power, %Πnet,
are normalized by the power required to drive the uncontrolled flow. The produced and
net powers are computed with respect to the laminar uncontrolled flow.

obtained from [83]

Πreq =
(
V P

∣∣
y=−1

− V P
∣∣
y=1

)
LxLz,

and the normalized required power %Πreq is expressed as

%Πreq = 100
V P

∣∣
y=−1

− V P
∣∣
y=1

−2Px UB,u
.

In order to assess the efficacy of traveling waves for controlling transitional flows, the
control net power is defined as the difference between the produced and required pow-
ers [9]

%Πnet = %Πprod − %Πreq,

where %Πnet signifies how much net power is gained (positive %Πnet) or lost (negative
%Πnet) in the controlled flow as a percentage of the power spent to drive the uncontrolled
flow.

The nominal efficiency of the selected streamwise traveling waves in 2D flows, i.e. in
the absence of velocity fluctuations, is shown in table 2.2. Note that the nominal net
power is negative for all controlled 2D simulations. This is in agreement with a recent
study of [65] where it was shown that the net power required to drive a flow with wall
transpiration is always larger than in the standard pressure gradient type of actuation.

2.4.2 Avoidance/promotion of turbulence by streamwise traveling waves

It was shown that a positive net efficiency can be achieved in a situation where the
controlled flow stays laminar but the uncontrolled flow becomes turbulent. Whether
the controlled flow can remain laminar depends on velocity fluctuations around the
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modified base flow. In this section, we study the influence of streamwise traveling
waves on the dynamics and the control net efficiency. This problem is addressed by
simulating a 3D channel flow with initial perturbations which are superimposed on
the base velocity induced by the wall actuation. Depending on the kinetic energy of
the initial condition, we distinguish three cases: (i) both the uncontrolled and properly
designed controlled flows remain laminar (small initial energy); (ii) the uncontrolled flow
becomes turbulent, while the controlled flow stays laminar for the appropriate choice of
traveling wave parameters (moderate initial energy); and (iii) both the uncontrolled and
controlled flows become turbulent for selected traveling wave parameters (large initial
energy). Our simulations indicate, however, that poorly designed traveling waves can
promote turbulence even for initial conditions for which the uncontrolled flow stays
laminar. It was demonstrated in § 2.3 that properly designed DTWs are capable of
significantly reducing receptivity of velocity fluctuations which makes them well-suited
for preventing transition; on the other hand, compared to the uncontrolled flow, the
velocity fluctuations around the UTWs at best exhibit similar receptivity to background
disturbances. Following § 2.3, we present our main results for DTWs with (c = 5,
ωx = 2); these results are compared to UTWs with (c = −2, ωx = 0.5) (as selected
in [8]). In both cases, three wave amplitudes are selected (cf. table 4.1).

The 3D simulations, which are summarized in table 2.3, confirm and complement
the theoretical predictions of § 2.3 at two levels. At the level of controlling the onset
of turbulence, we illustrate that the UTWs increase receptivity of velocity fluctuations
and promote turbulence even for initial perturbations for which the uncontrolled flow
stays laminar. In contrast, the DTWs can prevent transition even in the presence of
initial conditions with moderate and large energy. At the level of net power efficiency, it
is first shown that the net power is negative when the uncontrolled flow stays laminar.
However, for the uncontrolled flow that becomes turbulent, we demonstrate that the
DTWs can result in a positive net efficiency. The positive net efficiency is achieved if
the required power for maintaining the laminar DTW is less than the produced power.
In addition, we highlight an important trade-off that limits the advantages of DTWs in
controlling the onset of turbulence in flows subject to large initial conditions. Namely,
we show that in this case preventing transition by DTWs requires a large input power
that results in a negative efficiency. Our simulations reveal that although UTWs become
turbulent, a positive net efficiency can be achieved for small enough wave amplitudes.
For the initial conditions with moderate energy, we further point out that the achievable
positive net efficiency for UTWs is much smaller than for the DTWs that sustain the
laminar flow.

Small initial energy

We first consider the initial perturbations with small kinetic energy, E(0) = 2.25×10−6,
which cannot trigger turbulence in flow with no control. Our simulations show that
the DTWs selected in § 2.3 of this study improve transient response of the velocity
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Initial Energy Case c ωx α 103 Cf %Πprod %Πreq %Πnet

Small 0 − − − 4.5002 0 0 0

2 5 2 0.050 5.1778 −6.77 31.77 −38.54

4 −2 0.5 0.015 4.3204 −1.54 5.14 −3.60

5 −2 0.5 0.050 5.9426 −16.52 23.22 −39.74

6 −2 0.5 0.125 3.6853 12.20 108.41 −96.21

Moderate 0 − − − 10.3000 0 0 0

1 5 2 0.035 4.9244 52.07 26.44 25.63

2 5 2 0.050 5.2273 47.35 50.40 −3.05

4 −2 0.5 0.015 8.7866 11.36 4.53 6.83

5 −2 0.5 0.050 6.7406 31.15 41.96 −10.81

6 −2 0.5 0.125 3.9264 77.03 155.80 −78.77

Large 0 − − − 11.2000 0 0 0

2 5 2 0.050 11.9000 −3.37 47.90 −51.27

3 5 2 0.125 12.1000 −11.31 196.89 −208.20

5 −2 0.5 0.050 7.4438 13.68 34.19 −20.51

6 −2 0.5 0.125 3.9872 57.75 142.92 −85.17

Table 2.3: Results of 3D simulations in Poiseuille flow with Rτ = 63.25 for initial
conditions of small, moderate, and large energy (respectively, E(0) = 2.25 × 10−6,
E(0) = 5.0625× 10−4, and E(0) = 2.5× 10−3). The values of Cf , %Πprod, %Πreq, and
%Πnet correspond to t = 1000. For small initial energy, the produced and net powers
are computed with respect to laminar uncontrolled flow; for moderate and large initial
energies, they are computed with respect to turbulent uncontrolled flow.
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downstream: upstream:

(a) (b)

Figure 2.19: Energy of the velocity fluctuations, E(t), for the initial condition with
small energy: (a) ×, uncontrolled; ◦, a DTW with (c = 5, ωx = 2, α = 0.05); and
(b) UTWs with /, (c = −2, ωx = 0.5, α = 0.015); O, (c = −2, ωx = 0.5, α = 0.05);
M, (c = −2, ωx = 0.5, α = 0.125).

fluctuations; on the contrary, the UTWs considered in [8] lead to deterioration of the
transient response and, consequently, promote turbulence. Since the uncontrolled flow
stays laminar, both DTWs and UTWs lead to the negative net efficiency.

The energy of velocity fluctuations is given by

E(t) =
1

Ω

∫
Ω

(u2 + v2 + w2) dΩ,

where Ω = 2LxLz is the volume of the computational box. Figure 2.19 shows the
fluctuations’ kinetic energy as a function of time for the uncontrolled flow and controlled
flows subject to a DTW with (c = 5, ωx = 2, α = 0.05) and three UTWs with (c = −2,
ωx = 0.5, α = {0.015, 0.05, 0.125}). As evident from Figure 2.19(a), the energy of the
uncontrolled flow exhibits a transient growth followed by an exponential decay to zero
(i.e., to the laminar flow). We see that a DTW moves the transient response peak to
a smaller time, which is about half the time at which peak of E(t) in the uncontrolled
flow takes place. Furthermore, maximal transient growth of the uncontrolled flow is
reduced by approximately 2.5 times, and a much faster disappearance of the velocity
fluctuations is achieved. On the other hand, Figure 2.19(b) clearly exhibits the negative
influence of the UTWs on a transient response. In particular, the two UTWs with larger
amplitudes significantly increase the energy of velocity fluctuations. We note that the
fluctuations’ kinetic energy in a flow subject to a UTW with an amplitude as small as
α = 0.015 at t = 1000 is already about two orders of magnitude larger than the maximal
transient growth of the flow with no control.
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Figure 2.20(a) shows the skin-friction drag coefficient,

Cf (t) =
2τw
U2
B

=
1

Rc U2
B

[(
dU

dy
+

du

dy

)∣∣∣∣
y=−1

−
(

dU

dy
+

du

dy

)∣∣∣∣
y= 1

]
,

as a function of time for the traveling waves considered in Figure 2.19. Here, τw denotes
the non-dimensional average wall-shear stress and

UB(t) =
1

2

∫ 1

−1

(
U(y) + u(y, t)

)
dy,

is the total bulk flux. Since both the uncontrolled flow and the flow subject to a DTW
stay laminar, their steady-state drag coefficients agree with the nominal values com-
puted in the absence of velocity fluctuations (cf. tables 2.2 and 2.3). On the other
hand, the drag coefficients of the UTWs that become turbulent are about twice the
values predicted using the base flow analysis. The large amplification of velocity fluctu-
ations by UTWs is responsible for this increase. The velocity fluctuations in the UTW
with α = 0.015 are not amplified enough to have a pronounced effect on the drag co-
efficient. Furthermore, the drag coefficients for the UTWs with (c = −2, ωx = 0.5,
α = {0.05, 0.125}) at t = 1000 agree with the results of [8] computed for the fully
developed turbulent channel flow. This indicates that the UTWs with larger ampli-
tudes in our simulations have transitioned to turbulence. The above results confirm
the theoretical prediction of § 2.3 where it is shown that the UTWs are poor candi-
dates for controlling the onset of turbulence for they increase receptivity relative to the
uncontrolled flow.

The normalized required, produced, and net powers for the initial conditions with
small kinetic energy are shown in Figures 2.20(b) - 2.20(d). Note that the normalized
net power for all traveling waves is negative (cf. Figure 2.20(d)). This confirms the
prediction of § 2.3 that the net power is negative whenever the uncontrolled flow stays
laminar. It is noteworthy that the UTW with α = 0.125 has a negative net power
despite its significantly smaller drag coefficient compared to the laminar uncontrolled
flow. As evident from Figures 2.20(b) and 2.20(c), this is because the required power for
maintaining this UTW is much larger than the power produced by reducing drag. The
above results agree with the studies of [79] and [80] where it was established that the net
cost to drive a flow by any transpiration-based strategy is larger than in the uncontrolled
laminar flow. Therefore, aiming for sub-laminar drag may not be advantageous from
efficiency point of view. Instead, one can design control strategies that yield smaller
drag than the uncontrolled turbulent flow and provide positive net power balance.
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(a) (b)

%Πprod %Πnet

(c) (d)

Figure 2.20: (a) Skin-friction drag coefficient, Cf ; (b) normalized required power, %Πreq;
(c) normalized produced power, %Πprod; and (d) normalized net power, %Πnet, for the
initial condition with small energy: ×, uncontrolled flow; ◦, DTW with (c = 5, ωx = 2,
α = 0.05); and UTWs with /, (c = −2, ωx = 0.5, α = 0.015); O, (c = −2, ωx = 0.5,
α = 0.05); M, (c = −2, ωx = 0.5, α = 0.125).
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Moderate initial energy

We next consider the velocity fluctuations with moderate initial energy, E(0) = 5.0625×
10−4. This selection illustrates a situation where the initial conditions are large enough
to trigger turbulence in the uncontrolled flow but small enough to allow the properly
chosen DTWs to maintain the laminar flow and achieve positive net power balance.
As shown for small initial energy, the UTWs trigger turbulence even for the initial
conditions whose kinetic energy is about 200 times smaller than the value considered
here.

The energy of the velocity fluctuations and drag coefficients as a function of time
for the uncontrolled flow and UTWs are shown in Figures 2.21(a) and 2.21(b). Fig-
ure 2.21(a) indicates that the kinetic energy of the uncontrolled flow and the flow
subject to UTWs with (c = −2, ωx = 0.5, α = {0.015, 0.05, 0.125}) is increased by
orders of magnitude which eventually results in transition to turbulence. This large
energy amplification of UTWs is captured by the linear analysis around the laminar
base flows. As evident from Figure 2.21(b), the large fluctuations’ energy in both
the uncontrolled flow and in UTWs yields much larger drag coefficients compared to
the nominal values reported in table 2.2. In addition, Figure 2.21(b) is in agreement
with [8] where it was shown that the skin-friction drag coefficients of the UTWs are
smaller than in the uncontrolled flow that becomes turbulent, and that the UTW with
(c = −2, ωx = 0.5, α = 0.125) achieves a sub-laminar drag. The normalized required
and net powers for the UTWs are shown in Figures 2.21(c) and 2.21(d). Note that the
required power for maintaining the UTW with α = 0.125 (which yields sub-laminar
drag) is so large that it results in a negative net power balance (cf. Figure 2.21(d)). On
the other hand, the UTW with α = 0.015 is capable of producing a small positive net
power for two main reasons: (i) it has a smaller drag coefficient than the uncontrolled
turbulent flow (although it becomes turbulent itself); and (ii) it requires a much smaller
power compared to the UTW with α = 0.125.

The fluctuations’ kinetic energy and skin-friction drag coefficient for the DTWs are
shown in Figures 2.22(a) and 2.22(b). Figure 2.22(a) shows that the DTWs with (c =
5, ωx = 2, α = {0.035, 0.05}) significantly weaken intensity of the velocity fluctuations,
thereby facilitating maintenance of the laminar flow. From Figure 2.22(b) we also see
that the small transient growth of fluctuations’ kinetic energy results in a small transient
increase in the drag coefficients which eventually decay to their nominal values reported
in table 2.2. Even though these drag coefficients are larger than in the uncontrolled
laminar flow, they are still approximately two times smaller than in the uncontrolled
flow that becomes turbulent (cf. table 2.3).

The normalized produced, required, and net powers for DTWs are shown in Fig-
ures 2.22(c) and 2.22(d). As can be seen from Figure 2.22(c), the normalized produced
power for the DTWs is positive by virtue of the fact that the uncontrolled flow be-
comes turbulent while the controlled flows stay laminar. Figure 2.22(d) shows that the
DTW with α = 0.035 (respectively, α = 0.05) has a positive (respectively, negative)
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Figure 2.21: (a) Energy of the velocity fluctuations, E(t); (b) skin-friction drag coef-
ficient, Cf (t); (c) normalized required power, %Πreq; and (d) normalized net power,
%Πnet, for the initial condition with moderate energy: ×, uncontrolled; and UTWs
with /, (c = −2, ωx = 0.5, α = 0.015); O, (c = −2, ωx = 0.5, α = 0.05); M, (c = −2, ωx =
0.5, α = 0.125).
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Figure 2.22: (a) Energy of the velocity fluctuations, E(t); (b) skin-friction drag coeffi-
cient, Cf (t); (c) normalized required power, %Πreq (solid), normalized produced power,
%Πprod (dashed); and (d) normalized net power, %Πnet, for the initial condition with
moderate energy: DTWs with �, (c = 5, ωx = 2, α = 0.035); ◦, (c = 5, ωx = 2, α =
0.05).
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net power balance. The reason for this is twofold: first, as evident from Figure 2.22(c),
the DTW with larger α results in a smaller produced power since it induces a larger
negative nominal bulk flux than the DTW with smaller α; and second, the required
power to maintain the DTW with larger α is bigger than in the DTW with smaller α.
Furthermore, at t = 1000, the DTW with α = 0.035 has a larger net power than the
UTW with α = 0.015 (%Πnet = 25.63 vs. %Πnet = 6.83; cf. table 2.3). This is because
the DTW with α = 0.035, in contrast to the UTW with α = 0.015, remains laminar
and produces a much larger power than it requires.

In summary, the results of this section highlight an important trade-off that needs
to be taken into account when designing the traveling waves. Large amplitudes of
properly designed downstream waves yield larger receptivity reduction which is desirable
for controlling the onset of turbulence. However, this is accompanied by an increase
in drag coefficient and required control power. Thus, to maximize net efficiency, it
is advantageous to select the smallest possible amplitude of wall-actuation that can
maintain the laminar flow.

Large initial energy

We illustrated the capability of properly designed DTWs to maintain the laminar flow
in the presence of initial conditions that induce transition in the uncontrolled flow. In
this section, we demonstrate that, as the energy of the initial perturbation increases, a
DTW with larger amplitude is needed to prevent transition. Our results confirm the
prediction made in § 2.3 that maintaining a laminar flow with a larger DTW amplitude
comes at the expense of introducing a negative net power balance.

Simulations in this section are done for the initial condition with large kinetic energy,
E(0) = 2.5 × 10−3. The time evolution of the fluctuations’ energy for a pair of DTWs
with (c = 5, ωx = 2, α = {0.05, 0.125}) is shown in Figure 2.23(a). The uncontrolled
flow becomes turbulent and exhibits similar trends in the evolution of E(t) as the
corresponding flow initiated with moderate energy perturbations (cf. Figures 2.21(a)
and 2.23(a)). On the other hand, Figure 2.23(a) shows that the DTW with α = 0.05
is not capable of maintaining the laminar flow; in comparison, the same set of control
parameters prevented transition for the perturbations of moderate initial energy (cf.
Figures 2.22(a) and 2.23(a)). Conversely, the DTW with α = 0.125 remains laminar
even though E(t) transiently reaches about half the energy of the turbulent uncontrolled
flow. Therefore, the DTWs with frequency and speed selected in § 2.3 and sufficiently
large amplitudes are capable of maintaining the laminar flow even in the presence of
large initial perturbations.

Figure 2.23(b) shows the skin-friction drag coefficients for the flows considered in
Figure 2.23(a). For the DTW with α = 0.05 the steady-state value of Cf is given by
Cf = 11.9 × 10−3, which is a slightly larger value than in the turbulent uncontrolled
flow, Cf = 11.2×10−3 (cf. table 2.3). We note that the drag coefficient of the DTW that
stays laminar initially reaches values that are about 50 % larger than in the uncontrolled
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Figure 2.23: (a) Energy of the velocity fluctuations, E(t); (b) skin-friction drag coeffi-
cient, Cf (t); (c) normalized required power, %Πreq (solid), normalized produced power,
%Πprod (dashed); and (d) normalized net power, %Πnet, for the initial condition with
large energy: ×, uncontrolled; DTWs with ◦, (c = 5, ωx = 2, α = 0.05); and ♦, (c = 5,
ωx = 2, α = 0.125).
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flow; after this initial increase, Cf (t) then gradually decays to the value predicted using
the base flow analysis, Cf = 8.6×10−3 (cf. table 2.2). Figures 2.23(c) and 2.23(d) show
the normalized required, produced, and net powers for the initial condition with large
kinetic energy. As evident from Figure 2.23(d), the net power balance is negative for all
considered flows. The DTW with α = 0.05 becomes turbulent, and it has a larger drag
coefficient than the uncontrolled flow which consequently leads to negative produced
and net powers. Moreover, even though the DTW with α = 0.125 can sustain laminar
flow, its net power balance is very poor. There are two main reasons for the lack of
efficiency of this control strategy: first, its nominal drag coefficient is significantly larger
than in a DTW with smaller amplitudes which consequently yields very small produced
power (at larger times not shown in Figure 2.23(c)); and second, a prohibitively large
power is required to maintain this large amplitude DTW.

The results of this section show that preventing transition by DTWs in the presence
of large initial conditions comes at the expense of large negative net power balance.
We also highlight that in the presence of large initial perturbations (or, equivalently, at
large Reynolds numbers), transition to turbulence may be inevitable. Furthermore, the
results of § 2.4.2 show that the UTWs may reduce the turbulent skin-friction drag and
achieve positive net efficiency. The approach used in this chapter considers dynamics
of fluctuations around laminar flows and, thus, it cannot be used for explaining the
positive efficiency of the UTWs that become turbulent.

2.4.3 Energy amplification mechanisms

The Reynolds-Orr equation can be used to quantify the evolution of fluctuations’ kinetic
energy around a given base flow [84]. In this section, we use this equation to examine
mechanisms that contribute to production and dissipation of kinetic energy in flows
subject to traveling waves. For base velocity, ub = (U(x, y, t), V (x, y, t), 0), the evolution
of the energy of velocity fluctuations, E(t), is determined by

1

2

dE

dt
= PE(t) + DE(t),

PE(t) = − 1

Ω

∫
Ω

(
uvUy + uvVx + v2Vy + u2Ux

)
dΩ,

DE(t) =
1

RcΩ

∫
Ω

v ·∆v dΩ.

(2.25)

Here, PE represents the production of kinetic energy and is associated with the work of
the Reynolds stresses on the base shear, whereas DE accounts for viscous dissipation.

We confine our attention to the simulations for initial conditions with small energy.
This situation is convenient for explaining why the DTWs exhibit improved transient
behavior compared to the laminar uncontrolled flow while the UTWs promote transition
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downstream: PE , DE upstream: PE , DE

(a) (b)

upstream: PE +DE

(c)

Figure 2.24: (a) and (b) Production, PE(t) (solid), and dissipation, DE(t) (dashed), of
kinetic energy in Poiseuille flow with Rτ = 63.25 for the initial condition with small
energy: (a) ×, uncontrolled; ◦, DTW with (c = 5, ωx = 2, α = 0.05); and (b) O, UTW
with (c = −2, ωx = 0.5, α = 0.05); M, UTW with α = 0.125. (c) PE(t) +DE(t) for the
UTW with (c = −2, ωx = 0.5, α = 0.05).
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to turbulence. Figure 2.24(a) shows production and dissipation terms for the uncon-
trolled flow and for the flow subject to a DTW with (c = 5, ωx = 2, α = 0.05). For the
uncontrolled flow, PE is always positive, DE is always negative, and they both decay
to zero at large times. On the contrary, the production term for the DTW becomes
negative for 80 . t . 220. We see that, at early times, PE and DE for the DTW follow
their uncontrolled flow counterparts. However, after this initial period, they decay more
rapidly to zero. These results confirm the prediction of § 2.3 that the DTWs reduce
the production of kinetic energy. In contrast, Figure 2.24(b) shows that the UTWs
with (c = −2, ωx = 0.5, α = {0.05, 0.125}) increase both PE and DE by about four
orders of magnitude compared to the values reported in Figure 2.24(a). This verifies
the theoretical prediction of § 2.3 that the UTWs increase the production of kinetic
energy. Moreover, production dominates dissipation transiently, thereby inducing large
growth of kinetic energy observed in Figure 2.19(b). For the UTW with α = 0.05, this
is further illustrated in Figure 2.24(c) by showing that PE accumulates more energy
than DE dissipates (i.e., the area under the curve in Figure 2.24(c) is positive). We also
note that, in the above simulations, the work of Reynolds stress uv on the base shear
Uy dominates the other energy production terms. Furthermore, our results show that
the wall-normal diffusion of u is responsible for the largest viscous energy dissipation.

2.4.4 Flow visualization

In § 2.4.2, transition was identified by examining fluctuations’ kinetic energy and skin-
friction drag coefficients. Large levels of sustained kinetic energy and substantial in-
crease in drag coefficients (compared to base flows) were used as indicators of transition.
Here, we use flow visualization to identify coherent structures in both the uncontrolled
and controlled flows.

The onset of turbulence in a bypass transition is usually characterized by formation
of streamwise streaks and their subsequent break-down. For the initial condition with
moderate energy, Figure 2.25 shows the streamwise velocity fluctuations at y = −0.5557
(y+ = 28.11 in wall units) for the uncontrolled flow and flows subject to a UTW with
(c = −2, ωx = 0.5, α = 0.05) and a DTW with (c = 5, ωx = 2, α = 0.05). Clearly, the
initial perturbations evolve into streamwise streaks in all three flows (cf. Figures 2.25(a)
- 2.25(e) for t = 50). At t = 120, the growth of velocity fluctuations results in a break-
down of the streaks both in the flow with no control and in the flow subject to UTWs
(cf. Figures 2.25(b) and 2.25(d)). We see that the streaks evolve into complex flow
patterns much faster in the latter case. For the UTWs, the streak distortion occurs
as early as t = 50 and a broad range of spatial scales is observed at t = 120. On the
contrary, Figure 2.25(f) shows that, at t = 120, the DTWs have reduced the magnitude
of velocity fluctuations to about half the value at t = 50, thereby weakening intensity
of the streaks and maintaining the laminar flow.

In § 2.4.2, transition was identified by examining fluctuations’ kinetic energy and
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t = 50 t = 120

(a) uncontrolled (b) uncontrolled

(c) upstream (d) upstream

(e) downstream (f) downstream

Figure 2.25: Streamwise velocity fluctuations, u(x, z), at y = −0.5557 (y+ = 28.11),
(a), (c), (e) t = 50; and (b), (d), (f) t = 120 for initial condition with moderate energy:
uncontrolled flow; UTW with (c = −2, ωx = 0.5, α = 0.05); and DTW with (c = 5,
ωx = 2, α = 0.05).
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skin-friction drag coefficient. Large levels of sustained kinetic energy and substan-
tial increase of the drag coefficient (compared to base flow) were used as indicators of
transition. Here, we use flow visualization to identify coherent structures in both the
uncontrolled and controlled flows. In particular, we look at the flow regions that ex-
hibit vortex-like motion [98]. We illustrate that, relative to the uncontrolled flow that
becomes turbulent, the DTWs eliminate the formation of strong vortical motions. We
also compare the transient and steady-state features of the uncontrolled flow with the
flow subject to the UTWs.

