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Abstract

Large-scale networks of dynamical systems are becoming increasingly important

in science and engineering with applications ranging from economics, social networks,

power systems, and robotics. As a consequence, network science has emerged as an in-

terdisciplinary field that draws from diverse disciplines including graph theory, matrix

theory, dynamical systems, optimization, and statistical mechanics. One of the major

challenges is the development of fast and scalable methods for analysis and design of

these systems. Such systems are usually large-scale, they involve large-scale interconnec-

tions of components but have limitations on communication power, and their dynamics

may be unknown. In large-scale dynamical systems, centralized implementation of con-

trol and estimation policies is computationally expensive or even infeasible. Moreover,

it is often the case that the underlying dynamics are unknown and only limited input-

output measurements are available from the system. To overcome these challenges, we

combine tools and ideas from control theory, distributed optimization, reinforcement

learning, and compressive sensing to develop distributed estimation and control strate-

gies that utilize limited information exchange between the individual subsystems and

do not require knowledge of the underlying dynamics.

In Part I of this dissertation, we study the problem of optimal topology design

for stochastically forced undirected consensus networks in order to optimally enhance

closed-loop performance. The performance is given by the steady-state variance am-

plification of the network with additive stochastic disturbances. We use a sparsity

promoting optimal control framework to avoid computational complexity. In particu-

lar, we introduce `1-regularization into the optimal H2 formulation and cast the design

problem as a nonsmooth composite optimization problem. By exploiting the structure

of the problem, we develop customized proximal gradient and Newton algorithms that

are well-suited for large-scale problems. We illustrate that our algorithms can solve

the problems with more than million edges in the controller graph in a few minutes,

on a PC. We also exploit structure of connected resistive networks to demonstrate how

additional edges can be systematically added in order to minimize the H2 norm of the
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closed-loop system. Moreover, we study the problem of performance enhancement in

stochastically-forced directed consensus networks by adding edges to an existing topol-

ogy. We formulate the problem as a feedback control design, and represent the links

as the elements of the controller graph Laplacian matrix. To deal with the structural

constraints that arise from the absence of absolute measurements, we introduce a coor-

dinate transformation to eliminate the average mode and assure convergence of all states

to the average of the initial node values. By exploiting structure of the optimization

problem, we develop a customized algorithm based on the alternating direction method

of multipliers to design a sparse controller network that improves the performance of

the closed-loop system.

Part II studies the problem of identifying sparse interaction topology using sam-

ple covariance matrix of the states of the network. We assume that the statistics

are generated by a stochastically-forced undirected consensus network with unknown

topology. We propose a method for identifying the topology using a regularized Gaus-

sian maximum likelihood framework where the `1 regularizer is introduced as a means

for inducing sparse network topology. The proposed algorithm employs a sequential

quadratic approximation in which the Newton’s direction is obtained using coordinate

descent method. We also develop a method based on growing a Chow-Liu tree that is

well-suited for identifying the underlying structure of large-scale systems in which some

of the nodes may have access to their own states.

In Part III, we study the algorithms that can be used to solve nonsmooth composite

optimization problems from control-theoretic point of view. We view proximal algo-

rithms as dynamical systems and leverage techniques from control theory to study their

global convergence properties. In particular, for problems with strongly convex objec-

tive functions, we utilize the theory of integral quadratic constraints to prove global

exponential stability of the differential equations that govern the evolution of proximal

gradient and Douglas-Rachford splitting flows. Moreover, we establish conditions for

global exponential convergence even in the absence of strong convexity. We also study

a class of nonsmooth composite optimization problems in which the convex objective

function is given by a sum of differentiable and nondifferentiable terms. We propose a

primal-descent dual-ascent gradient flow method that exploits separability of the objec-

tive function and is well-suited for in-network optimization. We prove global asymptotic
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stability of the proposed algorithm and solve the problem of growing undirected con-

sensus networks in a distributed manner to demonstrate its effectiveness.

Part IV focuses on the distributed design of structured feedback gains for large-scale

systems. This is a challenging problem even in the absence of additional structural con-

straints on the feedback controller. We approach the structured optimal control problem

via a data-driven framework that does not require knowledge of the system parameters

and avoids the need to solve large-scale matrical equations. For the structured opti-

mal H2 state-feedback problem, we show that the objective function and its gradient

can be computed from data and develop customized proximal algorithms based on gra-

dient descent and incremental gradient method. Moreover, we exploit separability of

the objective function and utilize an ADMM-based consensus algorithm to solve the

regularized optimal control problem in a distributed manner over multiple processors.
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Chapter 1

Introduction

Traditional control theory is concerned with implementing the control and estimation

policies in a centralized fashion [1]. However, in large networks of dynamical systems,

centralized processing is often computationally expensive or even practically infeasible.

This motivates the development of distributed control strategies that require limited

information exchange between the individual subsystems. Analysis and design of dis-

tributed averaging protocols have been an active research area recently; e.g., see [2–11].

Moreover, distributed computing over networks is of fundamental importance in

network science [2]. Consensus problem has received significant attention because it

encounters in a number of applications ranging from animal group behavior [12,13], to

social networks [14,15], to power systems [16–18], to distributed processing networks [19,

20], to spreading processes [21,22], and to coordination of autonomous vehicles [23–26],

see Fig. 1.1 for some examples. An inherent challenge in all of these problems is that

it is desired for all nodes to reach an agreement or to achieve synchronization by only

exchanging relative information with limited number of nodes. The restriction on the

absence of the absolute measurements imposes structural constraints for the analysis

and design.

Furthermore, in many of the real-world applications, the dynamics of the underly-

ing system are unknown, the dynamical systems are large-scale, and only input-output

measurements are available. This necessitates the development of theory and techniques

that utilize distributed computing architectures to cope with large problem sizes and

1
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(a) (b)

(c) (d)

Figure 1.1: (a) Social network. (b) Computer network. (c) Vehicular formation. (d)
Power network.

do not require the knowledge of underlying dynamics of the system. Moreover, in some

applications, having access to even the input-output measurements is not feasible and

only second-order data is available. Recovering network topology from partially avail-

able statistical signatures is a challenging problem. Due to experimental or numerical

limitations, it is often the case that only noisy partial network statistics are known.

Thus, the objective is to account for all observed correlations that may be available

and to develop efficient identification algorithms that are well-suited for big data prob-

lems [27,28].

Moreover, analysis of optimization algorithms from the system theoretic point of



3

view has received significant recent attention [29–31]. In these references, the optimiza-

tion algorithm is interpreted as a feedback interconnection in which the states converge

to the optimal solution of the optimization problem. Many modern large-scale and dis-

tributed optimization problems can be cast into a form in which the objective function

is a sum of a smooth term and a nonsmooth regularizer. Such problems can be solved

via a proximal gradient method which generalizes standard gradient descent to a non-

smooth setup. We leverage the tools from control theory to study global convergence

of proximal gradient flow algorithms in continuous time. We also provide a distributed

implementation of the gradient flow dynamics based on the proximal augmented La-

grangian and prove global exponential stability for strongly convex problems.

In this dissertation, we combine tools and ideas from control theory, distributed

optimization, reinforcement learning, and compressive sensing to develop distributed

estimation and control strategies that require limited information exchange between

the individual subsystems. The remainder of this introductory chapter is organized as

follows. In Section 1.1, we overview different topics of the dissertation and we pro-

vide a brief dicsussion on each of them. The outline of the dissertation is provided in

Section 1.2. Finally, we provide a summary of our main results and contributions in

Section 1.3.

1.1 Main topics of the dissertation In this section, we discuss the

main topics of the dissertation.

1.1.1 Distributed design and control of consensus networks Reaching

agreement using relative information exchange in a decentralized fashion has received

lots of attention. In large networks, centralized implementation of control policies im-

poses heavy communication and computation burden on individual nodes. This mo-

tivates the development of distributed control strategies that require limited informa-

tion exchange between the nodes in order to reach consensus or achieve synchroniza-

tion [5, 7–9].

Optimal design of the edge weights for networks with pre-specified topology has

received significant attention. In [3], the design of the fastest averaging protocol for
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undirected networks was cast as a semidefinite program (SDP). Two customized algo-

rithms, based on primal barrier interior-point (IP) and subgradient methods, were de-

veloped and the advantages of optimal weight selection over commonly used heuristics

were demonstrated. Similar SDP characterization, for networks with state-dependent

graph Laplacians, was provided in [4]. The allocation of symmetric edge weights that

minimize the mean-square deviation from average for networks with additive stochas-

tic disturbances was solved in [5]. A related problem, aimed at minimizing the total

effective resistance of resistive networks, was addressed in [7]. In [8], the edge Lapla-

cian was used to provide graph-theoretic characterization of the H2 and H∞ symmetric

agreement protocols.

Network coherence quantifies the ability of distributed estimation and control strate-

gies to guard against exogenous disturbances [6, 10]. The coherence is determined by

the sum of reciprocals of the non-zero eigenvalues of the graph Laplacian and its scaling

properties cannot be predicted by algebraic connectivity of the network. In [10], per-

formance limitations of spatially-localized consensus protocols on regular lattices were

examined. It was shown that the fundamental limitations for large-scale networks

are dictated by the network topology rather than by the optimal selection of the edge

weights. Moreover, epidemic spread in networks is strongly influenced by their topol-

ogy [21, 22, 32]. Thus, optimal topology design represents an important challenge. It is

precisely this problem, for undirected consensus networks, that we address here.

More specifically, we study an optimal control problem aimed at achieving a de-

sired tradeoff between the network performance and communication requirements in

the distributed controller. Our goal is to add a certain number of edges to a given

undirected network in order to optimally enhance the closed-loop performance. One

of our key contributions is the formulation of topology design as an optimal control

problem that admits convex characterization and is amenable to the development of

efficient optimization algorithms. In our formulation, the plant network can contain

disconnected components and optimal topology of the controller network is an integral

part of the design. In general, this problem is NP-hard [33] and it amounts to an in-

tractable combinatorial search. Several references have examined convex relaxations

or greedy algorithms to design topology that optimizes algebraic connectivity [34] or
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network coherence [9, 35–37].

In this dissertation, we tap on recent developments regarding sparse representa-

tions in conjunction with regularization penalties on the level of communication in a

distributed controller. Similar approaches have been used for solving the problem of

optimal sensors/actuators selections in large-scale dynamical systems [38–40]. This

allows us to formulate convex optimization problems that exploit the underlying struc-

ture and are amenable to the development of efficient optimization algorithms. To

avoid combinatorial complexity, we approach optimal topology design using a sparsity-

promoting optimal control framework introduced in [41, 42]. Performance is captured

by the H2 norm of the closed-loop network and `1-regularization is introduced to pro-

mote controller sparsity. While this problem is in general nonconvex [42], for undirected

networks we show that it admits a convex characterization with a non-differentiable ob-

jective function and a positive definite constraint. This problem can be transformed

into an SDP and, for small size networks, the optimal solution can be computed using

standard IP method solvers, e.g., SeDuMi [43] and SDPT3 [44].

Moreover, we study the problem of performance enhancement in stochastically-

forced directed consensus networks by adding edges to an existing topology. Significant

amount of research has been devoted to the study of the consensus problem in networks,

where both the plant and the controller graphs are undirected. We consider the problem

of adding edges to a weakly connected directed consensus network in order to improve

performance. In particular, we are interested in designing sparse communication graphs

that strike a balance between the variance amplification of the closed-loop system and

the number of communication links. In general, this is a combinatorial search problem

and is non-convex.

1.1.2 Network estimation and inference Identifying network topology and

learning graphical models from partially available statistical signatures are topics of im-

mense interest in areas ranging from machine learning to statistics to neuroscience [45–

52]. Moreover, structured covariance completion problem has received significant atten-

tion in the recent years [53–55]. In these works, the unknown elements of a partially

known covariance matrix are estimated such that they are consistent with the dynamics

of the underlying system. Studying the human brain as a complex network has received



6

significant attention recently [56–58]. The brain functional connectivity can be mea-

sured by computing the correlation between time-series functional magnetic resonance

imaging (FMRI) data. The functional connectivity structure between different regions

can be revealed by utilizing different thresholding techniques [59, 60]. In general, this

is a challenging problem because it is often the case that only noisy partial network

statistics are known. The goal is to develop an efficient algorithm for recovering the

underlying topology of a network utilizing the limited sample data.

Recovering the underlying network topology using sample covariance matrix of the

node values under structural constraints has been studied in [27, 61, 62]. Moreover, a

rich body of literature has been devoted to the problems of designing network topol-

ogy to improve performance [33, 34, 36, 37, 63]. Several algorithms can be employed to

identify the underlying network structure from limited statistical data. In [64], the au-

thors show inability of standard graphical-LASSO to identify network topology. It was

demonstrated that this popular algorithm fails to recover the underlying topology even

when the abundance of data is available.

Over the last decade, a rich body of literature has been devoted to the problems of

designing network topology to improve performance [9,34–37,63,65,66] and identifying

an unknown network topology from available data [45–51, 67]. Moreover, the problem

of sparsifying a network with dense interconnection structure in order to optimize a

specific performance measure has been studied in [68, 69]. In [70], it was demonstrated

that individual starlings within a large flock interact only with a limited number of

immediate neighbors. The authors have shown that the networks with six or seven

nearest neighbors provide an optimal trade-off between flock cohesion and effort of

individual birds. These observations were made by examining how robustness of the

group depends on the network structure. The proposed measure of robustness captures

the network coherence [10] and it is well-suited for developing tractable optimization

framework.

We develop a convex optimization framework for identifying sparse interaction topol-

ogy using sample covariance matrix of the state of the network. Our framework utilizes

an `1-regularized Gaussian maximum likelihood estimator. We also develop a method

based on growing a Chow-Liu tree that is well-suited for identifying the underlying
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structure of large-scale systems. We apply this technique to resting-state functional

MRI (FMRI) data as well as synthetic datasets to illustrate the effectiveness of the

proposed approach.

1.1.3 Control theoretic approach for analysis of optimization algo-

rithms Structured optimal control and inverse problems, that arise when trying to

identify and control dynamical representations of systems evolving in real-time, typ-

ically lead to optimization of objective functions that consist of a sum of a smooth

term and a nonsmooth regularizer. Such problems are of increasing importance in con-

trol [41, 42, 71] and it is thus necessary to develop efficient algorithms for distributed

and embedded nonsmooth composite optimization [72–75]. The lack of differentiability

in the objective function precludes the use of standard descent methods from smooth

optimization. Proximal gradient method [76] generalizes gradient descent to nonsmooth

context and provides a powerful tool for solving problems in which the nonsmooth term

is separable over the optimization variable.

Examining optimization algorithms as continuous-time dynamical systems has been

an active topic since the seminal work of Arrow, Hurwicz, and Uzawa [77]. This view-

point can provide important insight into performance of optimization algorithms and,

during the last decade, it has been advanced and extended to a broad class of prob-

lems including convergence analysis of primal-dual [73, 78–82] and accelerated [83–88]

first-order methods. This should be compared and contrasted to existing techniques

which employ subgradient methods and discontinuous projected dynamics [89–91]. Fur-

thermore, establishing the connection between theory of ordinary differential equations

(ODEs) and numerical optimization algorithms has been a topic of many studies, in-

cluding [92,93]; for recent efforts, see [84,94].

Most algorithms can be viewed as a feedback interconnection of linear dynamical sys-

tems with nonlinearities that posses certain structural properties. This system-theoretic

interpretation was exploited in [31] and further advanced in a number or recent pa-

pers [81, 95–101]. The key idea is to exploit structural features of linear and nonlinear

terms and utilize theory and techniques from stability analysis of nonlinear dynamical

systems to study properties of optimization algorithms. This approach provides new
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methods for studying not only convergence rate but also robustness of optimization rou-

tines [102–105] and can lead to new classes of algorithms that strike a desired tradeoff

between the speed and robustness.

We study a class of nonsmooth composite convex optimization problems in which the

objective is a sum of a differentiable function and a possibly nondifferentiable regular-

izer. These problems emerge in compressive sensing, machine learning, and control. For

example, structured feedback design can be cast as a nonsmooth composite optimiza-

tion problem [42,71,106]. Standard descent methods cannot be used in the presence of

nondifferentiable component. Proximal gradient algorithms [76,107] offer viable alterna-

tives to the generic descent methods for solving nonsmooth problems. Another effective

strategy is to transform the associated augmented Lagrangian into the continuously

differentiable proximal augmented Lagrangain [108] in which the former is restricted

to the manifold that corresponds to the explicit minimization over the variable in the

nonsmooth term.

1.1.4 Distributed in-network optimization Distributed algorithms are crit-

ically important for solving large-scale optimization problems. The decentralized con-

sensus problem in multi-agent networks [72, 73, 109, 110] arises in many applications.

Moreover, distributed control techniques are critically important in the design of large-

scale systems. In these systems, conventional control strategies that rely on centralized

computation and implementation are often prohibitively expensive. For example, find-

ing the optimal controller requires computation of the solution to the algebraic Riccati

equations which is often infeasible because of high computational requirements. This ne-

cessitates the development of theory and techniques that utilize distributed computing

architectures to cope with large problem sizes.

We study a class of nonsmooth composite optimization problems in which the con-

vex objective function is a sum of differentiable and nondifferentiable functions. Among

other applications, these problems emerge in machine learning, compressive sensing,

and control. Recently, regularization has been used as a promising tool for enhanc-

ing utility of standard optimal control techniques. Generic descent methods cannot

be used in the nonsmooth composite optimization problems due to the presence of a
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nondifferentiable component in the objective function. Moreover, these standard meth-

ods are not well-suited for distributed implementation. An alternative approach is to

separate the smooth and nonsmooth parts of the objective function and use the alter-

nating direction method of multipliers (ADMM). In [111], we exploit separability of

the objective function and utilize an ADMM-based consensus algorithm to solve the

regularized optimal control problem in a distributed manner over multiple processors.

Even though the optimal control problem is in general non-convex, recent results can

be utilized to show convergence to a local minimum [112]. However, in an update step

of the ADMM algorithm, all the processors halt to compute the weighted average (the

gathering step) [113].

By introducing auxiliary variables in nondifferentiable terms, we provide an equiva-

lent consensus-based characterization that is convenient for distributed implementation.

The Moreau envelope associated with the nonsmooth part of the objective function is

used to bring the optimization problem into a continuously differentiable form that

serves as a basis for the development of a primal-descent dual-ascent gradient flow

method. This algorithm exploits separability of the objective function and is well-suited

for in-network optimization. We prove global asymptotic stability of the proposed al-

gorithm. Moreover, we study primal-descent dual-ascent gradient flow dynamics based

on the proximal augmented Lagrangian [108] that can be used as an effective algorithm

to solve smooth optimization problems with a separable objective function. We provide

a distributed implementation and prove global exponential stability in the presence of

strong convexity.

1.1.5 Data-driven and model-free distributed control One of the major

challenges in analysis and design of large-scale dynamical systems is the development

of fast and scalable methods. Such systems involve large-scale interconnections of com-

ponents, have rapidly-evolving structure and limitations on communication/processing

power, and require real-time distributed control actions. These requirements make con-

trol strategies that rely on centralized information processing infeasible and motivate

new classes of optimal control problems. In these, standard performance metrics are

augmented with typically nonsmooth regularizers to promote desired structural features

(e.g., low communication requirements) in the optimal controller [41, 42, 71, 114, 115].
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Moreover, in many applications, the dynamics of the plant are unknown and only lim-

ited input-output measurements are available. Designing optimal controllers for these

systems is challenging even in the absence of structural constraints. The LQR problem

in the model-free setup has been recently studied in [116,117].

Modern control applications impose additional requirements on controller design

that cannot be addressed using standard optimal control tools. These requirements may

arise from limited communication and computation resources or the size of the problem.

The standard optimal control techniques typically induce an all-to-all communication

requirements in the controller which is infeasible in large-scale setting. Recently, reg-

ularization has emerged as a promising tool for enhancing utility of standard optimal

control techniques. In this approach, commonly used performance measures (e.g., H2 or

H∞) are augmented with regularization functions that are supposed to promote some

desired structural features in the distributed controller, e.g., sparsity. Such an approach

has received significant level of attention in recent years [41, 42, 71, 106, 115, 118, 119],

but computing optimal solutions in large-scale problems still remains a challenge. Dis-

tributed computing techniques have been commonly used to cope with large problem

sizes; for example, stability and synthesis of cooperative distributed model predictive

controllers for linear systems have been recently studied in [120].

Herein, we address complexity through a combination of linear-algebraic techniques

and computational methods adapted from both machine learning and reinforcement

learning. We study the problem of designing optimal structured feedback gains for

large-scale systems with unknown dynamics in a distributed manner. We quantify per-

formance using the H2 norm and introduce regularization functions to promote desired

structural properties in the controller. The key challenge is to evaluate the objective

function and its gradient without solving the large-scale Lyapunov equations. By ex-

ploiting the square-additive property of the H2 norm, we propose customized proximal

and ADMM-based algorithms that are convenient for distributed implementation.

1.2 Dissertation structure This dissertation consists of four parts. Each

part focuses on a specific topic and includes individual chapters that studies relevant

subjects. In each chapter, we provide a brief introduction, background and motiva-

tion, problem formulation, algorithm and design steps, computational experiments, and
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conclusion.

Part I. Traditional control theory is concerned with implementing the control poli-

cies in a centralized fashion. However, due to high communication and computation

costs, this is not practically feasible for large-scale networks of dynamical systems.

Leveraging tools from compressive sensing and distributed optimization, we have devel-

oped a theoretical and computational framework for designing distributed controllers for

large-scale systems [63, 66, 106, 119]. In these, standard performance metrics are aug-

mented with typically nonsmooth regularizers to promote desired structural features

(e.g., low communication requirements) in the optimal controller. These algorithms

scale gracefully with problem size and are well-suited for distributed implementation

over multiple processors.

Part II. Identifying network topology and learning graphical models from partially

available statistical signatures are topics of immense interest in areas ranging from

machine learning to statistics to neuroscience. A motivating application in neuroscience

is reconstructing the pattern of causal interactions between distinct units of the brain

using time series data of neural activities. For undirected consensus networks, the

topology identification problem can be imposed as a sparse inverse covariance estimation

with additional structural constraints. We have developed an algorithm to identify

simple models of large consensus networks from a known sample covariance matrix [27].

Moreover, we have developed an inference algorithm based on growing a Chow-Liu tree

which is well-suited for identifying the underlying structure of large-scale dynamical

systems [28].

Part III. Analysis of optimization algorithms from the system theoretic point of

view has received significant recent attention [29–31]. In these references, the optimiza-

tion algorithm is interpreted as a feedback interconnection in which the states converge

to the optimal solution of the optimization problem. Moreover, centralized computa-

tion over large-scale systems are often impractical or very expensive. In this part, we

propose distributed computational algorithm based on alternating direction method of

multiplier and proximal augmented Lagrangian for solving non-smooth composite opti-

mization problems over networks and provide global convergence analysis using control
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theooretic techniques [98,99,121].

Part IV. Distributed feedback design and complexity constrained control are exam-

ples of problems posed within the domain of structured optimal feedback synthesis. The

optimal feedback gain is typically a non-convex function of system primitives. However,

in recent years, algorithms have been proposed to obtain locally optimal solutions. In

applications to large-scale distributed control, the major obstacle is computational com-

plexity. We address complexity through a combination of linear-algebraic techniques

and computational methods adapted from both machine learning and reinforcement

learning. Moreover, in many applications, the dynamics of the plant are unknown and

only limited input-output measurements are available. Designing optimal controllers

for these systems is challenging even in the absence of structural constraints. We have

shown that for general classes of optimal control problems, the objective function and

its gradient can be computed from data [111]. By employing incremental and stochastic

gradient and ADMM based algorithms, we have developed a data-driven framework for

the structured optimal control problem that does not require knowledge of the system

parameters and avoids the need to solve large-scale matrical equations [122].

1.3 Contributions of the dissertation In this section, the structure

of the dissertation is provided along with the main contributions of each part.

Part I

Topology design for stochastically forced undirected consensus networks.

We have examined the problem of optimal topology design of the corresponding edge

weights for undirected consensus networks. Our approach uses convex optimization to

balance performance of stochastically-forced networks with the number of edges in the

distributed controller. For `1-regularized minimum variance optimal control problem,

we have derived a Lagrange dual and exploited structure of the optimality conditions

for undirected networks to develop customized algorithms that are well-suited for large

problems. These are based on the proximal gradient and the proximal Newton meth-

ods. The proximal gradient algorithm is a first-order method that updates the controller

graph Laplacian via the use of the soft-thresholding operator. In the proximal Newton



13

method, sequential quadratic approximation of the smooth part of the objective func-

tion is employed and the Newton direction is computed using cyclic coordinate descent

over the set of active variables. Examples are provided to demonstrate utility of our

algorithms. We have shown that proximal algorithms can solve the problems with mil-

lions of edges in the controller graph in several minutes, on a PC. Furthermore, we have

specialized our algorithm to the problem of growing connected resistive networks. In

this, the plant graph is connected and there are no joint edges between the plant and the

controller graphs. We have exploited structure of such networks and demonstrated how

additional edges can be systematically added in a computationally efficient manner.

Edge addition in directed consensus networks.

We consider the `1 regularized version of optimal control problem for adding edges

to directed consensus networks in order to reach consensus and optimally enhance per-

formance. Although the given plant network is not necessarily balanced, in order to

reach agreement, we restrict the closed-loop graph Laplacian to be balanced. The

performance is measured by the H2 norm from the disturbance to the output of the

closed-loop network. In general, this problem is a combinatorial search problem. We

use sparsity promoting optimal control framework and introduce weighted `1 regular-

ization as a proxy for promoting sparsity of the controller. By exploiting structure of

the problem, we develop an algorithm based on ADMM.

Part II

Topology identification of undirected consensus networks via sparse inverse

covariance estimation.

We have developed a method for identifying the topology of an undirected consensus

network using available statistical data. In order to promote network sparsity, we intro-

duce a convex optimization framework aimed at finding the solution to the `1-regularized

maximum likelihood problem. This problem is closely related to the problem of sparse

inverse covariance estimation that has received significant attention in the literature.

In our setup, additional structure arises from the requirement that data is generated

by an undirected consensus network. By exploiting the structure of the problem, we

develop an efficient algorithm based on the sequential quadratic approximation method
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in which the search direction is determined using coordinate descent with active set

strategy. Several examples have been provided to illustrate utility of the method and

efficiency of the customized algorithm.

Topology identification via growing a Chow-Liu tree network.

We have studied the problem of sparse topology identification of an undirected con-

sensus network with leaders using second-order statistical data. The goal is to identify

a sparse interaction topology using sample covariance matrix of the network state. We

have introduced two algorithms based on regularized Gaussian maximum likelihood

and growing a Chow-Liu tree. In the first algorithm, we propose a structured graphical-

LASSO algorithm that uses the weighted `1 regularizer as a proxy for inducing sparse

network topology. The other method is based on growing a Chow-Liu tree that is well-

suited for identifying the underlying structure of large-scale networks. Several examples

have been provided to demonstrate the performance of our framework.

Part III

Global exponential stability via integral quadratic constraints for proximal

gradient flow and Douglas-Rachford splitting dynamics.

We study a class of nonsmooth optimization problems in which it is desired to

minimize the sum of a continuously differentiable function with a Lipschitz continuous

gradient and a nondifferentiable function. For strongly convex problems, we employ the

theory of integral quadratic constraints to prove global exponential stability of proximal

gradient flow and Douglas-Rachford splitting dynamics. We also propose a generaliza-

tion of the Polyak-Lojasiewicz condition to nonsmooth problems and demonstrate the

global exponential convergence of the forward-backward envelope for the proximal gra-

dient flow algorithm even in the absence of strong convexity.

Distributed in-network optimization.

We have studied a class of convex nonsmooth composite optimization problems in

which the objective function is a combination of differentiable and nondifferentiable

functions. By exploiting the structure of the probelm, we have provided an equivalent

consensus-based characterization and have developed an algorithm based on primal-

descent dual-ascent gradient flow method. This algorithm exploits the separability of
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the objective function and is well-suited for distributed implementation. Convexity of

the smooth part of the objective function is utilized to prove global asymptotic stability

of our algorithm. Finally, by exploiting the structure of the H2 norm, we have employed

this algorithm to design a sparse controller network that improves the performance of

the closed-loop system in a large-scale undirected consensus network in a distributed

manner. An example is provided to demonstrate the utility of the developed approach.

We are currently working on implementing this algorithm in C++ and will use it to solve

structured optimal control problems for large-scale systems in a distributed manner.

Part IV

Data-driven proximal algorithms for the design of structured optimal feed-

back gains.

We have considered the problem of designing optimal structured feedback controllers

for large-scale systems. We have shown that for general classes of optimal control

problems, the objective function and its gradient can be computed from data. Trans-

formations borrowed from the theory of reinforcement learning are adapted to obtain

simulation-based algorithms for computing the structured optimal H2 feedback gain.

Customized proximal algorithms based on gradient descent and incremental gradient

are tested in computational experiments and their relative merits are discussed. More-

over, by exploiting the structure of the H2 norm, we have shown that this problem can

be separated into N subproblems and that it can be solved efficiently using distributed

optimization. We have utilized an ADMM-based consensus algorithm to design a sparse

controller network that improves the performance of the closed-loop system. By splitting

the problem into N separate subproblems over N different cores, we have implemented

this algorithm in C++. Our parallel implementation can be used to solve structured

optimal control problems for large-scale systems, e.g., power networks [16,18]. Compu-

tational experiments are provided to demonstrate the utility of the developed approach.
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Distributed design and control of

networks
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Chapter 2

Topology design for stochastically

forced undirected consensus

networks

In this chapter, we study an optimal control problem aimed at adding a certain number

of edges to an undirected network, with a known graph Laplacian, in order to optimally

enhance closed-loop performance. The performance is quantified by the steady-state

variance amplification of the network with additive stochastic disturbances. To promote

controller sparsity, we introduce `1-regularization into the optimal H2 formulation and

cast the design problem as a semidefinite program. We derive a Lagrange dual, provide

interpretation of dual variables, and exploit structure of the optimality conditions for

undirected networks to develop customized proximal gradient and Newton algorithms

that are well-suited for large problems. We illustrate that our algorithms can solve the

problems with more than million edges in the controller graph in a few minutes, on

a PC. We also exploit structure of connected resistive networks to demonstrate how

additional edges can be systematically added in order to minimize the H2 norm of the

closed-loop system.

2.1 Introduction Herein, we study an optimal control problem aimed at

achieving a desired tradeoff between the network performance and communication re-

quirements in the distributed controller. Our goal is to add a certain number of edges to

17
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a given undirected network in order to optimally enhance the closed-loop performance.

One of our key contributions is the formulation of topology design as an optimal control

problem that admits convex characterization and is amenable to the development of

efficient optimization algorithms. In our formulation, the plant network can contain

disconnected components and optimal topology of the controller network is an integral

part of the design. In general, this problem is NP-hard [33] and it amounts to an in-

tractable combinatorial search. Several references have examined convex relaxations

or greedy algorithms to design topology that optimizes algebraic connectivity [34] or

network coherence [9, 35–37].

To enable design of large networks, we pay particular attention to the computational

aspects of the edge-addition problem. We derive a Lagrange dual of the optimal control

problem, provide interpretation of dual variables, and develop efficient proximal algo-

rithms. Furthermore, building on preliminary work [63], we specialize our algorithms

to the problem of growing connected resistive networks described in [7, 34]. In this,

the plant graph is connected and inequality constraints amount to non-negativity of

controller edge weights. This allows us to simplify optimality conditions and further

improve computational efficiency of our customized algorithms.

Proximal gradient algorithms [76] and their accelerated variants [107] have recently

found use in distributed optimization, statistics, machine learning, image and signal

processing. They can be interpreted as generalization of standard gradient projection

to problems with non-smooth and extended real-value objective functions. When the

proximal operator is easy to evaluate, these algorithms are simple yet extremely efficient.

For networks that can contain disconnected components and non-positive edge weights,

we show that the proximal gradient algorithm iteratively updates the controller graph

Laplacian via convenient use of the soft-thresholding operator. This extends the Itera-

tive Shrinkage Thresholding Algorithm (ISTA) to optimal topology design of undirected

networks. In contrast to the `1-regularized least-squares, however, the step-size has to

be selected to guarantee positivity of the second smallest eigenvalue of the closed-loop

graph Laplacian. We combine the Barzilai-Borwein (BB) step-size initialization with

backtracking to achieve this goal and enhance the rate of convergence. The biggest com-

putational challenge comes from evaluation of the objective function and its gradient.

We exploit problem structure to speed up computations and save memory. Finally, for
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the problem of growing connected resistive networks, the proximal algorithm simplifies

to gradient projection which additionally improves the efficiency.

We also develop a customized algorithm based on the proximal Newton method.

In contrast to the proximal gradient, this method sequentially employs the second-

order Taylor series approximation of the smooth part of the objective function; e.g.,

see [123]. We use cyclic coordinate descent over the set of active variables to efficiently

compute the Newton direction by consecutive minimization with respect to individual

coordinates. Similar approach has been recently utilized in a number of applications,

including sparse inverse covariance estimation in graphical models [124].

Both of our customized proximal algorithms significantly outperform a primal-dual

IP method developed in [63]. It is worth noting that the latter is significantly faster than

the general-purpose solvers. While the customized IP algorithm of [63] with a simple

diagonal preconditioner can solve the problems with hundreds of thousands of edges

in the controller graph in several hours, on a PC, the customized algorithms based on

proximal gradient and Newton methods can solve the problems with millions of edges in

several minutes. Furthermore, they are considerably faster than the greedy algorithm

with efficient rank-one updates developed in [37].

Our presentation is organized as follows. In Section 2.2, we formulate the problem

of optimal topology design for undirected networks subject to additive stochastic dis-

turbances. In Section 2.3, we derive a Lagrange dual of the sparsity-promoting optimal

control problem, provide interpretation of dual variables, and construct dual feasible

variables from the primal ones. In Section 2.4, we develop customized algorithms based

on the proximal gradient and Newton methods. In Section 2.5, we achieve additional

speedup by specializing our algorithms to the problem of growing connected resistive

networks. In Section 2.6, we use computational experiments to design optimal topol-

ogy of a controller graph for benchmark problems and demonstrate efficiency of our

algorithms. In Section 2.7, we provide a brief overview of the chapter.

2.2 Problem formulation We consider undirected consensus networks

with n nodes

ψ̇ = −Lp ψ + u + d (2.1)
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where d and u are the exogenous disturbance and the control input, respectively, ψ is

the state of the network, and Lp is a symmetric n × n matrix that represents graph

Laplacian of the open-loop system, i.e., plant. Such networks arise in applications

ranging from load balancing to power systems to opinion formation to control of multi-

agent systems. The goal is to improve performance of a consensus algorithm in the

presence of stochastic disturbances by adding a certain number of edges (from a given

set of candidate edges). We formulate this problem as a feedback design problem with

u = −Lx ψ

where the symmetric feedback-gain matrix Lx is required to have the Laplacian struc-

ture. This implies that each node in (2.1) forms control action using a weighted sum of

the differences between its own state and the states of other nodes and that information

is processed in a symmetric fashion. Since a nonzero ijth element of Lx corresponds to

an edge between the nodes i and j, the communication structure in the controller graph

is determined by the sparsity pattern of the matrix Lx.

Upon closing the loop we obtain

ψ̇ = − (Lp + Lx)ψ + d. (2.2a)

For a given Lp, our objective is to design the topology for Lx and the corresponding edge

weights x in order to achieve the desired tradeoff between controller sparsity and network

performance. The performance is quantified by the steady-state variance amplification

of the stochastically-forced network, from the white-in-time input d to the performance

output ζ,

ζ :=

[
Q1/2

0

]
ψ +

[
0

R1/2

]
u =

[
Q1/2

−R1/2Lx

]
ψ (2.2b)

which penalizes deviation from consensus and control effort. Here, Q = QT � 0 and

R = RT � 0 are the state and control weights in the standard quadratic performance

index.

The interesting features of this problem come from structural restrictions on the

Lalpacian matrices Lp and Lx. Both of them are symmetric and are restricted to
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having an eigenvalue at zero with the corresponding eigenvector of all ones,

Lp 1 = 0, Lx 1 = 0. (2.3)

Since each node uses relative information exchange with its neighbors to update its

state, in the presence of white noise, the average mode ψ̄(t) := (1/n)1Tψ(t) experiences

a random walk and its variance increases linearly with time. To make the average mode

unobservable from the performance output ζ, the matrix Q is also restricted to having

an eigenvalue at zero associated with the vector of all ones, Q1 = 0. Furthermore, to

guarantee observability of the remaining eigenvalues of Lp, we consider state weights

that are positive definite on the orthogonal complement of the subspace spanned by the

vector of all ones, Q + (1/n)11T � 0; e.g., Q = I − (1/n)11T penalizes mean-square

deviation from the network average.

In what follows, we express Lx as

Lx :=
m∑
l= 1

xl ξl ξ
T
l = E diag (x)ET (2.4)

where E is the incidence matrix of the controller graph Lx, m is the number of edges in

Lx, and diag (x) is a diagonal matrix containing the vector of the edge weights x ∈ Rm.

The matrix E is given and it determines the set of candidate edges in controller network.

This set can contain all possible edges in the network or it can only include edges that

are not in the plant network. Many other options are possible as long as the union of

the sets of edges in the plant and controller networks yields a connected graph. We note

that the size of the set of candidate edges in controller network influences computational

complexity of our algorithms.

It is desired to select a subset of edges in order to balance the closed-loop performance

with the number of added edges. Vectors ξl ∈ Rn determine the columns of E and they

signify the connection with weight xl between nodes i and j: the ith and jth entries of

ξl are 1 and −1 and all other entries are equal to 0. Thus, Lx given by (2.4) satisfies

structural requirements on the controller graph Laplacian in (2.3) by construction.