Flow visualization has been used extensively to understand the nature of transitional
and turbulent flows; for example, see [99–101]. The utility of critical point analysis in
quantifying vortical motions in complex flows is discussed in [98, 102, 103]. In particu-
lar, [98] showed that discriminant, D(x, y, z, t), of the velocity gradient tensor provides
information about focal regions in the flow. The vortex cores are characterized by
D > 0, and they are associated with the regions where the rate of rotation tensor
dominates the rate of strain tensor [98]. Therefore, 3D visualization of D is a useful
technique for recognizing vortex motions in the flow. The discriminant is obtained from
D = (27/4)R2 +Q3, where Q =

(
tr (A)2 − tr (A2)

)
/2 and R = −det (A) are the second

and third invariants of the velocity gradient tensor, A, defined as Aij = ∂ui/∂xj .
In order to visualize the effect of traveling waves on transition, an initial condition

of moderate energy is considered. The isosurfaces of D, greater than a threshold value,
for the uncontrolled flow and the flows subject to a DTW with (c = 5, ωx = 2, α = 0.05)
and a UTW with (c = −2, ωx = 0.5, α = 0.05) are shown in Figures 2.26, 2.27, and 2.28,
respectively. The cross-flow velocity vectors in the (y, z)-plane and the x-average of the
streamwise vorticity are also plotted for comparison. We see that the regions of strong
vorticity are correctly captured by the discriminant of the velocity gradient tensor.
Figures 2.26(a) and 2.27(a) show that, at t = 30, the uncontrolled flow and the DTW
have similar vortical structures. However, at t = 50 and t = 70, the uncontrolled
flow exhibits large vortical motions close to the upper channel wall; these motions are
considerably suppressed by the DTW. In addition, at t = 70, the magnitude of the
streamwise vorticity for the DTW is about two times smaller than in the uncontrolled
flow. In contrast, Figure 2.28 shows build-up of vorticity by the UTW of approximately
two times larger magnitude than in the uncontrolled flow. Note that, in the early stages
of transition, the vortical structures with D > 10−6 are significantly more abundant in
flows subject to the UTW than in the uncontrolled flow (cf. Figures 2.28(e) and 2.26(e)).

For t & 100, the mixing of the lower and upper channel halves breaks the aforemen-
tioned elongated structures into smaller ones which leads to formation of new vortices
throughout the channel (see [99] for the uncontrolled flow discussion). Figure 2.29 illus-
trates this behavior both in the uncontrolled flow and in the flow subject to the UTW.
In the uncontrolled flow, the strong vortical motions in the upper half of the channel at
t = 100 spread to the lower half at t ≈ 200 (cf. Figures 2.29(a) and 2.29(c)). We see that
the isosurfaces of the discriminant are in the form of tubes that extend from the lower
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wall to the channel centerplane (cf. Figure 2.29(g)); similar structures were reported in
turbulent wall-bounded shear flows by [101, 103]. We note that transition occurs much
faster in the UTW with (c = −2, ωx = 0.5, α = 0.05) than in the uncontrolled flow.
For example, at t = 100, the UTW populates the entire channel with strong vortical
motions. In the uncontrolled flow, however, these structures appear only in certain
portions of the upper half of the channel. This is in agreement with Figure 2.21(a)
where deterioration of the transient response of the uncontrolled flow by this UTW was
observed. Our results also show that, for t > 100, in the DTW with (c = 5, ωx = 2,
α = 0.05) the discriminant is nowhere larger than 10−8. This indicates that the DTWs
are effective in suppressing the vortical motions that may arise naturally as a result of
flow disturbances.

2.4.5 Relaminarization by downstream waves

Thus far we have shown that properly designed DTWs represent an effective means
for controlling the onset of turbulence. In this section, we demonstrate that the DTWs
designed in § 2.3 can also relaminarize fully developed turbulent flows. Since the lifetime
of turbulence depends on the Reynolds number [104–107], we examine turbulent flows
with Rc = 2000 (i.e., Rτ ≈ 63.25) and Rc = 4300 (i.e., Rτ ≈ 92.80).

We simulate the turbulent flow with Rc = 4300. The number of grid points in the
streamwise, wall-normal, and spanwise directions is increased to 80 × 97 × 80. The
velocity field is initialized with a fully developed turbulent flow obtained in the absence
of control. The surface blowing and suction that generates DTWs is then introduced
(at t = 0), and the kinetic energy and drag coefficients are computed at each time step.

The fluctuations’ kinetic energy for the uncontrolled flow and for the flows subject
to DTWs with (c = 5, ωx = 2, α = {0.035, 0.05, 0.125}) at Rc = 2000 are shown in
Figure 2.30. The energy of velocity fluctuations around base flows ub (parabola for
flow with no control; traveling waves for flow with control) are shown; relaminarization
occurs when the energy of velocity fluctuations converges to zero. Clearly, large levels
of fluctuations in the flow with no control are maintained up until t ≈ 1100. After this
time instant, however, velocity fluctuations exhibit gradual decay. On the other hand,
fluctuations in flows subject to DTWs start decaying much earlier, thereby indicating
that the lifetime of turbulence is reduced by surface blowing and suction. Relative to
the uncontrolled flow, the fluctuations’ kinetic energy for the DTWs considered here
converge much faster to zero. We also see that the rate of decay increases as the wave
amplitude gets larger.

We next consider a turbulent flow with Rc = 4300. The energy of velocity fluctua-
tions around base flows ub is shown in Figure 2.31(a). In both the uncontrolled flow and
the flows subject to the DTWs with (c = 5, ωx = 2, α = {0.035, 0.05}) the energy os-
cillates around large values that identify turbulent flow. This indicates that the DTWs
with smaller amplitudes cannot eliminate turbulence. On the contrary, the DTW with
α = 0.125 reduces the energy of velocity fluctuations, thereby relaminarizing the flow.
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(a) (b)

(c) (d)

(e) (f)

Figure 2.26: Simulation of the uncontrolled flow for the initial condition with moderate
energy. (a), (c), (e) 3D visualizations of the isosurfaces of the discriminant, D > 10−6

(blue), D > 10−5 (green), and D > 10−4 (red). (b), (d), (f) 2D visualizations of the
crossflow velocity vectors (arrows) and the x-averaged streamwise vorticity (color plots).
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(a) (b)

(c) (d)

(e) (f)

Figure 2.27: Simulation of the DTW with (c = 5, ωx = 2, α = 0.05) for the initial
conditions with moderate energy. (a), (c), (e) 3D visualizations of the isosurfaces of the
discriminant, D > 10−6 (blue), D > 10−5 (green), and D > 10−4 (red). (b), (d), (f) 2D
visualizations of the crossflow velocity vectors (arrows) and the x- averaged streamwise
vorticity (color plots).
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(a) (b)

(c) (d)

(e) (f)

Figure 2.28: Simulation of the UTW with (c = −2, ωx = 0.5, α = 0.05) for the initial
condition with moderate energy. (a), (c), (e) 3D visualizations of the isosurfaces of the
discriminant, D > 10−6 (blue), D > 10−5 (green), and D > 10−4 (red). (b), (d), (f) 2D
visualizations of the crossflow velocity vectors (arrows) and the x-averaged streamwise
vorticity (color plots). Only one quarter of the channel (x ∈ [0, 2π]) is shown.
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Figure 2.29: 3D visualizations of the isosurfaces of the discriminant, D > 10−5 (blue),
D > 10−4 (green), and D > 10−3 (red) for the uncontrolled flow (left figures) and the
UTW with (c = −2, ωx = 0.5, α = 0.05) (right figures) for the initial condition with
moderate energy. Only one quarter of the channel (x ∈ [0, 2π]) is shown for the UTW.
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Figure 2.30: Energy of velocity fluctuations around base flows. Simulations are initiated
by a fully developed turbulent flow with Rc = 2000: ×, uncontrolled; DTWs with
�, (c = 5, ωx = 2, α = 0.035); ◦, (c = 5, ωx = 2, α = 0.05); and ♦, (c = 5, ωx = 2,
α = 0.125).

E Cf

(a) (b)

Figure 2.31: (a) Energy of velocity fluctuations around base flows, E(t); and (b) skin-
friction drag coefficient, Cf (t). Simulations are initiated by a fully developed turbulent
flow with Rc = 4300: ×, uncontrolled; DTWs with �, (c = 5, ωx = 2, α = 0.035);
◦, (c = 5, ωx = 2, α = 0.05); and ♦, (c = 5, ωx = 2, α = 0.125).
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Figure 2.32: Mean velocity, U(y), and streamwise velocity (colored plots) at y =
−0.7518. Simulations are initiated by a fully developed turbulent flow with Rc = 4300:
×, t = 0; •, t = 100; *, t = 900. The dashed line identifies the laminar mean velocity
induced by the DTW with (c = 5, ωx = 2, α = 0.125).

Figure 2.31(b) shows that the skin-friction drag coefficient for the uncontrolled flow
and for the DTWs with smaller amplitudes is approximately constant throughout the
simulation. On the other hand, owing to relaminarization, the drag coefficient for the
DTW with α = 0.125 is smaller than that of the uncontrolled turbulent flow. However,
relaminarization comes at the expense of poor net efficiency. This is because of the large
required power (i.e., high cost of control), which reduces the appeal of using DTWs for
control of turbulent flows.

Figure 2.32 shows the mean velocity, U(y), at three time instants in the flow subject
to the DTW with (c = 5, ωx = 2, α = 0.125). The instantaneous values of streamwise
velocity in the (x, z)-plane at y = −0.7518 are also shown. As time advances, the initial
turbulent mean velocity at Rc = 4300 moves towards the laminar mean velocity induced
by the surface blowing and suction (dashed line). The colored plots illustrate how the
initial turbulent flow evolves into the DTW laminar base flow. We conjecture that
receptivity reduction is important not only for controlling the onset of turbulence but
also for relaminarization of fully developed flows. Explaining the effect of traveling waves
on turbulent flows requires additional control-oriented modeling and further scrutiny.
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2.5 Summary

This chapter disentangles three distinct effects of blowing and suction along the walls on
pumping action, required control power, and kinetic energy reduction. We have shown
that analysis of dynamics is paramount to designing the streamwise traveling waves.
If velocity fluctuations are well-behaved then the pumping action and required control
power can be ascertained from the steady-state analysis. The proposed method uses
receptivity analysis of the linearized NS equations to study the fluctuations’ energy in
transitional channel flows. Motivated by our observation that a positive net efficiency
can be achieved by preventing transition, we develop a framework for design of the
traveling waves that reduce receptivity to three dimensional body force fluctuations.
Direct numerical simulations of the NS equations verify that the traveling waves iden-
tified here are indeed an effective means for controlling the onset of turbulence. This
demonstrates the predictive power of model-based approach to sensorless flow control;
our simulation-free approach captures the essential trends in a computationally efficient
manner and avoids the need for DNS and experiments in the early design stages.

Our perturbation analysis has revealed that properly designed DTWs can signif-
icantly reduce energy amplification of three dimensional fluctuations, including the
streamwise streaks and the TS waves, which makes them well-suited for preventing
transition. The DNS results confirm that transient response of fluctuations’ kinetic
energy can be maintained at low levels using the values of wave frequency and speed
that reduce receptivity of the linearized NS equations. This facilitates maintenance of
laminar flow; positive net efficiency can be achieved if the wave amplitude necessary
for controlling the onset of turbulence is not prohibitively large. On the other hand,
we show that the UTWs are poor candidates for preventing transition for they, at best,
exhibit similar receptivity to background disturbances as the uncontrolled flow. In par-
ticular, the UTWs considered by [8] largely amplify the most energetic modes of the
uncontrolled flow, thereby promoting turbulence even when the uncontrolled flow stays
laminar.

Simulations of nonlinear flow dynamics have demonstrated that the DTWs can main-
tain laminar flow and achieve positive net efficiency. In contrast, the UTWs promote
turbulence even with the initial conditions for which the uncontrolled flow remains
laminar. Our analysis of the Reynolds-Orr equation shows that, compared to the un-
controlled flow, the DTWs (UTWs) reduce (increase) the production of kinetic energy.

We have also examined the effects of DTWs on fully developed turbulent flows at
low Reynolds numbers. It turns out that the DTWs with speed and frequency selected
in § 2.3 and large enough amplitudes can eliminate turbulence (i.e., relaminarize the
flow). We also note that, in spite of promoting turbulence, the UTWs may still achieve
smaller drag coefficients compared to the uncontrolled flow. By increasing the UTW
amplitude, even sub-laminar drag can be attained [8]. It is to be noted, however, that
large wave amplitudes introduce poor net efficiency in flows subject to a fixed pressure
gradient. Nevertheless, these traveling waves may still be utilized when the primal
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interest is to eliminate turbulence (with DTWs) or reduce the skin-friction drag (with
UTWs) irrespective of the cost of control.

All simulations in the present study are enforced by a fixed pressure gradient, as
opposed to the constant mass flux simulations of [8]. Even though these setups are
equivalent in steady flows [108], they can exhibit fundamentally different behavior in
unsteady flows. For example, the two simulations may possess different stability char-
acteristics and yield structurally different solutions for near-wall turbulence [109, 110].
Moreover, [110] remarked that the dynamical properties of the two simulations can sig-
nificantly differ in small computational domains. Also, [111] suggested that specifying
the simulation type comes next to defining the boundary conditions.

In order to examine the effect of simulation type on transition, skin-friction drag
coefficient, and control net efficiency, we have repeated some of the simulations by ad-
justing the pressure gradient to maintain a constant mass flux. Our results reveal that
regardless of the simulation type, the DTWs designed in § 2.3 are effective in preventing
transition while the UTWs promote turbulence. Moreover, the steady-state skin-friction
drag coefficients are almost identical in both cases. However, the control net efficiency
depends significantly on the simulation type. This is because of the difference in the
definition of the produced power: in the fixed pressure gradient setup, the produced
power is captured by the difference between the bulk fluxes in the uncontrolled and
controlled flows; in the constant mass flux setup, the produced power is determined by
the difference between the driving pressure gradients in the uncontrolled and controlled
flows. It turns out that the produced power is larger in the constant mass flux simula-
tion than in the fixed pressure gradient simulation, whereas the required power remains
almost unchanged. Consequently, both DTWs and UTWs have larger efficiency in con-
stant mass flux simulations. For example, in fixed pressure gradient setup of the present
study, the UTWs with (c = −2, ωx = 0.05 α = {0.05, 0.125}) have negative efficiency.
The efficiency of these UTWs is positive, however, in constant mass flux simulations [8].
Our ongoing effort is directed towards understanding the reason behind this disagree-
ment which may be ultimately related to the fundamental difference between these two
types of simulations.



Chapter 3

Localized optimal feedback
control of transitional channel
flow

Feedback strategies for control of fluid flows involve individual system components that
are capable of sensing, computation, and actuation. Therefore, an important question
in design of flow controllers is related to the interconnection structure between these
components. A centralized controller yields best performance at the expense of excessive
communication and computation. A fully decentralized controller, while advantageous
from a communications perspective, may sacrifice performance. A reasonable compro-
mise between these competing approaches is offered by localized strategies where each
component exchanges information with a limited number of nearby components.

Early flow control efforts have focused on drag reduction in turbulent flows. These
include the opposition control [112] and gradient-based strategies where the optimal
control problem is solved over infinitesimal [113,114] or finite [101] time horizons. Dur-
ing the last decade, the emphasis has shifted to model-based techniques from linear
control theory which represent an efficient means for design of optimal flow controllers;
see [42] for recent developments. In this chapter, we study the problem of controlling
the onset of turbulence. Since the early stages of transition are initiated by large flow
receptivity [7,24,25,28], we formulate an optimal control problem aimed at reducing this
receptivity. For transition control at low Reynolds numbers, this strategy has proven
successful in both vibrational sensor-less [115,116] and centralized feedback [56] setups.
These references show that, by substantially reducing large flow receptivity, transition
to turbulence can be prevented and even relaminarization of a fully-developed turbulent
flow can be achieved.

The main difference between the problem addressed here and by [56] is that we
consider control designs that are localized in space. Namely, the actuation at a certain
location depends only on local flow information. The localized controller is obtained
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using recently developed tools for optimal design of feedback gains subject to structural
constraints [68, 69]. We compare the performance of the localized optimal controller
with that of the optimal centralized controller and the controller that is obtained by
spatial truncation of the centralized feedback gain. When the actuators use information
from only the nearest neighbor components, we demonstrate the danger of enforcing
the constraint by spatial truncation. On the other hand, we show that the localized
optimal controller achieves performance comparable to that of the optimal centralized
controller.

The chapter is organized as follows. In § 3.1, the evolution model for channel flow
subject to body force disturbances and boundary actuation is derived. The problem
of optimal state-feedback design in the presence of structural constraints is formulated
in § 3.2. In addition, a gradient descent method for solving necessary conditions for
optimality is briefly described. In § 3.3, the effectiveness of the designed feedback gains
for controlling the onset of turbulence is examined by comparing the receptivity of the
controlled flows and the flow with no control. Our design is further verified using direct
numerical simulations of the nonlinear flow dynamics. We conclude the chapter in § 3.4.

3.1 Preliminaries

3.1.1 Governing equations

We consider an incompressible channel flow, driven by a fixed pressure gradient and
subject to a control actuation in the form of blowing and suction along the walls.
The evolution of infinitesimal fluctuations around the laminar parabolic profile U(y) is
governed by the linearized Navier-Stokes (NS) equations

vt = −U vx − U ′ v i − ∇p + (1/Rc)∆v + d, 0 = ∇·v, (3.1)

where i denotes the unit vector in the streamwise direction, and Rc = Uc δ/ν is the
Reynolds number defined in terms of the centerline velocity of the parabolic laminar
profile Uc and channel half-height δ. The spatial coordinates and time are denoted by
(x, y, z) and t, respectively. The kinematic viscosity is denoted by ν, p is the pressure, the
velocity fluctuations are given by v = (u, v, w), and d = (d1, d2, d3) represents the body
force disturbance. Here, the indices 1, 2, and 3 correspond to x, y, and z coordinates,
respectively, ∇ is the gradient, ∆ = ∇ ·∇ is the Laplacian, and U ′(y) = dU(y)/dy.
Actuation along the walls imposes the following boundary conditions on the wall-normal
velocity

v(x, y = −1, z, t) = vl(x, z, t), v(x, y = 1, z, t) = vu(x, z, t), (3.2)



83

Figure 3.1: A periodic channel with size Lx × 2× Lz.

where vl and vu denote actuations at the lower and upper walls. The horizontal velocity
components satisfy Dirichlet boundary conditions

u(x, y = ±1, z, t) = w(x, y = ±1, z, t) = 0.

To obtain the standard control formulation, the actuation must enter as an explicit
input into the evolution equation [117]. The following change of variables

v(x, y, z, t) = v̄(x, y, z, t) + fl(y) vl(x, z, t) + fu(y) vu(x, z, t), (3.3)

can be used to achieve this objective, where fl and fu are specified by the requirement
that v̄ satisfies Dirichlet and Neumann boundary conditions at the walls:

fl(y) =
(
y3 − 3y + 2

)
/4, fu(y) = −

(
y3 − 3y − 2

)
/4.

The evolution model is obtained from Eq. (3.1) by eliminating pressure via a stan-
dard choice of wall-normal velocity and vorticity (v, η) as the flow variables. By incorpo-
rating the change of variables introduced by Eq. (3.3), and augmenting the flow variables
by the boundary actuation, we obtain the state vector φ = [φT1 (x, y, z, t) φT2 (x, z, t) ]T .
Here, φ1 = [ v̄ η ]T , where η = uz − wx denotes the wall-normal vorticity, and
φ2 = [ vl vu ]T is the boundary-actuation-vector. This choice brings the time-derivative
of the boundary actuation u = [u1 u2 ]T = φ2t as an explicit input to the evolution
model. The evolution model for the controlled flow is determined by

φt = Aφ + B1 d + B2 u, v = C1φ. (3.4)

The operator A represents the dynamical generator of Eq. (3.4), B1 and B2 determine
how disturbances and control enter into Eq. (3.4), and C1 specifies the kinematic relation
between velocity fluctuations v and state φ. The operators in the evolution model are
determined by

A =

[
A11 A12

0 0

]
, B1 =

[
B11

0

]
, B2 =

[
B21

B22

]
, C1 =

[
C11 C12

]
,
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where

A11 =

[
∆−1 ((1/Rc)∆

2 − (U0∆− U ′′0 ) ∂x) 0
−U ′0 ∂z (1/Rc)∆− U0 ∂x

]
,

A12 =

[
A12,1 A12,2

−U ′0fl ∂z −U ′0fu∂z

]
,

A12,1 = ∆−1((2 f ′′l (∂2
x + ∂2

z ) + fl(∂
2
x + ∂2

z )2)/Rc − (U0f
′′
l + U0fl(∂

2
x + ∂2

z )− U ′′0 fl) ∂x),

A12,2 = ∆−1((2 f ′′u (∂2
x + ∂2

z ) + fu(∂2
x + ∂2

z )2)/Rc − (U0f
′′
u + U0fu(∂2

x + ∂2
z )− U ′′0 fu) ∂x),

B11 =

[
∆−1 (−∂xy) ∆−1 (∂2

x + ∂2
z ) ∆−1 (−∂yz)

∂z 0 −∂x

]
,

B21 =

[
∆−1 (−f ′′l − fl(∂2

x + ∂2
z )) ∆−1 (−f ′′u − fu(∂2

x + ∂2
z ))

0 0

]
, B22 =

[
1 0
0 1

]
,

C11 =

 −∂xy (∂2
x + ∂2

z )−1 ∂z (∂2
x + ∂2

z )−1

I 0
−∂yz (∂2

x + ∂2
z )−1 −∂x (∂2

x + ∂2
z )−1

 ,
C12 =

 −f ′l ∂x (∂2
x + ∂2

z )−1 −f ′u ∂x (∂2
x + ∂2

z )−1

fl fu
−f ′l ∂z (∂2

x + ∂2
z )−1 −f ′u ∂z (∂2

x + ∂2
z )−1

 ,
with ∆ = ∂2

x + ∂2
y + ∂2

z denoting the three-dimensional Laplacian.

3.1.2 Actuation along the discrete lattice

In what follows, we impose periodic boundary conditions in the horizontal directions; see
Figure 3.1 for geometry. The size of the computational domain is given by Lx× 2×Lz,
where Lx and Lz denote the channel lengths in x and z. We useNx andNz Fourier modes
to represent differential operators in the streamwise and spanwise directions, respec-
tively. In physical space, this yields a two-dimensional lattice of equally-spaced points
(xr = rhx, zs = shz), with r ∈ Nx = {0, 1, . . . , Nx − 1} and s ∈ Nz = {0, 1, . . . , Nz − 1}.
The horizontal spacings between two adjacent points are determined by hx = Lx/Nx

and hz = Lz/Nz. For simplicity, we use the same symbols to denote variables in physical
and frequency domains; for example, v(m,n; y, t) denotes the frequency representation
of v(r, s; y, t) = v(xr, y, zs, t), where m ∈ Zx = {−Nx/2,−Nx/2 + 1, . . . , Nx/2− 1} and
n ∈ Zz = {−Nz/2,−Nz/2 + 1, . . . , Nz/2− 1}. The corresponding spatial wavenumbers
are determined by κm = m 2π/Lx and κn = n 2π/Lz.

We consider the design problem with wall-actuation taking place along the aforemen-
tioned two-dimensional lattice. Furthermore, we assume that the states are available
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for measurement, implying that the control input at (xr, zs) is obtained from

u(r, s; t) = −
∑

r̃∈Nx, s̃∈Nz

( ∫ 1

−1
K1(r − r̃, s− s̃; y)φ1(r̃, s̃; y, t) dy +

K2(r − r̃, s− s̃)φ2(r̃, s̃; t)

)
,

(3.5)

where K1 and K2 are the corresponding state-feedback gains. The frequency represen-
tation of Eq. (3.5), for each m ∈ Zx and n ∈ Zz, is given by

u(m,n; t) = −
∫ 1

−1
K1(m,n; y)φ1(m,n; y, t) dy − K2(m,n)φ2(m,n; t). (3.6)

For computational purposes, the wall-normal operators in Eqs. (3.4) and (3.6) are
approximated using pseudospectral method with Ny Chebyshev collocation points [118].
This yields the discretized evolution model

φ̇m,n(t) = Am,nφm,n(t) + B1m,n dm,n(t) + B2m,n um,n(t),

vm,n(t) = C1m,nφm,n(t),
(3.7)

parameterized by m ∈ Zx and n ∈ Zz. Here, φm,n(t) and um,n(t) are column-vectors
with (2Ny+2) and 2 components, respectively, and the dot is the derivative with respect
to time. Furthermore, the control action is determined by

um,n(t) = −Km,nφm,n(t) = −
[
K1m,n K2m,n

] [ φ1m,n(t)

φ2m,n(t)

]
(3.8)

where the 2× (2Ny + 2) matrix Km,n denotes the discretized form of the state-feedback
gain in the frequency domain.

3.2 Design of localized optimal feedback gains

We consider the problem of designing structured optimal feedback gains for controlling
the onset of turbulence. To this end, we determine the stabilizing gains that minimize
a performance index J obtained by penalizing flow receptivity and control effort. These
are, respectively, quantified by the variance amplification of velocity fluctuations v in
the presence of zero-mean white stochastic disturbance d, and by the kinetic energy of
the blowing and suction along the walls. In addition, to obtain the well-posed optimal
control formulation, the penalty on u is introduced in the performance index as well.

The above described optimal control problem amounts to finding the stabilizing
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gains that minimize the variance amplification of the performance output

ζm,n(t) =

[
W 1/2C1m,n

0

]
φm,n(t) +

[
0

R1/2

]
um,n(t). (3.9)

Here, R is the positive definite matrix, and W denotes a 3Ny×3Ny diagonal matrix with
{w,w,w} on its main diagonal where the vector w contains the integration weights at
the Chebyshev collocation points [119]. Substitution of Eq. (3.8) into Eqs. (3.7) and (3.9)
yields the following evolution model of the closed-loop system

φ̇m,n(t) =
(
Am,n − B2m,nKm,n

)
φm,n(t) + B1m,n dm,n(t),

ζm,n(t) =

[
W 1/2C1m,n

−R1/2Km,n

]
φm,n(t).