To achieve consensus in the absence of disturbances, the closed-loop network has

to be connected [2]. Equivalently, the second smallest eigenvalue of the closed-loop
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graph Laplacian, L := Lp + Lx, has to be positive, i.e., L has to be positive definite on

1⊥. This amounts to positive definiteness of the “strengthened” graph Laplacian of the

closed-loop network

G := Lp + Lx + (1/n)11T = Gp + E diag (x)ET � 0 (2.5a)

where

Gp := Lp + (1/n)11T . (2.5b)

Structural restrictions (2.3) on the Laplacian matrices introduce an additional constraint

on the matrix G,

G1 = 1. (2.5c)

2.2.1 Design of optimal sparse topology Let d be a white stochastic distur-

bance with zero-mean and unit variance,

E (d(t)) = 0, E
(
d(t1) dT (t2)

)
= I δ(t1 − t2)

where E is the expectation operator. The square of the H2 norm of the transfer function

from d to ζ,

‖H‖22 = lim
t→∞

E
(
ψT (t) (Q + LxRLx)ψ(t)

)
quantifies the steady-state variance amplification of closed-loop system (2.2). As noted

earlier, the network average ψ̄(t) corresponds to the zero eigenvalue of the graph Lapla-

cian and it is not observable from the performance output ζ. Thus, the H2 norm is

equivalently given by

‖H‖22 = lim
t→∞

E
(
ψ̃T (t) (Q + LxRLx) ψ̃(t)

)
= trace (P (Q + LxRLx)) = 〈P,Q + LxRLx〉

where ψ̃(t) is the vector of deviations of the states of individual nodes from ψ̄(t),

ψ̃(t) := ψ(t) − 1 ψ̄(t) =
(
I − (1/n)11T

)
ψ(t)
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and P is the steady-state covariance matrix of ψ̃,

P := lim
t→∞

E
(
ψ̃(t) ψ̃T (t)

)
.

The above measure of the amplification of stochastic disturbances is determined by

‖H‖22 = (1/2)J(x), where

J(x) :=
〈(
Gp + E diag (x)ET

)−1
, Q+ LxRLx

〉
. (2.6)

It can be shown that J can be expressed as

J(x) =
〈(
Gp + E diag (x)ET

)−1
, Qp

〉
+ diag

(
ETRE

)T
x − 〈R,Lp〉 − 1 (2.7)

with

Qp := Q + (1/n)11T + LpRLp.

Note that the last two terms in (2.7) do not depend on the optimization variable x and

that the term LpRLp in Qp has an interesting interpretation: it determines a state-

weight that guarantees inverse optimality (in LQR sense) of u = −Lpψ for a system

with no coupling between the nodes, ψ̇ = u+ d.

We formulate the design of a controller graph that provides an optimal tradeoff

between the H2 performance of the closed-loop network and the controller sparsity as

minimize
x

J(x) + γ ‖x‖1

subject to Gp + E diag (x)ET � 0
(SP)

where J(x) and Gp are given by (2.7) and (2.5b), respectively. The `1 norm of x,

‖x‖1 :=
∑m

l= 1 |xl|, is introduced as a convex proxy for promoting sparsity. In (SP),

the vector of the edge weights x ∈ Rm is the optimization variable; the problem data

are the positive regularization parameter γ, the state and control weights Q and R, the

plant graph Laplacian Lp, and the incidence matrix of the controller graph E.

The sparsity-promoting optimal control problem (SP) is a constrained optimization

problem with a convex non-differentiable objective function [35] and a positive defi-

nite inequality constraint. This implies convexity of (SP). Positive definiteness of the
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strengthened graph Laplacian G guarantees stability of the closed-loop network (2.2a)

on the subspace 1⊥, and thereby consensus in the absence of disturbances [2].

The consensus can be achieved even if some edge weights are negative [3, 5]. By

expressing x as a difference between two non-negative vectors x+ and x−, (SP) can be

written as
minimize
x+, x−

〈(
Gp + E diag (x+ − x−)ET

)−1
, Qp

〉
+

(γ 1 + c)Tx+ + (γ 1 − c)Tx−

subject to Gp + E diag (x+ − x−)ET � 0

x+ ≥ 0, x− ≥ 0

(2.8)

where c := diag
(
ETRE

)
. By utilizing the Schur complement, (2.8) can be cast to an

SDP, and solved via standard IP method algorithms for small size networks.

Reweighted `1 norm

An alternative proxy for promoting sparsity is given by the weighted `1 norm [125],

‖w ◦ x‖1 :=
∑m

l= 1wl |xl| where ◦ denotes elementwise product. The vector of non-

negative weights w ∈ Rm can be selected to provide better approximation of non-

convex cardinality function than the `1 norm. An effective heuristic for weight selection

is given by the iterative reweighted algorithm [125], with wl inversely proportional to

the magnitude of xl in the previous iteration,

w+
l = 1/(|xl| + ε). (2.9)

This puts larger emphasis on smaller optimization variables, where a small positive

parameter ε ensures that w+
l is well-defined. If the weighted `1 norm is used in (SP),

the vector of all ones 1 should be replaced by the vector w in (2.8).

2.2.2 Structured optimal control problem: debiasing step After the

structure of the controller graph Laplacian Lx has been designed, we fix the structure of

Lx and optimize the corresponding edge weights. This “polishing” or “debiasing” step

is used to improve the performance relative to the solution of the regularized optimal

control problem (SP); see [126, Section 6.3.2] for additional information. The structured
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optimal control problem is obtained by eliminating the columns from the incidence ma-

trix E that correspond to zero elements in the vector of the optimal edge weights x?

resulting from (SP). This yields a new incidence matrix Ê and leads to

minimize
x

〈(
Gp + Ê diag (x) ÊT

)−1
, Qp

〉
+ diag

(
ÊTR Ê

)T
x

subject to Gp + Ê diag (x) ÊT � 0.

Alternatively, this optimization problem is obtained by setting γ = 0 in (SP) and by

replacing the incidence matrix E with Ê. The solution provides the optimal vector of

the edge weights x for the controller graph Laplacian with the desired structure.

2.2.3 Gradient and Hessian of J(x) We next summarize the first- and second-

order derivatives of the objective function J , given by (2.7), with respect to the vector

of the edge weights x. The second-order Taylor series approximation of J(x) around

x̄ ∈ Rm is given by

J(x̄+ x̃) ≈ J(x̄) + ∇J(x̄)T x̃ +
1

2
x̃T ∇2J(x̄) x̃.

For related developments we refer the reader to [7].

Proposition 1. The gradient and the Hessian of J at x̄ ∈ Rm are determined by

∇J(x̄) = − diag
(
ET (Y (x̄) − R)E

)
∇2J(x̄) = H1(x̄) ◦ H2(x̄)

where
Y (x̄) :=

(
Gp + EDx̄E

T
)−1

Qp
(
Gp + EDx̄E

T
)−1

H1(x̄) := ET Y (x̄)E

H2(x̄) := ET
(
Gp + EDx̄E

T
)−1

E

Dx̄ := diag (x̄) .

2.3 Dual problem Herein, we study the Lagrange dual of the sparsity-

promoting optimal control problem (2.8), provide interpretation of dual variables, and

construct dual feasible variables from primal feasible variables. Since minimization of



26

the Lagrangian associated with (2.8) does not lead to an explicit expression for the dual

function, we introduce an auxiliary variable G and find the dual of

minimize
G, x±

〈
G−1, Qp

〉
+ (γ 1 + c)Tx+ + (γ 1 − c)Tx−

subject to G − Gp − E diag (x+ − x−)ET = 0

G � 0, x+ ≥ 0, x− ≥ 0.

(P)

In (P), G represents the “strengthened” graph Laplacian of the closed-loop network and

the equality constraint comes from (2.5a). As we show next, the Lagrange dual of the

primal optimization problem (P) admits an explicit characterization.

Proposition 2. The Lagrange dual of the primal optimization problem (P) is given by

maximize
Y

2 trace
(

(Q
1/2
p Y Q

1/2
p )1/2

)
− 〈Y,Gp〉

subject to ‖ diag
(
ET (Y − R)E

)
‖∞ ≤ γ

Y � 0, Y 1 = 1

(D)

where Y = Y T ∈ Rn×n is the dual variable associated with the equality constraint in (P).

The duality gap is

η = yT+ x+ + yT− x− = 1T (y+ ◦ x+ + y− ◦ x−) (2.10)

where

y+ = γ 1 − diag
(
ET (Y −R)E

)
≥ 0 (2.11a)

y− = γ 1 + diag
(
ET (Y −R)E

)
≥ 0. (2.11b)

are the Lagrange multipliers associated with elementwise inequality constraints in (P).

Proof. The Lagrangian of (P) is given by

L =
〈
G−1, Qp

〉
+ 〈Y,G〉 − 〈Y,Gp〉 +(

γ 1 − diag
(
ET (Y −R)E

)
− y+

)T
x+ +(

γ 1 + diag
(
ET (Y −R)E

)
− y−

)T
x−.

(2.12)
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Note that no Lagrange multiplier is assigned to the positive definite constraint on G in

L. Instead, we determine conditions on Y and y± that guarantee G � 0.

Minimizing L with respect to G yields

G−1QpG
−1 = Y (2.13a)

or, equivalently,

G = Q1/2
p

(
Q1/2
p Y Q1/2

p

)−1/2
Q1/2
p . (2.13b)

Positive definiteness of G and Qp implies Y � 0. Furthermore, since Qp1 = 1,

from (2.5c) and (2.13a) we have

Y 1 = 1.

Similarly, minimization with respect to x+ and x− leads to (2.11a) and (2.11a). Thus,

non-negativity of y+ and y− amounts to

−γ 1 ≤ diag
(
ET (Y −R)E

)
≤ γ 1

or, equivalently,

‖diag
(
ET (Y −R)E

)
‖∞ ≤ γ.

Substitution of (2.13) and (2.11) into (2.12) eliminates y+ and y− from the dual problem.

We can thus represent the dual function, infG, x± L(G, x±;Y, y±), as

2 trace
(

(Q1/2
p Y Q1/2

p )1/2
)
− 〈Y,Gp〉

which allows us to bring the dual of (P) to (D).

Any dual feasible Y can be used to obtain a lower bound on the optimal value of

the primal problem (P). Furthermore, the difference between the objective functions of

the primal (evaluated at the primal feasible (G, x±)) and dual (evaluated at the dual

feasible Y ) problems yields expression (2.10) for the duality gap η, where y+ and y−

are given by (2.11a) and (2.11b). The duality gap can be used to estimate distance to

optimality.
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Strong duality follows from Slater’s theorem [126], i.e., convexity of the primal prob-

lem (P) and strict feasibility of the constraints in (P). This implies that at optimality,

the duality gap η for the primal problem (P) and the dual problem (D) is zero. Further-

more, if (G?, x?±) are optimal points of (P), then Y ? = (G?)−1Qp (G?)−1 is the optimal

point of (D). Similarly, if Y ? is the optimal point of (D),

G? = Q1/2
p

(
Q1/2
p Y ?Q1/2

p

)−1/2
Q1/2
p

is the optimal point of (P). The optimal vector of the edge weights x? is determined by

the non-zero off-diagonal elements of the controller graph Laplacian, L?x = G? −Gp.

Interpretation of dual variables

For electrical networks, the dual variables have appealing interpretations. Let ι ∈ Rn

be a random current injected into the resistor network satisfying

1T ι = 0, E (ι) = 0, E
(
ιιT
)

= Q + LpRLp.

The vector of voltages ϑ ∈ Rm across the edges of the network is then given by ϑ =

ETG−1ι. Furthermore, since

E
(
ϑϑT

)
= ET G−1 E

(
ιιT
)
G−1E = ET Y E,

the dual variable Y is related to the covariance matrix of voltages across the edges.

Moreover, (2.11) implies that y+ and y− quantify the deviations between variances of

edge voltages from their respective upper and lower bounds.

Remark 1. For a primal feasible x, Y resulting from (2.13a) with G given by (2.5a)

may not be dual feasible. Let

Ŷ := β Y +
1 − β

n
11T (2.14a)

and let the control weight be R = r I with r > 0. If

β ≤ γ + 2 r

‖diag (ET (Y − R)E) ‖∞ + 2 r
(2.14b)
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then Ŷ satisfies the inequality constraint in (D) and it is thus dual feasible.

2.4 Customized algorithms We next exploit the structure of the sparsity-

promoting optimal control problem (SP) and develop customized algorithms based on

the proximal gradient and Newton methods. The proximal gradient algorithm is a first-

order method that uses a simple quadratic approximation of J in (SP). This yields an

explicit update of the vector of the edge weights via application of the soft-thresholding

operator. In the proximal Newton method a sequential quadratic approximation of

the smooth part of the objective function in (SP) is used and the search direction is

efficiently computed via cyclic coordinate descent over the set of active variables.

2.4.1 Proximal gradient method We next use the proximal gradient method

to solve (SP). A simple quadratic approximation of J(x) around the current iterate xk,

J(x) ≈ J(xk) + ∇J(xk)T (x − xk) +
1

2αk
‖x − xk‖22

is substituted to (SP) to obtain

xk+1 = argmin
x

g(x) +
1

2αk
‖x − (xk − αk∇J(xk))‖22.

Here, αk is the step-size and the update is determined by the proximal operator of the

function αk g,

xk+1 = proxαkg

(
xk − αk∇J(xk)

)
.

In particular, for g(x) = γ ‖x‖1, we have

xk+1 = Sγαk

(
xk − αk∇J(xk)

)
where Sκ(y) = sign (y) max (|y| − κ, 0) is the soft-thresholding function.

The proximal gradient algorithm converges with rate O(1/k) if αk < 1/L, where L is

the Lipschitz constant of ∇J [76,107]. It can be shown that ∇J is Lipschitz continuous

but, since it is challenging to explicitly determine L, we adjust αk via backtracking. To

provide a better estimate of L, we initialize αk using the Barzilai-Borwein (BB) method

which provides an effective heuristic for approximating the Hessian of the function J
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via the scaled version of the identity [127], (1/αk)I. At the kth iteration, the initial BB

step-size αk,0,

αk,0 :=
‖xk − xk−1‖22

(xk−1 − xk)T (∇J(xk−1) − ∇J(xk))
(2.15)

is adjusted via backtracking until the inequality constraint in (SP) is satisfied and

J(xk+1) ≤ J(xk) +∇J(xk)T (xk+1 − xk) +
1

2αk
‖xk+1 − xk‖22.

Since J is continuously differentiable with Lipschitz continuous gradient, this inequality

holds for any αk < 1/L and the algorithm converges sub-linearly [107]. This condition

guarantees that objective function decreases at every iteration. Our numerical experi-

ments in Section 2.6 suggest that BB step-size initialization significantly enhances the

rate of convergence.

Remark 2. The biggest computational challenge comes from evaluation of the objective

function and its gradient. Since the inverse of the strengthened graph Laplacian G has

to be computed, with direct computations these evaluations take O(n3) and O(nm2)

flops, respectively. However, by exploiting the problem structure, ∇J can be computed

more efficiently. The main cost arises in the computation of diag (ETY E). We instead

compute it using sum (ET ◦ (Y E)) which takes O(n2m) operations. Here, sum (A) is

a vector which contains summation of each row of the matrix A in its entries. For

networks with m� n this leads to significant speed up. Moreover, in contrast to direct

computation, we do not need to store the m×m matrix ETY E. Only formation of the

columns is required which offers memory saving.

2.4.2 Proximal Newton method In contrast to the proximal gradient algo-

rithm, the proximal Newton method benefits from second-order Taylor series expansion

of the smooth part of the objective function in (SP). Herein, we employ cyclic coordinate

descent over the set of active variables to efficiently compute the Newton direction.

By approximating the smooth part of the objective function J in (SP) with the

second-order Taylor series expansion around the current iterate x̄,

J(x̄+ x̃) ≈ J(x̄) + ∇J(x̄)T x̃ +
1

2
x̃T ∇2J(x̄) x̃
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the problem (SP) becomes

minimize
x̃

∇J(x̄)T x̃ +
1

2
x̃T ∇2J(x̄) x̃ + γ ‖x̄ + x̃‖1

subject to Gp + E diag (x̄ + x̃)ET � 0.

(2.16)

Let x̃ denote the current iterate approximating the Newton direction. By perturbing x̃

in the direction of the ith standard basis vector ei in Rm, the objective function in (2.16)

becomes

∇J(x̄)T (x̃ + δi ei) +
1

2
(x̃ + δi ei)

T ∇2J(x̄) (x̃ + δi ei) + γ |x̄i + x̃i + δi|.

Elimination of constant terms allows us to bring (2.16) into

minimize
δi

1

2
ai δ

2
i + bi δi + γ |ci + δi| (2.17)

where the optimization variable is the scalar δi and (ai, bi, ci, x̄i, x̃i) are the problem

data with
ai := eTi ∇2J(x̄) ei

bi :=
(
∇2J(x̄) ei

)T
x̃ + eTi ∇J(x̄)

ci := x̄i + x̃i.

The explicit solution to (2.17) is given by

δi = − ci + Sγ/ai(ci − bi/ai) .

After the Newton direction x̃ has been computed, we determine the step-size α via

backtracking. This guarantees positive definiteness of the strengthened graph Lapla-

cian and sufficient decrease of the objective function. We use generalization of Armijo

rule [128] to find an appropriate step-size α such that Gp+E diag(x̄+αx̃)ET is positive

definite matrix and

J(x̄+ αx̃) + γ ‖x̄+ αx̃‖1 ≤ J(x̄) + γ ‖x̄‖1 + ασ
(
∇J(x̄)T x̃ + γ ‖x̄+ x̃‖1 − γ ‖x̄‖1

)
.

Remark 3. The parameter ai in (2.17) is determined by the ith diagonal element of the



32

Hessian ∇2J(x̄). On the other hand, the ith column of ∇2J(x̄) and the ith element of

the gradient vector ∇J(x̄) enter into the expression for bi. All of these can be obtained

directly from ∇2J(x̄) and ∇J(x̄) and forming them does not require any multiplication.

Computation of a single vector inner product between the ith column of the Hessian and

x̃ is required in bi, which typically takes O(m) operations. To avoid direct multiplication,

in each iteration after finding δi, we update the vector ∇2J(x̄)T x̃ using the correction

term δi(E
TY Ei) ◦ ((G−1Ei)

TE)T and take its ith element to form bi. Here, Ei is the

ith column of the incidence matrix of the controller graph. This also avoids the need

to store the Hessian of J , which is an m ×m matrix, thereby leading to a significant

memory saving.

Remark 4. Active set strategy is an effective means for determining the directions

that do not need to be updated in the coordinate descent algorithm. At each outer

iteration, we classify the variable as either active or inactive based on the values of

x̄i and the ith component of the gradient vector ∇J(x̄). For g(x) = γ ‖x‖1, the ith

search direction is inactive if

x̄i = 0 and | eTi ∇J(x̄) | < γ − ε

and it is active otherwise. Here, ε > 0 is a small number (e.g., ε = 0.0001γ). The

Newton direction is then obtained by solving the optimization problem over the set of

active variables. This significantly improves algorithmic efficiency for large values of

the regularization parameter γ.

Convergence analysis

In (SP), J(x) is smooth for Gp+E diag(x)ET � 0 and the non-smooth part is given by

the `1 norm of x. The objective function of the form J(x) + g(x) was studied in [124],

where J is smooth over the positive definite cone and g is a separable non-differentiable

function. Theorem 16 from [124] thus implies super-linear (i.e., quadratic) convergence

rate of the quadratic approximation method for (SP).
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Table 2.1: Comparison of our customized proximal algorithms

Algorithm proximal gradient proximal Newton

Order 1st 2nd

Search direction explicit update coordinate descent

Speed-up strategy BB step-size initialization active set strategy

Memory no storage of m×m matrices no storage of m×m matrices

Most expensive part O(n2m) O(m2)

Convergence rate linear super-linear (quadratic)

Table 2.2: Algorithmic properties of the primal dual IP method.

Algorithm primal-dual IP method

Order 2nd

Search direction PCG

Speed-up strategy PCG with preconditioner

Memory no storage of m×m matrices

Most expensive part O(m3)

Convergence rate super-linear

Stopping criteria

The norms of the primal and dual residuals rp and r±d as well as the duality gap η are

used as stopping criteria. In contrast to the stopping criteria available in the literature,

this choice enables fair comparison of the algorithms. We use (2.14) to construct a dual

feasible Ŷ and obtain y± from (2.11), (2.10) to compute the duality gap η, and

rp(x, x±) := x − x+ + x−

r+
d (x, y+) := γ 1 − diag

(
ET (Ŷ −R)E

)
− y+

r−d (x, y−) := γ 1 + diag
(
ET (Ŷ −R)E

)
− y−.

to determine the primal and dual residuals.

Comparison of algorithms

Tables 2.1 and 2.2 compare and contrast features of our customized proximal algorithms

and the algorithm based on the primal-dual IP method developed in [63].
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2.5 Growing connected resistive networks The problem of opti-

mal topology design for stochastically-forced networks has many interesting variations.

An important class is given by resistive networks in which all edge weights are non-

negative, x ≥ 0. Here, we study the problem of growing connected resistive networks;

e.g., see [34]. In this, the plant graph is connected and there are no joint edges between

the plant and the controller graphs. Our objective is to enhance the closed-loop per-

formance by adding a small number of edges. As we show below, inequality constraints

in this case amount to non-negativity of controller edge weights. This simplifies opti-

mality conditions and enables further improvement of the computational efficiency of

our customized algorithms.

The restriction on connected plant graphs implies positive definiteness of the strength-

ened graph Laplacian of the plant, Gp = Lp + (1/n)11T � 0. Thus, Gp +E diag (x)ET

is always positive definite for connected resistive networks and (SP) simplifies to

minimize
x

f(x) + g(x) (2.18)

where

f(x) := J(x) + γ 1Tx

and g(x) is the indicator function for the non-negative orthant,

g(x) := I+(x) =

 0, x ≥ 0

+∞, otherwise.

As in Section 2.3, in order to determine the Lagrange dual of the optimization

problem (2.18), we introduce an additional optimization variable G and rewrite (2.18)

as
minimize

G, x

〈
G−1, Qp

〉
+ (γ 1 + diag

(
ETRE

)
)Tx

subject to G − Gp − E diag (x)ET = 0

x ≥ 0.

(P1)

Proposition 3. The Lagrange dual of the primal optimization problem (P1) is given
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by

maximize
Y

2 trace
(

(Q
1/2
p Y Q

1/2
p )1/2

)
− 〈Y,Gp〉

subject to diag
(
ET (Y − R)E

)
≤ γ 1

Y � 0, Y 1 = 1

(D1)

where Y is the dual variable associated with the equality constraint in (P1). The duality

gap is

η = yTx = 1T (y ◦ x) (2.19)

where

y := γ 1 − diag
(
ET (Y −R)E

)
≥ 0 (2.20)

represents the dual variable associated with the non-negativity constraint on the vector

of the edge weights x.

Remark 5. For connected resistive networks with the control weight R = r I, Ŷ given

by (2.14a) is dual feasible if

β ≤ γ + 2 r

max (diag (ET (Y − R)E)) + 2 r
. (2.21)

2.5.1 Proximal gradient method Using a simple quadratic approximation of

the smooth part of the objective function f around the current iterate xk

f(x) ≈ f(xk) + ∇f(xk)T (x − xk) +
1

2αk
‖x − xk‖22

the optimal solution of (2.18) is determined by the proximal operator of the function

g(x) = I+(x),

xk+1 =
(
xk − αk∇f(xk)

)
+

where (·)+ is the projection on the non-negative orthant. Thus, the action of the

proximal operator is given by the projected gradient.

As in Section 2.4.1, we initialize αk using the BB heuristics but we skip the back-

tracking step here and employ a non-monotone BB scheme [129,130]. The effectiveness
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of this strategy has been established on quadratic problems [127, 129], but its conver-

gence in general is hard to prove. In Section 2.6, we demonstrate efficiency of this

approach.

2.5.2 Proximal Newton method We next adjust the customized algorithm

based on proximal Newton method for growing connected resistive networks. We ap-

proximate the smooth part of the objective function f in (2.18) using the second-order

Taylor series expansion around the current iterate x̄,

f(x̄+ x̃) ≈ f(x̄) + ∇f(x̄)T x̃ +
1

2
x̃T ∇2f(x̄) x̃

and rewrite (2.18) as

minimize
x̃

∇f(x̄)T x̃ +
1

2
x̃T ∇2f(x̄) x̃

subject to x̄ + x̃ ≥ 0.

(2.22)

By perturbing x̃ in the direction of the ith standard basis vector ei in Rm, x̃+ δi ei, the

objective function in (2.22) becomes

∇f(x̄)T (x̃ + δi ei) +
1

2
(x̃ + δi ei)

T ∇2f(x̄) (x̃ + δi ei) .

Elimination of constant terms allows us to bring (2.22) into

minimize
δi

1

2
ai δ

2
i + bi δi

subject to x̄i + x̃i + δi ≥ 0.

(2.23)

The optimization variable is the scalar δi and ai, bi, x̄i, and x̃i are the problem data

with
ai := eTi ∇2f(x̄) ei

bi :=
(
∇2f(x̄) ei

)T
x̃ + eTi ∇f(x̄)

The explicit solution to (2.23) is given by

δi =

 −bi/ai, x̄i + x̃i − bi/ai ≥ 0

− (x̄i + x̃i) , otherwise .
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After the Newton direction x̃ has been computed, we determine the step-size α

via backtracking. This guarantees positivity of the updated vector of the edge weights,

x̄+αx̃, and sufficient decrease of the objective function, f(x̄+αx̃) ≤ f(x̄)+ασ∇f(x̄)T x̃.

Remark 6. As in Section 2.4.2, we use an active set strategy to identify the directions

that do not need to be updated in the coordinate descent algorithm. For g(x) = I+(x), the

ith search direction is inactive if {x̄i = 0 and eTi ∇f(x̄) ≥ 0} and it is active otherwise.

Stopping criteria

The norm of the dual residual, rd, and the duality gap, η, are used as stopping cri-

teria. The dual variable y is obtained from (2.20) where Ŷ is given by (2.14a) and β

satisfies (2.21). At each iteration, η is evaluated using (2.19) and the dual residual is

determined by

rd(x, y) := γ 1 − diag
(
ET (Y (x) − R)E

)
− y.

2.6 Computational experiments We next provide examples and eval-

uate performance of our customized algorithms. Algorithm proxBB represents proximal

gradient method with BB step-size initialization and proxN identifies proximal Newton

method in which the search direction is found via coordinate descent. Performance is

compared with the PCG-based primal-dual IP method of [63] and the greedy algorithm

of [37]. We have implemented all algorithms in Matlab and executed tests on a 3.4

GHz Core(TM) i7-3770 Intel(R) machine with 16GB RAM.

In all examples, we set R = I and choose the state weight that penalizes the mean-

square deviation from the network average, Q = I − (1/n)11T . The absolute value of

the dual residual, rd, and the duality gap, η, are used as stopping criteria. We set the

tolerances for rd and η to 10−3 and 10−4, respectively. Finally, for connected plant

networks

γmax := ‖diag (ET G−1
p QG−1

p E) ‖∞

identifies the value of the regularization parameter γ for which all edge weights in the

controller graph are equal to zero.
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Table 2.3: Comparison of algorithms (solve times in seconds/number of iterations) for
the problem of growing connected resistive Erdös-Rényi networks with different number
of nodes n, edge probability 1.05 log(n)/n, and γ = 0.8 γmax.

number of nodes n = 300 n = 700 n = 1000

number of edges m = 43986 m = 242249 m = 495879

IP (PCG) 16.499/8 394.256/13 1014.282/13

proxBB 1.279/11 15.353/11 55.944/13

proxN 1.078/4 11.992/4 34.759/4

Table 2.4: Table 2.3 continued

number of nodes n = 1300 n = 1500

number of edges m = 839487 m = 1118541

IP (PCG) 15948.164/13 179352.208/14

proxBB 157.305/16 239.567/16

proxN 82.488/4 124.307/4

Additional information about our computational experiments, along with Matlab

source codes, can be found at:

www.ece.umn.edu/∼mihailo/software/graphsp/

2.6.1 Performance comparison In what follows, the incidence matrix of the

controller graph is selected to satisfy the following requirements: (i) in the absence of

the sparsity-promoting term, the closed-loop network is given by a complete graph; and

(ii) there are no joint edges between the plant and the controller graphs.

We first solve the problem (P1) for growing connected resistive Erdös-Rényi networks

with different number of nodes. The generator of the plant dynamics is given by an

undirected unweighted graph with edge probability 1.05 log(n)/n. Tables 2.3 and 2.4

compare our customized algorithms in terms of speed and the number of iterations.

Even for small networks, proximal methods are significantly faster than the IP method

and proxN takes smaller number of iterations and converges quicker than proxBB. For

a larger network (with 1500 nodes and 1118541 edges in the controller graph), it takes

about 50 hours for the PCG-based IP method to solve the problem. In contrast, proxN

and proxBB converge in about 2 and 4 minutes, respectively.

Figure 2.1 compares our proximal gradient algorithm with the fast greedy algorithm

http://www.ece.umn.edu/~mihailo/software/graphsp/index.html
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(a) solve times (b) (J − Jc)/Jc

n n

Figure 2.1: (a) Solve times (in seconds); and (b) performance degradation (in percents)
of proximal gradient and greedy algorithms relative to the optimal centralized controller.

of [37]. We solve problem (P1) for Erdös-Rényi networks with different number of

nodes (n = 5 to 500) and γ = 0.4 γmax. After proxBB identifies the edges in the

controller graph, we use the greedy method to select the same number of edges. Finally,

we polish the identified edge weights for both methods. Figure 2.1a shows the solve

times (in seconds) versus the number of nodes. As the number of nodes increases the

proximal algorithm significantly outperforms the fast greedy method. Relative to the

optimal centralized controller, both methods yield similar performance degradation of

the closed-loop network; see Fig. 2.1b.

2.6.2 Large-scale Facebook network To evaluate effectiveness of our algo-

rithms on large networks, we solve the problem of growing a network of friendships.

In such social networks, nodes denote people and edges denote friendships. There is an

edge between two nodes if two people are friends. The network is obtained by examining

social network of 10 users (the so-called ego nodes); all other nodes are friends to at least

one of these ego nodes [131]. The resulting network is undirected and unweighted with

4039 nodes and 88234 edges; the data is available at http://snap.stanford.edu/data/.

Our objective is to improve performance by adding a small number of extra edges. We

assume that people can only form friendships with friends of their friends. This restricts

the number of potential edges in the controller graph to 1358067.

http://snap.stanford.edu/data/
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(a) card(x) (b) (J − Jc)/Jc

γ card(x)

Figure 2.2: (a) Sparsity level; and (b) optimal tradeoff curves resulting from the applica-
tion of proximal gradient algorithm and a heuristic strategy for the Facebook network.

To avoid memory issues, we have implemented our algorithms in C++. For γ =

c γmax with c = {0.1, 0.2, 0.5, 0.8} and γmax = 19.525, the proximal gradient algorithm

computes the solution in about 10, 2.6, 0.87, and 0.43 hours, respectively. After de-

signing the topology of the controller graph, we optimize the resulting edge weights via

polishing.

Figure 2.2a shows that the number of nonzero elements in the vector x decreases as

γ increases and Fig. 2.2b illustrates that the H2 performance deteriorates as the number

of nonzero elements in x decreases. In particular, for γ = 0.8 γmax, the identified sparse

controller has only 3 nonzero elements (it uses only 0.0002% of the potential edges).

Relative to the optimal centralized controller, this controller degrades performance by

16.842%, (J − Jc)/Jc = 16.842%.

In all of our experiments, the added links with the largest edge weights connect

either the ego nodes to each other or three non-ego nodes to the ego nodes. Thus, our

method recognizes significance of the ego nodes and identifies non-ego nodes that play

an important role in improving performance.

We compare performance of the identified controller to a heuristic strategy that is

described next. The controller graph contains 16 potential edges between ego nodes. If

the number of edges identified by our method is smaller than 16, we randomly select the

desired number of edges between ego nodes. Otherwise, we connect all ego nodes and



41

select the remaining edges in the controller graph randomly. We then use polishing to

find the optimal edge weights. The performance of resulting random controller graphs

are averaged over 10 trials and the performance loss relative to the optimal centralized

controller is displayed in Fig. 2.2b. We see that our algorithm always performs better

than the heuristic strategy. On the other hand, the heuristic strategy outperforms the

strategy that adds edges randomly (without paying attention to ego nodes). Unlike

our method, the heuristic strategy does not necessarily improve the performance by

increasing the number of added edges. In fact, the performance deteriorates as the

number of edges in the controller graph increases from 4 to 27; see Fig. 2.2b.

2.6.3 Random disconnected network The plant graph (blue lines) in Fig. 2.3

contains 50 randomly distributed nodes in a region of 10 × 10 units. Two nodes are

neighbors if their Euclidean distance is not greater than 2 units. We examine the

problem of adding edges to a plant graph which is not connected and solve the sparsity-

promoting optimal control problem (SP) for controller graph with m = 1094 potential

edges. This is done for 200 logarithmically-spaced values of γ ∈ [10−3, 2.5] using the

path-following iterative reweighted algorithm as a proxy for inducing sparsity [125]. As

indicated by (2.9), we set the weights to be inversely proportional to the magnitude of

the solution x to (SP) at the previous value of γ. We choose ε = 10−3 in (2.9) and

initialize weights for γ = 10−3 using the solution to (SP) with γ = 0 (i.e., the optimal

centralized vector of the edge weights). Topology design is followed by the polishing

step that computes the optimal edge weights; see Section 2.2.2.

As illustrated in Fig. 2.3, larger values of γ yield sparser controller graphs (red lines).

In contrast to all other examples, the plant graph is not connected and the optimal

solution is obtained using the algorithms of Section 2.4. Note that greedy method [37]

cannot be used here. Since the plant graph has three disconnected subgraphs, at least

two edges in the controller are needed to make the closed-loop network connected.

Figure 2.4 shows that the number of nonzero elements in the vector of the edge

weights x decreases and that the closed-loop performance deteriorates as γ increases.

In particular, Fig. 2.4c illustrates the optimal tradeoff curve between theH2 performance

loss (relative to the optimal centralized controller) and the sparsity of the vector x. For

γ = 2.5, only four edges are added. Relative to the optimal centralized vector of the

controller edge weights xc, the identified sparse controller in this case uses only 0.37% of
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(a) γ = 0.02 (b) γ = 0.09

(c) γ = 0.63 (d) γ = 2.5

Figure 2.3: Topologies of the plant (blue lines) and controller graphs (red lines) for an
unweighted random network with three disconnected subgraphs.
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(a) card(x)/card(xc) (b) (J − Jc)/Jc (c) (J − Jc)/Jc

γ γ card(x)/card(xc)

Figure 2.4: (a) Sparsity level; (b) performance degradation; and (c) the optimal tradeoff
curve between the performance degradation and the sparsity level of optimal sparse x
compared to the optimal centralized vector of the edge weights xc. The results are
obtained for unweighted random disconnected plant network with topology shown in
Fig. 2.3.

the edges, and achieves a performance loss of 82.13%, i.e., card(x)/card(xc) = 0.37%

and (J−Jc)/Jc = 82.13%. Here, xc is the solution to (SP) with γ = 0 and the pattern of

non-zero elements of x is obtained by solving (SP) with γ = 2.5 via the path-following

iterative reweighted algorithm.

2.6.4 Path and ring networks For path networks, our computational exper-

iments show that for a large enough value of the sparsity-promoting parameter γ a

single edge, which generates the longest cycle, is added; see Fig. 2.5, top row. This is

in agreement with [9] where it was proved that the longest cycle is most beneficial for

improving the H2 performance of tree networks. Similar observations are made for the

spatially-invariant ring network with nearest neighbor interactions. For large values of

γ, each node establishes a link to the node that is farthest away in the network; see

Fig. 2.5, bottom row. This is in agreement with recent theoretical developments [132]

where perturbation analysis was used to identify optimal week links in edge-transitive

consensus networks. Thus, for these regular networks and large enough values of the

regularization parameter, our approach indeed provides the globally optimal solution to

the original non-convex cardinality minimization problem.

2.7 Concluding remarks We have examined the problem of optimal topol-

ogy design of the corresponding edge weights for undirected consensus networks. Our
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(a) γ = 0 (b) γ = 0.09 γmax (c) γ = 0.24 γmax (d) γ = 0.96 γmax

(e) γ = 0 (f) γ = 0.11 γmax (g) γ = 0.24 γmax (h) γ = 0.94 γmax

Figure 2.5: The problems of growing unweighted path (top row) and ring (bottom row)
networks. Blue lines identify edges in the plant graph, and red lines identify edges in
the controller graph.

approach uses convex optimization to balance performance of stochastically-forced net-

works with the number of edges in the distributed controller. For `1-regularized mini-

mum variance optimal control problem, we have derived a Lagrange dual and exploited

structure of the optimality conditions for undirected networks to develop customized al-

gorithms that are well-suited for large problems. These are based on the proximal gradi-

ent and the proximal Newton methods. The proximal gradient algorithm is a first-order

method that updates the controller graph Laplacian via the use of the soft-thresholding

operator. In the proximal Newton method, sequential quadratic approximation of the

smooth part of the objective function is employed and the Newton direction is computed

using cyclic coordinate descent over the set of active variables. Examples are provided

to demonstrate utility of our algorithms. We have shown that proximal algorithms can

solve the problems with millions of edges in the controller graph in several minutes,

on a PC. Furthermore, we have specialized our algorithm to the problem of growing

connected resistive networks. In this, the plant graph is connected and there are no

joint edges between the plant and the controller graphs. We have exploited structure of

such networks and demonstrated how additional edges can be systematically added in



45

a computationally efficient manner.



Chapter 3

Edge addition in directed

consensus networks

We study the problem of performance enhancement in stochastically-forced directed

consensus networks by adding edges to an existing topology. We formulate the problem

as a feedback control design, and represent the links as the elements of the controller

graph Laplacian matrix. The topology design of the controller network can be cast as

an `1 regularized version of the H2 optimal control problem. The goal is to optimize

the performance of the network by selecting a controller graph with low communica-

tion requirements. To deal with the structural constraints that arise from the absence

of absolute measurements, we introduce a coordinate transformation to eliminate the

average mode and assure convergence of all states to the average of the initial node

values. By exploiting structure of the optimization problem, we develop a customized

algorithm based on the alternating direction method of multipliers to design a sparse

controller network that improves the performance of the closed-loop system.

3.1 Introduction In this chapter, we consider the problem of adding edges

to a weakly connected directed consensus network in order to improve performance. In

particular, we are interested in designing sparse communication graphs that strike a

balance between the variance amplification of the closed-loop system and the number

of communication links. In general, this is a combinatorial search problem and is non-

convex. In undirected networks, convex relaxations or greedy algorithms have been

46
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introduced in order to optimize algebraic connectivity of the network [34,65] or network

coherence [35,133,134] by adding edges from a given set of edges.

In the absence of disturbances, a strongly connected balanced network converges

to the average of the initial node values [2]. However, in the presence of additive

stochastic disturbances, the network average experiences a random walk. Thus, the

control objective is to minimize mean square deviation from average. To cope with

structural constraints that arise from the absence of absolute information exchange,

we introduce a coordinate transformation to eliminate the average mode. While it is

desired to promote sparsity of controller graph in the physical domain, the H2 optimal

control problem is solved in the transformed set of coordinates where the average mode

is eliminated.

We formulate the edge addition problem for directed networks with an objective

of optimizing the closed-loop coherence. We consider the scenario in which the plant

graph is unbalanced. Structural requirements that the closed-loop graph Laplacian is

weakly connected and balanced make the optimal control problem challenging. We

approach this problem using sparsity-promoting optimal control framework [41,42,71].