(3.10)

Mathematically, the problem of steady-state variance (i.e., the H2 norm) minimization
for system given by Eq. (3.10), can be formulated as [117]

minimize : J(K) =
∑

m∈Zx,n∈Zz

trace (Xm,nQBm,n) , (3.11a)

subject to : A∗clm,nXm,n +Xm,nAclm,n = −
(
QCm,n + K∗m,nRKm,n

)
, (3.11b)

where ∗ denotes the complex conjugate transpose, Aclm,n = Am,n−B2m,nKm,n, QBm,n =
B1m,nW

−1B∗1m,n, and QCm,n = C∗1m,nWC1m,n. The solution to Eq. (3.11) in the absence
of structural constraints is given by

Km,n = R−1B∗2m,nXm,n, (3.12)

where Xm,n is determined from the algebraic Riccati equation

A∗m,nXm,n + Xm,nAm,n − Xm,nB2m,nR
−1B∗2m,nXm,n + QCm,n = 0.

In general, actuation based on the optimal solution given by Eq. (3.12), necessitates
centralized implementation that requires knowledge of the entire flow field. The problem
of designing optimal centralized feedback gains for controlling transition is considered
by [56]. As shown by [66], the magnitude of the centralized feedback gains decays
exponentially in space, implying that they can be spatially truncated. Although this
suggests a way for obtaining localized controllers, the problem of designing localized
optimal feedback gains is more challenging. The main difference between the problem
considered here and in [56] is that we ask the following question: Can actuation based
on local flow information prevent transition to turbulence? To answer this, we a priori
impose structural constraints on the feedback gains. It is assumed that each actuator
uses information only from the points that are located within a small relative distance.
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(a)

(b)

Figure 3.2: Sketch of a localized control strategy where the actuator placed at (r, s)
uses information from only the nearest neighbors on the two-dimensional lattice.

The set of all such relative distances in units of hx and hz is denoted by S. In other
words, only the feedback gains that correspond to the points in S are allowed to be
nonzero. For example, when information from only the nearest neighbors is used, we
have (see Figure 3.2 for an illustration)

S =
{

(r, s)
∣∣ r = {−1, 0, 1}, s = {−1, 0, 1}

}
.

Furthermore, by F (r, s) we denote the corresponding structured feedback gains.
For spatially invariant systems, the structured optimal state-feedback problem can

be formulated as [68]

minimize : J(F ) =
∑

m∈Zx,n∈Zz

trace (Xm,nQBm,n) , (P1)

subject to : A∗clm,nXm,n +Xm,nAclm,n = −
(
QCm,n + C∗2m,n F

∗RF C2m,n

)
, (P2)

where F denotes the block-row matrix, which is independent of m and n, and contains
the structured feedback gain F (r, s),

F = row {F (r, s)}(r,s)∈S , (P3)
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and C2m,n is given by the block-column matrix

C2m,n = col
{

e−i 2π (rm/Nx + s n/Nz) I
}

(r,s)∈S
. (P4)

Here, I is the identity matrix of size 2Ny + 2, and Aclm,n = Am,n − B2m,n F C2m,n

denotes the dynamical generator of the closed-loop system.
Note that in the absence of structural constraints (i.e., S = Nx × Nz = {(r, s)

∣∣ r ∈
Nx, s ∈ Nz}), the structured optimal control problem (P1)-(P4) reduces to the unstruc-
tured problem given by Eq. (3.11).

3.2.1 Computation of the structured optimal feedback gains

We briefly describe the method that is used to solve the optimal control problem (P1)-
(P4) with specified S. This method is adopted from the developments of [69], where
efficient descent methods for structured optimal design are introduced.

The necessary conditions for optimality of the stabilizing feedback gain F with
R = rI2×2 in (P2), r > 0, are given by [69]

A∗clm,nXm,n + Xm,nAclm,n = −
(
QCm,n + r C∗2m,n F

∗ F C2m,n

)
,

Aclm,n Ym,n + Ym,nA
∗
clm,n = −QBm,n,

F =
1

r

( ∑
m∈Zx, n∈Zz

B∗2m,nXm,n Ym,nC
∗
2m,n

)( ∑
m∈Zx, n∈Zz

C2m,n Ym,nC
∗
2m,n

)−1

.

(3.13)
This system of equations is nonlinear in the unknown matrices Xm,n, Ym,n, and F .
Moreover, as seen from the last condition in Eq. (3.13), the structural constraints on
F introduce coupling between all wavenumbers; this is in contrast to the unstructured
optimal control problem given by Eq. (3.11).

Next, we describe the algorithm that is employed for solving Eq. (3.13) [69]:
Descent method for solving Eq. (3.13):
given stabilizing F 0 that satisfies the structural constraints imposed by S,
for i = 0, 1, 2, . . ., do:

(1) compute descent direction F̃ i;

(2) determine step-size qi;

(3) update F i+1 = F i + qi F̃ i;

until the stopping criterion ||∇J(F i)||F < ε is achieved, where || · ||F denotes the
Frobenius norm and ε is the convergence tolerance.

We consider the gradient descent direction that provides linear rate of convergence
to the local minimum. More sophisticated descent directions, such as Newton or quasi-
Newton directions, provide faster convergence at the expense of increased computational
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cost; for example, see [69]. The gradient direction is given by F̃ i = −∇J(F i) where
∇J(F i) is determined from [69]

∇J(F i) =
2

NxNz

∑
m∈Zx, n∈Zz

(
r F C2m,n − B∗2m,nXm,n

)
Ym,nC

∗
2m,n.

For the step-size rule, the backtracking line search [120] is used where in addition to
guaranteeing descent of the performance index, we also guarantee the stability of the
updated closed-loop system. Namely, we repeat qi = βqi (0 < β < 1) until both of the
following conditions are satisfied:

(a) descent: J(F i + qiF̃ i) < J(F i) + αqi
∑

m,n(∇J(F i)T F̃ i) with 0 < α < 0.5;

(b) closed-loop stability: Am,n −B2m,n F C2m,n is stable for all m ∈ Zx and n ∈ Zz.

3.3 Localized control of transition

As discussed in § 3.1, the problem of controlling the onset of turbulence is formulated
as the receptivity (i.e., the H2 norm) reduction problem. Therefore, to assess the
effectiveness of feedback controllers, we compare the receptivity of controlled flows to the
receptivity of flow with no control. We consider the stochastically forced linearized NS
equations in the subcritical regime where the flow with no control is linearly stable. The
energy density of fluctuations in the presence of stochastic forcing is used to quantify
the flow receptivity. The zero-mean stochastic forcing which is white in time and y,
and purely harmonic in horizontal directions, yields a nonzero steady-state variance of
velocity fluctuations E(κm, κn) [27]. For any m ∈ Zx and n ∈ Zz, this quantity can be
obtained from

E(κm, κn) = trace (Zm,nQBm,n) ,

(Am,n −B2m,n F C2m,n)∗ Zm,n + Zm,n (Am,n −B2m,n F C2m,n) = −QCm,n.
(3.14)

For the flow with no control (i.e., for F = 0), the streamwise-constant fluctuations
are the most amplified by the linearized dynamics [7, 27, 28]. These fluctuations corre-
spond to the streamwise streaks that are ubiquitous in wall-bounded shear flows. The
large amplification of streaks is physically associated with the vortex-tilting (lift-up)
mechanism that arises from the non-normal coupling between dynamics of the wall-
normal velocity and vorticity fluctuations [24,26]. This non-normal coupling is also re-
sponsible for the pseudo-resonance phenomenon [25,64] where large amplification of har-
monic disturbances, which are not associated with eigenvalues of the linearized model,
is obtained. On the other hand, the least stable modes of the uncontrolled flow, i.e., the
Tollmien-Schlichting (TS) waves, are much less amplified than the streamwise streaks.
This highlights the importance of amplification of the streamwise constant fluctuations
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in the early stages of transition. Therefore, a control strategy that is capable of reduc-
ing the receptivity of streamwise streaks to stochastic disturbances represents a viable
approach for controlling the onset of turbulence.

3.3.1 Receptivity of the controlled flows

For the controlled flows, we consider three state-feedback gains: (a) the centralized gains
determined by Eq. (3.12); (b) the truncated gains obtained by enforcing the structural
constraints by spatial truncation of the centralized feedback gains; and (c) the localized
optimal gain F that is designed using the method presented in § 3.2.1. For the truncated
and localized controllers, we consider the case where each actuator uses information from
only its nearest neighbors (for an illustration, see Figure 3.2).

Figure 3.3 compares the energy amplification of the controlled flows with Rc = 2000
and the flow with no control for different horizontal wavenumbers. The optimal cen-
tralized controller significantly reduces flow receptivity for all wavenumbers. Compared
with the flow with no control, an 89% reduction in amplification of the most energetic
structures (i.e., streaks) is achieved (cf. peak values in Figure 3.3(a)).

Next, we look at the flows that are controlled by the truncated centralized and
localized optimal feedback gains. Figures 3.3(b) and 3.3(c) illustrate that truncated
centralized gains introduce instability at small streamwise wavenumbers. The numerical
simulations of § 3.3.2 confirm that the flow controlled with these gains diverges from
the laminar profile and becomes turbulent. In addition, for the stable wavenumbers,
Figure 3.3 shows that the variance amplification of the truncated centralized controller is
much larger than that of the centralized controller. This justifies the need for designing
localized optimal controllers that satisfy the structural constraints and exhibit similar
performance to that of the centralized controller.

In order to obtain the localized optimal gains, we have used the truncated centralized
gains to initialize the iterative scheme described in § 3.2.1. Although the truncated gains
are not stabilizing, it turns out that the initial gradient direction can be used to obtain
stabilizing structured gains. We are currently also developing algorithms based on the
augmented Lagrangian method [69] that does not require stabilizing gains for the initial
iteration.

Figure 3.3 shows that the localized optimal gains maintain stability for all wavenum-
bers. In addition, the variance amplification of the localized controller is similar to that
of the centralized controller. In particular, Figure 3.3(a) shows that amplification of
the most energetic modes is almost the same for localized optimal and centralized con-
trollers. Therefore, the properly designed localized controller is a good candidate for
controlling the onset of turbulence, as verified in direct numerical simulations of § 3.3.2.



91

(a) (b)

(c) (d)

Figure 3.3: Energy density of the velocity fluctuations E(κn) for the uncontrolled flow
with Rc = 2000 (◦), optimal centralized (�), truncated centralized (O), and localized
optimal (�) controllers for (a) κm = 0; (b) κm = 0.5; (c) κm = 1; and (d) κm = 1.5.
The truncated controller is unstable for κm = {0.5, 1} and κn = {0, 1} and the energy
density is not defined for any combination of these wavenumbers. Note: The energy
density is computed at the discrete set of wavenumbers κn and κm (symbols) and the
lines are plotted for visual aid.
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(a) (b)

(c)

Figure 3.4: (a) Energy of the velocity fluctuations E(t); (b) skin-friction drag coefficient
Cf (t); and (c) control energy (v2

u(t) + v2
l (t))/2 for the flow with no control, and optimal

centralized, truncated centralized, and localized optimal controllers. The results are
obtained using DNS with Rc = 2000.



93

3.3.2 Direct numerical simulations

We simulate a channel flow with Rc = 2000 that is driven by a constant pressure gradient
and is subject to actuation in the form of blowing and suction at the walls. This value of
Rc is smaller than the Reynolds number at which linear instability occurs (Rc = 5772)
and larger than the value for which transition usually takes place in experiments and
DNS (Rc ≈ 1000). The fully nonlinear NS equations are discretized with spectral
accuracy using Fourier modes in horizontal directions and Chebyshev polynomials in y,
as described in § 3.1.2. The lengths of the computational box in units of the channel
half-height δ are Lx = 4π and Lz = 2π, with Nx × Ny × Nz = 52 × 97 × 42 points
in x, y, and z directions (after dealiasing in x and z). In our study, 42 collocation
points in y were enough for computing convergent feedback gains. These gains are then
interpolated and scaled to determine the feedback gains for 97 Chebyshev collocation
points.

The flow is initialized with a perturbation that is capable of driving the uncontrolled
flow to turbulence. For the optimal centralized, truncated optimal centralized, and
localized optimal feedback gains, we evaluate the energy of velocity fluctuations E(t)
around the laminar parabolic profile and the skin-friction drag coefficient Cf (t).

Figure 3.4(a) shows E(t) for the controlled flows and the flow with no control.
Compared with its initial value, the energy of three-dimensional fluctuations in the
uncontrolled flow is increased by approximately two orders of magnitude, resulting in
divergence from the laminar parabolic profile. On the other hand, the optimal cen-
tralized controller provides decay of fluctuations’ energy to zero after a small transient
growth. Our results agree with the study of [56] where it was shown that the opti-
mal centralized controller is capable of preventing transition. The truncated centralized
controller introduces faster growth of E(t) relative to the flow with no control, thereby
promoting divergence from the laminar flow. On the other hand, Figure 3.4(a) shows
that the localized optimal controller is capable of maintaining the laminar flow by pro-
viding performance comparable to that of the optimal centralized controller.

Figure 3.4(b) shows the skin-friction drag coefficient Cf (t). We see that the drag
coefficients of the optimal centralized and localized controllers are equal to 4.5× 10−3,
which corresponds to the drag coefficient of the laminar flow. On the other hand, the
drag coefficient of the uncontrolled flow is 10−2, which is a clear indicator of a fully
developed turbulent flow. The drag coefficient of the truncated centralized controller is
approximately 7.5×10−3. This suggests that although the truncated gains cannot main-
tain the laminar flow, they achieve 16% reduction in drag relative to the uncontrolled
turbulent flow.

Figure 3.4(c) shows the control effort which is quantified by the kinetic energy of
blowing and suction at the walls (v2

u(t) + v2
l (t))/2. We see that the control effort in the

centralized and localized controllers decays to zero, implying that both controllers reject
the initial disturbance and maintain the laminar flow. On the other hand, the control
effort in the truncated centralized controller remains large and it only goes down after
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Figure 3.5: The optimal centralized and localized optimal feedback gains used by the
actuator at the lower wall placed at (r, s) = (0, 0), from the wall-normal velocity infor-
mation at locations (a) (r, s) = (0,−1); (b) (r, s) = (0, 0); and (d) (r, s) = (−1, 0). The
results are obtained for the flow with Rc = 2000.

the lifetime of turbulence due to the initial disturbance ends. Note that the total control
effort in the localized controller is larger than the centralized controller. This means
that the actuators in the localized controller should work harder to compensate for the
lack of flow information from far away sensors. The optimal centralized and localized
optimal feedback gains used by the actuator at the lower wall, from its own wall-normal
velocity information and the wall-normal velocity at its lateral neighbor and at its front
neighbor are compared in Figure 3.5. We see that relative to the centralized controller,
the localized controller pays less attention to its own flow information and that in its
front, but it pays more attention to the flow information that is coming from its lateral
neighbor.
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3.4 Summary

We consider design of localized optimal flow controllers for preventing transition to tur-
bulence. We formulate an optimal control problem for minimizing the flow receptivity
and control effort. In addition, structural constraints are imposed on the feedback gains
such that only the gains that are associated with the nearest neighbors are nonzero.
This problem is solved using recently developed techniques for optimal design of state-
feedback controllers with structural constraints. We show that spatial truncation of
the optimal centralized gains can introduce flow instability. Therefore, the truncated
feedback gains may not be suitable for controlling transition, and they may even pro-
mote turbulence in the situations where the uncontrolled flow stays laminar. On the
other hand, we demonstrate that the localized optimal controller can exhibit receptiv-
ity reduction similar to that of the optimal centralized controller. Furthermore, our
simulations of the nonlinear flow dynamics show that transition can be prevented using
localized optimal gains.



Chapter 4

Model-based design of transverse
wall oscillations for turbulent
drag reduction

Turbulent flows are ubiquitous in nature and engineering. Dissipation of kinetic energy
by turbulent flow around airplanes, ships, and submarines increases resistance to their
motion. This motivates design of control strategies for enhancing performance of ve-
hicles and other systems involving turbulent flows. Utility of different approaches for
maintaining the laminar flow, reducing skin-friction drag, and preventing separation is
surveyed in [11,13]. While traditional flow control techniques combine physical intuition
with costly numerical simulations and experiments, model-based techniques utilize de-
velopments from control theory to improve flow manipulation. Recent research suggests
that traditional strategies can be significantly enhanced by flow control design based on
analytical models and optimization tools [42].

The effectiveness of model-based feedback [56, 57] and sensor-less [115, 116] tech-
niques for controlling the onset of turbulence at low Reynolds numbers stems from
their ability to reduce receptivity and enhance robustness of the flow. Model-based
approach to flow control design has been motivated by realization that a mechanism
which initiates transition is governed by the degradation of robustness [25, 64] and the
consequential noise amplification [7, 27, 28]. Consequently, the above mentioned tech-
niques have utilized Navier-Stokes (NS) equations linearized around the laminar flow as
a control-oriented model with the objective of reducing sensitivity to modeling imper-
fections.

While most model-based efforts to date have considered the problem of maintaining
the laminar flow, in this chapter we show that turbulence modeling in conjunction
with judiciously selected linearization can extend utility of these methods to control of
turbulent flows. Control-oriented turbulence modeling is challenging because of complex
flow physics that arises from intricate interactions between the turbulent fluctuations
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and the mean velocity. We build on recent research that demonstrates considerable
predictive power of linearized analysis even in turbulent flows [73–75]. These papers
have shown that the equations linearized around turbulent mean velocity, with molecular
viscosity augmented by turbulent viscosity, qualitatively capture features of turbulent
flows with no control. For the flow with control, we examine the class of linearized
models considered by [73–75] and use turbulent viscosity hypothesis to quantify the
influence of turbulent fluctuations on the mean velocity.

The difficulty here arises from the fact that the turbulent viscosity of the flow with
control has to be determined. Even though we use the k-ε model to capture the influence
of control on turbulent viscosity, in contrast to current practice we do not rely on
numerical simulations for finding kinetic energy k and its rate of dissipation ε. Instead,
we introduce a simulation-free method based on stochastically-forced linearized model of
controlled flow to obtain k and ε from the second-order statistics of velocity fluctuations.
These statistics are used to determine the turbulent viscosity for the flow with control,
and thereby to compute the effect of control on the turbulent mean velocity and on the
skin-friction drag. We utilize linearized equations subject to white-in-time stochastic
forcing with appropriately selected second-order spatial statistics. Using analogy with
homogenous isotropic turbulence [121], we select these to be proportional to the two-
dimensional energy spectrum of the flow with no control. Note that while our approach
takes advantage of the turbulent viscosity and the energy spectrum resulting from direct
numerical simulations (DNS) of the uncontrolled flow [1, 2, 122, 123], we do not rely on
numerical or experimental data for determining the effect of control on the turbulent
flow.

Several experimental and numerical studies have shown the effectiveness of sensor-
less strategies for turbulence suppression in wall-bounded shear flows. The experiments
of [124] and DNS of [125] showed that imposing a constant transverse strain on a turbu-
lent boundary-layer can transiently reduce the turbulent kinetic energy and the Reynolds
stresses. Motivated by this observation, [126] used DNS to establish a sustained tur-
bulence suppression in a channel flow subject to transverse wall oscillations. For the
flow with friction Reynolds number Rτ = 200, skin-friction drag reduction of up to 40%
was reported with maximum drag reduction taking place for the period of oscillations
T+ ≈ 100 (in viscous time units). The numerical results of [126] were experimentally
verified by [127–130], where a drag reduction of up to 45% was reported.It was argued
that wall oscillations induce negative spanwise vorticity, thereby suppressing turbulence
by hampering the vortex stretching mechanism [129]. In addition, the experiments
of [130] showed that the near-wall flow is dragged laterally by wall oscillations which
reduces the length of the streaks and increases the spacing between them.

Several alternative mechanisms for inducing transverse oscillations have also been
investigated. For example, [131] used DNS of conductive fluids in a channel flow with
Rτ = 100 to show that time-periodic spanwise Lorentz force can reduce skin-friction
drag up to 40%. The amount of drag reduction was found to decrease for larger Rτ . In
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addition, [132,133] studied the effect of Lorentz force in the form of spanwise traveling
waves confined to the viscous sub-layer. For Rτ = 150, their DNS showed a drag re-
duction of up to 30%. The drag-reducing mechanisms of transverse motions induced by
spanwise oscillations, spanwise traveling waves, and riblets have been surveyed by [49].
Recently, turbulent drag reduction by waves of spanwise velocity that travel in the
streamwise direction has been examined using DNS [134], experiments [135], and gen-
eralized Stokes layer theory [136]. It was shown that upstream traveling waves reduce
drag at any speed. On the other hand, downstream waves reduce drag only at speeds
that are much larger or much smaller than the convecting speed of near-wall turbulent
structures.

Using DNS, it was shown that up to 40% of drag reduction can be achieved by oscil-
lating a cylindrical pipe along its longitudinal axis [137]. In a series of papers, [9,138–140]
further studied drag reduction by transverse wall oscillations in channel flows. In addi-
tion to quantifying the saved power associated with drag reduction, they accounted for
the input power necessary for maintaining wall oscillations; for small oscillation ampli-
tudes, it was established that a net power gain with drag reduction of up to 10% can
be achieved.

In contrast to the aforementioned studies, we use a model-based approach to ex-
amine the effect of transverse wall oscillations on the dynamics of a turbulent channel
flow. We first show that the power necessary for maintaining wall oscillations increases
quadratically with their amplitude, which is in agreement with DNS of [9]. This sug-
gests that large control amplitudes may yield poor net efficiency. We thus confine our
study to small oscillation amplitudes and use perturbation analysis (in the amplitude
of oscillations) to identify the period of oscillations that achieves largest drag reduc-
tion in a computationally efficient manner. In addition, we quantify the net efficiency,
discuss the drag reduction mechanisms, and compare the dominant structures in flows
with and without control. The close agreement between our results and the results
obtained in experiments and DNS [9, 126, 129, 138] demonstrates the predictive power
of our model-based approach to flow control design.

Our presentation is organized as follows: in § 4.1, we formulate the problem and pro-
vide a brief overview of the governing equations, turbulent mean velocity, skin-friction
drag coefficient, net efficiency, and the k-ε model. In § 4.2, we use judiciously selected
stochastically forced linearized model to study the dynamics of infinitesimal fluctuations
around the turbulent base flow. We also describe an efficient method for computing the
second-order statistics of fluctuations. These statistics are used to determine the influ-
ence of control on turbulent viscosity. In § 4.3, we apply our theoretical developments
to the problem of turbulent drag reduction with transverse wall oscillations, and pro-
vide a thorough analysis of the effect of control on skin-friction drag and net efficiency.
In § 4.4, we use characteristic eddy decomposition to visualize the effect of control on
turbulent flow structures. We conclude with a brief summary of our contributions and
outlook for future research in § 4.5.
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(a) (b)

Figure 4.1: (a) Pressure driven channel flow; and (b) Channel flow subject to transverse
wall oscillations.

4.1 Problem formulation

The pressure-driven channel flow of incompressible Newtonian fluids, with geometry
shown in Figure 4.1(a), is governed by the non-dimensional NS and continuity equations

ut = −(u · ∇)u − ∇P + (1/Rτ ) ∆u,

0 = ∇ · u,
(4.1)

where u is the velocity, P is the pressure, ∇ is the gradient, and ∆ = ∇·∇ is the Lapla-
cian. The Reynolds number Rτ = uτh/ν is defined in terms of the channel’s half-height
h and the friction velocity uτ =

√
τw/ρ, (x, y, z) are the streamwise, wall-normal, and

spanwise coordinates, and t is time. Here, τw is the wall-shear stress, ρ is fluid density,
and ν is kinematic viscosity. In (4.1), spatial coordinates are non-dimensionalized by
h, velocity by uτ , time by h/uτ , and pressure by ρu2

τ . When normalized by ν/uτ , the
wall-normal coordinate is denoted y+ = Rτ (1 + y). The subscripts are used to denote
the spatial and temporal derivatives, e.g., ut = ∂u/∂t = ∂tu.

Throughout this chapter we assume that the bulk flux, which is obtained by integrat-
ing the streamwise velocity over spatial coordinates, remains constant. This constraint
is commonly imposed in experiments and DNS of turbulent flows and it can be satisfied
by adjusting the uniform streamwise pressure gradient Px. In addition to the driving
pressure gradient, which balances the wall-shear stress Px = −τw [70], the flow is also
subject to zero-mean transverse wall oscillations of amplitude α and frequency ωt; see
Figure 4.1(b). The period of oscillations normalized by h/uτ (outer units) is given by
T = 2π/ωt, which is equivalent to T+ = Rτ T when normalized by ν/u2

τ (viscous units).
The streamwise and wall-normal velocities satisfy no-slip and no-penetration boundary
conditions at the walls.

The velocity in a turbulent flow can be decomposed into the sum of the turbulent
mean velocity, U = [U V W ]T , and the fluctuations around U, v = [u v w ]T ,
{u = U + v, U = E (u) , E (v) = 0}, where E ( · ) is the expectation operator. This
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yields the Reynolds-averaged NS equations (RANS) for U [70–72],

Ut = − (U · ∇) U−∇E (P ) + (1/Rτ ) ∆U−∇ · E
(
vvT

)
,

0 = ∇ ·U.
(4.2)

Comparison of (4.2) and (4.1) shows that the second-order statistics of fluctuations
E
(
vvT

)
, i.e., the Reynolds stresses, introduce additional flux in a turbulent flow. The

Reynolds stress tensor quantifies the transport of momentum arising from turbulent
fluctuations and it has profound influence on the mean velocity, and thereby on skin-
friction drag [70]. The difficulty in determining statistics of fluctuations arises from the
nonlinearity in the NS equations which makes the nth velocity moment depend on the
(n+ 1)th moment [70].