In our formulation, performance is captured by the H2 norm of the closed-loop network

and `1 regularization is introduced as a proxy for inducing sparsity in the controller

graph [35, 133]. By exploiting the structure of the problem, we develop a customized

algorithm based on alternating direction method of multipliers (ADMM) [113].

The rest of the chapter is structured as follows. In Section 3.2, we provide necessary

background on graph theory for directed networks, define consensus problems on graphs,

and introduce an appropriate change of coordinates. In Section 3.3, we formulate the

optimal control problem. In Section 3.4, we develop a customized algorithm based

on ADMM. In Section 3.5, we use our algorithm for sparse edge addition to directed

consensus networks. Finally, in Section 3.6, we provide concluding remarks and highlight

future directions.

3.2 Motivation and background In this section, after providing the

necessary background, we describe the dynamics of consensus networks, inherent struc-

tural constraints, and the challenges in the related design problems. We then introduce

a change of coordinates that enables us to overcome these restrictions.
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3.2.1 Directed graphs Herein, we provide a brief overview of the background

material; for additional information, see [2].

Weighted digraph: a weighted directed graph is denoted by D = (V,E,w) where V

and E are the sets of nodes and edges and w is the vector of edge weights. The edges

are directed and a value wij is the edge weight between nodes vi and vj . If the ordered

pair (vi, vj) ∈ E then vi is the tail of the edge and vj is its head.

Strongly connected digraph: a digraph is strongly connected if there is a directed

path between every pair of nodes.

Weakly connected digraph: a digraph is weakly connected if it is a connected graph

when the directions are omitted.

Adjacency matrix : the ijth element is given by

Aij =

 wij , (vj , vi) ∈ E

0, otherwise.

Degree matrix is a diagonal matrix with Dii = din(vi) where din(vi) is the weighted

in-degree of node vi,

din(vi) =
∑
j

wij .

We sum over j’s for (vj , vi) ∈ E.

Laplacian matrix is a matrix L = D −A, where L1 = 0 by definition.

Balanced digraph: a digraph is balanced if the weighted in-degree and the weighted

out-degree for each node are equal.

3.2.2 Feedback design in consensus networks We consider a consensus dy-

namics

ẋ = −Lp x + u + d

where d and u are the disturbance and control inputs, x is the vector of the states,

and Lp ∈ Rn×n is the graph Laplacian of the plant network. We assume that the plant

network is weakly connected and formulate the edge addition problem as a feedback

design problem with

u = −Lx x
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where Lx ∈ Rn×n is the weighted directed Laplacian matrix of the controller. This

matrix represents the locations, directions, and edge weights. Note that each nonzero

element in Lx can either indicate addition of an edge or re-tuning of an existing edge

gain.

The closed-loop system is given by

ẋ = − (Lp + Lx)x + d. (3.1a)

Our goal is to optimally design the feedback gain matrix Lx in order to achieve the

desired tradeoff between the controller sparsity and network performance. The per-

formance is quantified by the steady-state variance amplification of the stochastically-

forced network, from the white-in-time input d to the performance output z that quan-

tifies deviation from consensus and control effort,

z =

[
Q1/2

−R1/2Lx

]
x. (3.1b)

Here, the matrices Q = QT � 0 and R � 0 are the state and control weights, respec-

tively, and � (�) signifies positive definiteness (semi-definiteness) of a matrix.

In consensus networks, each node updates its state using the relative information

exchange with its neighbors. In the presence of white noise, the average mode x̄ =

(1/n)xT1 experiences a random walk and variance increased linearly with time. A key

property of the Laplacian matrix of the controller is Lx1 = 0. Since our primary control

objective is to achieve consensus, only differences between node values are penalized in

the performance output. Therefore, the state weight matrix Q has a zero eigenvalue

with the corresponding eigenvector of all ones, i.e., Q1 = 0. Furthermore, we choose Q

to be positive definite on the orthogonal complement of the subspace span (1),

Q + (1/n)11T � 0.

The following lemma summarizes the well-known conditions for achieving consensus

in the absence of disturbances in directed networks [2].

Lemma 4. The agreement protocol over a digraph reaches the average consensus,
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(1/n)11Tx(0), for every initial condition if and only if it is weakly connected and bal-

anced.

Thus, for a weekly connected Lp which is not necessarily balanced, it is required

that the closed-loop graph Laplacian, Lp + Lx be balanced, which amounts to

1T (Lp + Lx) = 0. (3.2)

The problem of designing a controller graph that provides a desired tradeoff between

performance index J of the network and the sparsity of the controller Lx can be formu-

lated as
minimize

Lx

J(Lx) + γ ‖W ◦ Lx‖1

subject to 1T (Lx + Lp) = 0

Lx 1 = 0.

(3.3)

The positive scalar γ is the sparsity-promoting parameter that characterizes a trade-off

between network performance and sparsity of the controller and ◦ denotes elementwise

multiplication. The first condition guarantees asymptotic consensus to the initial net-

work average value in the absence of disturbances and the second condition secures

the row stochastic property of the controller graph Laplacian. We gurantee that the

closed-loop graph Laplacian remains weakly connected via proper step-size selection in

the algorithm.

In what follows, we quantify the network performance using the H2 norm. The

weighted `1 norm [125] of Lx is a convex approximation of the cardinality function.

In each iteration, each element of the weight matrix W (i, j) is chosen to be inversely

proportional to the magnitude of Lx(i, j) in the previous iteration and can be determined

as

W (i, j) = 1/(|Lx(i, j)| + ε). (3.4)

This puts larger emphasis on smaller optimization variables, where a small positive

parameter ε ensures that W (i, j) is well-defined.

3.2.3 Elimination of the average mode Since both Q and Lx have a zero

eigenvalue associated with the vector of all ones, the average mode x̄ is not observable
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from the output z. In order to eliminate the average mode, we introduce the following

change of coordinates [
ψ

x̄

]
=

[
UT

1T /n

]
x

where U ∈ Rn×(n−1) is a full-rank matrix and its columns span the orthogonal comple-

ment of 1. Using the properties of the matrix U ,

UT U = I, U UT = I − (1/n)11T , UT 1 = 0,

we have [
ψ̇

˙̄x

]
=

[
−UT (Lp + Lx)U 0

0 0

][
ψ

x̄

]
+

[
UT

(1/n)1T

]
d.

In the new coordinates, the performance output is given by

z =

[
Q1/2 U 0

−R1/2Lx U 0

] [
ψ

x̄

]
.

The network average x̄ = (1/n)1Td experiences a random walk and the vector ψ quan-

tifies the deviation from average of the states. Since our control objective is to minimize

the deviation from average in the nodes, the average mode is not of interest. Therefore,

the minimal representation of the system containing only the state ψ is given by

ψ̇ = −UT (Lp + Lx)U ψ + UT d

z =

[
Q1/2 U

−R1/2Lx U

]
ψ.

(3.5)

In order to guarantee that the closed-loop graph Laplacian (Lp + Lx) is balanced, we

introduce the following change of variables

Lx = U F UT − (1/n)11TLp ⇔ F = UTLx U. (3.6)
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Note that the main contribution that differentiates this work from previous results [133]

is that we are considering a weakly-connected directed unbalanced network, and we

require the closed-loop network to be balanced. The problem of adding edges to a

directed network has not been addressed in [133]. Moreover, the presented framework

cannot be used to solve the current constrained problem due to an additional bias term.

In our framework, a new change of variables is introduced to accommodate structural

constraints.

Using the properties of the matrix U , the constraints (3.2) and Lx 1 = 0 are auto-

matically satisfied. The equation (3.6) demonstrates how we can move back and forth

between two variables F and Lx.

Substituting Lx given by (3.6) into (3.5), we can write the state-space representation

of the closed-loop system as

ψ̇ = − (UT Lp U + F )ψ + UT d

z =

[
Q1/2 U

−R1/2(U F − (1/n)11TLp U)

]
ψ.

(3.7)

Next, we formulate the optimal control problem and propose a framework to design

sparse controller Lx.

3.3 Topology design for directed networks In this section, we

approach the problem of topology design as a regularized optimal control problem.

3.3.1 Sparsity-promoting optimal control problem The H2 norm of the

transfer function from d to z,

‖H‖22 = J(F ) = trace (P (F ))

quantifies the variance amplification of the closed-loop network (3.7). Here, P (F ) is the

closed-loop observability Gramian which is the solution of the Lyapunov equation,

(UT Lp U + F )T P + P (UT Lp U + F ) = CTC (3.8)
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where

C =

[
Q1/2 U

−R1/2(U F − (1/n)11TLp U)

]
.

The control design problem (3.3) takes the following form

minimize
F,Lx

J(F ) + γ ‖W ◦ Lx‖1

subject to U F UT − Lx − (1/n)11TLp = 0.

(3.9)

In (3.9), the Laplacian matrix Lx and the matrix F are the optimization variables;

the problem data is given by plant graph Laplacian Lp, state and control weights Q

and R, and positive regularization parameter γ. The matrix W is the weight matrix

that imposes a penalty on the magnitude of the elements in Lx. With the problem

formulation (3.9), we are able to minimize the H2 norm of the network J(F ) in the

transformed coordinates where the average mode is eliminated, while promoting sparsity

of Lx in the physical domain. For γ = 0, the solution to (3.9) is typically given by a

matrix Lx with all non-zero components. As the regularization parameter increases, the

number of non-zero elements in the controller graph decreases.

3.3.2 Structured optimal control problem After the structure of the con-

troller graph Laplacian Lx has been designed, we fix the sparsity pattern S and then

solve the following problem

minimize
F

J(F )

subject to U F UT − (1/n)11TLp ∈ S
(3.10)

whose solution provides the optimal controller graph Laplacian with the desired struc-

ture. This optimization problem is obtained by setting γ = 0 in (3.9) and adding the

sparsity pattern S. This “polishing” or “debiasing” step is used to improve the perfor-

mance relative to the solution of the sparsity-promoting optimal control problem (3.9).

3.4 An ADMM-based algorithm We next exploit the structure of the

constrained optimization problem (3.9) and develop a customized algorithm based on
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ADMM. The augmented Lagrangian associated with (3.9) is given by

Lρ(F, Lx; Λ) = J(F ) + γ ‖W ◦ Lx‖1 +
〈
Λ, U F UT − Lx − (1/n)11TLp

〉
+

ρ

2
‖U F UT − Lx − (1/n)11TLp‖2F

(3.11)

where the matrix Λ is the Lagrange multiplier, ρ is a positive scalar, and ‖ · ‖F is the

Frobenius norm. The ADMM algorithm consists of the following steps at each iteration

F k+1 = argmin
F

Lρ(F, Lkx; Λk)

Lk+1
x = argmin

Lx

Lρ(F k+1, Lx; Λk)

Λk+1 = Λk + ρ
(
U F k+1 UT − Lk+1

x − (1/n)11TLp
)
.

The algorithm terminates when ‖Lk+1
x −Lkx‖F ≤ ε1 and ‖U F k+1 UT−Lk+1

x − (1/n)11TLp)‖ ≤
ε2, where ε1 and ε2 are desired tolerances.

Note that, the smooth part J(F ) and the non-smooth part ‖W ◦ Lx‖1 are now

operating in different coordinates; therefore, descent algorithms can be utilized in the

F -minimization step. Moreover, the `1 norm is a separable function with respect to

each element of Lx. Thus, we can determine the solution to the Lx-minimization step

analytically. In the Lagrange multiplier update step, we use the step-size equal to ρ in

order to guarantee the dual feasibility [113].

3.4.1 F -minimization step We bring the F -minimization step to the following

form by using the properties of the matrices Lp and U ,

F k+1 = argmin
F

J(F ) +
ρ

2
‖F − Sk‖2F

where

Sk = UT
(
Lkx + (1/n)11TLp − (1/ρ) Λk

)
U = UT

(
Lkx − (1/ρ) Λk

)
U.

We employ the Anderson-Moore method to solve this problem [135]. This algorithm

converges faster compared to the gradient method and its implementation is simpler

compared to Newton method [42].
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We next summarize the first- and second-order derivatives of the objective function

J . The second order approximation of the smooth part of objective function J around

F̄ is given by

J(F̄ + F̃ ) ≈ J(F̄ ) +
〈
∇FJ(F̄ ), F̃

〉
+

1

2

〈
∇2
FJ(F̄ , F̃ ), F̃

〉
.

For related developments we refer the reader to [135].

Proposition 5. The gradient and the Hessian of J at F̄ are determined by

∇J(F̄ ) = 2 (R̄ F − (1/n)UTR11T Lp U − P )L

∇2J(F̄ , F̃ ) = 2
(

(R̄ F̃ − P̃ )L + (R̄ F − (1/n)UTR11T Lp U − P ) L̃
) (3.12)

where R̄ = UTRU and the matrix P is given by (3.8) and is the observability Gramian.

The matrix L is the controllability Gramian and is determined by

(UT Lp U + F )L + L (UT Lp U + F )T = UT U (3.13)

where UTU = I is identity. The matrices P̃ and L̃ are the solutions to the following

Lyapunov equations

(UT Lp U + F ) L̃+ L̃ (UT Lp U + F ) = − F̃ L − L F̃

(UT Lp U + F )T P̃ + P̃ (UT Lp U + F ) =

F̃ T (R̄ F − P − (1/n)UTR11TLpU) +

(F T R̄ − P − (1/n)UTLTp 11
TRU) F̃ .

By setting ∇FLρ = ∇FJ + ρ (F − Sk) = 0, we obtain

2
(
R̄ F − (1/n)UTR11T Lp U − P

)
L + ρ (F − Sk) = 0. (3.14)

The necessary conditions for the optimality of Lρ(F, Lx; Λ) are given by (3.8), (3.13)

and (3.14).

The Anderson-Moore method solves the F -minimization step iteratively. In each
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iteration, the algorithm starts with a stabilizing F and solves two Lyapunov equations

and one Sylvester equation. It first solves the Lyapunov equations (3.8), (3.13) with a

fixed F to obtain controllability and observability Gramians L and P , respectively. Then

it solves the Sylvester equation (3.14) for F with fixed L and P . Then we use Newton’s

method to find the descent direction between two consecutive steps by utilizing (3.12).

We next employ a line search strategy to determine an appropriate step-size in order to

guarantee convergence to a stationary point and the closed-loop stability.

3.4.2 Lx-minimization step Using the expression for the augmented Lagrangian (3.11),

we can write the Lx-minimization step as

Lk+1
x = argmin

Lx

γ ‖Lx‖1 +
ρ

2
‖Lx − T k‖2F

where

T k = U F k+1 UT − (1/n)11TLp + (1/ρ) Λk.

The solution is given by soft-thresholding

Lk(i, j)
k+1 =

 (1− υ

|T k(i, j)|
)T k(i, j), |T k(i, j)| > υ

0, otherwise

where υ = (γ/ρ)W (i, j).

Convergence analysis of ADMM for convex problems can be found in [113]. For non-

convex problems, the quadratic term in the augmented Lagrangian locally convexify the

problem for a large ρ. A recent result on convergence analysis of ADMM for a family

of non-convex problems can be found in [136]. Computational results also show that

ADMM works well when ρ is sufficiently large [137,138].

3.5 Computational experiments

3.5.1 Synthetic example In this section, we employ our customized algorithm

based on ADMM to add certain number of edges to a given directed network. The plant

network is a randomly generated graph with n nodes and with edge weight li ∈ (0, 1)
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for the ith edge which is obtained randomly.

We set R = I and choose the state weight that penalizes the mean-square deviation

from the network average,

Q = I − (1/n)11T .

We solve the sparsity-promoting optimal control problem (3.9) for controller graph for

100 logarithmically-spaced values of γ ∈ [0.001, 3] using the path-following iterative

reweighted algorithm as a proxy for inducing sparsity [125]. We set the weights to be

inversely proportional to the magnitude of the solution Lx to (3.9) at the previous value

of γ. We choose ε = 10−3 in (3.4) and initialize weights for γ = 0.01 using the solution

to (3.9) with LQR state-feedback matrix. Topology design is followed by a polishing

step that computes the optimal weights of identified edges; see Section I-A.

3.5.2 Performance improvement The randomly generated plant graph in Fig. 3.1a

is a directed graph with n = 20 nodes. The plant graph is weakly connected but unbal-

anced. Thus, it will not converge to the initial nodes average value. In order to reach

consensus and improve the performance, adding edges to the plant network is required.

Figure 3.1 illustrates that by increasing γ, the controller graph becomes sparser. The

number of added edges to the network is equal to the number of nonzero off-diagonal

elements in the controller. Specifically, for γ = 0.001, the number of nonzero elements

in the controller graph is 84, among which 74 edges are added to the original network,

and the other 10 nonzero elements represent the diagonal elements. By increasing γ to

0.0788, there are 33 nonzero elements are in the controller graph, and only 25 edges are

added to the plant network. It is noteworthy that the Laplacian matrix of the controller

graph can not be a zero matrix, because the plant network is an unbalance graph and

a nonzero Laplacian matrix of the controller is needed to make the closed-loop graph

Laplacian balanced.

Figure 3.2 shows that the closed-loop performance deteriorates and the number of

nonzero elements in the controller graph Laplacian Lx decreases as γ increases. As

shown in Fig. 3.2b, relative to the optimal LQR controller, Lc, the H2 performance

loss decreases as the sparsity of the controller graph Laplacian matrix Lx increases.

In particular, for γ = 3, there are only 24 nonzero elements in the controller graph.

This is equivalent to have only 16 added edges. The identified sparse controller in
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(a) plant graph (b) γ = 0.001

(c) γ = 0.0788 (d) γ = 3

Figure 3.1: Topologies of the plant (blue lines) and controller graphs (red lines) for a
randomly generated weighted network.
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Figure 3.2: (a) Sparsity level; (b) performance degradation; and (c) the optimal tradeoff
between the performance degradation and the sparsity level of the optimal sparse Lx
compared to the optimal centralized controller Lc. The results are obtained for the
weighted random plant network with topology shown in Fig. 3.1a.

this case uses only 0.057% of the edges, relative to the optimal LQR controller, i.e.,

card(Lx)/card(Lc) = 29.629% and achieves a performance loss of 15.118%, i.e., (J −
Jc)/Jc = 15.118%.

3.6 Concluding remarks We consider the `1 regularized version of opti-

mal control problem for adding edges to directed consensus networks in order to reach

consensus and optimally enhance performance. Although the given plant network is

not necessarily balanced, in order to reach agreement, we restrict the closed-loop graph

Laplacian to be balanced. The performance is measured by the H2 norm from the

disturbance to the output of the closed-loop network. In general, this problem is a com-

binatorial search problem. We use sparsity promoting optimal control framework and

introduce weighted `1 regularization as a proxy for promoting sparsity of the controller.

By exploiting structure of the problem, we develop an algorithm based on ADMM. An

example is provided to demonstrate the utility of the developed algorithm.



Part II

Network estimation and inference
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Chapter 4

Topology identification of

undirected consensus networks

via sparse inverse covariance

estimation

We study the problem of identifying sparse interaction topology using sample covari-

ance matrix of the state of the network. Specifically, we assume that the statistics

are generated by a stochastically-forced undirected first-order consensus network with

unknown topology. We propose a method for identifying the topology using a regu-

larized Gaussian maximum likelihood framework where the `1 regularizer is introduced

as a means for inducing sparse network topology. The proposed algorithm employs a

sequential quadratic approximation in which the Newton’s direction is obtained using

coordinate descent method. We provide several examples to demonstrate good practical

performance of the method.