4.1.1 Turbulent mean velocity

The steady-state solution of (4.2) subject to a uniform pressure gradient, Px = −τw,
and the transverse wall oscillations,

W (y = ±1, t) = 2α sin (ωt t) ,

is determined by [U(y) 0 W (y, t) ]T . It can be shown that U arises from the uniform
pressure gradient, while W is induced by the wall oscillations,{

0 = (1/Rτ )U ′′ − [E (uv)]′ + τw,

U(y = ±1) = 0,
(4.3a){

Wt = (1/Rτ )W ′′ − [E (vw)]′ ,

W (y = ±1, t) = 2α sin (ωt t) .
(4.3b)

Here, overline denotes averaging over x and z, and prime represents differentiation
with respect to y. The closure problem can be overcome by expressing the higher
order unknown moments in terms of the lower-order known moments. According to the
turbulent viscosity hypothesis [70–72], the turbulent momentum is transported in the
direction of the mean rate of strain,

E
(
vvT

)
= (2/3) k I − (νT /Rτ )

(
∇U + (∇U)T

)
, (4.4)

where k(y) = (1/2)E (uu+ vv + ww) is the turbulent kinetic energy, νT (y) is the turbu-
lent viscosity normalized by ν, and I is the identity operator. From (4.4), we see that

E (uv) = −(νT /Rτ )U ′, E (vw) = −(νT /Rτ )W ′,
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which upon substitution to (4.3) yields{
0 = (1 + νT )U ′′ + ν ′T U

′ + Rτ τw,

U(y = ±1) = 0,
(4.5a){

Rτ Wt = (1 + νT )W ′′ + ν ′T W
′,

W (y = ±1, t) = 2α sin (ωt t) .
(4.5b)

where (1 + νT ) represents an effective viscosity that accounts for both molecular and
turbulent dissipation [72].

For given turbulent viscosity νT and driving pressure gradient Px = −τw, (4.5) is an
uncoupled system of equations for U and W ; U can be obtained by solving (4.5a),

U(y) = −Rττw
∫ y

−1

ξ

1 + νT (ξ)
dξ, (4.6)

and W can be obtained by solving (4.5b). In particular, the spanwise velocity W is
periodic in time

W (y, t) = α (Wp(y) eiωt t + Wm(y) e−iωt t), (4.7)

where i =
√
−1, and Wm = W ∗p , with ∗ denoting the complex conjugate. An equation

for Wp is obtained by substituting (4.7) in (4.5b)

iRτ ωtWp = (1 + νT )W ′′p + ν ′T W
′
p,

Wp(±1) = −i.
(4.8)

The difficulty in determining U and W from (4.5) arises from the fact that νT depends
on the fluctuations around the turbulent mean velocity, and thus it is not known a
priori. A significant body of work has been devoted to finding an expression for νT that
yields the turbulent mean velocity in the uncontrolled flow [141–143]. [143] extended
the turbulent viscosity model, originally introduced by [142], from the pipe flow to the
channel flow,

νT0(y) =
1

2

((
1 +

(c2

3
Rτ (1− y2) (1 + 2y2) (1− e−(1−|y|)Rτ/c1)

)2
)1/2

− 1

)
. (4.9)

This expression employs the law of the wall in conjunction with van Driest’s damping
function and Reichardt’s middle law [143]. The parameters c1 and c2 appear in the
van Driest’s wall law and in the von Kármán’s log law [72], respectively. These two
parameters are selected to minimize least squares deviation between the mean stream-
wise velocity (4.6) obtained with τw = 1 and turbulent viscosity (4.9), and the mean
streamwise velocity obtained in experiments and simulations. Application of this pro-
cedure yields {Rτ = 186, c1 = 0.61, c2 = 46.2;Rτ = 547, c1 = 0.455, c2 = 29.4;Rτ =
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Re(Wp,0(y+;T+)) Im(Wp,0(y+;T+))

(a) (b)

Figure 4.2: (a) The real part; and (b) the imaginary part of the solution Wp,0(y+;T+)
to system (4.8)-(4.9) with Rτ = 186 and 30 ≤ T+ ≤ 300. T+ increases in the direction
of the arrows.

934, c1 = 0.43, c2 = 27} for the corresponding mean velocities in a turbulent channel
flow obtained using DNS [1,2].

Under the assumption that the turbulent viscosity (4.9) captures interactions of fluc-
tuations with background turbulence, the system of equations (4.5)-(4.9) yields a solu-
tion U0 = [U0(y) 0 W0(y, t) ]T . By construction, U0 approximates the mean streamwise
velocity in the uncontrolled turbulent flow, and W0 is the spanwise velocity induced
by the wall oscillations obtained under the assumption that the turbulent viscosity is
not modified by control. Figure 4.2 shows that the solution Wp,0(y+;T+) of the sys-
tem (4.8)-(4.9) with Rτ = 186 and 30 ≤ T+ ≤ 300 is localized in the viscous wall region,
y+ < 50. In addition, as expected from the analogy to the solution of the Stokes second
problem (for example, see [144]), Wp,0 shifts away from the wall as T+ increases.

As shown above, if the turbulent viscosity of the flow with no control νT0 is used
to model νT , the oscillations induce W0 but have no impact on U0 (which, in this case,
arises only from the uniform pressure gradient). The implications of this assumption for
determining the skin-friction drag coefficient and the control net efficiency are discussed
in § 4.1.2.
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%Πreq,0(T+) %Πreq,0(T+)/max(%Πreq,0(T+))

(a) (b)

Figure 4.3: (a) The required power, %Πreq,0(T+), as a function of the period of os-
cillations T+ for the flow with Rτ = 186; (b) Comparison between %Πreq,0(T+) (solid
curve) and %Πreq(T+) (symbols). Symbols show DNS data at Rτ = 200 [9] for control
amplitudes α = 2.25, ◦; α = 6, �; and α = 9, O. The results in (b) are normalized by
their largest values.

4.1.2 Skin-friction drag coefficient and net efficiency

As mentioned in § 4.1, the pressure gradient Px = −τw has to be adjusted in order to
maintain the constant bulk flux,

UB =
1

2

∫ 1

−1
U(y) dy.

Since the skin-friction drag coefficient is proportional to τw and inversely proportional
to U2

B [70, 144],
Cf = 2 τw/U

2
B,

for the flow with constant UB, reduction (increase) in wall-shear stress τw induces drag
reduction (increase). The change in the skin-friction coefficient relative to the flow with
no control is given by

%Cf = 100
Cf,u − Cf,c

Cf,u
= 100 (1 − τw,c), (4.10)

where the subscripts u and c denote the quantities in the uncontrolled and controlled
flows, respectively. Thus, the control leads to drag reduction when τw,c < 1.

The drag reduction induces saving in power (per unit area of the channel surface
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and normalized by ρu2
τ ) [83]

Πsave = 2UB (1 − τw,c).

Compared to the power required to drive the flow with no control, Πu = 2UB, the saved
power is determined by the relative change in the skin-friction coefficient,

%Πsave = 100
Πsave

2UB
= 100 (1 − τw,c) = %Cf .

On the other hand, the wall oscillations require an input power to balance the spanwise
shear stresses at the walls. The required power over one period T per unit area of the
channel walls is determined by [83]

Πreq =
1

T

∫ T

0
(W (y, t) τ23(y, t)) dt

∣∣∣∣
y=1

− 1

T

∫ T

0
(W (y, t) τ23(y, t)) dt

∣∣∣∣
y=−1

,

where τ23(y, t) = ρνW ′(y, t) denotes the spanwise shear stress. An equation for Πreq

(normalized by ρu2
τ ) can be obtained by substituting for W (y, t) from (4.7) and using

Wp(y = ±1) = −i,

Πreq =
2α2

Rτ
Im
(
W ′p
∣∣
y=−1

− W ′p
∣∣
y= 1

)
.

The required power exerted by wall oscillations expressed in fraction of the power nec-
essary to drive the uncontrolled flow is given by

%Πreq = 100
α2

RτUB
Im
(
W ′p
∣∣
y=−1

− W ′p
∣∣
y= 1

)
, (4.11)

where Im (·) denotes the imaginary part of a complex number. The net efficiency of
control is quantified by the difference of the saved and required powers

%Πnet = %Πsave − %Πreq.

Since the net efficiency is obtained from U and W , determining the turbulent mean
velocities is essential for assessing the efficiency of wall oscillations. For the spanwise
mean velocity W0 determined in § 4.1.1, the required power grows quadratically with
α, %Πreq = α2 %Πreq,0,

%Πreq,0 = 100
1

RτUB
Im
(
W ′p,0

∣∣
y=−1

− W ′p,0
∣∣
y= 1

)
. (4.12)

Figure 4.3(a) shows that %Πreq,0(T+) decreases monotonically with T+, and Figure 4.3(b)
demonstrates close correspondence between %Πreq,0 (solid curve) and the DNS results
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of [9] (symbols).
The apparent lack of influence of the wall movements on U0, observed in § 4.1.1,

is at odds with experiments and simulations that have shown that properly designed
oscillations can reduce drag by as much as 40% [9,126–129,138,139]. Thus, model-based
control of turbulent flows requires thorough examination of the influence of control on
νT . For spanwise wall oscillations we address this problem in § 4.2.2.

4.1.3 The k-ε model for νT

Direct numerical simulations can be used to study the effect of control on turbulent flows.
However, resolving all scales of motion at large Reynolds numbers may be prohibitively
expensive, which motivates use of the Reynolds-averaged equations in conjunction with
turbulence modeling. The challenge here is to establish a relation between νT and
the second-order statistics of velocity fluctuations. The most widely used method for
computing νT in engineering flows is the k-ε model [145,146],

νT = cR2
τ

k2

ε
, (4.13)

where k is the turbulent kinetic energy, ε is its rate of dissipation, and c = 0.09 is a model
constant. Both k and ε are determined by the second-order statistics of fluctuations,

k(y) = (1/2) E (uu + vv + ww) ,

ε(y) = E
(
2 (uxux + vyvy + wzwz + uyvx + uzwx + vzwy) +

uyuy + wywy + vxvx + wxwx + uzuz + vzvz
)
.

(4.14)

and they are updated by solving two transport equations [72]. Even though these are less
complex than the NS equations, they are still computationally expensive, and not conve-
nient for control design and optimization. In § 4.2, we instead develop a simulation-free
method, which is computationally efficient and amenable to control design, for deter-
mining the effect of fluctuations on νT in the flow with control.

4.2 Stochastically forced flow with control

Since νT in the k-ε model (4.13) is determined by the second-order statistics of velocity
fluctuations, we use stochastically forced linearized NS equations to compute k and ε in
the flow with control. Here, we utilize the fact that the second-order statistics of linear
time-periodic systems can be obtained from the solution of the corresponding Lyapunov
equation [89]. It is well-known that the analysis of the steady-state variance of infinites-
imal fluctuations around the laminar flow can be used to identify flow structures that
initiate the onset of turbulence [7, 27, 28]. In this chapter, we show that judiciously se-
lected linearization of the turbulent flow with control can be used to determine turbulent
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viscosity in a computationally efficient way.
Next, we examine the effect of control on small-amplitude fluctuations around U0 =

[U0(y) 0 W0(y, t) ]T . The turbulent mean velocity U0 is obtained by solving (4.5) under
the assumption that the turbulent viscosity (4.9) captures interactions of fluctuations
with background turbulence. An equivalent expression for U0 can be found from the
steady-state solution of the modified NS equations subject to wall-oscillations,

ut = − (u · ∇) u − ∇P + (1/Rτ )∇ ·
(
(1 + νT0)

(
∇u + (∇u)T

))
,

0 = ∇ · u.
(4.15)

Model (4.15) is obtained by augmenting the molecular viscosity in the NS equations (4.1)
with the turbulent viscosity νT0, and it facilitates analysis of the dynamics of turbulent
flow fluctuations (up to first order),

vt = − (U0 · ∇) v − (v · ∇) U0 − ∇p + (1/Rτ )∇ ·
(
(1 + νT0)

(
∇v + (∇v)T

))
,

0 = ∇ · v.
(4.16)

Recent research has demonstrated capability of (4.16) to qualitatively predict experi-
mental and numerical features of turbulent flows [73–75].

Our simulation-free design of drag-reducing transverse oscillations involves four
steps:

(i) the turbulent mean velocity in the presence of control is obtained from the RANS
equations (4.5) where closure is achieved using the turbulent viscosity of the un-
controlled flow (4.9);

(ii) k and ε are determined from the second-order statistics of fluctuations that are
obtained from the stochastically forced NS equations linearized around the turbulent
mean velocity determined in (i);

(iii) for the flow with control, the modifications to k and ε are used to determine the
modification to the turbulent viscosity, νT ;

(iv) the modified νT is used to determine the effect of fluctuations on the mean velocity,
and thereby skin-friction drag and control net efficiency .

Figure 4.4 represents these four steps using a block-diagram. We note that the slow
time evolution of the mean flow (relative to the time evolution of fluctuations) is used
to separate the update of the mean velocity (Steps (i) and (iv)) from the computation
of the statistics (Step (ii)) and the update of νT (Step (iii)). Also note that Step (i)
amounts to finding the steady-state solution of system (4.15) subject to wall oscillations,
and that Step (ii) amounts to the analysis of the linearized model (4.16) in the presence
of stochastic forcing.
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Figure 4.4: Block diagram representing Steps (i)-(iv) of our simulation-free approach
for determining the effect of control on skin-friction drag in turbulent flows. The hollow
arrows indicate that some of the coefficients in the model of the output subsystems are
determined by the outputs of the corresponding input subsystems.

4.2.1 Computation of the velocity correlations

The evolution form of the linearized model (4.16) that governs the dynamics of fluctu-
ations around [U0(y) 0 W0(y, t) ]T is given by

ψt(y,κ, t) = A(κ, t)ψ(y,κ, t) + f(y,κ, t),

v(y,κ, t) = C(κ)ψ(y,κ, t),
(4.17)

where ψ = [ v η ]T is the state, η = iκzu − iκxw is the wall-normal vorticity, and f is
the stochastic forcing. System (4.17) represents a κ-parameterized family of PDEs in
y and t with time-periodic coefficients. Here, κ denotes the streamwise and spanwise
wavenumbers, κ = (κx, κz), and the same symbol is used to denote the variables in
physical and wavenumber spaces (the distinction should be clear from the context).
The operators A and C in (4.17) are given by

A =

[
A11 0
A21 A22

]
, C =

 Cu
Cv
Cw

 =
1

κ2

 iκx∂y − iκz

κ2 0

iκz∂y iκx

 ,
A11 = ∆−1

(
(1/Rτ )

(
(1 + νT0)∆2 + 2ν ′T0∆∂y + ν ′′T0(∂yy + κ2)

)
+

iκx
(
U ′′0 − U0∆

)
+ iκz

(
W ′′0 −W0∆

))
,

A21 = − iκzU
′
0 + iκxW

′
0,

A22 = (1/Rτ ) ((1 + νT0)∆ + ν ′T0∂y) − iκxU0 − iκzW0,

(4.18)
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where ∆ = ∂yy − κ2 is the Laplacian, ∆2 = ∂yyyy − 2κ2 ∂yy + κ4, κ2 = κ2
x + κ2

z, and
{v(±1,κ, t) = v′(±1,κ, t) = η(±1,κ, t) = 0}.

We next briefly describe a method for determining the steady-state statistics of the
linearized system (4.17) driven by a zero-mean white stochastic forcing, with second-
order statistics,

E (f( · ,κ, t1)⊗ f( · ,κ, t2)) = M(κ) δ(t1 − t2). (4.19)

Here, δ is the Dirac delta function, f ⊗ f is the tensor product of f with itself, and
M(κ) is spatial spectral-density of forcing. For homogeneous isotropic turbulence, the
steady-state velocity correlation tensors can be reproduced by the linearized NS equa-
tions subject to white-in-time forcing with second-order statistics proportional to the
turbulent energy spectrum [121]; see Appendix C. Using this analogy, we select M(κ) to
guarantee equivalence between the two-dimensional energy spectra of the uncontrolled
turbulent flow and the flow governed by stochastically forced NS equations linearized
around U0 = [U0(y) 0 0 ]T . To this end, we use the DNS-based energy spectrum of the
uncontrolled flow [1,2], E(y,κ), to define

M(κ) =
Ē(κ)

Ē0(κ)
M0(κ), M0(κ) =

[
E(y,κ) I 0

0 E(y,κ) I

]
.

Here, Ē(κ) =
∫ 1
−1E(y,κ) dy is the two-dimensional energy spectrum of the uncontrolled

flow, and Ē0(κ) is the energy spectrum obtained from the linearized NS equations
subject to a white-in-time forcing f with spatial spectrum M0(κ).

For the time-periodic system (4.17), the operator A in (4.18) can be written as

A(κ, t) = A0(κ) + α
(
A−1(κ) e−iωt t + A1(κ) eiωt t

)
, (4.20)

where the expressions for A0, A−1, and A1 are obtained by substituting W from (4.7)
into the expression for A given by (4.18), and comparing with (4.20)

A0 =

[
A0,11 0
−iκzU

′
0 A0,22

]
,

A0,11 = ∆−1
(
(1/Rτ )

(
(1 + νT0)∆2 + 2ν ′T0∆∂y + ν ′′T0(∂yy + κ2)

)
+ iκx

(
U ′′0 − U0∆

))
,

A0,22 = (1/Rτ ) ((1 + νT0)∆ + ν ′T0∂y) − iκxU0,

A1 =

[
iκz ∆−1

(
W ′′p,0 −Wp,0∆

)
0

iκxW
′
p,0 −iκzWp,0

]
,

A−1 =

[
iκz ∆−1

(
W ′′m,0 −Wm,0∆

)
0

iκxW
′
m,0 −iκzWm,0

]
.

(4.21)
It is a standard fact that the response of the linear time-periodic system (4.17) subject
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to a stationary input is a cyclo-stationary process [147], meaning that its statistical
properties are periodic in time. For example, the auto-correlation operator of ψ is given
by

X(κ, t) = E (ψ( · ,κ, t)⊗ψ( · ,κ, t)) =

X0(κ) + X1(κ) eiωt t + X+
1 (κ) e−iωt t + X2(κ) ei 2ωt t + X+

2 (κ) e−i 2ωt t + . . . ,
(4.22)

where + denotes the adjoint of an operator. The averaged effect of forcing (over one
period T ) is determined by X0

1

T

∫ T

0
X(κ, t) dt = X0(κ). (4.23)

In the remainder of the chapter, we consider small amplitude of wall oscillations α.
This choice is motivated by the observation that the power required to maintain the
oscillations increases quadratically with α (cf. (4.11)). Hence, large amplitudes may
be prohibitively expensive from control expenditure point of view. Furthermore, for
sufficiently small value of α the velocity correlations can be computed efficiently using
perturbation analysis in α [89]. We thus use perturbation analysis to identify frequency
of wall oscillations that yields the largest drag reduction.

For the time-periodic system (4.17), the normal modes are determined by Bloch
waves [85,86]

f(y,κ, t) =
∑
n∈Z

fn(y,κ) ei (θ+nωt) t,

ψ(y,κ, t) =
∑
n∈Z

ψn(y,κ) ei (θ+nωt) t,

v(y,κ, t) =
∑
n∈Z

vn(y,κ) ei (θ+nωt) t,

where θ ∈ [0, ωt) is the angular frequency. The frequency response of the time-periodic
system (4.17) is an operator that maps the bi-infinite input column vector col {fn}n∈Z,
into the bi-infinite output column vector col {vn}n∈Z [88, 89]. The system states can
also be defined as a bi-infinite column vector col {ψn}n∈Z.

As discussed in § 4.2.1, ψ( · ,κ, t) is a cyclo-stationary process with second-order
statistics given by (4.22). The kernel representation KXr(y, ξ,κ) of the auto-correlation
operator Xr of ψ( · ,κ, t),

E (ψ(y,κ, t)ψ∗(ξ,κ, t)) =
∑
r∈Z
KXr(y, ξ,κ) ei rωt t,
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can be expressed in terms of {ψn}n∈Z

KXr(y, ξ,κ) =
∑
n∈Z

ψn(y,κ)ψ∗n−r(ξ,κ).

Furthermore, the frequency representation of the auto-correlation operator of ψ( · ,κ, t)
is a self-adjoint bi-infinite block-Toeplitz operator that is parameterized by κ

X (κ) = Toep {. . . , X+
2 , X

+
1 , X0 , X1, X2, . . .},

where the box denotes the element on the main block diagonal of X .
For the case where f is a zero-mean white process in y and t with second-order

statistics given by (4.19), we have f0 = f , and fn = 0 for n 6= 0. Thus, the frequency
representation of the spectrum of f is given by a bi-infinite block-diagonal operator
M(κ) with block diagonals equal to M(κ). The auto-correlation operator of the state,
X (κ), can be obtained from the following Lyapunov equation [88,89]

F(κ)X (κ) + X (κ)F+(κ) = −M(κ),

F(κ) = A(κ) − G(0).
(4.24)

Here, G is a bi-infinite block-diagonal operator

G(θ) = diag {i (θ + nωt) I}n∈Z,

and A is a bi-infinite block-Toeplitz operator

A(κ) = Toep {. . . , 0, αA1, A0 , αA−1, 0, . . .}.

The solution to (4.24) can be efficiently computed using perturbation analysis in α [88,
89]. The operator F is decomposed into a block-diagonal operator F0 and an operator
F1 that contains the first upper and lower block sub-diagonals

F = F0 + αF1,

F0 = diag {A0 − inωt I}n∈Z,

F1 = Toep {. . . , 0, A1, 0 , A−1, 0, . . .}.

(4.25)

For sufficiently small α, the solution to (4.24) can be written as [89]

X = X0 + αX1 + α2X2 + α3X3 + . . . . (4.26)

Substituting (4.25) and (4.26) into (4.24) and collecting equal powers of α yields the
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following set of Lyapunov equations

α0 : F0X0 + X0F+
0 = −M,

αn : F0Xn + XnF+
0 = −

(
F1Xn−1 + Xn−1F+

1

)
.

Since F0 is block-diagonal, Xn inherits the structure of the right-hand-side of the equa-
tion at O(αn). The structure of the above equations reveals that X0 is a self-adjoint
block-diagonal operator, X1 is a self-adjoint block-Toeplitz operator where only the
first upper and lower block sub-diagonals are non-zero, and X2 is a self-adjoint block-
Toeplitz operator where only the main block diagonal and the second upper and lower
block sub-diagonals are non-zero

Xθ0(κ) = Toep { . . . , 0 , X0,0 , 0 , . . . },

Xθ1(κ) = Toep { . . . , 0 , X+
1,1, 0 , X1,1, 0 , . . . },

Xθ2(κ) = Toep {. . . , 0 , X+
2,2, 0 , X0,2 , 0 , X2,2, 0 , . . .}.

The above structure of the operator X in conjunction with the fact that only the element
on the main block diagonal of X contributes to the averaged effect of forcing on the
velocity correlations (cf. equation (4.23)) reveal that, up to second order in α, only X0,0

and X0,2 contribute to X0

X0(κ) = X0,0(κ) + α2X0,2(κ) + O(α4). (4.27)

The operators X0,0 and X0,2 are obtained from a set of decoupled Lyapunov equa-
tions whose size is equal to the size of each block in the bi-infinite Lyapunov equa-
tion (4.24) [89]

A0X0,0 + X0,0A
+
0 = −M,

(A0 + iωtI)X1,1 + X1,1A
+
0 = −

(
A−1X0,0 + X0,0A

+
1

)
,

A0X0,2 + X0,2A
+
0 = −

(
A−1X

+
1,1 + X1,1A

+
−1 + A1X1,1 + X+

1,1A
+
1

)
.

The decoupling between different harmonics of X(κ, t) for small α is used for efficient
computation of the second-order statistics of the time-periodic system (4.17).

The auto-correlation operator of the state ψ of stochastically forced flow with no con-
trol is determined by X0,0. On the other hand, the operator X0,2 represents the second-
order correction to X0,0 induced by wall oscillations. As shown in § 4.2.2 and § 4.2.3,
X0,2 determines the effect of fluctuations on k, ε, νT , and Cf in the flow with control.
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4.2.2 Influence of fluctuations on turbulent viscosity

According to the k-ε model, νT is determined by the second-order statistics of velocity
fluctuations. By considering dynamics of infinitesimal fluctuations, these statistics can
be obtained from the auto-correlation operator X0. In the flow subject to small am-
plitude wall oscillations X0 is given by (4.27), implying that E(vvT ), k, and ε can be
expressed as

E
(
vvT

)
= E

(
vvT

)
0

+ α2 E
(
vvT

)
2

+ O(α4),

k = k0 + α2 k2 + O(α4),

ε = ε0 + α2 ε2 + O(α4).

(4.28)

Here, the subscript 0 denotes the corresponding quantities in the uncontrolled turbulent
flow, and the subscript 2 quantifies the influence of fluctuations in the controlled flow
at the level of α2. A computationally efficient method for determining k2 and ε2 from
X0,2 is provided next.

We next show that the averaged effect (over one period T ) of fluctuations around
the mean velocity on k2 and ε2 can be obtained from X0,2(κ). Following (4.27), the
second-order correction (in α) to the auto-correlation operator of velocity fluctua-

tions v averaged over one period T , (1/T )
∫ T

0 E(v( · ,κ, t) ⊗ v( · ,κ, t)) dt, is given by

C(κ)X0,2(κ)C+(κ). The Reynolds stress tensor E(vvT )2 in (4.28) is then obtained
from

E
(
vvT

)
2

(y) =

∫
κ
Kvv(y, y,κ) dκ,

where Kvv(y, ξ,κ) denotes the kernel representation of the operator C(κ)X0,2(κ)C+(κ).
The kinetic energy of fluctuations around the base flow and its rate of dissipation is given
by (cf. equation (4.14))

k2(y) =

∫
κ
Kk(y, y,κ) dκ,

ε2(y) =

∫
κ
Kε(y, y,κ) dκ,

(4.29)

where Kk(y, ξ,κ) and Kε(y, ξ,κ) are the kernel representation of the operators Nk and
Nε, respectively

Nk(κ) = (1/2) (CuX0,2C
+
u + CvX0,2C

+
v + CwX0,2C

+
w ) ,

Nε(κ) = 2
(
κ2
xCuX0,2C

+
u + DvX0,2D

+
v + κ2

z CwX0,2C
+
w − iκxDuX0,2C

+
v +

κxκz CuX0,2C
+
w + iκz CvX0,2D

+
w ) + DuX0,2D

+
u + DwX0,2D

+
w +

κ2CvX0,2C
+
v + κ2

xCwX0,2C
+
w + κ2

z CuX0,2C
+
u .
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The operators Du, Dv, and Dw are given by Du

Dv

Dw

 = ∂y C(κ) =
1

κ2

 iκx∂yy − iκz ∂y

κ2 ∂y 0

iκz∂yy iκx ∂y

 .
For small amplitude oscillations, substituting k and ε from (4.28) into (4.13) yields

νT = cR2
τ

k2

ε
= cR2

τ

(
k0 + α2k2 +O(α4)

)2
ε0 + α2ε2 +O(α4)

,

which in conjunction with Neumann series expansion leads to

νT = νT0 + α2 νT2 + O(α4),

νT2 = νT0

(
2k2

k0
− ε2
ε0

)
.

(4.30)

Therefore, up to second order in α, the influence of fluctuations on turbulent viscosity
in the flow with control is determined by second-order corrections to the kinetic energy
k2 and its rate of dissipation ε2.

4.2.3 Skin-friction drag coefficient and net efficiency

We next show how velocity fluctuations in the flow with control modify the skin-friction
drag coefficient and the net efficiency. As discussed in § 4.1.2, Cf is determined by U
and %Πnet is determined by both U and W . The influence of fluctuations on U and W
in the flow with control can be obtained by substituting νT from (4.30) into (4.5), and
thereby expressing U , W , and τw as

U = U0 + α2 U2 + O(α4),

Wp = Wp,0 + α2Wp,2 + O(α4),

τw = 1 + α2 τw,2 + O(α4).

(4.31)

The second-order correction to the mean streamwise velocity, U2, is obtained by substi-
tuting U and τw from (4.31) into (4.5), and collecting the terms quadratic in α

(1 + νT0)U ′′2 + ν ′T0 U
′
2 = −Rτ τw,2 − (νT2 U

′′
0 + ν ′T2 U

′
0) ,

which yields the following solution for U2

U2(y) = τw,2 U0(y) −
∫ y

−1

νT2(ξ)U ′0(ξ)

1 + νT0(ξ)
dξ. (4.32)



114

The second-order correction to the wall-shear stress, τw,2, is obtained from the require-
ment that the bulk flux of the flow with control remains constant, i.e.∫ 1

−1
U2(y) dy = 0.

Integrating U2(y) in (4.32) from −1 to 1, and enforcing the above requirement yields

τw,2 =
1

2UB

∫ 1

−1

∫ y

−1

νT2(ξ)U ′0(ξ)

1 + νT0(ξ)
dξ dy.

An equation for Wp,2 is determined by substituting νT from (4.30) into (4.8)

(1 + νT0)W ′′p,2 + ν ′T0W
′
p,2 − iRτ ωtWp,2 = −

(
νT2W

′′
p,0 + ν ′T2W

′
p,0

)
.

An expression for the saved power is obtained by substituting τw from (4.31) into (4.10)

%Cf = %Πsave = α2 %Πsave,2 + O(α4), %Πsave,2 = −100 τw,2.

In flows subject to small amplitude oscillations, the above equation shows that a positive
(negative) value of %Πsave,2 signifies drag reduction (increase). On the other hand, the
required power can be obtained by substituting Wp from (4.31) into (4.11)

%Πreq = α2
(
%Πreq,0 + α2 %Πreq,2

)
+ O(α6), (4.33)

where %Πreq,0 is given in (4.12), and %Πreq,2 is obtained by substituting Wp from (4.31)
into (4.11)

%Πreq,2 = 100
1

RτUB
Im
(
W ′p,2

∣∣
y=−1

− W ′p,2
∣∣
y= 1

)
.

We note the contrast in the way fluctuations influence saved and required powers; while
fluctuations make O(α2) contribution to %Πsave, they affect %Πreq only at the level of
α4. This explains the close agreement, observed in § 4.1.2, between %Πreq,0 and the
DNS results [9]. Finally, the net efficiency is given by

%Πnet = α2 %Πnet,2 + O(α4), %Πnet,2 = %Πsave,2 − %Πreq,0.

The developments of this section are used in § 4.3 to determine the skin-friction drag
coefficient and the net efficiency in the flow subject to wall oscillations.

4.3 Turbulent drag reduction

In this section, we examine the effect of transverse wall oscillations on skin-friction
drag and net efficiency in flows with Rτ = 186, 547, and 934. For these Reynolds
numbers, the second-order statistics of the uncontrolled turbulent flow were obtained
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Rτ Nx Ny Nz κx,max κz,max c1 c2 UB

186 50 101 51 42.5 84.5 46.2 0.61 15.73

547 50 151 51 128 255.5 29.4 0.45 18.38

934 50 201 51 255 511.3 27.0 0.43 19.86

Table 4.1: The parameters used in our study. At each Rτ , c1 and c2 are selected to
minimize the least squares deviation between the mean streamwise velocity obtained
from (4.6)-(4.9) and the mean velocity obtained in DNS [1,2]. The bulk flux UB is kept
constant by adjusting the pressure gradient.

using DNS [1,2]. As explained in § 4.2.1, we use this database to determine the spatial
spectrum of the stochastic forcing (4.19) in the evolution model (4.17). This database
also provides the turbulent kinetic energy in flow with no control, k0, and thereby its
rate of dissipation,

ε0 = cR2
τ

k2
0

νT0
,

where νT0 is defined by (4.9).
The differential operators in the wall-normal direction are discretized using Ny collo-

cation points [118]. In horizontal directions, we use Nx×Nz wavenumbers with 0 < κx <
κx,max and 0 < κz < κz,max, where κx,max and κz,max are the largest wavenumbers used
in the DNS of [1, 2]; table 4.1 provides summary of parameters used in our study. The
DNS-based energy spectrum, taken from http://torroja.dmt.upm.es/ftp/channels/data/,
is interpolated on the Ny collocation points in the wall-normal direction.

4.3.1 Saved power

We first examine the effect of period of oscillations T+ on the turbulent drag reduction
and the saved power. Figure 4.5(a) shows the second-order correction to the saved
power, %Πsave,2(T+), for the controlled flow with Rτ = 186. The positive value of
%Πsave,2 indicates that drag is reduced for all values of T+ that we considered, with the
largest drag reduction taking place at T+ = 102.5. Our theoretical predictions are in
close agreement with DNS at Rτ = 200 [126], where it was shown that T+ ≈ 100 yields
the largest drag reduction for control amplitudes α = 3.1 and 6.2.

Figure 4.5(b) compares %Πsave,2 (solid curve) obtained using our analysis with
%Πsave (symbols) obtained using DNS at Rτ = 200 [9]. In DNS, the largest drag
reduction takes place at T+ ≈ 100 for α = 2.25 and 6, and at T+ ≈ 125 for α = 9.
Thus, for small control amplitudes, perturbation analysis up to second order in α re-
liably predicts optimal period of drag reducing oscillations. For the optimal period
of oscillations and α = 2.25, our perturbation analysis predicts 13.6% drag reduction,
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%Πsave,2(T+) %Πsave,2(T+)/max(%Πsave,2(T+))

(a) (b)

Figure 4.5: (a) Second-order correction to the saved power, %Πsave,2(T+), as a function
of the period of oscillations T+ for the flow with Rτ = 186; (b) Comparison between
%Πsave,2(T+) (solid curve) and %Πsave(T

+) (symbols). Symbols show DNS data at
Rτ = 200 [9] for control amplitudes α = 2.25, ◦; α = 6, �; and α = 9, O. The results
in (b) are normalized by their largest values.

whereas 17.4% drag reduction is obtained in DNS [9]. The quantitative differences be-
tween the DNS results and the results of perturbation analysis may be attributed to
the effects of higher order corrections. Another factor that warrants further scrutiny
is modeling of the spatial spectrum of stochastic forcing. Analysis of these effects is
beyond the scope of the current study.

4.3.2 Required control power

We next study the power required to maintain wall oscillations. From (4.33) it follows
that, up to second-order in α, %Πreq,0 defined by (4.12) determines the required power.
From § 4.1.2, we recall that %Πreq,0 decreases monotonically with T+; cf. Figure 4.3(a).
Furthermore, Figure 4.3(b) shows that %Πreq,0 is larger than the required power ob-
tained in DNS [9], and that the discrepancy increases with T+. Accounting for the effect
of fluctuations in the flow with control reduces this discrepancy. From Figure 4.6(a),
we see that the fourth-order correction to the required power, %Πreq,2(T+), is negative
for T+ & 45 and that it decreases with T+. This is in agreement with our earlier ob-
servation that %Πreq,0 overestimates the required power obtained in DNS. The symbols
in Figure 4.6(b) represent the difference between the required power obtained by [9]
using DNS and the required power that we obtained using perturbation analysis up to
second order in α, %Πreq−α2%Πreq,0, for α = 2.25, 6, and 9. This difference is in close
agreement with the fourth-order correction to the required power, %Πreq,2 (solid curve).
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Figure 4.6: (a) Fourth-order correction to the required power, %Πreq,2(T+), as a func-
tion of the period of oscillations T+ for the flow with Rτ = 186; (b) Comparison between
%Πreq,2(T+) (solid curve) and %Πreq − α2%Πreq,0(T+) (symbols). %Πreq is obtained
using DNS at Rτ = 200 [9] for α = 2.25, ◦; α = 6, �; and α = 9, O. The results in (b)
are normalized by largest values of |%Πreq,2(T+)| and |%Πreq − α2%Πreq,0(T+)|.

%Πnet,2(T+); %Πnet/α
2

Figure 4.7: Comparison between second-order correction to the net efficiency
%Πnet,2(T+) (solid curve) for the flow with Rτ = 186 (solid curve), and %Πnet/α

2

(symbols). Symbols show DNS data at Rτ = 200 [9] for α = 2.25, ◦.
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Figure 4.8: The second-order correction to (a) the saved power, %Πsave,2(T+); (b)
the required power, %Πreq,0(T+); and (d) the net efficiency, %Πnet,2(T+); and (c) the
fourth-order correction to the required power, %Πreq,2(T+), as a function of the period
of oscillations T+ for the flows with Rτ = 186, 547, and 934.
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4.3.3 Net efficiency

The net efficiency in the flow subject to wall oscillations is determined by the difference
between the saved and required powers. The solid curve in Figure 4.7 shows the second-
order correction to the net efficiency, %Πnet,2(T+), in the flow with Rτ = 186. We
see that %Πnet,2 > 0 for T+ > 75, indicating that, for small control amplitudes, a
positive net efficiency can be achieved if the period of oscillations is large enough. Our
prediction is in close agreement with DNS at Rτ = 200 [9] where positive net efficiency
of oscillations with α = 2.25 is obtained for T+ > 70. Furthermore, up to second order
in α, the largest net efficiency takes place at T+ = 180. This value differs from the value
of T+ that yields the largest saved power, T+ = 102.5 (cf. § 4.3.1). This difference can
be explained by the fact that the peak of %Πnet,2 = %Πsave,2 −%Πreq,0, takes place at
a value of T+ where the derivatives (with respect to T+) of %Πsave,2 and %Πreq,0(T+)
are equal to each other. Since %Πreq,0(T+) is a monotonically decreasing function, its
derivative is negative for all T+. Therefore, the largest net efficiency takes place at some
T+ > 102.5 where the slope of the curve %Πsave,2(T+) is also negative. (Our analysis
shows that this happens at T+ = 180.) The symbols in Figure 4.7 show %Πnet/α

2

obtained from DNS at Rτ = 200 [9] for α = 2.25. Even though the essential trends are
captured by %Πnet,2 (solid curve), the DNS net efficiency peaks at T+ = 125, which
is approximately 30% smaller than the value of T+ predicted by perturbation analysis.
This discrepancy may be attributed to a slower rate of decay of %Πsave,2 relative to
%Πsave obtained in DNS for T+ > 100; cf. Figure 4.5(b).

We note that in DNS the net efficiency becomes negative for large control amplitudes.
At Rτ = 200, [9] showed that %Πnet becomes negative for all T+ if α & 3.5. Therefore,
the positive net efficiency predicted by perturbation analysis is only valid for small
control amplitudes. This can be explained by noting that perturbation analysis assumes
quadratic increase of both saved and required powers with α. On the other hand, [9]
showed that saved power exhibits slower than linear growth with α for large control
amplitudes.

4.3.4 Drag reduction in flows with larger Reynolds numbers

After assessing utility of perturbation analysis for flows with Rτ = 186, we turn our
attention to the effect of control at Rτ = 547 and 934. Figure 4.8(a) shows that the
second-order correction to the saved power, %Πsave,2, is positive for all Rτ , and that the
optimal T+ slightly decreases with Rτ (T+ = 102.5, 96, and 94 for Rτ = 186, 547, and
934, respectively). The corresponding periods of oscillations in outer units, T = T+/Rτ ,
are T = 0.55, 0.18, and 0.10. Therefore, as Rτ increases, larger frequency of oscillations
is required for the optimal drag reduction. In addition, since %Πsave,2 decreases with
Rτ , the amount of drag reduction deteriorates at higher Reynolds numbers.

Figure 4.8(b) shows monotonic decrease of %Πreq,0(T+) with both T+ and Rτ . We
also note that a product between the bulk flux UB and %Πreq,0 does not change with
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Figure 4.9: (a) The turbulent viscosity, νT0(y+); and (b) the turbulent mean streamwise
velocity, U0(y+), in the uncontrolled flow with Rτ = 186, 547, and 934.

Rτ . This demonstrates invariance under change in Rτ of the second-order correction
to the required power (before normalization is done). The fourth-order correction to
the required power, %Πreq,2, is also reduced as Rτ increases; see Figure 4.8(c). The
difference between the quantities shown in Figures 4.8(a) and 4.8(b) determines the
second-order correction to the net efficiency, %Πnet,2. From Figure 4.8(d) we see that
the largest net efficiency reduces with Rτ , and that %Πnet,2 saturates for large Reynolds
numbers.

4.3.5 Effect of control on turbulent viscosity and turbulent mean ve-
locity

We next examine the effect of wall oscillations on the turbulent viscosity and the turbu-
lent mean velocity. Figure 4.9 shows νT0(y+) and U0(y+) for Rτ = 186, 547, and 934.
We note that the profiles of U0 for different Rτ lie on the top of each other, and that νT0

does not scale in wall units. In particular, the peak of νT0 takes place at y+ ≈ Rτ/2,
approximately half way between the walls and the channel centerline. On the other
hand, the effect of control on νT is strongest in the viscous wall region, y+ < 50; see
Figure 4.10(a).

Figure 4.10 shows the second-order corrections to νT2 and U2 for Rτ = 186 and
30 ≤ T+ ≤ 300. Since νT2 < 0 for all T+, perturbation analysis up to second order
in α predicts turbulence suppression for all periods of oscillations; see Figure 4.10(a).
Furthermore, turbulence suppression region shifts away from the walls with increase
in T+. We note that suppression of the turbulent bursting process was observed in
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Figure 4.10: Second-order correction to (a) the turbulent viscosity, νT2(y+;T+); and
(b) the mean streamwise velocity, U2(y+;T+), for Rτ = 186 and different values of
30 ≤ T+ ≤ 300, where T+ increases in the direction of the arrows. The thick curves
correspond to the T+ that yields the largest drag reduction (cf. Figure 4.11).

DNS for 25 ≤ T+ ≤ 200 [126]. Figure 4.10(b) shows that the oscillations reduce the
mean velocity gradient in the immediate vicinity of the walls (U2 < 0 for y+ . 13).
On the other hand, the mean velocity is shifted upward in the log-law region. Both
these trends were previously observed in the experiments [129] and DNS [128, 138]. It
was argued that the negative spanwise vorticity introduces near wall modifications to
the mean streamwise velocity, and that it suppresses the production of turbulence by
weakening the vortex stretching mechanism [129]. In spite of qualitative agreement, the
value of y+ above which the shift-up in U takes place differs in our study from the DNS
results [138]; y+ > 13 vs. y+ > 32.

Figure 4.11 compares U2 and νT2 at three Reynolds numbers for the values of T+

that induce the largest drag reduction. We see that νT2 peaks at y+ ≈ 20 for all
Rτ . This suggests that the optimal drag-reducing frequency minimizes the turbulent
viscosity near the interface of the buffer layer and the log-law region. Even though the
negative peak of νT2 increases with Rτ (cf. Figure 4.11(a)), the ratio of νT2 and νT0

decreases with Rτ . Thus, wall oscillations are less effective in suppressing turbulence at
larger Reynolds numbers. Finally, Figure 4.11(b) shows that the slope of U2 decreases
with Rτ ; this is in agreement with our earlier observation that smaller drag reduction
is achieved at higher Reynolds numbers.
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Figure 4.11: The second-order correction to (a) the turbulent viscosity, νT2(y+); and
(b) the mean streamwise velocity, U2(y+), for the values of T+ that yield the largest
drag reduction for the flows with Rτ = 186, T+ = 102.5; Rτ = 547, T+ = 96; and
Rτ = 934, T+ = 94.

4.3.6 Effect of control on turbulent kinetic energy

We examine the effect of control on the kinetic energy of fluctuations. Figure 4.12
compares the premultiplied two-dimensional energy spectrum of the uncontrolled flow,
κxκzĒ(κ), with the premultiplied second-order correction to the energy spectrum,
κxκzE2(κ), in the flow subject to wall oscillations with the largest drag-reducing period
T+ = 102.5. The energy spectra are premultiplied by the spatial wavenumbers such
that the area under the log-log plot is equal to the total energy of fluctuations. We
see that the most energetic modes of the uncontrolled flow take place at κx ≈ 2.5 and
κz ≈ 6.5; cf. Figure 4.12(a). In addition, wall oscillations further amplify the most ener-
getic modes of the uncontrolled flow with small streamwise wavelengths (cf. red regions
in Figure 4.12(b)), while they suppress the most energetic modes of the uncontrolled
flow with large streamwise wavelengths (cf. blue regions in Figure 4.12(b)). The largest
energy amplification takes place at κx ≈ 4.4 and κz ≈ 10.2, and the largest energy
suppression occurs at κx ≈ 0.8 and κz ≈ 8.8. The total effect of control on the kinetic
energy can be quantified by

∫
κE2(κ)dκ/

∫
κ Ē(κ)dκ, which for wall oscillations with

T+ = 102.5 is approximately −1.5%. This yields 7.5% reduction in the total energy of
fluctuations for α = 2.25.

The effect of wall oscillations on the turbulent kinetic energy and its rate of dissi-
pation is shown in Figure 4.13. We see that the second-order correction to the kinetic
energy, k2, is negative for T+ = 102.5, suggesting that the turbulent kinetic energy is
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Figure 4.12: (a) Premultiplied DNS-based energy spectrum of the uncontrolled flow,
κxκzĒ(κ), at Rτ = 186 [1]; and (b) second-order correction to the energy spectrum,
κxκzE2(κ), for the flow subject to wall oscillations with optimal drag-reducing period
T+ = 102.5.

reduced with the largest suppression taking place at y+ ≈ 8.6; cf. Figure 4.13(a). In ad-
dition, the second-order correction to the rate of dissipation of turbulent kinetic energy,
ε2, is negative almost everywhere (except for a small region 5.4 . y+ . 8.9) and the
largest reduction occurs in the viscous sublayer y+ < 5; cf. Figure 4.13(c). Therefore,
perturbation analysis up to second order in α captures the previously experimental and
numerical observations that wall oscillations suppress both the production and dissi-
pation of the turbulent kinetic energy [126, 128, 129, 138]. Figures 4.13(b) and 4.13(d)
show that, relative to the flow with no control, the turbulent kinetic energy is reduced
more than its rate of dissipation by wall oscillations with T+ = 102.5 and α = 2.25.
This suggests that the turbulent production is suppressed more than the turbulent dis-
sipation, which explains the reduced turbulent viscosity νT in the flow with control; cf.
Figure 4.11(a).

4.4 Turbulent flow structures

In this section, we use stochastically forced linearized model (4.16) to examine the
effect of wall oscillations on the turbulent flow structures. We only present results for
Rτ = 186 and note that similar flow structures are observed for all Reynolds numbers
that we have considered.

In what follows, the velocity field is decomposed into characteristic eddies [148] by
determining the spatial structure of the fluctuations that contribute most to the kinetic
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Figure 4.13: (Left column) Second-order correction to the turbulent kinetic energy
k2(y+) (a), and its rate of dissipation ε2(y+) (c), for the flow subject to wall oscillations
with optimal drag-reducing period T+ = 102.5 at Rτ = 186. (Right column) Compari-
son between (b) the turbulent kinetic energy in the uncontrolled flow k0 (black) and in
the flow with control k0 +α2k2 (red), and (d) its rate of dissipation in the uncontrolled
flow ε0 (black), and in the flow with control ε0 + α2ε2 (red), for α = 2.25.
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Figure 4.14: (a) Premultiplied largest eigenvalue, κxκzλ(κ), of the auto-correlation op-
erator X0(κ) in the uncontrolled flow with Rτ = 186; (b) same as (a) with superimposed
contours of the relative difference between the premultiplied two largest eigenvalues of
X0(κ). The contour levels {10−1, 10−2, . . . , 10−5} decrease in the direction of the arrow.

energy at a given κ = (κx, κz). These most energetic structures are obtained from the
principal eigenfunctions of the averaged (over one period T ) auto-correlation operator,
X0(κ), defined in § 4.2.1

[X0(κ)φ( · ,κ) ] (y) = λ(κ)φ(y,κ).

At each κ, λ(κ) is the largest eigenvalue of X0(κ), and φ( · ,κ) = [ v η ]T is the
corresponding eigenfunction. The magnitude of φ is determined by the requirement
that the kinetic energy of fluctuations associated with φ is equal to λ(κ). On the other
hand, the phase of φ is determined by requiring spatial compactness of v(x, y, z) around
x = z = 0 in the lower half of the channel [148]. This is achieved by making sure that∫ 0
−1 v(y,κ) dy is a positive real number for all κ. We note that enforcing compactness

on u(x, y, z) yields similar results.
In the flow with no control, the principal eigenfunctions φ( · ,κ) account for approxi-

mately 29% of the total kinetic energy; compare κxκzλ(κ) shown in Figure 4.14(a) with
κxκzĒ(κ) shown in Figure 4.12(a). Furthermore, the two largest eigenvalues of X0(κ)
are almost equal to each other. As shown in Figure 4.14(b), the difference between
them is negligible for the values of κ that correspond to the most energetic modes of
the uncontrolled flow. In fact, the eigenfunctions corresponding to the second largest
eigenvalue account for almost 28% of the total energy. This indicates that examin-
ing the effects of the eigenfunction corresponding to the second largest eigenvalue is
equally important. Figure 4.15 illustrates that the eigenfunctions corresponding to the
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Figure 4.15: The real (black) and imaginary (red) parts of the principal eigenfunctions
(v, (a); η, (b)) corresponding to the two largest equal eigenvalues of the auto-correlation
operator X0(κ) for the most energetic mode κx = 2.5 and κz = 6.5 in the uncontrolled
flow with Rτ = 186. The two eigenfunctions are differentiated by solid and dotted
curves.

two largest eigenvalues of X0 at κx = 2.5 and κz = 6.5 are equal to each other in one
half of the channel and are mirror image of each other in the other half. Imposing the
v-compactness criterion on these two eigenfunctions aligns them in the lower half of
the channel and it mirror-images them in the upper half. This implies that the flow
structures that are obtained from the principal eigenfunction of X0(κ) in the lower half
of the channel account for approximately 57% of the total kinetic energy of fluctuations.

The velocity components u, v, and w in the wavenumber space are obtained by
acting with the operators Cu, Cv, and Cw on the principal eigenfunction of the operator
X0(κ); see (4.18) for the definition of these operators. We use the flow symmetries in the
spanwise direction [148] to determine the velocity profiles for the dominant characteristic
eddy in the physical space

u(x, y, z) = 4

∫
κx,κz>0

Re
(
u(y,κ)eiκxx

)
cos(κzz) dκ,

v(x, y, z) = 4

∫
κx,κz>0

Re
(
v(y,κ)eiκxx

)
cos(κzz) dκ,

w(x, y, z) = −4

∫
κx,κz>0

Im
(
w(y,κ)eiκxx

)
sin(κzz) dκ.