4.1 Introduction In this chapter, we develop a convex optimization frame-

work for identifying sparse interaction topology using sample covariance matrix of the

state of the network. Our framework utilizes an `1-regularized Gaussian maximum

likelihood estimator. Because of strong theoretical guarantees, this approach has been

61
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commonly used for recovering sparse inverse covariance matrices [139–143]. We uti-

lize the structure of undirected networks to develop an efficient second-order method

based on a sequential quadratic approximation. As in [124,144], we compute the New-

ton’s direction using coordinate descent method [145–147] that employs active set strat-

egy. The main point of departure is the formulation of a convex optimization problem

that respects particular structure of undirected consensus networks. We also use a

reweighted `1-heuristics as an effective means for approximating non-convex cardinality

function [125], thereby improving performance relative to standard `1 regularization.

Our presentation is organized as follows. In Section 4.2, we formulate the problem of

topology identification using sparse inverse covariance matrix estimation. In Section 4.3,

we develop a customized second-order algorithm to solve the `1-regularized Gaussian

maximum likelihood estimation problem. In Section 4.4, we use computational exper-

iments to illustrate features of the method. In Section 4.5, we conclude with a brief

summary.

4.2 Problem formulation In this section, we provide background material

on stochastically forced undirected first-order consensus networks and formulate the

problem of topology identification using a sample covariance matrix. The inverse of a

given sample covariance matrix can be estimated using Gaussian maximum likelihood

estimator. For undirected consensus networks, we show that the estimated matrix is

related to the graph Laplacian of the underlying network.

Our objective is to identify the underlying graph structure of a stochastically forced

undirected consensus network with a known number of nodes by sampling its second-

order statistics. In what follows, we relate the problem of topology identification for

consensus networks to the inverse covariance matrix estimation problem.

4.2.1 Undirected consensus networks We consider an undirected consensus

network

ψ̇ = −Lx ψ + d, (4.1)

where ψ ∈ Rn represents the state of n nodes, d is the disturbance input, and the

symmetric n×n matrix Lx represents the graph Laplacian. The matrix Lx is restricted

to have an eigenvalue at zero corresponding to an eigenvector of all ones, Lx1 = 0. This
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requirement is implicitly satisfied by expressing Lx in terms of the incidence matrix E

Lx :=

m∑
l= 1

xl ξl ξ
T
l = E diag (x)ET ,

where diag (x) is a diagonal matrix containing the vector of edge weights x ∈ Rm. Each

column ξl = ei− ej , where ei ∈ Rn is the ith basis vector, represents an edge connecting

nodes i and j. The m columns of E specify the edges that may be used to construct the

consensus network. For a complete graph, there are m = n(n− 1)/2 potential edges.

In order to achieve consensus in the absence of disturbances, it is required that the

closed-loop graph Laplacian, Lx, be positive definite on the orthogonal complement of

the vector of all ones, 1⊥ [2]. This amounts to positive definiteness of the “strengthened”

graph Laplacian of the closed-loop network

X := Lx + (1/n)11T � 0. (4.2)

Clearly, since Lx1 = 0, X1 = 1.

Consensus networks attempt to compute the network average; thus, it is of interest

to study the deviations from average

ψ̃(t) := ψ(t) − 1 ψ̄(t) =
(
I − (1/n)11T

)
ψ(t),

where ψ̄(t) := (1/n)1Tψ(t) is the network average and corresponds to the zero eigenvalue

of Lx. From (4.1), it follows that the dynamics of the deviation from average are,

˙̃
ψ = −Lxψ̃ +

(
I − (1/n)11T

)
d.

The steady-state covariance of ψ̃,

P := lim
t→∞

E
(
ψ̃(t) ψ̃T (t)

)
,

is given by the solution to the algebraic Lyapunov equation

Lx P + P Lx = I − (1/n)11T .
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For connected networks, the unique solution is given by

P =
1

2
L†
x =

1

2

((
Lx + (1/n)11T

)−1 − (1/n)11T
)

=
1

2

(
X−1 − (1/n)11T

)
,

(4.3)

where (·)† is the pseudo-inverse of a matrix. Thus, the inverse of the steady-state covari-

ance matrix of the deviation from network average is determined by the strengthened

graph Laplacian of the consensus network X.

4.2.2 Topology identification A sparse precision matrix can be obtained as the

solution to the regularized maximum log-likelihood problem [141],

minimize
X

− log det (X) + trace (S X) + γ ‖X‖1

subject to X � 0,
(4.4)

where S is the sample covariance matrix, γ is a positive regularization parameter, and

‖X‖1 :=
∑
|Xij | is the `1 norm of the matrix X. The `1 norm is introduced as a means

for inducing sparsity in the inverse covariance matrix where a zero element implies

conditional independence. This problem has received significant attention in recent

years [124,139,141,144,148–151].

In this work, we establish a relation between inverse covariance matrix estimation

and the problem of topology identification of an undirected consensus network. We are

interested in identifying a sparse topology that yields close approximation of a given

sample covariance matrix. This is achieved by solving the following problem,

minimize
x

J(x) + γ
m∑
l= 1

|xl|

subject to E diag (x)ET + (1/n)11T � 0,

(NI)

where

J(x) = − log det
(
E diag (x)ET + (1/n)11T

)
+ trace (S E diag (x)ET ).
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Relative to [124, 139, 144, 148, 149], our optimization problem has additional structure

induced by the dynamics of undirected consensus networks.

The network identification problem (NI) is a convex but non-smooth problem where

the optimization variable is the vector of the edge weights x ∈ Rm and the problem

data is the sample covariance matrix S and the incidence matrix. The incidence matrix

is selected to contain all possible edges. The `1 norm of x is a convex relaxation of the

cardinality function and it is introduced to promote sparsity. The positive parameter γ

specifies the emphasis on sparsity versus matching the sample covariance matrix S. For

γ = 0, the solution to (NI) is typically given by a vector x with all non-zero elements.

The positive definite constraint comes from (4.2) and guarantees a connected closed-loop

network and thus asymptotic consensus in the absence of disturbances.

Remark 7. We also use this framework to address the network sparsification problem

where it is of interest to find a sparse network that generates close approximation of the

covariance matrix of a given dense network. We choose E to be equal to the incidence

matrix of the primary network.

4.3 Customized algorithm based on sequential quadratic
approximation We next exploit the structure of the optimization problem (NI)

to develop an efficient customized algorithm. Our algorithm is based on sequential

quadratic approximation of the smooth part J of the objective function in (NI). This

method benefits from exploiting second-order information about J and from computing

the Newton direction using cyclic coordinate descent [145–147] over the set of active

variables. We find a step-size that ensures the descent direction via backtracking line

search. Furthermore, by restricting our computations to active search directions, com-

putational cost is significantly reduced. A similar approach has been recently utilized

in a number of applications, including sparse inverse covariance estimation in graphi-

cal models [124, 144, 152]. In this work, we have additional structural constraints and

use reweighted heuristics in order to achieve sparsity. We use an alternative proxy for

promoting sparsity which is given by the weighted `1 norm [125]. In particular, we

solve problem (NI) for different values of γ using a path-following iterative reweighted

algorithm; see Section II (A) in [?]. The topology identification then is followed by a
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polishing step to debias the identified edge weights.

4.3.1 Structured problem: debiasing step In addition to promoting sparsity

of the identified edge weights, the `1 norm penalizes the magnitude of the nonzero edge

weights. In order to gauge the performance of the estimated network topology, once

we identify a set of sparse topology via (NI), we solve the structured “polishing” or

“debiasing” problem to optimize J over the set of identified edges. To do this, we form

a new incidence matrix Ê which contains only those edges identified as nonzero in the

solution to (NI) and form the problem,

minimize
x

− log det
(
Ê diag (x) ÊT + (1/n)11T

)
+ trace

(
S Ê diag (x) ÊT

)
subject to Ê diag (x) ÊT + (1/n)11T � 0.

whose solution provides the optimal estimated graph Laplacian with the desired struc-

ture.

4.3.2 Gradient and Hessian of J(x) We next derive the gradient and Hessian

of J which can be used to form a second-order Taylor series approximation of J(x)

around xk,

J(xk + x̃) ≈ J(xk) + ∇J(xk)T x̃ +
1

2
x̃T ∇2J(xk) x̃. (4.5)

Proposition 6. The gradient and the Hessian of J at xk are

∇J(xk) = diag
(
ET (S − X−1(xk))E

)
∇2J(xk) = M(xk) ◦ M(xk)

(4.6)

where ◦ denotes the elementwise (Hadamard) product and

X−1(xk) :=
(
EDxk E

T + (1/n)11T
)−1

,

M(xk) := ETX−1(xk)E.
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Proof. Utilizing the second order expansion of the log-determinant function we have

J(xk + x̃) − J(xk) ≈ trace
(
ET (S − X−1(xk))EDx̃

)
+

1

2
trace

(
Dx̃E

TX−1(xk)EDx̃E
TX−1(xk)E

)
.

The expressions in (4.6) can be established using a sequence of straightforward algebraic

manipulations in conjunction with the use of the commutativity invariance of the trace

function and the following properties for a matrix T , a vector α, and a diagonal matrix

Dα,

trace (T Dα) = αT diag (T )

trace (Dα T Dα T ) = αT (T ◦ T )α.

4.3.3 Algorithm Our algorithm is based on building the second-order Taylor series

expansion of the smooth part of the objective function J in (NI) around the current

iterate xk. Approximation J in (NI) with (4.5),

minimize
x̃

∇J(xk)T x̃ +
1

2
x̃T ∇2J(xk) x̃ + γ ‖xk + x̃‖1

subject to E diag
(
xk + x̃

)
ET + (1/n)11T � 0.

(4.7)

We use the coordinate descent algorithm to determine the Newton direction. Let x̃

denote the current iterate approximating the Newton direction. By perturbing x̃ in the

direction of the ith standard basis vector ei ∈ Rm, x̃ + µi ei, the objective function

in (4.7) becomes

∇J(xk)T (x̃ + µi ei) +
1

2
(x̃ + µi ei)

T ∇2J(xk) (x̃ + µi ei) + γ |xki + x̃i + µi|.

Elimination of constant terms allows us to express (4.7) as

minimize
µi

1

2
ai µ

2
i + bi µi + γ |ci + µi| (4.8)
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where (ai, bi, ci, x
k
i , x̃i) are the problem data,

ai := eTi ∇2J(xk) ei

bi :=
(
∇2J(xk) ei

)T
x̃ + eTi ∇J(xk)

ci := xki + x̃i.

The explicit solution to (4.8) is given by

µi = − ci + Sγ/ai(ci − bi/ai) ,

where Sκ(y) = sign (y) max (|y| − κ, 0) , is the soft-thresholding function.

After the Newton direction x̃ has been computed, we determine the step-size α via

backtracking. This guarantees positive definiteness of the strengthened graph Laplacian

and sufficient decrease of the objective function. We use Armijo rule to find an appro-

priate step-size such that E diag(xk + αx̃)ET + (1/n)11T is positive definite matrix

and

J(xk + αx̃) + γ ‖xk + αx̃‖1 ≤ J(xk) + γ ‖xk‖1 +

ασ
(
∇J(xk)T x̃ + γ ‖xk + αx̃‖1 − γ ‖xk‖1

)
.

There are two computational aspects in our work which lead to suitability of this

algorithm for large-scale networks.

• Active set strategy

We propose an active set prediction strategy as an efficient method to solve the

problem (NI) for large values of γ. It is an effective means for determining which

directions need to be updated in the coordinate descent algorithm. The classifica-

tion of a variable as either active or inactive is based on the values of xki and the

ith component of the gradient vector ∇J(xk). Specifically, the ith search direction

is only inactive if

xki = 0 and | eTi ∇J(xk) | < γ − ε

where ε > 0 is a small number (e.g., ε = 0.0001γ). At each outer iteration, the

Newton search direction is obtained by solving the optimization problem over the
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set of active variables. The size of active sets is small for large values of the

regularization parameter γ.

• Memory saving

Computation of bi in (4.8) requires a single vector inner product between the

ith column of the Hessian and x̃, which typically takes O(m) operations. To

avoid direct multiplication, in each iteration after finding µi, we update the vector

∇2J(xk)T x̃ using the correction term µi(E
TX−1ξi) ◦ ((X−1ξi)

TE)T and take its

ith element to form bi. Here, ξi is the ith column of the incidence matrix of the

controller graph. This also avoids the need to store the Hessian of J , which is an

m×m matrix, thereby leading to a significant memory saving. Moreover, the ith

column of ∇2J(xk) and the ith element of the gradient vector ∇J(xk) enter into

the expression for bi. On the other hand, ai is determined by the ith diagonal

element of the Hessian matrix ∇2J(xk). All of these can be obtained directly

from ∇2J(xk) and ∇J(xk) which are formed in each outer iteration without any

multiplication.

Our problem is closely related to the problem in [124]. The objective function there

has the form f(x) = J(x) + g(x), where J(x) is smooth over the positive definite cone,

and g(x) is a separable non-differentiable function. In our problem formulation, J(x) is

smooth for E diag(x)ET+(1/n)11T � 0 while the non-smooth part is the `1 norm which

is separable. Thus, convergence can be established using similar arguments. According

to [124, Theorems 1,2], the quadratic approximation method converges to the unique

global optimum of (NI) and at super-linear rate.

The optimality condition for any x∗ that satisfies E diag(x∗)ET + (1/n)11T � 0 is

given by

∇J(x∗) + γ ∂ ‖x∗‖1 ∈ 0,

where ∂‖x∗‖1 is the subgradient of the `1 norm. This means that for any i

∇iJ(x∗) ∈


− γ, xi > 0;

γ, xi < 0;

[− γ, γ], xi = 0.
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The stopping criterion is to check the norm of ∇J(x) and the sign of x to make sure

that x is the optimal solution.

4.4 Computational experiments We next illustrate the performance

of our customized algorithm. We have implemented our algorithm in Matlab, and all

tests were done on 3.4 GHz Core(TM) i7-3770 Intel(R) machine with 16GB RAM.

The problem (NI) is solved for different values of γ using the path-following iterative

reweighted algorithm [125] with ε = 10−5. The initial weights are computed using the

solution to (NI) with γ = 0 (i.e., the optimal centralized vector of the edge weights). We

then adjust ε = 0.001‖x‖2 at each iteration. Topology identification is followed by the

polishing step described in Section 4.3.1. In the figures, we use black dots to represent

nodes, blue lines to identify the original graph, and red lines to denote the edges in

the estimated sparse network. In all examples, we set the tolerance for the stopping

criterion to 10−4.

4.4.1 Network identification We solve the problem of identification of a sparse

network using sample covariance matrix for 500 logarithmically-spaced values of γ ∈
[0.1, 1000]. The sample covariance matrix S is obtained by sampling the nodes of

the stochastically-forced undirected unweighted network whose topology is shown in

Fig. 4.1a. To generate samples, we conducted 20 simulations of system (4.1) forced

with zero-mean unit variance band-limited white noise d. The sample covariance ma-

trix is averaged over all simulations and asymptotically converges to the steady-state

covariance matrix. The incidence matrix E in (NI) contains all possible edges.

Empirically, we observe that after about 5 seconds the sample covariance matrix

converges to the steady-state covariance. First, we sample the states after 3 seconds,

so the sample covariance matrix we compute is different than the true steady-state

covariance matrix. For (NI) solved with this problem data, Figures 4.3 and 4.1c illustrate

the topology of the identified networks for the minimum and maximum values of γ.

In Fig. 4.1d, the blue line shows an edge in the original network that has not been

recovered by the algorithm for the largest value of γ. The red lines in this figure

show two extra edges in the estimated network for the smallest value of γ which were

not present in the original graph. Next, we solve the problem (NI) using a sample
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(a) Original network with n = 12
nodes

(b) γ = 0.1

(c) γ = 1000 (d) Distinct edges

Figure 4.1: The problem of identification of sparse networks using sample covariance
matrix for a network with n = 12 nodes.

covariance matrix generated by sampling the node states after 15 seconds. In this case,

the sample covariance matrix is closer to the steady-state covariance matrix than the

previous experiment. As shown in Fig. 4.2a, the identified network is exactly the same

as the original network for γ = 0.1. If γ is further increased, a network sparser than the

original is identified; see Fig. 4.2b.

For γ = 0, the relative error between the covariance matrix of the estimated network

and the sample covariance matrix S is given by

‖
(
E diag (xc)E

T + (1/n)11T
)−1 − S‖F

‖S‖F
= 0.004%,

where ‖ · ‖F is the Frobenius norm and xc is the solution to (NI) with γ = 0. As γ

increases, the number of nonzero elements in the vector of the edge weights x decreases

and the state covariance matrix gets farther away from the given sample covariance
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(a) γ = 0.1 (b) γ = 1000

Figure 4.2: The problem of identification of sparse networks using sample covariance
matrix for a network with n = 12 nodes.

matrix. In particular, in the first experiment for γ = 1000, only twelve edges are chosen.

Relative to the centralized network with the vector of the edge weights xc, the identified

sparse network in this case uses only 18.182% of the edges, i.e., card(x)/card(xc) =

18.182% and achieves a relative error of 53.841%, (‖X−1 − S‖F )/‖S‖F = 53.841%,

with X =
(
E diag (x)ET + (1/n)11T

)
. In the second experiment, the identified sparse

network has 16.666% of the potential edges and achieves a relative error of 51.067%.

4.4.2 Network sparsification We next use (NI) to find a sparse representation

of a dense consensus network. Inspired by [153], we generate a network by randomly

distributing nodes in a 10× 10 box. A pair of nodes can communicate if the Euclidean

distance between them, d(i, j), is not greater than 5 units and the edge connecting them

has weight exp (− d(i, j)). The incidence matrix of the identified graph is selected to

be equal to the incidence matrix of the given graph; i.e., the sparse network’s edges are

a subset of the original network’s. Figure 4.3a shows a graph with 50 nodes. We use

the reweighted `1 regularized Gaussian maximum likelihood estimation framework, for

200 logarithmically-spaced values of γ ∈ [0.01, 100] following by the polishing step. The

sparse graph topologies identified for different values of γ are shown in figures 4.3b, 4.3c,

and 4.3d. As γ increases, the identified graph becomes sparser.

For γ = 0.01, 222 edges are chosen to be in the sparse estimated network which is

only 34.851% of the 637 potential edges. The network with these selected edges achieves
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(a) Original network with n = 50
nodes

(b) γ = 0.01

(c) γ = 0.102 (d) γ = 1.138

Figure 4.3: The problem of sparsification of a network with n = 50 nodes using sample
covariance matrix.
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a relative error of 29.965%,

‖X−1 − S‖F
‖S‖F

= 29.965%.

For the largest value of the sparsity-promoting parameter, γ = 1.138, only 64 edges

are present (10.047% of the potential edges) in the estimated graph that gets a relative

error of 207.493%.

To provide a point of comparison, we compare the performance of our algorithm to

a simple truncation scheme. In this scheme, the edge with the smallest weights that

does not disconnect the network is iteratively removed until the network has the desired

sparsity. After identifying the topology in this way, the polishing step optimizes the

edge weights of the selected set of edges.

Figure 4.4 shows the relative errors of our algorithm (in red dashed lines) and the

truncation algorithm (in blue solid lines) on a log scale against the number of removed

edges. As the number of edges in the estimated graph decreases, the relative error

of both algorithms increases. The relative error of network topologies identified by our

algorithm is much smaller than the error of those identified by the truncation algorithm,

and thus our customized algorithm outperforms the truncation method. In particular,

when 573 edges are removed, the relative errors for our customized algorithm and the

truncation algorithm are 2.075 and 8.977, respectively.

(‖
X

−
1
−
S
‖ F

)/
‖S
‖ F

Number of eliminated edges

Figure 4.4: Relative error in log-scale for the sparsification problem of a network with
n = 50 nodes using sample covariance matrix.
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4.5 Concluding Remarks We have developed a method for identifying

the topology of an undirected consensus network using available statistical data. In or-

der to promote network sparsity, we introduce a convex optimization framework aimed

at finding the solution to the `1-regularized maximum likelihood problem. This prob-

lem is closely related to the problem of sparse inverse covariance estimation that has

received significant attention in the literature. In our setup, additional structure arises

from the requirement that data is generated by an undirected consensus network. By

exploiting the structure of the problem, we develop an efficient algorithm based on the

sequential quadratic approximation method in which the search direction is determined

using coordinate descent with active set strategy. Several examples have been provided

to illustrate utility of the method and efficiency of the customized algorithm.



Chapter 5

Topology identification via

growing a Chow-Liu tree network

We study the problem of sparse interaction topology identification using sample covari-

ance matrix of the states of the network. We postulate that the statistics are gener-

ated by a stochastically-forced undirected consensus network with unknown topology in

which some of the nodes may have access to their own states. We first propose a method

for topology identification using a regularized Gaussian maximum likelihood framework

where the `1 regularizer is introduced as a means for inducing sparse network topology.

We also develop a method based on growing a Chow-Liu tree that is well-suited for

identifying the underlying structure of large-scale systems. We apply this technique to

resting-state functional MRI (FMRI) data as well as synthetic datasets to illustrate the

effectiveness of the proposed approach.

5.1 Introduction In this chapter, we develop a convex optimization algo-

rithm for identifying sparse interaction topology using the sample covariance matrix

of the states of the network. First, we utilize an `1-regularized Gaussian maximum

likelihood estimator that has been commonly used for recovering sparse inverse covari-

ance matrices [139–141]. We show that the performance of graphical-LASSO can im-

prove significantly by imposing additional structure on the problem and using reweight-

ing schemes [125]. In particular, our framework overcomes challenges that standard

graphical-LASSO faced and performs well for the case study in [64]. Moreover, inspired

76



77

by [64], we combine the Chow-Liu algorithm [154] with the techniques for growing net-

works developed in [106] to identify the underlying structure of an undirected consensus

network. Constructing the Chow-Liu tree from statistical data does not require any ma-

trix inversion; thereby, it is well-suited for large-scale problems. Furthermore, we have

developed efficient algorithms [106] for growing connected resistive consensus networks.

Herein, we demonstrate that combining these two algorithms yields an efficient method

for recovering the network topology in large-scale systems.

Our presentation is organized as follows. In Section 5.2, we discuss the proper-

ties of consensus networks and formulate the problem of topology identification using

sparse inverse covariance matrix estimation. We also briefly comment on the customized

second-order algorithm based on the proximal Newton method to solve the `1-regularized

Gaussian maximum likelihood estimation problem. In Section 5.3, we develop an algo-

rithm for growing a Chow-Liu tree graph in order to identify the network that yields

close approximation of a given sample covariance matrix. In Section 5.4, we use com-

putational experiments to illustrate features of our method. In particular, we employ

our algorithm to identify the underlying functional network of the human brain using

FMRI data. Finally, in Section 5.5, we conclude with a brief summary.

5.2 Topology identification via structured graphical-LASSO
The problem of topology identification using a sample covariance matrix for stochasti-

cally forced undirected consensus networks has been studied in Chapter 4. In consensus

networks, each node updates its own state using localized information exchange with

the neighbors. Two nodes are neighbors if an edge connects them together. Herein,

we consider a network that leader nodes are equipped with absolute information about

their own states. In Chapter 4, we showed that the underlying topology of an undirected

consensus network can be identified using Gaussian maximum likelihood estimator. In

this chapter, we formulate the topology identification problem for undirected consensus

networks with leader nodes and provide two algorithms to solve this problem.

Consider an undirected network with n nodes governed by

ψ̇i =
∑
j∈Ni

xij (ψj − ψi) − zi ψi + wi,
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where each node i updates its own state using relative information exchange with its

neighbors in the set Ni. Moreover, certain nodes, the so-called leaders, have access

to their own states. Here, zi is the weight that the ith node sets for the absolute

measurement, xij is the edge weight, and wi is an exogenous stochastic disturbance.

The ith node is a leader if zi 6= 0 and it is a follower if zi = 0. By concatenating all the

states in a vector ψ ∈ Rn, the consensus dynamics can be written as

ψ̇ = − (Lx + Dz)ψ + w (5.1)

Here, Lx ∈ Rn×n is the graph Laplacian of the consensus network and Dz ∈ Rn×n

is a diagonal matrix with the ith diagonal entry zi. The incidence matrix E of the

underlying graph represents the edges in the network. The lth column of this matrix is

given by

ξl = ei − ej ,

that demonstrates the lth edge between the nodes i and j. Here, ei ∈ Rn is the ith basis

vector. By using the incidence matrix, the Laplacian matrix Lx can be written as

Lx :=
m∑
l= 1

xl ξl ξ
T
l = E diag (x)ET

where diag (x) is a diagonal matrix with the edge weights x ∈ Rm in its diagonal.

Given that the covariance of the disturbance is a multiple of the identity matrix I,

the steady-state covariance of ψ,

Σ := lim
t→∞

E (ψ ψT ),

can be computed as the solution to the associated algebraic Lyapunov equation

(Lx + Dz) Σ + Σ (Lx + Dz) = 2 I.

Thus, the steady state covariance can be explicitly computed as

Σ = (Lx + Dz)
−1 . (5.2)
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The inverse of the steady-state covariance matrix of the states of the system can be

determined by the structure of the underlying graph that connects the n nodes. Thus,

by using a sampled second-order statistics and estimating the inverse covariance ma-

trix, the underlying topology of an undirected consensus network with leaders can be

identified. The problem of sparse covariance estimation has received significant atten-

tion recently [124, 144, 150, 151]. Relative to these works, our optimization problem

has additional structure coming from the dynamics of undirected consensus networks.

Moreover, compared to previous chapter, we consider consensus networks with leaders

and introduce a new algorithm that is convenient for solving large-scale problems.

We first generalize the proposed algorithm based on the structured graphical-LASSO

in Chapter 4 to solve the problem of topology identification in undirected consensus

networks with leaders. It is well-known that the estimation of the inverse covariance

matrix X can be obtained as the solution to the regularized maximum log-likelihood

problem [141],

minimize
X

− log det (X) + trace (SX) + γ ‖F ◦ X‖1

subject to X � 0,
(5.3)

where S is the sample covariance matrix, γ is a positive regularization parameter, F is

the weight matrix, and ‖F ◦X‖1 :=
∑
Fij |Xij | is the weighted `1 norm of the matrix X.

By substituting the expression (5.2) for the inverse covariance matrix in (5.3) and using

the incidence matrix E, the topology of a network that generates close approximation

of a given sample covariance matrix can be identified by solving the following problem,

minimize
x, z

J(x, z) + γ1

m∑
l= 1

fl |xl| + γ2

N∑
k= 1

gk |zk|

subject to E diag (x)ET + diag(z) � 0,

(NI)

where

J(x, z) = − log det
(
E diag (x)ET + diag(z)

)
+ trace

(
S (E diag (x)ET + diag(z)

)
.

Moreover, f ∈ Rm and g ∈ RN are the vectors of non-negative weights and (γ1, γ2)
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are the positive regularization parameters. An effective heuristic for weight selection

is given by the iterative reweighted algorithm where the weights f and g are inversely

proportional to the magnitudes of x and z in the previous iteration [125]. Problem (NI) is

a convex but non-smooth optimization problem where the optimization variables are the

vector of the edge weights x ∈ Rm and the vector of leaders weights z ∈ RN . Relative

to our prior work in the previous chapter, our optimization problem has additional

structure induced by presence of the leader nodes.

The algorithm based on the sequential quadratic approximation of the smooth part

of the objective function in Section 4.3 can be utilized for solving (NI) with minor

changes. The difference is that the optimization variable size has increased form m to

m + N . This method benefits from exploiting second-order information of the smooth

part of the objective funtion and from computing the Newton direction using cyclic

coordinate descent [145] over the set of active variables. We solve the problem (NI) for

different values of (γ1, γ2) using a path-following iterative reweighted algorithm. The

topology identification then is followed by a polishing step to debias the identified edge

weights. We next propose an algorithm to solve the topology identification problem of

large-scale networks.

5.3 Growing a Chow-Liu tree network In this section, we discuss

an alternative algorithm for identifying the underlying network topology which is well-

suited for large-scale systems. In order to find the underlying network structure using

statistical data, the Chow-Liu tree algorithm [154] can be utilized. This method does

not require any matrix inversion; thereby, suitable for large-scale usage. However, as

discussed in [64], it causes false positives and negatives when using it for identifying

the topology of disconnected networks or networks with cycles, respectively. Herein,

we propose a framework in order to combine the Chow-Liu tree and the reweighted

graphical-LASSO algorithms for identifying the structure of connected networks with

cycles.

We consider the same consensus network in (5.1) and we assume that the sample

covariance matrix S is given. In order to use the Chow-Liu algorithm, the mutual infor-

mation matrix M should be constructed from the sample covariance matrix. Assuming
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Gaussian distribution for the noise w, the mutual information is given by

Mij =
1

2
log

(
Sii Sjj

Sii Sjj − S2
ij

)
,

where Sij is the ijth element of the matrix S. We only use the n (n − 1)/2 off-diagonal

elements of this symmetric matrix to construct the Chow-Liu tree. A spanning tree of a

graph with n nodes has (n−1) edges. To build the Chow-Liu tree, we sort the elements

of the mutual information matrix and choose the biggest (n − 1) of them that do not

create cycles [154].

After finding the underlying tree network that generates close approximation of the

sample covariance matrix, our goal is to add a certain number of edges to the tree graph

in order to enhance the closed-loop performance [106]. The performance is measured

by the proximity of the second-order statistical data generated by the network to the

given sample covariance matrix.

Consider an undirected consensus tree network,

ψ̇ = −Lt ψ + u + w, (5.4)

where w and u are the exogenous disturbance and the control input, respectively and

Lt is the graph Laplacian of the tree network that is obtained using the Chow-Liu

algorithm. The goal is to improve the performance of this system by growing the tree

network. We approach this problem as a feedback design problem with

u = − (Lx + Dz)ψ, (5.5)

whereDz is a diagonal matrix with the ith diagonal entry zi and the symmetric feedback-

gain matrix Lx is required to have the Laplacian structure. Since a nonzero ijth element

of Lx corresponds to an edge between the nodes i and j, the communication structure in

the controller graph is determined by the sparsity pattern of the matrix Lx. Moreover,

the ith node is a leader if zi is nonzero. By substituting the control input u from (5.5)

in (5.4)

ψ̇ = − (Lt + Lx + Dz)ψ + w. (5.6)



82

For a computed Lt from the Chow-Liu algorithm, our objective is to design the topology

Lx and to identify the leader nodes in the network in order to achieve the desired

tradeoff between the controller sparsity and the network performance. The performance

is quantified by the proximity of the steady-state covariance matrix of the closed-loop

system to the sample covariance matrix.

Next, we are going to establish a relation between the closed-loop graph Laplacian

and the inverse covariance matrix of the network. The steady-state covariance of ψ is

given by

Σ = (Lt + Lx + Dz)
−1, (5.7)

where Lx = Ediag(x)ET . Thus, the problem of identifying the sparse topology of a

network, i.e., finding Lx and Dz, that generates close approximation of a given sample

covariance matrix is equivalent to sparse inverse covariance estimation problem. This

can be achieved by solving a similar regularized maximum log-likelihood problem to (5.3)

with one main difference. The inverse covariance matrix X is the summation of the

Laplacian matrices of the tree plant network Lt and the controller network Lx + Dz.

Thus, the problem of growing a tree network in order to match the available statistical

data can be formulated as

minimize
x, z

J(x, z) + γ1

m∑
l= 1

fl |xl| + γ2

N∑
k= 1

gk |zk|

subject to Lt + E diag (x)ET + diag(z) � 0,

(5.8)

where
J(x, z) = − log det

(
Lt + E diag (x)ET + diag(z)

)
+

trace
(
S (E diag (x)ET + diag(z)

)
.

In the case of resistive networks (i.e., all the edge weights are nonnegative), since the

plant network is given by a tree graph, the closed-loop network is connected; thereby,

the optimization problem simplifies to

minimize
x, z

J(x, z) + γ1

m∑
l= 1

fl xl + γ2

N∑
k= 1

gk zk

subject to x ≥ 0, z ≥ 0.

(5.9)
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In this scenario, the topology identification problem turn into the problem of growing

a tree network and the positive definiteness constraint simplifies to nonnegativity con-

straints of the vectors x and z. Thus, several optimization algorithms can be employed

to solve this problem efficiently for large-scale networks.

5.4 Computational experiments We next illustrate the performance

of our methods by employing them to identify the topology of an RC network with

10 nodes and a tree structure shown in Fig. 5.1. The voltages of the nodes form the

states of the system. In this network, node 5 is grounded with z5 = 4 and all other

edge weights are one which implies that node 5 is a leader. This example is borrowed

from [64].

Figure 5.1: The RC tree network with n = 10 nodes.

5.4.1 Structured graphical-LASSO algorithm Assume that infinite samples

of the nodes’ voltages are available; thereby, the sample covariance matrix S is equal to

the exact solution of the Lyapunov equation. Moreover, we set γ1 = γ2 = γ. In this case,

the structured graphical-LASSO algorithm in Section 5.2 can completely recover the

underlying network topology for different values of γ. This example has been previously

studied in [64]. They show that when the sample covariance matrix is precise, the

graphical-LASSO algorithm results in 5 false positives and negatives. However, by

adding a structural constraint to the problem and using a reweighting scheme, we showed

that the same algorithm can recover the network topology with zero error.

Next, we utilize our method to solve the problem by using a sample covariance
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(a) plant network (b) Chow-Liu tree (c) identified structure

Figure 5.2: (a) Plant network; (b) constructed Chow-Liu tree network; and (c) the
identified network from growing the Chow-Liu tree.

matrix which is not very close to the actual covariance matrix and is constructed from

only 80 samples. The algorithm is again able to recover the network topology and to

identify the leader for different values of γ.

It is worth to note that the performance of this method deteriorates if we replace

the reweighted `1 norm scheme with the `1 norm. In particular, by eliminating the

reweighted `1 norm, we observed the effect of grounding one of the nodes with high

capacitance. Although the network topology will be identified for some values of γ, by

increasing γ (to very large value), the algorithm chooses the optimal edges in the same

way as [64]. In particular, it ignores the connections between nodes 1 to 5 because of

their low variances. In the next example, we illustrate the effectiveness of growing a

Chow-Liu tree by using it on a synthetic dataset.

5.4.2 Topology identification via growing a Chow-Liu tree In this sec-

tion, the second method is utilized to identify the underlying structure of a network

with cycles. The original plant network is shown in Fig. 5.2a. We first assume that the

sample covariance matrix S is equal to the exact solution of the Lyapunov equation.

We form the mutual information matrix and construct the Chow-Liu tree accordingly

which is shown in Fig. 5.2b. We next grow this tree network in order to enhance the

performance of the closed-loop system. In particular, we solve the problem (5.8) to find

the leader nodes and the Laplacian matrix of the controller graph Lx. In this case, our

algorithm can completely recover the underlying network topology for different values

of γ. Next, we employ this algorithm to identify the topology of a larger network with
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real data to evaluate its performance.

5.4.3 FMRI dataset The FMRI technique detects the activity of a region in the

brain by measuring the blood flow to that region. Since the blood flow increases in

an active part of the brain, the functioning regions can be identified by monitoring

the blood flow. The functional connectivity structure between different regions can be

revealed by utilizing different thresholding techniques [59,60]. The results indicate that

different regions of the brain that are not anatomically connected act closely together

and are functionally linked. Moreover, the previous studies have shown that the human

brain has small-world network properties [60].

In this section, we employ the second algorithm based on growing a Chow-Liu tree to

identify the underlying functional network of the human brain. The sample covariance

matrix is computed using the resting-state FMRI data of 20 healthy patients [60]. In

the resting-state FMRI, the patients are asked to close their eyes and try not to think.

The studies have shown that even in the rest state, the brain is highly active and

different regions of the brain are communicating with each other [155]. We collect 134

samples from 140 cortical brain regions (nodes) in the right hemisphere. The sample

correlation matrix for each patient is a 140 × 140 matrix and can be computed using the

time series data. The sample covariance matrices are not invertible since the number

of samples is smaller than the number of the nodes in the network. Thus, we use

our proposed algorithm to estimate the inverse covariance matrix and to identify the

underlying network structure of the human brain.

First, we form the mutual information matrix and construct the Chow-Liu tree

Fig 5.3a. Next, we grow the obtained tree network to identify the remained edges and

improve the performance of the closed-loop system. We set γ1 = γ2 = γ. The identified

networks for a randomly chosen patient are shown in Fig 5.3. In particular, as the

sparsity promoting parameter γ increases, the identified network gets sparser.

This example has been previously studied in [156]. Their results show that the

nodes that are located in the lower left corner of the graphs are highly connected to

their neighboring nodes. They compare this pattern of connectivity with the false

positives created by their algorithm in a synthetic RC circuit and conclude that the

high number of edges in that area is false positives created by the same phenomenon
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(a) Chow-Liu tree graph with 139 edges (b) γ = 0.1

(c) γ = 1

Figure 5.3: The identified networks for different values of γ.

in the circuit example. However, by adding a structural constraint to the problem and

using a reweighting scheme, we showed that the underlying network can be recovered

without high connectivity in the lower left corner. Moreover, the general shape of the

identified network is consistent with the results reported in [60]. Furthermore, the small-

world properties such as high clustering and high efficiency coefficients can be seen in

the identified networks.

To conclude, it seems that using both an additional structural constraint and the

reweighted `1 norm scheme can improve the performance of the graphical-LASSO algo-

rithm significantly. Unlike the Chow-Liu algorithm that can be employed to construct

tree networks only, our algorithm is more general and overcomes the challenges associ-

ated with the conventional algorithms proposed in [156].
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5.5 Concluding remarks We have studied the problem of sparse topology

identification of an undirected consensus network with leaders using second-order statis-

tical data. The goal is to identify a sparse interaction topology using sample covariance

matrix of the network state. We have introduced two algorithms based on regularized

Gaussian maximum likelihood and growing a Chow-Liu tree. In the first algorithm, we

propose a structured graphical-LASSO algorithm that uses the weighted `1 regularizer

as a proxy for inducing sparse network topology. The other method is based on growing

a Chow-Liu tree that is well-suited for identifying the underlying structure of large-scale

networks. Several examples have been provided to demonstrate the performance of our

framework.