It is worth noting that the dominant characteristic eddy resulting from the analysis
of the stochastically forced linearized model in the flow with no control qualitatively
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Uncontrolled Controlled: T+ = 102.5, α = 2.25
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(c) (d)

Figure 4.16: Three-dimensional iso-surfaces of the streamwise streaks (red and blue)
and the vortex core (green) for the characteristic eddy in the flow with no control (left
column) and the flow subject to wall oscillations (right column) with optimal drag-
reducing period T+ = 102.5 at Rτ = 186. (a)-(b): bird’s-eye view; (c)-(d): side view.
The fast- (red) and slow- (blue) moving streaks are respectively shown at 70% and 60%
of their largest values in the uncontrolled flow, and the vortex core is obtained based
on the ‘swirling strength’ criterion [10] with λci > 12, |λcr/λci| < 0.4, and λci/12 −
|λcr/λci|/0.4 = 1.2.
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Uncontrolled Controlled: T+ = 102.5, α = 2.25

(a) (b)

(c) (d)

Figure 4.17: Three-dimensional iso-surfaces of the streamwise streaks (red and blue)
and the vortex core (green) for the characteristic eddy in the flow with no control (left
column) and the flow subject to wall oscillations (right column) with optimal drag-
reducing period T+ = 102.5 at Rτ = 186. (a)-(b): front view; (c)-(d): top view. The
fast- (red) and slow- (blue) moving streaks are respectively shown at 70% and 60%
of their largest values in the uncontrolled flow, and the vortex core is obtained based
on the ‘swirling strength’ criterion [10] with λci > 12, |λcr/λci| < 0.4, and λci/12 −
|λcr/λci|/0.4 = 1.2.
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agrees with the results obtained using eigenvalue decomposition of the DNS-based au-
tocorrelation matrices; compare Figures 4.18 and 4.19 of this section with figure 15
in [148].

We next examine the effect of wall oscillations on the dominant characteristic eddy.
Figures 4.16 and 4.17 compare the streamwise streaks and their surrounding vortex core
for the dominant characteristic eddies in the uncontrolled flow (left column) and in the
flow subject to wall oscillations with T+ = 102.5 and α = 2.25 (right column). In both
cases, the iso-surfaces represent high- (red) and low- (blue) speed streaks at 70% and
60% of their largest absolute values in the uncontrolled flow, respectively. The vortex
core (green surface) is obtained based on the ‘swirling strength’ criterion which identifies
motions with large rate of rotation and large orbital compactness [10]. This criterion
can be expressed in terms of the real and imaginary parts of the complex eigenvalues,
λcr ± iλci, of the rate of strain tensor at each point inside the channel. The large rate
of rotation requires λci > b1, where b1 determines the strength of the swirling motion.
In addition, orbital compactness is guaranteed if |λcr/λci| < b2, where b2 determines
the compactness of the swirling motion in the plane spanned by the real and imaginary
parts of the eigenvector corresponding to λcr±iλci. For example, b2 = 0 identifies a pure
circular motion, and larger values of b2 allow for inclusion of the in-plane converging or
diverging spiral motions to the vortex core. In Figures 4.16 and 4.17, we use b1 = 12
and b2 = 0.4 to identify the strong vortex core that surrounds the slow-moving streaks.
We see that wall oscillations reduce intensity and spatial spread of both the streamwise
streaks and the vortex core.

Figures 4.18 and 4.19 show the streamwise velocity, u(x, y, z), and the spanwise
vorticity, ωz = vx(x, y, z) − uy(x, y, z), for the characteristic eddy in the uncontrolled
flow (left column) and in the flow subject to wall oscillations with T+ = 102.5 and
α = 2.25 (right column). The spanwise vortices are shown at 40%, 60%, and 80%
of its largest value (black contours). The streamwise streaks (colored contours) are
normalized by their largest absolute value. We see that wall oscillations suppress the
largest spanwise vorticity by approximately 6.5% in the viscous sublayer y+ < 5. In
addition, the magnitude of streamwise streaks is reduced by approximately 12%. It
was argued that transverse wall movements induce negative spanwise vorticity in the
flow, thereby suppressing intensity of the streamwise streaks [129]. In addition, wall
oscillations slightly move the center of the spanwise vortices away from the wall (y+ =
3.8 vs. y+ = 4.3), and they significantly reduce the upstream extent of the spanwise
vortices.

4.5 Summary

This chapter has introduced a model-based approach to controlling turbulent flows. In
contrast to standard practice that embeds turbulence models in numerical simulations,
we have developed a simulation-free approach that enables computationally-efficient
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Figure 4.18: Cross sections of the streamwise velocity (colored contours) and the span-
wise vorticity (black contours) for the characteristic eddy in the flow with no control
(left column) and the flow subject to wall oscillations (right column) with optimal drag-
reducing period T+ = 102.5 at Rτ = 186. (a)-(b): z+ = 0; (c)-(d): x+ = 0. The
streamwise velocity is normalized by its largest absolute value in the uncontrolled flow,
and the level sets for the spanwise vorticity correspond to 40%, 60%, and 80% of its
largest value in the uncontrolled flow.
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Uncontrolled Controlled: T+ = 102.5, α = 2.25
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Figure 4.19: Cross sections of the streamwise velocity (colored contours) and the span-
wise vorticity (black contours) for the characteristic eddy in the flow with no control
(left column) and the flow subject to wall oscillations (right column) with optimal drag-
reducing period T+ = 102.5 at Rτ = 186. (a)-(b): y+ = 3.8; (c)-(d): y+ = 10.8. The
streamwise velocity is normalized by its largest absolute value in the uncontrolled flow,
and the level sets for the spanwise vorticity correspond to 40%, 60%, and 80% of its
largest value in the uncontrolled flow.
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control design and optimization. This has been achieved by merging turbulence model-
ing with techniques from linear systems theory. In particular, we have used the turbu-
lent viscosity hypothesis in conjunction with the k-ε model to determine the influence
of turbulent fluctuations on the mean velocity in the flow with control.

We have shown that the study of dynamics is of prime importance in designing drag-
reducing wall oscillations. This has allowed us to determine the influence of control on
the turbulent viscosity in a simulation-free manner. This contribution goes well beyond
the problem that was used to demonstrate the predictive power of our model-based
control design – turbulent drag reduction by transverse wall oscillations. The computa-
tional complexity of determining the turbulent viscosity (in the flow with control) from
the k-ε model has been significantly reduced by obtaining k and ε from the second-order
statistics of judiciously selected, stochastically forced, linearized model.

The first step in our control-oriented modeling involves augmentation of the molec-
ular viscosity with the turbulent viscosity of the flow with no control. The resulting
model is then used to determine the turbulent mean velocity in the flow with control,
and to study the dynamics of velocity fluctuations around it. By considering linearized
equations in the presence of white-in-time stochastic forcing (whose spatial spectrum is
selected to be proportional to the turbulent kinetic energy of the flow with no control),
we have quantified the influence of control on the second-order statistics of velocity
fluctuations and thereby on the turbulent viscosity. Finally, the modifications to the
turbulent viscosity determine the turbulent mean velocity and skin-friction drag in the
flow with control.

We have shown that perturbation analysis up to second order reliably predicts the
optimal period of drag-reducing oscillations. Furthermore, even though the required
power obtained using the turbulent viscosity of the uncontrolled flow agrees well with
the values obtained in DNS, this agreement has been further improved by accounting
for the effect of control on fluctuations (and, consequently, on turbulent viscosity). In
addition, the predicted net efficiency resulting from perturbation analysis qualitatively
agrees with the DNS results. Perturbation analysis has also captured suppression of
the turbulent kinetic energy and its rate of dissipation by wall oscillations, as well as
modifications to the streamwise component of the turbulent mean velocity (reduction
in the viscous sublayer and buffer layer and increase in the log-law region). Finally, the
spatial spectral density tensors of velocity fluctuations obtained from the solution of
the corresponding Lyapunov equations determine the effect of control on the dominant
flow structures. As previously observed in experiments, and confirmed by our analysis,
wall oscillations reduce the spatial spread and magnitude of the dominant characteristic
eddies and suppress the spanwise vorticity in the viscous sublayer.



Chapter 5

Conclusions and future directions

Conclusions

This dissertation develops a model-based paradigm for design of sensorless and feed-
back flow control strategies in wall-bounded shear flows. Direct numerical simulations
are used to complement and verify the theoretical predictions of this dissertation.

We have shown that the stochastically forced linearized Navier-Stokes equations
represent a powerful model for quantifying the influence of control on flow receptivity to
disturbances. Our results have established that control strategies based on reducing the
flow receptivity indeed prevent transition to turbulence at low Reynolds numbers. This
was illustrated by designing a sensorless strategy based on traveling waves (Chapter 2)
and an optimal state-feedback controller based on local flow information (Chapter 3)
that maintain the laminar flow in the presence of perturbations that trigger turbulence
in the flow with no control.

We have illustrated that turbulence modeling in conjunction with judicious lineariza-
tion exhibits considerable predictive power for capturing the effect of control on turbu-
lent flows. We have designed a sensorless strategy based on transverse wall oscillations
for skin-friction drag reduction and showed that our simulation-free design is in close
agreement with the design obtained from direct numerical simulations (Chapter 4).

We have shown that a large control amplitude requires large control expenditure
and yields poor net efficiency. Our results have revealed that perturbation analysis (in
the control amplitude) is well-suited for designing sensorless strategies based on small-
amplitude periodic manipulation of the flow. This is because perturbation analysis
significantly reduces the computational cost of analyzing temporally- and spatially-
periodic systems by exploiting the structure of the operators that describe the flow
dynamics. We conclude that perturbation analysis is a computationally-efficient tool
for predicting the full-scale phenomena.

An outlook to future research directions is provided below.

Future research directions
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The contribution of this dissertation goes beyond the concrete design problems that
we have considered in Chapters 2, 3, and 4. The techniques presented here may be
pursued in several directions that require further scrutiny and motivate future research:

Understanding the break-down of streamwise streaks and transition to tur-
bulence. There is an abundance of experimental, numerical, and theoretical evidence
that the streamwise streaks are the dominant flow structures that emerge in early stages
of transition. In addition, experimental and numerical studies have shown that the
streaks develop waviness and break down to turbulent spots. It has been shown that
three-dimensional fluctuations around sufficiently strong streaks become unstable and
trigger transition to turbulence [34,35]. However, it has also been suggested that break-
down may occur in the absence of instabilities [22,36]. The computational tools that we
have developed for analysis of systems with periodic coefficients may find use in better
understanding of the streaks’ break-down. This can be done by studying the receptivity
of three-dimensional fluctuations around the two-dimensional spanwise-periodic streaks.
Analysis of the nonlinear interaction of fluctuations with the original streaks and the
interplay between them may provide more insight into the mechanisms for transition
and provide guidelines for designing control strategies for preventing transition.

Developing superior control-oriented models of turbulent flows. We have illus-
trated that simple turbulence modeling (that relies on the turbulent viscosity hypothesis
and the k-ε model) in conjunction with judicious linearization of the flow with control
has significant predictive power for capturing full-scale phenomena. Even though it is
well-known that the k-ε model does not reveal all aspects of turbulent flow physics,
we have shown that it is well-suited for control design and optimization. Development
of more sophisticated control-oriented turbulence models may further reduce the gap
between theoretical predictions and experiments/simulations. In addition, the predic-
tive power of the proposed approach can be enhanced by optimization of the power
spectrum of the forcing. We expect that our model-based approach will find use in
designing feedback-based and sensor-less turbulence suppression strategies in other ge-
ometries, including pipes and boundary layers.

Designing sensorless strategies based on wall-transpiration and periodic ge-
ometries. We have already developed computational tools for analysis of spatially-
periodic systems. The inherent large scale of these systems poses significant challenges
in their analysis. In Appendix D, we have overcome this obstacle by utilizing per-
turbation techniques that allows for efficient characterization of transient behavior of
spatially-periodic systems. We have also shown how descriptor formulation can be used
for computation of energy amplification in incompressible fluids in Appendix E. This
approach avoids the need for finding the evolution model which is advantageous in many
applications. The control-oriented models and analytical tools that we have developed
may offer guidelines for simulation-free control design based on wall-transpiration us-
ing synthetic jets and more sophisticated periodic geometries, such as riblets, vortex
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generators, and superhydrophobic surfaces.

Designing optimal localized feedback flow controllers. Research directions in the
area of distributed control design include: (i) optimal sensor and actuator placement;
(ii) understanding the effect of placing sensors and actuators on a discrete lattice; (iii)
distributed measurement and estimation of relevant quantities for flow control; and (iv)
developing computationally efficient tools for flow control optimization.
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[110] J. Jiménez, G. Kawahara, M. P. Simens, M. Nagata, and M. Shiba. Character-
ization of near-wall turbulence in terms of equilibrium and “bursting” solutions.
Phys. Fluids, 17(1):015105, 2005.

[111] R. R. Kerswell. Recent progress in understanding the transition to turbulence in
a pipe. Nonlinearity, 18:R17–R44, 2005.

[112] H. Choi, P. Moin, and J. Kim. Active turbulence control for drag reduction in
wall-bounded flows. J. Fluid Mech., 262:75–110, 1994.

[113] H. Choi, R. Temam, P. Moin, and J. Kim. Feedback control for unsteady flow and
its application to the stochastic Burgers equation. J. Fluid Mech., 253:509–543,
1993.



144

[114] T. Bewley and P. Moin. Optimal control of turbulent channel flows. Active Control
of Vibration and Noise, ASME-DE, 75, 1994.
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Appendix A

Determining numerical adjoints

Consider the operator A : H1 7→ H2 that maps a function h1 ∈ H1[−1, 1] into a function
h2 ∈ H2[−1, 1], where H1[−1, 1] and H2[−1, 1] are Hilbert spaces. The adjoint of this
operator, denoted by A+ : H2 7→ H1, is determined from

〈h2, A h1〉H2
=
〈
A+ h2, h1

〉
H1
,

where 〈 · , · 〉H1
and 〈 · , · 〉H2

, respectively, represent the appropriate inner products in
spaces H1 and H2. We consider the case where each of these inner products can be
expressed in terms of weighted inner products in L2[−1, 1], i.e.,

〈h2, Q2Ah1〉 =
〈
A+ h2, Q1 h1

〉
, (A.1)

where the operators Q1 and Q2 denote the weights in appropriate spaces, and 〈 · , · 〉 is
the standard inner product in L2[−1, 1]

〈f, g〉 =

∫ 1

−1
f(y)∗ g(y) dy, f, g ∈ L2[−1, 1].

Here, ∗ denotes the complex conjugate transpose. By discretizing the above functions
and operators in y, equation (A.1) can be rewritten as

h∗2 Q2 A h1 = h∗2 (A+)∗Q1 h1,

where the vectors h1 and h2 are the discretized h1 and h2, the matrices A, A+, Q1, and
Q2 denote the discretized versions of the corresponding operators, and the integration
weights corresponding to the L2 inner product in (A.1) are embedded in Q1, and Q2.
Finally, the numerical approximation to the adjoint of operator A is obtained from

A+ = Q−1
1 A∗Q2.
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Appendix B

Shanks transformation

The Shanks transformation [92,94] is an extrapolation method. Extrapolation methods
are used to overcome the problem of slow convergence or even divergence of sequences.
Given a sequence {Sj}, the Shanks transformation generates a new sequence {Ŝj} that
converges more quickly to the limit of {Sj} when this limit exists. In the case where
the limit of {Sj} does not exist, the new sequence {Ŝj} either diverges more slowly
than {Sj} or converges to a value that {Sj} is diverging from (called the anti-limit of
{Sj}). The anti-limit has a useful meaning or interpretation in most applications. For
example, consider a perturbation series

U = U0 + αU1 + α2 U2 + α3 U3 + α4 U4 + α5 U5 + . . . ,

that represents the solution of a nonlinear equation in U with a small parameter α

f(U ;α) = 0.

The Shanks transformation can be applied to the partial sums of the perturbation series

S0 = U0,
S1 = U0 + αU1,
S2 = U0 + αU1 + α2 U2,
S3 = U0 + αU1 + α2 U2 + α3 U3,
...

to obtain U = limj→∞{Sj} when the limit exists or to obtain its anti-limit if the limit
does not exist. It turns out that in most applications, the limit or the anti-limit of
the perturbation series is equal to the exact solution of the nonlinear equation that, for
example, may be obtained from the Newton method.

The Shanks transformation of order n yields a sequence {Ŝj = en(Sj)} from {Sj}.
An efficient recursive algorithm for computing this sequence is given by [149]

149
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1. Set εj1 =∞ and εj2 = Sj , j = 0, 1, . . ..

2. Compute εj−1
n+1 for n > 2 from the recursion

1

εj−1
n+1 − ε

j
n

+
1

εj+1
n−1 − ε

j
n

=
1

εj−1
n − εjn

+
1

εj+1
n − εjn

.

3. Obtain en(Sj) = εjn+2.

Any sequence {en(Sj)}∞n=0 with a fixed j, has the desired convergence properties of
the Shanks transformation. For example,

U = lim
n→∞

{en(Sj)}, j fixed.



Appendix C

Matching the homogeneous
isotropic turbulence spectrum by
a stochastically-forced linearized
model

We briefly overview the developments of [121] for matching the spectrum of homoge-
neous isotropic turbulence (HIT) using an appropriately selected stochastically-forced
linearized model. Since HIT is invariant in all spatial directions, spatial Fourier trans-
form can be employed in all directions. For incompressible flows subject to a solenoidal
forcing d̄ = [ d1 d2 d3 ]T (∇·d̄ = 0), the evolution of velocity fluctuations v = [u v w ]T

around the uniform base flow (U = 1, after normalization) up to first order is governed
by a linearized model that is obtained by neglecting the nonlinearities in the NS equa-
tions and eliminating pressure

vt(κ̄, t) = Ā(κ̄) v(κ̄, t) + d̄(κ̄, t), (C.1)

where κ̄ = [κx κy κz ]T is the vector of spatial wavenumbers in x, y, and z, and

Ā(κ̄) = −(iκx + κ̄2/Rλ) I.

Here, κ̄2 = κ2
x + κ2

y + κ2
z, I is an identity matrix in C3, and Rλ = Uλ/ν is the Reynolds

number based on the Taylor microscale, λ [71, 72]. The spectrum of the velocity field
at the steady-state Φ(κ̄) = limt→∞ E (v(κ̄, t) v∗(κ̄, t)) is obtained as a solution to the
following Lyapunov equation

Ā(κ̄) Φ(κ̄) + Φ(κ̄) Ā+(κ̄) = −M̄(κ̄), (C.2)
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where + is the adjoint of an operator, and M̄(κ̄) is the power spectrum of a white-in-
time forcing, i.e. E

(
d̄(κ̄, t1) d̄∗(κ̄, t2)

)
= M̄(κ̄) δ(t1 − t2). For HIT, Φ is given by [150]

Φ(κ̄) =
E(κ̄)

4πκ̄2

(
I − κ̄κ̄T

κ̄2

)
, (C.3)

where
E(κ̄) = lim

t→∞
E (v∗(κ̄, t) v(κ̄, t)) = lim

t→∞
E (〈v(κ̄, t),v(κ̄, t)〉C3)

denotes the energy spectrum of the velocity field v, and 〈·, ·〉C3 is the standard inner
product in C3. Therefore, the adjoint of Ā is Ā+ = Ā∗. Substituting (C.3) in (C.2)
yields the spectrum of the forcing d̄ that generates the second-order statistics of HIT

M̄(κ̄) =
E(κ̄)

2πRλ

(
I − κ̄κ̄T

κ̄2

)
. (C.4)

We next determine the spectrum of the forcing d = [ d2 dη ]T that enters the model for
evolution of the wall-normal velocity and vorticity, ψ = [ v2 η ]T ,

ψt(κ̄, t) = A(κ̄)ψ(κ̄, t) + d(κ̄, t). (C.5)

Using continuity, κxu+ κyv + κzw = 0, one can show that the linear transformations

v = Wψ, ψ = V v, d = V d̄, A = V Ā W

with

W =
1

κ2

 −κxκy −iκz
1 0

−κyκz iκx

 , V =

[
0 1 0

iκz 0 −iκx

]
,

bring (C.1) into the evolution form given by (C.5). The spectrum of d

E (d(κ̄, t1)⊗ d∗(κ̄, t2)) = M(κ̄) δ(t1 − t2),

and the state auto-correlation matrix X(κ̄) = limt→∞ E (ψ(κ̄, t)⊗ψ∗(κ̄, t)), are re-
lated by the following Lyapunov equation

A(κ̄) X(κ̄) + X(κ̄) A+(κ̄) = −M(κ̄). (C.6)

In order to determine A+, we note that the energy spectrum E(κ̄) in terms of ψ is
given by

E(κ̄) = lim
t→∞

E (ψ∗(κ̄, t) Qψ(κ̄, t)) = lim
t→∞

E
(
〈ψ(κ̄, t),ψ(κ̄, t)〉Q

)
,
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where

Q = W∗W =

[
κ̄2/κ2 0

0 1/κ2

]
,

and 〈·, ·〉Q denotes the Q-weighted inner product in C2 that preserves the kinetic energy,

and κ2 = κ2
x + κ2

z. From the definition, the adjoint of A is determined by

〈ψ1,Aψ2〉Q =
〈
A+ψ1, ψ2

〉
Q
⇒ A+ = Q−1 A∗Q. (C.7)

Substituting A+ from (C.7) into (C.6) and multiplying both sides by Q−1 yields

A(κ̄) KX(κ̄) + KX(κ̄) A∗(κ̄) = −KM(κ̄),

where KX = X Q−1 = 〈ψ(κ̄, t)ψ∗(κ̄, t)〉 and KM = M Q−1 = 〈d(κ̄, t) d∗(κ̄, t)〉
denote kernel representations of the operators X and M. Therefore,

M = KM Q = 〈d d∗〉 Q = V
〈
d̄ d̄∗

〉
V∗Q = V M̄ V∗Q.

Substituting M̄ from (C.4) yields an expression for the forcing spectrum

M(κ̄) =
E(κ̄)

2πRλ
I.

Therefore, a white-in-time stochastic forcing with a spectrum proportional to the en-
ergy spectrum in HIT induces the second-order statistics of velocity fluctuations in HIT
on the fluctuations that are obtained from the stochastically forced linearized equa-
tion (C.5).



Appendix D

Perturbation analysis of
eigenvalues of a class of
self-adjoint operators

We consider a class of spatially invariant systems whose coefficients are perturbed by
spatially-periodic functions. We analyze changes in transient behavior under the effect
of such perturbations. This is done by performing a spectral analysis of the state transi-
tion operator at every point in time. Computational complexity is significantly reduced
by using a procedure that captures the influence of the perturbation on only the largest
singular values of the state transition operator. Furthermore, we show that the problem
of computing corrections of all orders to the maximum singular values collapses to that
of finding the eigenvalues of a set of finite dimensional matrices. Finally, we demonstrate
the predictive power of this method via an example.

D.1 Introduction

Perturbation theory of linear operators has been well studied over the last 50 years
starting from the works of Rayleigh and Schrodinger [151]. It is a tool for efficiently
approximating the influence of small perturbations on different properties of the un-
perturbed operator [151, 152]. In this chapter, we study the effect of a special class of
perturbations on the eigenvalues of a set of self-adjoint operators. This class of operators
are in close relation with systems with spatially-periodic coefficients.

Over the last decade, there has been a lot of excitement in analysis of periodic sys-
tems [153]. Systems with periodic coefficients in space arise in many important control
problems. Fluid systems controlled by applying periodic body forcing or by imposing
periodic boundary conditions in space are just an example of such systems [115]. A
detailed analysis of such systems is given in [87,154,155].
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It is shown in [87] that frequency response of systems with periodic coefficients in
space takes a bi-infinite form. The simplest approach towards analysis of such systems is
to approximate the bi-infinite operators using truncation. In the case where the system
is defined in multiple spatial dimensions, numerical approximations would result in
large matrices whose elements are themselves large matrices. Therefore the problem
transforms into analysis of a large-scale system with at least several thousand states.
From a computational point of view, the analysis of such systems is very expensive.
Thus the mentioned approach is not efficient especially when one intends to perform a
parametric study.

We utilize reduction theory [151, 152] to analyze the spectral behavior of the state
transition operator of the spatially distributed system. This method allows us to focus
on only the singular values of the state transition operator that are responsible for the
largest transient growth. Thus, reduction theory effectively helps to collapse the original
infinite dimensional problem to one of finite dimensional matrices. In [90] reduction
theory was used to investigate the stability properties of marginally stable spatially
invariant systems under spatially-periodic perturbations. Reference [90], differs from
this work in that it investigated the effect of perturbation in the eigenvalues of the
A-operator of the distributed system, as opposed to the singular values of the state
transition operator.

Our presentation is organized as follows: We highlight the relevance of perturbation
analysis of eigenvalues of certain self-adjoint operators in § D.2 and give a brief intro-
duction to reduction theory in § D.2.1. Our main contribution is contained in § D.3
where we describe the class of spatially distributed systems under consideration, their
perturbation, and their frequency domain representation. Reduction theory is then ap-
plied to singular value analysis of these systems. The theory is demonstrated using an
illustrative example in § D.4 and we conclude with some remarks in § D.5.

D.2 Preliminaries

Consider the spatially distributed system

d

dt
ψ = A0 ψ + B u, φ = C ψ, (D.1)

where ψ,u, and φ denote the spatio-temporal system state, input, and output, respec-
tively and A0,B, C are partial differential operators. We assume that A0 generates a
strongly continuous semigroup [156], and that the evolution operator is exponentially
stable.

In the analysis of linear systems we are often interested in certain scalar quantities
that capture the system response to initial conditions and deterministic or stochastic
inputs. For example, a relevant quantity in transient response analysis is the worst-case
amplification of all possible initial conditions as a function of time. Another quantity
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of interest is the worst-case steady state gain of harmonic deterministic inputs. Both
these quantities can be obtained by finding the largest eigenvalues of certain self-adjoint
operators. Two such operators are

• W0(t) = T (t) T (t)∗, where T (t) is the state transition operator and T (t)∗ is its
transpose. In a finite dimensional setting we have T (t) = eA0 t. We will show
later in § D.4 that the maximum eigenvalue of W0(t) can be interpreted as the
worst-case amplification of initial conditions at time t. Therefore, its application
in transient response analysis of linear systems is imminent.

• W0(ω) = H(ω)H(ω)∗, whereH(ω) is the frequency response of (D.1), i.e. H(ω) =
C (iω I − A0)−1 B. It is a standard fact that the maximum eigenvalue of W0(ω)
determines the largest steady-state system gain of a deterministic input with fre-
quency ω. In fact, the H∞ norm of (D.1) can be obtained by taking ”sup” over
the maximum eigenvalue of W0(ω).

In both the above cases, we are interested in computing maximal eigenvalues ofW0.
Our objective is to develop a method suitable for computing the effect of a particular
class of perturbations on the eigenvalues ofW0. This class of perturbations is motivated
by the structures that arise in systems with periodic coefficients in space. Following a
brief review of perturbation theory in § D.2.1, we utilize these structures to develop
more specific results for spatially-periodic systems in § D.3.

D.2.1 Perturbation theory

We consider a self-adjoint operatorW0 with eigenvalue λ0 of multiplicity m. SinceW0 is
self-adjoint, λ0 is semi-simple meaning that it has a full set of corresponding independent
eigenvectors gi0 where i = 1, 2, . . . ,m. Also consider the perturbed operator W(α)

W(α) = W0 +
∞∑
r= 1

αrWr, 0 < α < α0,

where each Wr is a self-adjoint operator itself.

Theorem D.2.1 [151, 152] For sufficiently small values of α0 and in the case of the
above self-adjoint perturbations, eigenvalues and eigenvectors of W(α) can be written in
the form of a perturbation series

W(α) gi(α) = λi(α) gi(α), i = 1, 2, . . . ,m,

λi(α) = λ0 +

∞∑
r= 1

αr λir, gi(α) = gi0 +

∞∑
r= 1

αr gir.
(D.2)
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Note that we have accounted for the fact that λ0 may split into m distinct eigenvalues
λi as a result of the perturbation. By gir and λir we denote the r th order correction to
gi and λi, respectively.

We follow the development of Kato [151] and Baumgartel [152] to solve for the un-
known coefficients in problem (D.2). The reduction process gives an iterative procedure
for computing higher order correction coefficients in the perturbation series (D.2) for
λi.

Let e1, e2, ..., em be the set of orthonormal eigenfunctions corresponding to λ0 and let
L0 be the space spanned by these eigenfunctions, i.e. L0 = span {e1, e2, ..., em}. Also
let P0, called the eigenprojection of λ0, be the operator that projects the entire space
onto the space L0, i.e., P0 =

∑m
i= 1 ei e

∗
i . Let S0 be the reduced resolvent operator

determined from [152]

(λ I − W0)−1 =
P0

λ − λ0
+

m∑
i= 0

Si+1
0 (λ − λ0)i.

The step by step procedure is given below. Finding each correction term involves three
steps [152].

Notation: By M �N we denote restriction of M to the space projected by N . In
other words, M �N acts on an element from N X and maps the result back to N X,
where X is the appropriate Hilbert space.

• First order correction:

1. Let P0 be eigenprojection of λ0

2. Define B0 = P0W1 P0.

3. λi1’s are eigenvalues of B0 �P0.

• Second order correction: Repeat the steps from first order correction with the
following modifications

1. If λi1 6= 0, let Qi0 be eigenprojection of λi1.

If λi1 = 0, let Qi0 = P0 from Iteration 1.

2. Define Ci0 = Qi0 (W2 +W1 S0W1)Qi0.

3. λi2’s are eigenvalues of Ci0 �Qi0.

The n-th order correction can be obtained in a similar way [152]. The details of this
procedure is explained in §§ D.2.2-D.2.4.
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D.2.2 Elementary reduction

Following definition of gi0 and λ0 from § D.2.1, we have gi0 ∈ P0 and we can write

gi0 =
m∑
k= 1

cik ek. (D.3)

We collect equal powers of α in (D.2). For instance

α0 : W0 g
i
0 = λ0 g

i
0,

α1 : W0 g
i
1 + W1 g

i
0 = λ0 g

i
1 + λi1 g

i
0.

(D.4)

By substituting gi0 from (D.3) into (D.4) and taking inner product of both sides of the
equation for α1 with an arbitrary eigenfunction eq, one gets

〈
W0 g

i
1, eq

〉
+

〈
W1

m∑
k= 1

cik ek, eq

〉
=
〈
λ0 g

i
1, eq

〉
+

〈
λi1

m∑
k= 1

cik ek, eq

〉
.

The first terms on both sides of the above equation are equal considering the fact that
W0 is self-adjoint and the rest of the equation is simplified to

m∑
k= 1

cik 〈W1 ek, eq〉 = ciq λ
i
1, (D.5)

knowing that e1, . . . , em are orthonormal. For (D.5) to have nontrivial solutions for cik,
we require the following determinant condition

det
{
〈W1 ek, eq〉 − λi1 δk,q

}
k,q

= 0, i = 1, 2, · · · ,m, (D.6)

where {·}k,q denotes a matrix whose k, q-th element is given by the expression inside

the brackets. Therefore, λi1, the first order correction to λ0, is the i-th solution of (D.6).

D.2.3 Reduction process

Let P0 be the operator that projects the entire space onto the space P0

P0 =

m∑
i= 1

〈ei, ei〉, P0W0 = W0 P0 = λ0 P0, P 2
0 = P0,

where 〈 · , · 〉 denotes the appropriate inner product. P0 defined by the above equa-
tions is called the eigenprojection of λ0. Similarly, define P (α) to be the eigenprojection
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of λi(α), i.e.

P (α)W (α) = W (α)P (α) = λi(α)P (α), P 2 = P.

We have P (α) = P0 +
∑∞

r= 1 α
r Pr.

Now, define the auxiliary perturbation

B(α) :=
1

α
(W (α) − λ0 I)P (α) := B0 +

∞∑
r= 1

αr Br.

We note that B(α) is holomorphic everywhere and specially at α = 0. It is easy to
check that B0 = P0W1 P0.

Define B0 � P0 to be restriction of operator B0 to the space P0. Eigenvalues of
B0 �P0, si are solutions of the following equation

det (B0 �P0 − si I) = 0, (D.7)

which is the same equation as (D.6) with λi1 replaced by si. By comparison of (D.6)
and (D.7), the first result of reduction process follows. The problem of finding first
order correction to λ0 is equivalent to finding nontrivial eigenvalues of B0 �P0.

Remark 1 We note that since B0 �P0 is a restriction, it has many trivial zero eigen-
values. In fact, number of nontrivial eigenvalues of B0 � P0 is determined by rank of
P0.

Now define Qi0 as the eigenprojection of eigenvalue λi1 of B0

Qi0B0 = B0Q
i
0 = λi1Q

i
0, Qi0

2
= Qi0,

and Qi(α) as the eigenprojection of eigenvalue λi(α)−λ0
α of B(α). It can be shown that

Qi(α)P (α) = P (α)Qi(α) = Qi(α).

In other words, Qi(α) reduces P (α). Up to the first order correction in λi(α), λ0 with
multiplicity m will split to m1 distinct eigenvalues where m1 is the difference between
rank of P0 and rank of Qi0.

Remark 2 If λi1 = 0, no splitting of eigenvalues has occurred up to correction of first
order. In this case m1 = 0 and we have Qi0 = P0.

D.2.4 Iterating the process

Since B(α) is a self-adjoint perturbation of B0, each of these m1 perturbed eigenvalues
λi1 are semi-simple themselves.
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Therefore, one can repeat the process applied to (W,λ0) for (B, λi1). Define the
auxiliary perturbation Ci(α)

Ci(α) :=
1

α
(B(α) − λi1 I)Qi(α) := Ci0 +

∞∑
r= 1

αr Cir.

In a similar way to that of B0, we have Ci0 = Qi0B1Q
i
0, where B1 = W2+W1 S0W1. The

operator S0 is called the reduced resolvent operator, see [152] for more details. Finally,
nontrivial eigenvalues of Ci0 �Q

i
0 are first order corrections to eigenvalues of B(α) which

in turn determine second order corrections to eigenvalues of W (α). By iterating the
reduction process, one can get higher order corrections [152].

D.3 Spectrum perturbation of periodic systems

The frequency representation of linear systems with spatially-periodic coefficients is
completely addressed in [87, 90]. As an example, consider the following system with
periodic coefficients in spatial variable x

∂t ψ(x, t) = A(α)ψ(x, t),

where A(α) = A0 + α (A1 ei Ωx + A−1 e−i Ωx) and A0, A1, and A−1 denote invariant
operators in the x direction. The spatial frequency representation of this system is
parameterized by θ ∈ [0,Ω) and is given by [87,90]

∂t ψθ(t) = Aθ(α)ψθ(t),

where Aθ(α) = A0θ + αA1θ , and A0θ, and A1θ are bi-infinite operator-valued matrices.
Note that the spatial wavenumber in the x direction, κx, is determined by κx =

θ + nΩ for any pair of (n, θ) where θ ∈ [0,Ω) and n ∈ Z. We note that as θ and n
vary in their domains, κx assumes all the values in R.

The operators A0θ, and A1θ are determined from

A0θ =



. . .

A0(n− 1)

A0(n)

A0(n+ 1)

. . .


,
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A1θ =



. . .
. . .

. . . 0 A−1(n) 0

A1(n− 1) 0 A−1(n+ 1)

0 A1(n) 0
. . .

. . .
. . .


, (D.8)

with A0(n), A1(n), and A−1(n) denoting the frequency symbol of the corresponding
operators evaluated at κx = θ + nΩ

Although the frequency representation of these systems takes a bi-infinite form, the
underlying operator-valued matrices have nice structures. For instance, for the case of
the spatially-periodic system above, A0θ is block-diagonal and A1θ has nonzero blocks
only on the first upper and lower sub-diagonals. The C0-semigroup Tθ generated by
Aθ = A0θ + αA1θ satisfies

∂t Tθ = Aθ Tθ, Tθ(0) = I. (D.9)

Furthermore, for sufficiently small values of α, Tθ can be written as the following per-
turbation series

Tθ = T0θ +

∞∑
r= 1

αr Trθ, 0 < α� 1,

where the coefficients Trθ can be solved for from the following set of equations obtained
by collecting equal powers of α in (D.9)

α0 : ∂t T0θ = A0θ T0θ, T0θ(0) = I,
αr : ∂t Trθ = A0θ Trθ + A1θ Tr−1,θ, Trθ(0) = 0.

Also, one can write Wθ = T ∗θ Tθ = W0θ +
∑∞

r= 1 α
rWrθ. By inspection, one sees that

matrices Trθ and therefore Wrθ inherit structures similar to those of A0θ and A1θ. For
instance, W0θ has nonzero blocks only on the main diagonal, W1θ has nonzero blocks
only on the first upper and lower sub-diagonals, W2θ has nonzero blocks only on the
main diagonal and second upper and lower sub-diagonals and so on. For notational
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convenience, we define

W0θ =



. . .

W0,0(n− 1)

W0,0(n)

W0,0(n+ 1)

. . .


,

W1θ =



. . .
. . .

. . . 0 W1,−1(n) 0

W1,1(n− 1) 0 W1,−1(n+ 1)

0 W1,1(n) 0
. . .

. . .
. . .


,

W2θ =



. . .
. . .

. . . W2,0(n− 1) 0 W2,−2(n+ 1)

0 W2,0(n) 0

W2,2(n− 1) 0 W2,0(n+ 1)
. . .

. . .
. . .


,

where Wr,l denotes elements on the l-th subdiagonal of Wrθ.
The structures discussed above can be exploited to a great extent. It will be shown

that general results about correction coefficients to the eigenvalues ofWθ can be derived.
Also, we show that the problem size can be reduced significantly. To this end, we first
look at the structure of P0θ. Recall that P0θ is the eigenprojection corresponding to
eigenvalue λ0 of W0θ. In other words, P0θ is the space spanned by corresponding
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eigenvectors of λ0. Since W0θ is block-diagonal, P0θ is also block-diagonal

P0θ =



. . .

P0(n− 1)

P0(n)

P0(n+ 1)

. . .


.

By looking at the structure of P0θ and W1θ, it is easy to show the following lemma.

Lemma D.3.1 A necessary condition for λi1, the first order correction to eigenvalue
λ0 of W0θ after perturbation, to be nonzero is that λ0 be an eigenvalue of at least two
subsequent blocks in W0θ.

Proof. Recall from § D.2.1 that λi1 is given by eigenvalues of B0θ � P0θ, where
B0θ = P0θW1θ P0θ. But, B0θ is equal to zero unless P0θ has adjacent nonzero blocks.

Remark 3 The above condition is not sufficient, because B0θ can be equal to zero even
when P0θ satisfies the mentioned condition.

Example 1 Assume that λ0 has multiplicity m = 2 and is an eigenvalue of the blocks
W0,0(n− 1) and W0,0(n) in W0θ. Then only the adjacent blocks P0(n− 1) and P0(n) in
P0θ are nonzero and we have

B0θ �P0θ =

[
0 B12

B21 0

]
,

B12 = P0(n− 1)W1,−1(n)P0(n),

B21 = P0(n)W1,1(n− 1)P0(n− 1).

Note that tr(B0θ �P0θ) = 0 and therefore, λ1
1 = −λ2

1. Thus, up to first order of correction,
we have

• Case 1: W1,1(n− 1) = (W1,−1(n))∗ = 0;

B0θ �P0θ = 0 ⇒ λ1
1 = λ2

1 = 0.

In other words, λ0 does not split.

• Case 2: W1,1(n− 1) = (W1,−1(n))∗ 6= 0;

λ1
1 = −λ2

1 6= 0.

In other words, λ0 splits into two eigenvalues that move in opposite directions
along the real axis.
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Similar results can be obtained for higher order corrections to the eigenvalues of
Wθ. Although the number of terms present in equations for higher order corrections
increase, the structures remain simple.

Note that the size of B0θ �P0θ is only m times (twice in the case of Example 1) the
size of each of the blocks in the bi-infinite matrix Wθ.

Remark 4 In fact, at each iteration level {α, α2, · · · } of the reduction process, the
maximum size of the problem is equal to the size of the constructive blocks of Wθ times
the multiplicity of {λ0, λ

i
1, · · · } in {W0θ,B0θ �P0θ, · · · }, respectively. The problem size

can be much smaller when {B0θ �P0θ, Ci0θ �Qi0θ, · · · } is block-diagonal.

Therefore, by using perturbation analysis, the correction coefficients to the eigen-
values of Wθ can be obtained by computing eigenvalues of a set of significantly smaller
matrices compared to the the case where eigenvalues of Wθ are computed after large-
scale truncation of Wθ.

D.4 Example: transient response analysis of a spatially-
periodic system

We use the results of § D.3 in the transient response analysis of an exponentially stable
spatially-periodic system. Systems that motivate transient response analysis are non-
normal systems. These systems can have large transient growth before eventual decay.
Consider the following non-normal system

ψ̇ = Aψ, AA∗ 6= A∗A. (D.10)

The response of this system to initial condition ψ0 is obtained by acting the C0-
semigroup generated by A on ψ0

ψ(t) = T (t)ψ0.

A relevant quantity to consider in transient response analysis of (D.10) is the ratio
between the norm of ψ(t) and ψ0 at a fixed time t

‖ψ(t)‖2

‖ψ0‖2
=
〈ψ(t), ψ(t)〉
〈ψ0, ψ0〉

=
〈ψ0, T ∗(t) T (t)ψ0〉

〈ψ0, ψ0〉
,

sup
ψ0

‖ψ(t)‖2

‖ψ0‖2
= λ1{T ∗(t) T (t)} = σ2

1{T (t)},

where λ1 and σ1 denote the largest eigenvalues and singular values, respectively.
Therefore, the maximum eigenvalue ofW = T ∗(t) T (t) is equal to the supremum of

the ratio between the norm of the solution at a fixed time t to that of the initial condition
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over all initial conditions. In other words, the maximum eigenvalue of W captures the
worst-case amplification of initial conditions by the linear system at a fixed time t.

Now consider the following spatially-periodic system motivated by channel flow sys-
tems. The system has two distributed states with the following state equations

∂t ψ(x, t) = (A0 + αA1)ψ(x, t), A1 = 2L cos(Ωx),

where

A0 =

[
1
R(∂xx − c) 0

∂x
1
R(∂xx − c)

]
, L =

[
0 −1
1 0

]
.

One can think of αA1 ψ as a state feedback control with a spatially-periodic gain. The
frequency representation of this system is given in the beginning of § D.3 by

∂t ψθ(t) = Aθ(α)ψθ(t) = (A0θ + αA1θ)ψθ(t),

A0(n) =

[
− 1
R((θ + nΩ)2 + c) 0

i (θ + nΩ) − 1
R((θ + nΩ)2 + c)

]
,

A1(n) = A−1(n) =

[
0 −1
1 0

]
, ∀n

We use perturbation analysis of the maximum eigenvalue ofWθ generated by A0θ+αA1θ

in order to analyze the effect of the control parameter Ω on the transient response of
the system. We verify the perturbation results by computing the maximum eigenvalues
of the truncated Wθ.

Figure D.1 shows the maximum eigenvalues of the unperturbed matrix W0(κx) for
R = 15, c = 1. The horizontal and vertical axes denote spatial frequency and time,
respectively. We note that the solution, at a fixed frequency, shows transients as large
as 8 times the norm of initial conditions before eventually decaying to zero. Also, at
any given fixed time, the maximum eigenvalue has multiplicity m = 2.

By choosing Ω for the perturbed system, we sample the continuous spectrum in κx
by samples separated by integer multiples of Ω (recall that κx = θ + nΩ). Thus, the
smaller the frequency, the finer the sampling grid. In order for us to be able to analyze
the effect of perturbation on the maximum eigenvalue ofW0, we need to make sure that
we sample the frequencies at which these maximum eigenvalues occur when sampling
over κx. This is done by choosing the appropriate value for θ for any choice of Ω.

We will compare the effect of two choices of Ω on transient response of the controlled
system. Figures D.2(a) and D.2(b) show the maximum eigenvalues of the uncontrolled
matrix given in Figure D.1 with the horizontal axis changed to n instead of κx to
emphasize the sampling. We note that n and samples of κx (separated by integer
multiples of Ω) are equivalent once the pair (Ω, θ) is specified.

Figure D.2(a) shows the spectrum for (Ω, θ) = (2, 1). We note that in this case, the
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Figure D.1: The maximum eigenvalues of the unperturbed (uncontrolled) matrixW0(κx)
for R = 15, c = 1

maximum eigenvalues (corresponding to the red regions) occur at n = −1, 0. There-
fore, the eigenprojection matrix of this eigenvalue with multiplicity 2, has two adjacent
nonzero blocks on the main diagonal

Ω = 2

θ = 1
P0θ =



. . .

0

P0(n− 1)

P0(n)

0
. . .


.

Figure D.2(b) shows the spectrum for (Ω, θ) = (2/3, 1/3). Note that with a smaller
Ω, the maximum eigenvalues (corresponding to the red regions) occur at n = −2, 1. As
a result, in this case, the eigenprojection matrix of this eigenvalue with multiplicity 2,
has two nonzero blocks separated by two zero blocks on the main diagonal

Ω = 2/3

θ = 1/3
P0θ =



. . .

0

P0(n− 2)

0

0

P0(n+ 1)
0

. . .


.
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(a) (b)

Figure D.2: The maximum eigenvalues of the unperturbed (uncontrolled) matrix W0θ

for R = 15, c = 1. (a) (Ω, θ) = (2, 1), (b) (Ω, θ) = (2/3, 1/3).

Figures D.3(a) and D.3(b) show the results of perturbation analysis of the maximum
eigenvalue for the choices of the pair (Ω, θ) discussed above. The cumulative sum of the
perturbation series for the maximum eigenvalue up to first, second, and third order of
correction are plotted versus time. The perturbation parameter, α, is 0.01. Eigenvalues
of the unperturbed system (zeroth order correction) are also plotted to show the effect of
control on transient response of the system. Finally, the maximum eigenvalues obtained
from large scale truncation of Wθ are given to compare with the results obtained by
perturbation analysis.

Figure D.3(a) shows the transient response when (Ω, θ) = (2, 1). We showed earlier
that this choice of (Ω, θ) amounts to eigenprojection of the maximum eigenvalues of the
unperturbed matrix that has adjacent nonzero blocks. Thus, from Lemma D.3.1, we
expect that the control affects the maximum eigenvalues of the unperturbed operator
at the order of α. The results shown in Figure D.3(a) agree with the expected response.
First order correction is nonzero and higher order corrections converge to the results
obtained by truncation. We note that the essential trends in this case are captured by
the first order correction.

Figure D.3(b) shows the transient response for (Ω, θ) = (2/3, 1/3). It can be seen
from Figure D.2(b) that this choice of (Ω, θ) results in an eigenprojection matrix of the
maximum eigenvalues of the unperturbed matrix that does not have adjacent nonzero
blocks for t < 270. For this range of t, from Lemma D.3.1, we expect to see the effect
of control on the maximum eigenvalues of the unperturbed operator only at the order
of α2. The results shown in Figure D.3(b) agree with the expected response. It can
be seen that for t < 270, the first order correction is zero. Higher order corrections
are relatively small and converge to the results obtained by truncation. Thus, for the
selected control amplitude (α = 0.01), the control does not have significant effect on
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the response of the uncontrolled system. This result is important since it reveals which
perturbation frequencies influence the uncontrolled system the most.

However, in Figure D.3(b), the type of response seen for t > 270 is completely
different from that of t < 270. This is due to the fact that for the former range of t, the
maximum eigenvalue of the unperturbed operator has a different location and occurs at
n = −1, 0, see Figure D.2(b). Therefore, the structure of the problem for this range of
t is similar to that of the case where (Ω, θ) = (2, 1). Thus, it is not surprising that the
type of solution is generically different. We note that this result is totally non-intuitive
and we were able to explain it due to the predictive power of perturbation theory even
at the level of the first order correction.

The perturbation results are in perfect agreement with truncation results except for
a small range 234 < t < 270. This is simply the consequence of the fact that we have
performed perturbation analysis only on the maximum eigenvalue of the unperturbed
matrix. In other words, we are tracking the effect of perturbation only on the maximum
eigenvalue of the unperturbed matrix. I general, there may exist eigenvalues close to
the maximum eigenvalues of the unperturbed matrix that are influenced more by the
perturbation than the larger (maximum) eigenvalues. This can be specially the case
when the larger and smaller eigenvalues lead to different structures in the viewpoint of
perturbation analysis. As can be seen in this example, the maximum eigenvalues of the
unperturbed matrix for 234 < t < 270 still occur at n = −2, 1 and therefore are not
affected by the control at the order of α. However, for this time interval, the second
largest eigenvalues occur at n = −1, 0 and are thus influenced by the control at the
level of α. Since the effect of control is increasing these eigenvalues for the perturbed
system they result in the largest eigenvalue, although the largest unperturbed eigen-
value remains almost unchanged. Therefore perturbation analysis of only the largest
eigenvalues cannot capture transition trends between two sets of largest eigenvalues.
Had we studied the effect of perturbation on the second largest eigenvalues as well as
the maximum eigenvalues, we could have captured the truncation results by taking the
maximum of the responses obtained by perturbation analysis of the two sets of largest
eigenvalues. In other words, one should make sure that the non-maximum eigenvalues
that are not tracked are not influenced by the perturbation in a way that become the
maximum eigenvalues of the perturbed matrix.

D.5 Summary

We used perturbation theory to compute the correction coefficients for the eigenvalues
of certain operators of interest in the transient response analysis of a class of spatially-
periodic systems. We utilized the structure of the frequency representation of systems
with periodic coefficients to develop specific results for the spectral perturbation of these
systems. We showed that the frequency of the perturbation is of integral importance in
the behavior of the perturbed system.
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(a) (b)

Figure D.3: Perturbation results for the maximum eigenvalues of the perturbed (con-
trolled) matrix for R = 15, c = 1, α = 0.01 (a) (Ω, θ) = (2, 1), (b) (Ω, θ) = (2/3, 1/3).

We showed that the maximum singular value of the state transition operator at
a fixed time can be interpreted as the worst-case amplification of all possible initial
conditions. In an example, we utilized perturbation theory in order to find the maximum
singular values of the state transition operator in time. We were able to capture the
effect of control frequency on the system’s transient response.

We showed that this type of analysis significantly reduces the computational effort.
More importantly, by exploiting structures of the matrices involved in this analysis, one
can get general results and intuitions as to how to select control parameters (here Ω)
that influence the uncontrolled system the most and predict their effect in a systematic
way.



Appendix E

Remarks on computing the H2
norm of incompressible fluids
using descriptor state-space
formulation

We utilize descriptor state-space formulation for computation of energy amplification
in incompressible channel flows. The dynamics of velocity and pressure fluctuations
in these flows are described by a system of partial differential-algebraic equations.
Typically, the evolution model is obtained by projecting the velocity fluctuations on
a divergence-free subspace which eliminates pressure from the equations. This proce-
dure results into a standard state-space representation and the problem of quantifying
receptivity of velocity fluctuations to stochastic exogenous disturbances is solved using
well-known H2 formalism. However, we show how energy amplification can be com-
puted directly from the original system of the linearized Navier-Stokes and continuity
equations. This approach avoids the need for finding the evolution model which is ad-
vantageous in many applications.

E.1 Introduction

Descriptor formulation of systems arise from formulating the system equations in terms
of their natural physical variables [157]. A particular class of physical problems that can
be written in descriptor formulation are those with algebraic constraints. For example,
systems of incompressible fluids require the velocity fluctuations to lie on a divergence-
free subspace, hence, resulting in a differential-algebraic equation.

It is a standard task in fluid mechanics to eliminate the algebraic constraint from the

170
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equations and rewrite the equations in standard state-space formulation [84]. However,
working with the original descriptor formulation is advantageous in many applications
where obtaining the evolution formulation is a difficult task and often results in a more
complicated representation comparing to that of the descriptor formulation in terms of
the order of differential operators involved.

We consider channel flow of incompressible fluids and we show how the problem at
hand can be approached, alternatively, using the available theory of computing the H2

norm of finite dimensional descriptor systems [158,159].
Our presentation is organized as follows: An introduction to finite dimensional de-

scriptor systems is provided in § E.2. We briefly review the theory of computing H2

norms of finite dimensional descriptor systems in § E.3. The system of incompressible
channel flow is formulated in both descriptor and standard state-space formulations
in § E.4. In § E.5, we show how the underlying operators are approximated using
spectral schemes. Comparison between the obtained results from the standard and de-
scriptor formulations is given in § E.6 and concluding remarks are provided based on
the above comparison.

E.2 Preliminaries

Descriptor formulation is particularly suitable for defining systems of ordinary differen-
tial equations in time with algebraic constraints.

We consider the following linear time-invariant system

E ∂tψ(x, t) = Aψ(x, t) + B u(x, t),

φ(x, t) = C ψ(x, t),
(E.1)

where x and t denote spatial and temporal coordinates, ψ, u, and φ denote the spatio-
temporal system state, input, and output, respectively, and E, A, B, and C are bounded
operator valued matrices of appropriate dimensions. We denote by ∂t the first derivative
operator in time.

Remark 5 We note that if E is nonsingular, system (E.1) can be transformed into
standard state-space representation by pre-multiplying the first equation by E−1 from
the left. However, if E contains differential operators in x, one should be careful about
implementation of boundary conditions when inverting E. This can be very difficult espe-
cially for problems involving complicated geometry or boundary conditions. Therefore,
even when E is nonsingular, definition and analysis of certain systems in descriptor
form is preferred.

The spatial differential operators involved in system (E.1) together with their bound-
ary conditions can be approximated in descriptor form in a systematic way. However,
this approximation is not always trivial if one decides to transform the system into a
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standard state-space representation by eliminating the constraints from the equations.
Moreover, approximating the boundary conditions numerically may result in overspec-
ification of the boundary conditions [160].

For computational purposes, we numerically approximate the underlying differential
operators in (E.1). Once we obtain finite dimensional approximation of the infinite
dimensional descriptor system (E.1), we can use the theory developed for the finite
dimensional descriptor systems.

E.2.1 Finite dimensional descriptor form

Consider the following linear time-invariant system

E
d

d t
ψ(t) = Aψ(t) + B u(t), φ(t) = C ψ(t), (E.2)

where ψ, u, and φ denote system state vector, input, and output, respectively, and E, A,
B, and C are matrices of appropriate dimensions. We assume that the pencil (sE − A)
is regular, i.e., there is a s ∈ C for which the resolvent operator (sE − A)−1 exists.
Then, (sE − A)−1 can be uniquely written in terms of its Laurent parameters around
s = ∞ [159]

(sE − A)−1 = s−1
∞∑

k=−ν
ζk s
−k, (E.3)

where ζk denotes the Laurent parameters and ν is called the nilpotency index of the
pencil (sE − A). The Laurent parameters are very useful in analysis of descriptor
systems because they separate the eigenspaces associated with finite (slow) and infinite
(fast) generalized eigenvalues of the pencil (sE − A) [158]. Another important property
of the Laurent parameters is that Pr = ζ0E and Qr = −ζ−1A are projections on the
space spanned by the eigenvectors ξi corresponding with the finite and infinite eigen-
values λi of the eigenvalue problem λiE ξi = Aξi, respectively. Also Pl = E ζ0 and
Ql = −Aζ−1 are projections on the space spanned by the eigenvectors ξi correspond-
ing with the finite and infinite eigenvalues λi of the eigenvalue problem λi ξiE = ξiA,
respectively [159].

The Laurent parameters are determined from the elements of the Weierstrass canon-
ical form of the pair (A,E). However, it is well-known that canonical forms involving
Jordan structures are not numerically robust. Therefore, for computational purposes,
it suffices to consider the Weierstrass-like canonical form of the pair (A,E) [161].

Weierstrass-like form: For a pair (A,E), one can find invertible matrices U and V
such that

E = V

[
Ef 0
0 E∞

]
U, A = V

[
Af 0
0 A∞

]
U, (E.4)
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where Ef , Af , and A∞ are upper triangular invertible matrices and E∞ is upper trian-
gular and nilpotent. In the new coordinate system, we have

ψ = U−1

[
ψ1

ψ2

]
, B = V

[
B1

B2

]
, C =

[
C1 C2

]
U,

where ψ1 and ψ2 denote slow (causal) and fast (impulsive or noncausal) parts of the state
vector, respectively. The projections on the fast and slow subspaces in Weierstrass-like
form are determined from

Pl = V

[
Ef 0
0 0

]
V −1, Pr = U−1

[
Ef 0
0 0

]
U,

Ql = V

[
0 0
0 −A∞

]
V −1, Qr = U−1

[
0 0
0 −A∞

]
U.

Details regarding computation of the Weierstrass-like form is included in § E.3.1.

E.3 Computing the H2 norm

The H2 norm of (E.2) is determined by [159,161,162]

‖H‖22 = trace(C (Gc + Gnc)C
∗), (E.5)

where Gc and Gnc , the causal and non-causal reachability Graminas, satisfy the follow-
ing generalized Lyapunov equations

EGc A
∗ + AGc E

∗ = −PlBB∗ P ∗l ,
E GncE

∗ − AGncA
∗ = QlBB

∗Q∗l .
(E.6)

Under certain reachability conditions for the pairs (Af , B1) and (E∞, B2) , unique pro-
jected solutions to (E.6) can be obtained by the following projections [159,161]

Gc = PrGc Pr, Gnc = QrGncQr. (E.7)

The approach towards solving the generalized Lyapunov equations relies heavily on
the use of Weierstrass canonical form. Therefore, we first see how the Weierstrass
transformation is obtained.

E.3.1 Obtaining the Weierstrass-like form

Use MATLABr’s QZ algorithm to compute the generalized Schur form of (A,E) such
that

E = W

[
Ef Eu
0 E∞

]
T, A = W

[
Af Au
0 A∞

]
T, (E.8)
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where Ef , Af , and A∞ are nonsingular upper-triangular matrices and E∞ is nilpotent
upper-triangular. To this end, one needs to use ordqz.m function in order to put all the
finite generalized eigenvalues of (A,E) in Ef .

The invertible matrices U and V in the Weierstrass-like form (E.4) are determined
by

V = W

[
I Z
0 I

]
, U =

[
I −Y
0 I

]
T,

where Z and Y are obtained from the following system of generalized Sylvester equa-
tion [161]

Ef Y − Z E∞ = −Eu,
Af Y − Z A∞ = −Au.

(E.9)

A fast algorithm for solving the system of Sylvester equations is given in [163].

E.3.2 Solving the generalized Lyapunov equation

We use the Weierstrass-like form discussed in § E.2.1 to reduce the generalized projected
Lyapunov equations (E.6,E.7) to standard Lyapunov equations. This is not a trivial
task, without using the Weierstrass transformation.

The causal reachability Gramian is determined by

E PrGc P
∗
r A
∗ + APrGc P

∗
r E
∗ = −PlBB∗ P ∗l .

We substitute the underlying matrices with their Weierstrass-like form. After initial
manipulation, we get[

Ef Ef 0
0 0

]
G̃c

[
E∗f A

∗
f 0

0 0

]
+

[
Af Ef 0

0 0

]
G̃c

[
E∗f E

∗
f 0

0 0

]
= −

[
Ef −Ef Z
0 0

]
F̃

[
E∗f 0

−Z∗E∗f 0

]
,

(E.10)

where

G̃c =

[
G̃c1 G̃c2
G̃c3 G̃c4

]
= U Gc U

∗,

F̃ =

[
F̃1 F̃2

F̃3 F̃4

]
= W ∗BB∗W.

Note that because of the projections (E.7), only G̃c1 survives in (E.10) and we obtain
the following standard Lyapunov equation

(E−1
f Af ) Ĝc1 + Ĝc1 (E−1

f Af )∗ = −(F̃1 − F̃2 Z
∗ − Z F̃3 + Z F̃4 Z

∗), (E.11)

where Ĝc1 = Ef G̃c1E
∗
f .
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Therefore, G̃c1 = E−1
f Ĝc1E

−∗
f . The projection defined in (E.7) requires all the

other blocks of G̃c to be zero. Finally,

Gc = U−1 G̃c U
−∗ = T ∗

[
G̃c1 0
0 0

]
T. (E.12)

Note that uniqueness of G̃c is a direct consequence of the uniqueness of the solution of
the standard Lyapunov equation (E.11).

Similar result is obtained for the noncausal reachability Gramian determined by

EQrGncQ
∗
r E
∗ + AQrGncQ

∗
r A
∗ = QlBB

∗Q∗l .

After similar manipulations to those carried to obtain Gc, we have

Gnc = U−1 G̃nc U
−∗ = T ∗

[
Y G̃nc4 Y

∗ Y G̃nc4
G̃nc4 Y

∗ G̃nc4

]
T, (E.13)

where G̃nc4 = A−1
∞ Ĝnc4A

−∗
∞ and G̃nc4 is obtained by solving the following standard

Lyapunov equation

(A−1
∞ E∞) Ĝnc4 (A−1

∞ E∞)∗ − Ĝnc4 = F̃4. (E.14)

Below, we summarize the procedure of computing the H2 norm for the descriptor
system (E.2)

1. Compute the generalized Schur form of the pair (A,E) given in (E.8).

2. Solve the system of generalized Sylvester equation (E.9) for Y and Z.

3. Compute Gc and Gnc from (E.11)-(E.14).

4. Finally, the H2 norm is determined by (E.5).

E.4 Incompressible plane channel flow

We consider motion of incompressible Newtonian fluids between two infinite planes
shown in Figure E.1.

The linearized Navier-Stokes equations govern evolution of velocity and pressure
fluctuations (v, p) around nominal velocity and pressure (ū, P ) in the presence of forcing

fluctuations d, where v =
[
u v w

]T
and d =

[
d1 d2 d3

]T
. We assume the

following nominal velocity profile

ū =
[
U(y) 0 0

]T
, U(y) = 1 − y2.
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Figure E.1: Pressure driven channel flow.

Navier-Stokes equations for velocity fluctuations of incompressible fluids linearized around
above profile are given by

∂t u = ( 1
Rc

∆ − U ∂x)u − U ′ v − ∂x p + d1,

∂t v = ( 1
Rc

∆ − U ∂x) v − ∂y p + d2,

∂tw = ( 1
Rc

∆ − U ∂x)w − ∂z p + d3,

(E.15)

0 = ∂x u + ∂y v + ∂z w, (E.16)

where ∆ = ∂xx + ∂yy + ∂zz is the Laplacian operator with homogenous Dirichlet
boundary conditions and Rc is the Reynolds number. Equation (E.16) is an algebraic
constraint in time, i.e., it does not involve partial derivatives in time.

The set of equations (E.15) and (E.16) can be summarized in the following descriptor
formulation

E ∂t ψ = Aψ + B d, v = C ψ, (E.17)

where ψ =
[

v p
]T

denotes vector of system states. Moreover,

E =

[
I 0
0 0

]
, A =

[
Ā −DT

D 0

]
, B = CT =

[
I
0

]
,

where

Ā =

 1
Rc

∆ − U ∂x U ′ 0

0 1
Rc

∆ − U ∂x 0

0 0 1
Rc

∆ − U ∂x

 ,
and D =

[
∂x ∂y ∂z

]
.

Since the underlying differential operators are spatially invariant in x and z direc-
tions, one can apply spatial Fourier transform in x and z and algebrize the differential
operators in these directions. Differential operators in y direction will be approximated
numerically. Details of the numerical issues are discussed in § E.5.

With a slight abuse of notation, we denote by (E.17) both physical and frequency
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representations of our system. The choice of either is clear from the context. Therefore,
the underlaying operators in frequency domain are determined from

Ā =

 1
Rc

∆ − iκx U U ′ 0

0 1
Rc

∆ − iκx U 0

0 0 1
Rc

∆ − iκx U

 ,
D =

[
iκx I ∂y iκz I

]
,

where ∆ = −κ2 + ∂yy and κx and κz denote wave numbers in x and z directions,
respectively, κ2 = κ2

x + κ2
z and i =

√
−1.

The H2 norm of system (E.17) is interpreted as energy amplification of stochas-
tic disturbances which are white zero-mean in y and t and are harmonic in x and z
coordinates

E(κx, κz) = trace
(

lim
t→∞

E {v(κx, ·, κz, t) ⊗ v(κx, ·, κz, t)}
)
,

where E is the expectation operator, and ⊗ denotes the tensor product operator. An-
other interpretation of E(κx, κz) is that it determines energy of the impulse response
of (E.17)

E(κx, κz) =

∫ ∞
0

trace (v(κx, ·, κz, t) ⊗ v(κx, ·, κz, t) ) dt.

In § E.6, we utilize the method discussed in § E.3 to compute the H2 norm of
linearized plane channel flow given in descriptor form (E.17). We will test our results
by comparing the H2 norm obtained from the descriptor formulation of the system with
the H2 norm obtained from the system formulated in standard state-space formulation.

It is a standard task in fluid mechanics to write (E.15) and (E.16) in standard state-
space formulation [84]. This is done by eliminating pressure p from (E.15) by writing
p in terms of velocity fluctuations and then using the algebraic constraint (E.16) to
reduce the number of unknown fields to two. Therefore, only two state fields suffice to
fully represent the system in standard formulation. A common choice of state variables

is Ψ =
[
v η

]T
, where η = uz − wx is the wall-normal vorticity. The standard

state-space formulation of (E.17) is determined by

∂t Ψ = AΨ + B d, v = CΨ, (E.18)
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where

A =

[
−∆−1(iκx (U ∆ + U ′′) + 1

Rc
∆2) 0

−iκz U
′ −iκx U + 1

Rc
∆

]
,

B =

[
−iκx ∆−1 ∂y −κ2 ∆−1 −iκz ∆−1 ∂y

iκz 0 −iκx

]
,

C = 1
κ2

 iκx ∂y −iκz
κ2 0
iκz iκx

 ,
where ∆2 = ∂yyyy + 2κ2 ∂yy + (κ2)2 with Dirichlet and Neumann boundary conditions.

Remark 6 We note that while the number of elements of the state vector in standard
formulation is two, the descriptor formulation requires four elements in its state vector.
Therefore, assuming that each of these infinite dimensional elements are approximated
with vectors of the same length, the problem size in descriptor formulation will have
twice the size of the problem in standard formulation. In spite of the above mentioned
advantage of the standard formulation, one sees that the entries in matrices A, B, and
C are substantially more complicated operators than those in E, A, B, or C. We note
the following

• The operator-valued matrices in the standard formulation involve differential oper-
ators with two degrees higher than those in the descriptor formulation. Moreover,
they contain integral operators like ∆−1 which add to complexity of the standard
representation. We note that these issues are treated very well for problems with
certain boundary conditions such as Dirichlet and Neumann boundary conditions.

• We also note that we have arrived at the standard formulation after certain ana-
lytical and algebraic manipulations on the descriptor formulation of the system [7].
For problems with more complicated nominal velocity profiles that involve compo-
nents which also vary along other spatial coordinates such as x and z, this is an
arduous undertaking [115].

Therefore, simplicity of defining systems with algebraic constraints in the descriptor for-
mulation together with reduction in the order of numerically approximated differential
operators serve as important motivations for development of efficient analysis tools for
these systems. In § E.6, we show that the H2 norm obtained from the descriptor for-
mulation of plane channel flow compares very well to that obtained from the standard
formulation.

E.5 Numerical approximation of spatial operators

Over the past decades, many different schemes are developed for numerical approxi-
mation of differential operators, in particular those with non-periodic boundary condi-
tions [164]. These boundary conditions arise in applications with finite domains where
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the differential operators lack invariance under spatial shifting transformations. Many
fluid systems with bounded geometry like the channel flow system are of this kind.

We use the matrix differentiation suite developed by Weideman and Reddy [118] to
numerically approximate differential equations in wall-normal direction, y. This tools
is based on computation of differentiation matrices using spectral collocation methods.
Chebyshev polynomials are selected as basis functions, since these polynomials are most
appropriate for bounded non-periodic domains.

In spectral collocation methods, one-to-one mapping is established between the se-
lected basis function and a non-uniform set of grid points chosen such that the approx-
imation error decays exponentially as the number of grid points increases. Therefore,
convergence rate of spectral methods (O(e−cN )) are by far superior to that of finite
difference methods (O(N−c)), where N is the number of degrees of freedom in the ex-
pansion series for spectral methods or the number of grid points in the case of finite
difference and spectral collocation methods.

Boundary conditions are implemented either with Galerkin schemes based on choice
of Chebyshev polynomials or with boundary bordering method that eliminates first and
last rows and columns of the differentiation matrix in the case that boundary points
satisfy the boundary conditions.

E.5.1 Operators and their adjoints

We consider (N + 2) grid points to approximate differential operators in wall-normal
direction using the Galerkin spectral collocation scheme with Chebyshev polynomials.
Effectively, functions and operators are approximated by finite vectors and matrices,
respectively. We note the following

• Elements of the velocity and vorticity fields (u, v, w, η) satisfy Dirichlet boundary
conditions and the first and last entries in their corresponding vector approxi-
mation are always zero and they can be removed. Therefore, the velocity and
vorticity fields are approximated with N -dimensional vectors. On the other hand,
there is no boundary condition on pressure p, nor there is one on input d. So, the
pressure and input fields are approximated with (N + 2)-dimensional vectors.

• The first and last columns of the differentiation matrices acting on these functions
can be removed due to the Dirichlet boundary conditions. Also the first and last
rows of the operators resulting in velocity and vorticity fields can be removed.

Therefore, for example, E and A are (4N+2)×(4N+2), Ā is 3N×3N , D is (N+2)×3N ,
and B is (4N+2)×(3N), etc. Note that we have used the same notation for the functions
and operators and their numerical approximations.

Operator adjoints are needed for the purpose of norm computations. To obtain the
matrices approximating operator adjoints, one can analytically find the adjoint operators
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and then approximate them numerically. An alternative way is computing the adjoint
operators directly from approximated operators.

Adjoints of A and E are determined from

〈ψ1, Aψ2〉 =
〈
A+ ψ1, ψ2

〉
, 〈ψ1, E ψ1〉 =

〈
E+ ψ1, ψ2

〉
, (E.19)

where + denotes the adjoint operator and 〈·, ·〉 denotes the L2[−1, 1] inner product

〈f, g〉 =

∫ 1

−1
f∗ g dy. (E.20)

To numerically approximate the integral in (E.20), we use the integration matrix that
contains appropriate integrating weights to account for the non-uniform distribution of
the grid points in y [119]. Therefore, numerically

〈f, g〉 ≈ f∗ S g =

N∑
i= 1

f(yi) si g(yi), (E.21)

where yi’s denote selected grid points, si’s denote the appropriate integrating weights,
and S is the positive definite diagonal matrix containing the integrating weights, si. We
note that size of the integration weights are determined by size of the corresponding
numerically approximated functions, i.e., N for (u, v, w) and (N + 2) for p. Let S(N)
be the appropriate integrating weights for functions approximated by N grid points.
To compute the necessary integrals needed for computing the adjoints numerically, we
need the following integrating weight matrices

S1 =


S(N) 0 0

0 S(N) 0

0 0 S(N)

 ,

S2 =


S(N) 0 0 0

0 S(N) 0 0

0 0 S(N) 0

0 0 0 S(N + 2)

 .
From (E.19) and (E.21), we have

ψ∗1 S2Aψ2 = (A+ ψ1)∗ S2 ψ2.
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Finally, adjoints of A and E are determined by

A+ = S−1
2 A∗ S2, E+ = S−1

2 E∗ S2.

Adjoint of ζk can be obtained from A+ and E+ from (E.3). Adjoint of the projection
operators onto subspaces associated with the finite and infinite eigenvalues of (A,E) are
obtained similarly. For example, ζ+

k and P+
r are numerically approximated by

ζ+
k = S−1

2 ζ∗k S2,

P+
r = (ζ0E)+ = E+ ζ+

0 = S−1
2 P ∗r S2.

Adjoints of B and C are determined form

〈ψ,B d〉 =
〈
B+ ψ,d

〉
, 〈v, C ψ〉 =

〈
C+ v, ψ

〉
.

and are numerically approximated by

B+ = S−1
1 B∗ S2, C+ = S−1

2 C∗ S1.

Remark 7 Note that the appropriate inner products for definition of A+, B+, and C+

in the standard state-space formulation (E.18) are different from that in (E.20). This
is because the state vector, Ψ, is not in L2[−1, 1]. Therefore, one should use a weighted
inner product that yields the definition of energy of velocity fluctuations. See [7] for
more details.

E.5.2 Change of variables

The method of computing the H2 norm discussed in § E.3 is based on finite dimensional
descriptor formulation in § E.2.1. Therefore, in § E.5.1, we showed how the differenti-
ation operators and their adjoints are approximated numerically. In order to compute
the H2 norm of the infinite dimensional system (E.17), we need to compute solutions of
generalized projected Lyapunov equations that involve numerical approximation of op-
erator adjoints. However, we saw that numerical approximation of the adjoint operators
are not equal to complex conjugate transpose of numerically approximated operators.
Rather, to obtain the adjoint operators, one should pre and post multiply the operators
by symmetric positive definite matrices S−1

i and Si of appropriate size, i = 1, 2.
In order to be able to utilize the tools developed for solving the finite dimensional

generalized Lyapunov equations in (E.6), we introduce the following change of variables

Es = S
1
2
2 E S

− 1
2

2 , As = S
1
2
2 AS

− 1
2

2 ,

Bs = S
1
2
2 B S

− 1
2

1 , Cs = S
1
2
1 C S

− 1
2

2 ,
(E.22)

where S
1
2
i denotes matrix square root for a positive definite matrix Si, i.e., (S

1
2
i )2 = Si.
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The same type of change of variable as that for As and Es is done on projection operators
like Pr.

The change of variables in (E.22), effectively connects the solution of the following
generalized Lyapunov equations{

EGc A
+ + AGc E

+ = −PlBB+ P+
l ,

E GncE
+ − AGncA

+ = QlBB
+Q+

l ,
(E.23)

{
EsGcs A

∗
s + AsGcs E

∗
s = −PlsBsB∗s P ∗ls,

EsGncsE
∗
s − AsGncsA

∗
s = QlsBsB

∗
s Q
∗
ls,

(E.24)

via the following formulae

Gc = S
− 1

2
2 Gcs S

1
2
2 , Gnc = S

− 1
2

2 Gncs S
1
2
2 . (E.25)

Therefore, to solve the generalized Lyapunov equations involving adjoint matri-
ces (E.23), we first solve the generalized Lyapunov equations (E.24) involving complex
conjugate transpose of operators using the method discussed in § E.3.2, and then we
obtain the desired solutions using (E.25).

E.6 Summary

We compute theH2 norm of plane channel flow both from descriptor and standard state-
space formulations, equations (E.17) and (E.18), respectively. We have set Rc = 2000
and N = 30 in all computations.

Figure E.2 shows the H2 norm computed from both formulations as a function of
κz for κx = 0. We see the the results match with less than 10−3 relative error.

Remark 8 It turns out that the H2 norm associated with the non-causal or impulsive
response of system (E.17) is very small (O(10−4)) and is negligible in comparison with
the H2 norm associated with the causal part. Therefore, only the summation of the two
is shown and we have not shown separate plots for the causal and noncausal parts.

Figure E.3 shows the H2 norm computed from both formulations as a function of
κx for κz = 0. The results are very close with less than 10−2 relative error.

From the above results, we see that the H2 norm computed from the descriptor
formulation compares very well with the H2 norm computed from the standard state-
space formulation.

We note that size of the two standard Lyapunov equations (E.11) and (E.14) are
determined by the number of finite and infinite generalized eigenvalues of (A,E), re-
spectively. In our problem with N = 30, these numbers turn out to be 58 and 64. Size
of the Lyapunov equation that needs to be solved in standard formulation is equal to 60.



183

(a) (b)

Figure E.2: (a) H2 norm computed from descriptor and standard state-space formula-
tions for Rc = 2000 and κx = 0, (b) relative error.

(a) (b)

Figure E.3: (a) H2 norm computed from descriptor and standard state-space formula-
tions for Rc = 2000 and κz = 0, (b) relative error.
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Thus, cost of solving the required Lyapunov equations in both formulations is almost
the same. Therefore, the difference in computational cost of obtaining the H2 norm
from the two formulations is mainly determined by the cost of solving the additional
Lyapunov equation plus cost of the QZ algorithms required for obtaining the Weierstrass
transformation and solving the system of generalized Sylvester equations (E.9).
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