Part III

Control theoretic approach for

analysis of optimization

algorithms
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Chapter 6

Proximal gradient flow and

Douglas-Rachford splitting

dynamics: global exponential

stability via integral quadratic

constraints

Many large-scale and distributed optimization problems can be brought into a composite

form in which the objective function is given by the sum of a smooth term and a

nonsmooth regularizer. Such problems can be solved via a proximal gradient method and

its variants, thereby generalizing gradient descent to a nonsmooth setup. In this chapter,

we view proximal algorithms as dynamical systems and leverage techniques from control

theory to study their global properties. In particular, for problems with strongly convex

objective functions, we utilize the theory of integral quadratic constraints to prove

global exponential stability of the differential equations that govern the evolution of

proximal gradient and Douglas-Rachford splitting flows. In our analysis, we use the

fact that these algorithms can be interpreted as variable-metric gradient methods on the

forward-backward and the Douglas-Rachford envelopes and exploit structural properties

of the nonlinear terms that arise from the gradient of the smooth part of the objective
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function and the proximal operator associated with the nonsmooth regularizer. We

also demonstrate that these envelopes can be obtained from the augmented Lagrangian

associated with the original nonsmooth problem and establish conditions for global

exponential convergence even in the absence of strong convexity.

6.1 Introduction Analysis of optimization algorithms from the system theo-

retic point of view has received significant recent attention [29–31]. In these references,

the optimization algorithm is interpreted as a feedback interconnection in which the

states converge to the optimal solution of the optimization problem.

In this chapter, we utilize techniques from control theory to establish global prop-

erties of proximal gradient flow and Douglas-Rachford (DR) splitting dynamics. These

algorithms provide an effective tool for solving nonsmooth convex optimization prob-

lems in which the objective function is given by a sum of a differentiable term and a

nondifferentiable regularizer. We exploit the fact that the proximal gradient flow can

be interpreted as a variable-metric gradient method on forward-backward (FB) enve-

lope [157–159] and show that this envelope can be obtained by restricting the proximal

augmented Lagrangian to the manifold in which the dual variable is given by the neg-

ative gradient of the smooth part of the objective function. When this smooth part is

strongly convex with a Lipschitz continuous gradient, we prove global exponential sta-

bility by utilizing the theory of IQCs [160]. We also generalize the Polyak-Lojasiewicz

(PL) [161] condition to nonsmooth problems and show global exponential convergence

of the FB envelope even in the absence of strong convexity. Finally, since the DR split-

ting algorithm [162] can be interpreted as a variable-metric gradient method on DR

envelope [157], we utilize similar approach to establish global stability properties of the

resulting continuous-time dynamics for strongly convex problems.

This chapter is structured as follows. In Section 6.2, we formulate the nonsmooth

composite optimization problem and provide background material. In Section 6.3,

we establish the global exponential stability of the proximal gradient flow dynamics

for a problem with strongly convex objective function. Moreover, by exploiting the

problem structure, we demonstrate the global exponential convergence of the forward-

backward envelope even in the absence of strong convexity. In Section 6.4, we introduce

a continuous-time gradient flow dynamics based on the celebrated Douglas-Rachford
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splitting algorithm and utilize the theory of IQCs to prove global exponential stability

for strongly convex problems. We offer concluding remarks in Section 6.5.

6.2 Problem formulation and background We consider a com-

posite optimization problem,

minimize
x

f(x) + g(Tx) (6.1)

where x ∈ Rn is the optimization variable, T ∈ Rm×n is a given matrix, f : Rn → R
is a continuously differentiable function with a Lipschitz continuous gradient, and g:

Rm → R is a nondifferentiable convex function. Such optimization problems arise in

a number of different applications and depending on the structure of the functions f

and g, different first- and second-order algorithms can be employed to solve them. We

are interested in studying global convergence properties of methods based on proximal

gradient flow algorithms. In what follows, we provide background material that we

utilize in the rest of the chapter.

6.2.1 Proximal operators and the associated envelopes The proximal op-

erator of a proper, lower semicontinuous, and convex function g is defined as

proxµg(v) := argmin
z

(
g(z) +

1

2µ
‖z − v‖22

)
.

The value function of this optimization problem determines the associated Moreau en-

velope,

Mµg(v) := g(proxµg(v)) +
1

2µ
‖proxµg(v) − v‖22

which is a continuously differentiable function even when g is not [76],

∇Mµg(v) =
1

µ
(v − proxµg(v)).

Combining the last two expressions yields,

Mµg(v) = g(proxµg(v)) +
µ

2
‖∇Mµg(v)‖22.

The Moreau envelope of g can be used to introduce the forward-backward (FB)
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envelope [157–159] of the composite function

F (x) := f(x) + g(x).

The FB envelope is determined by the value function of the problem

minimize
v

J(x, v) (6.2a)

where J approximates F via a simple quadratic expansion of the function f around x,

J(x, v) := f(x) + 〈∇f(x), v − x〉 + 1
2µ ‖v − x‖22 + g(v)

= g(v) + 1
2µ ‖v − (x − µ∇f(x))‖22 + f(x) − µ

2 ‖∇f(x)‖22.
(6.2b)

The optimal solution of (6.2) is determined by

v?µ(x) = proxµg(x − µ∇f(x))

and it can be used to obtain the FB envelope of the function F ,

Fµ(x) := J(x, v?µ(x)) = J(x,proxµg(x − µ∇f(x)))

= f(x) − µ 〈∇f(x), Gµ(x)〉 +
µ

2
‖Gµ(x)‖22 + g(proxµg(x − µ∇f(x)))

(6.3)

where Gµ is the generalized gradient map,

Gµ(x) :=
1

µ
(x − proxµg(x − µ∇f(x))). (6.4)

Alternatively, the FB envelope Fµ can be also expressed as

Fµ(x) = f(x) + Mµg(x − µ∇f(x)) − µ

2
‖∇f(x)‖22. (6.5)

Moreover, when f is twice continuously differentiable, Fµ is continuously differentiable

and its gradient is determined by [157],

∇Fµ(x) = (I − µ∇2f(x))Gµ(x). (6.6)
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The Douglas-Rachford (DR) envelope is another useful object that is obtained by

evaluating the FB envelope at proxµf (x) [163],

FDRµ (x) := Fµ(proxµf (x)). (6.7)

Alternatively, the DR envelope can be expressed as

FDRµ (x) = Mµg(x− 2µ∇Mµf (x)) + Mµf (x) − µ‖∇Mµf (x)‖22. (6.8)

From the definition of the proximal operator of the continuously differentiable function

f , we have

µ∇f(proxµf (x)) + proxµf (x) − x = 0 (6.9)

and, thus,

∇Mµf (x) = ∇f(proxµf (x)). (6.10)

Equality (6.7) follows from substituting the expression for ∇Mµf (x) into (6.8), using

equation (6.9), and leveraging the properties of the Moreau envelope,

FDRµ (x) = Mµg(x− 2µ∇f(proxµf (x)) + f(proxµf (x)) +

1

2µ
‖proxµf (x) − x‖22 − µ ‖∇f(proxµf (x))‖22

= Mµg(proxµf (x)− µ∇f(proxµf (x)) + f(proxµf (x))− µ

2
‖∇f(proxµf (x))‖22

= Fµ(proxµf (x)).

If f is twice continuously differentiable with∇2f(x) � LfI for all x, the DR envelope

is continuously differentiable and its gradient is given by [163]

∇FDRµ (x) =
1

µ
(2∇proxµf (x) − I)GDRµ (x) (6.11)

where

∇proxµf (x) =
(
I + µ∇2f(proxµf (x))

)−1

and

GDRµ (x) := proxµf (x) − proxµg(2proxµf (x)− x). (6.12)
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6.2.2 Proximal augmented Lagrangian By introducing an auxiliary optimiza-

tion variable z, problem (6.1) can be rewritten as follows,

minimize
x, z

f(x) + g(z)

subject to Tx − z = 0.
(6.13)

The augmented Lagrangian associated with constrained optimization problem (6.13) is

given by,

Lµ(x, z; y) := f(x) + g(z) + 〈y, Tx− z〉 + 1
2µ ‖Tx− z‖

2
2

and the completion of squares yields,

Lµ = f(x) + g(z) + 1
2µ ‖z − (Tx + µy)‖22 −

µ
2 ‖y‖

2
2

where y is the Lagrange multiplier and µ is a positive parameter. The minimizer of Lµ
with respect to z is

z?(x, y) = proxµg(Tx + µy)

and the evaluation of Lµ(x, z; y) along the manifold resulting from the explicit mini-

mization over z yields the proximal augmented Lagrangian [81],

Lµ(x; y) := Lµ(x, z?(x, y); y)

= f(x) + Mµg(Tx + µy) − µ
2 ‖y‖

2
2.

(6.14)

This function is continuously differentiable with respect to both x and y and it can be

used as a foundation for the development of different first- and second-order primal-

dual methods for nonsmooth composite optimization [81, 108]. It is noteworthy that,

for T = I, forward-backward envelope Fµ(x) is obtained by restricting the proximal

augmented Lagrangian Lµ(x; y) along the manifold y?(x) = −∇f(x) resulting from

KKT optimality conditions,

Fµ(x) := Lµ(x; y?(x)) = Lµ(x; y = −∇f(x))

= f(x) + Mµg(x − µ∇f(x)) − µ
2 ‖∇f(x)‖22.
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Moreover, relation (6.7) between the two envelopes allows us to interpret the DR en-

velope as the proximal augmented Lagrangian evaluated at proxµf (x) and restricted

along the manifold y?(proxµf (x)) = −∇f(proxµf (x)) = −∇Mµf (x),

FDRµ (x) := Lµ(proxµf (x); y?(proxµf (x)))

= Mµf (x) + Mµg(x − 2µ∇Mµf (x)) − µ ‖∇Mµf (x)‖22.

6.2.3 Strong convexity and Lipschitz continuity The function f is strongly

convex with parameter mf if for any x and x̂,

f(x̂) ≥ f(x) + 〈∇f(x), x̂ − x〉 +
mf

2
‖x̂ − x‖22

and equivalently,

‖∇f(x)−∇f(x̂)‖2 ≥ mf‖x − x̂‖2. (6.15)

The gradient of a continuously-differentiable function f is Lipschitz continuous with

parameter Lf if for any x and x̂,

f(x̂) ≤ f(x) + 〈∇f(x), x̂ − x〉 +
Lf
2
‖x̂ − x‖22

and equivalently,

‖∇f(x)−∇f(x̂)‖2 ≤ Lf‖x − x̂‖2. (6.16)

Moreover, if an mf -strongly convex function f has an Lf -Lipschitz continuous gradient,

the following inequality holds for any x and x̂,

〈∇f(x)−∇f(x̂), x − x̂〉 ≥
mf Lf
mf + Lf

‖x − x̂‖22 +
1

mf + Lf
‖∇f(x)−∇f(x̂)‖22.

(6.17)

Furthermore, the subgradient ∂g of a nondifferentiable function g is defined as the set

of points z ∈ ∂g(x) that for any x and x̂ satisfy,

g(x̂) ≥ g(x) + zT (x̂ − x). (6.18)

6.2.4 Proximal Polyak-Lojasiewicz inequality The Polyak-Lojasiewicz (PL)

condition can be used to establish linear convergence of standard gradient descent
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method in the absence of strong convexity (or even convexity) [164]. For an uncon-

strained optimization problem with a non-empty solution set,

minimize
x

f(x)

where f is a twice differentiable function with a Lipschitz continuous gradient, the PL

condition is given by

‖∇f(x)‖22 ≥ γ (f(x) − f?)

where γ > 0 and f? is the optimal value of the function f .

We next provide the generalization of the PL condition for nonsmooth composite

optimization problems (6.13) with T = I. For this class of problems, the proximal PL

inequality holds for µ ∈ (0, 1/Lf ) if there exist γ > 0 such that

‖Gµ(x)‖22 ≥ γ (Fµ(x) − F ?µ). (6.19)

Here, Lf is the Lipschitz constant of∇f , Fµ is the FB envelope, andGµ is the generalized

gradient map. In Appendix A, we show that (6.19) is equivalent to the condition

provided in [164].

6.3 Exponential stability of proximal algorithms In this sec-

tion, we briefly discuss the Arrow-Hurwicz-Uzawa gradient flow dynamics that can be

used to solve (6.13) by computing the saddle points of the proximal augmented La-

grangian [81]. We then show that the proximal gradient method in continuous time can

be obtained from the proximal augmented Lagrangian method by restricting the dual

variable along the manifold y = −∇f(x). Finally, we discuss global stability properties

of proximal algorithms both in the presence and in the absence of strong convexity.

Continuous differentiability of the proximal augmented Lagrangian (6.14) can be

utilized to compute its saddle points via the Arrow-Hurwicz-Uzawa gradient flow dy-

namic, [
ẋ

ẏ

]
=

[
−
(
∇f(x) + T T∇Mµg(Tx + µy)

)
µ (∇Mµg(Tx + µy) − y)

]
. (6.20)

As shown in [81], these primal-descent dual-ascent gradient flow dynamics are globally

exponentially stable for convex problems in which the matrix TT T is invertible and the
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smooth part of the objective function f is strongly convex.

For convex problems with T = I in (6.1),

minimize
x

f(x) + g(x) (6.21)

the proximal gradient method,

xk+1 = proxαkg
(xk − αk∇f(xk)) (6.22)

with the stepsize αk ∈ (0, 1/Lf ] can be used to solve (6.21), where Lf is the Lipschitz

constant of ∇f . In [157], it was demonstrated that (6.22) can be interpreted as a

variable-metric gradient method on FB envelope,

xk+1 = xk − αk
(
I − αk∇2f(x)

)−1∇Fαk
(xk)

= xk − αkGαk
(xk).

This interpretation can be utilized to compute the optimal solution to (6.21) using the

continuous-time proximal gradient flow dynamics

ẋ = −Gµ(x)

= − (∇f(x) + ∇Mµg(x − µ∇f(x)))

= − 1
µ

(
x − proxµg(x − µ∇f(x))

)
.

(6.23)

Remark 8. Proximal gradient flow dynamics (6.23) are different from the subgradient

flow dynamics associated with nonsmooth composite optimization problem (6.21). We

note that proximal gradient algorithm (6.22) can be obtained via explicit forward Euler

discretization of (6.23) with the stepsize µ = αk. This should be compared and contrasted

to a standard interpretation [76] in which (6.22) results from implicit backward Euler

discretization of the subgradient flow dynamics associated with (6.21). We also note

that (6.23) can be obtained by substituting −∇f(x) for the dual variable y in the x-

update step of primal-descent dual-ascent gradient flow dynamics (6.20) with T = I.

We next examine global stability properties of proximal gradient flow dynamics (6.23),

first for strongly convex problems and then for the problems in which only the PL con-

dition holds.
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6.3.1 Strongly convex problems Herein, we utilize the theory of integral quadratic

constraints to establish global asymptotic stability of proximal gradient flow dynam-

ics (6.23) under the following assumption.

Assumption 1. Let the differentiable part f of the objective function in (6.21) be

strongly convex with parameter mf , let ∇f be Lipschitz continuous with parameter Lf ,

and let the regularization function g be proper, lower semicontinuous, and convex.

Proximal gradient flow dynamics (6.23) can be expressed as a feedback interconnec-

tion of an LTI system

ẋ = Ax + B u

ξ = C x
(6.24a)

with a nonlinear term,

u(x) := proxµg(x − µ∇f(x)). (6.24b)

Here,

A = − 1
µ I, B = 1

µ I, C = I (6.24c)

and the corresponding transfer function H(s), ξ(s) = H(s)u(s), is

H(s) = C (s I − A)−1B =
1

µs + 1
I. (6.24d)

The following lemma combines firm nonexpansiveness of proxµg, strong convexity of

f , and Lipschitz continuity of ∇f to characterize nonlinear map (6.24b) by establishing

a quadratic inequality that u(x) = proxµg(x− µ∇f(x)) satisfies.

Lemma 7. Let Assumption 1 hold. Then, for any x ∈ Rn, x̂ ∈ Rn, u := proxµg(x −
µ∇f(x)), and û := proxµg(x̂− µ∇f(x̂)), the pointwise quadratic inequality

[
x − x̂

u − û

]T [
η2I 0

0 −I

]
︸ ︷︷ ︸

Π

[
x − x̂

u − û

]
≥ 0 (6.25)

holds, where

η = max {|1 − µmf |, |1 − µLf |} . (6.26)
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Proof. See Appendix A.1.

Lemma 8. The nonlinear function u(x) := proxµg(x − µ∇f(x)) is a contraction for

µ ∈ (0, 2/Lf ).

Proof. From (A.8), it follows that the nonlinear function u(x) is a contraction for η < 1.

From (6.26), we see that η < 1 if and only if,

−1 < 1 − µLf < 1 and − 1 < 1 − µmf < 1.

Since mf ≤ Lf , these conditions hold for µ ∈ (0, 2/Lf ) .
We next employ the KYP lemma in the frequency domain [165][

Hρ(jω)

I

]∗
Π

[
Hρ(jω)

I

]
≺ 0, ∀ω ∈ R (6.27)

where Π is given by (6.25), ω is the temporal frequency, and

Hρ(jω) := C (jωI − (A + ρI))−1B =
1

jµω + 1− µρ
I

to establish global exponential stability of (6.24). Note that stability of Hρ requires

µ < 1/ρ.

Theorem 9. Let Assumption 1 hold and let µ ∈ (0, 2/Lf ). Then, proximal gradient

flow dynamics (6.24) are globally exponentially stable with the rate ρ < (1− η)/µ, i.e.,

‖x(t) − x?‖2 ≤ c e−ρt‖x(0) − x?‖2, ∀ t ≥ 0

where c is a positive constant and η is given by (6.26).

Proof. Substituting Π given by (6.25) into (6.27) implies that the condition (6.27) holds

for all ω ∈ R if

I − η2H∗ρ (jω)Hρ(jω) � 0.

This inequality can be equivalently written as

(
µ2ω2 + (1 − µρ)2 − η2

)
I � 0 (6.28)
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which holds for every ω ∈ R if

(1 − µρ + η)(1 − µρ − η) > 0.

Since stability of Hρ requires 1−µρ > 0, the first term is positive and (6.28) is satisfied

for all ω if 1 − µρ − η > 0. Finally, since η < 1 for µ ∈ (0, 2/Lf ), dynamics (6.24) are

globally exponentially stable with the rate ρ < (1− η)/µ.

Remark 9. For µ = 2/(Lf + mf ), the second term on the right-hand-side in (A.7)

disappears and the parameter η is given by

η =
Lf − mf

Lf + mf
=

κ − 1

κ + 1

where κ := Lf/mf is the condition number associated with the function f . In this case,

the convergence rate is upper bounded by the strong convexity module mf , i.e., ρ < mf .

Remark 10. In Appendix B, by restricting our attention to in-network optimization,

we provide a distributed implementation based on the proximal augmented Lagrangian.

Furthermore, by introducing an appropriate change of coordinates, we utilize the theory

of IQCs to prove global exponential stability under the strong convexity assumption.

6.3.2 Proximal Polyak-Lojasiewicz condition Next, we consider the prob-

lems in which the function f is not strongly convex but the function F := f +g satisfies

the proximal PL condition (6.19).

Assumption 2. Let the regularization function g in (6.13) be proper, lower semicon-

tinuous, and convex, let f be twice continuously differentiable with ∇2f(x) � LfI, and

let the generalized gradient map satisfy the proximal PL condition,

‖Gµ(x)‖22 ≥ γ (Fµ(x) − F ?µ)

where µ ∈ (0, 1/Lf ), γ > 0, and F ?µ is the optimal value of the FB envelope Fµ.

Remark 11. We recall that the proximal gradient algorithm can be interpreted as a

variable-metric gradient method on FB envelope and that (6.23) can be equivalently

written as

ẋ = −(I − µ∇2f(x))−1∇Fµ(x).
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Under Assumption 2, the matrix I − µ∇2f(x) is invertible and the functions F and Fµ

have the same minimizers and the same optimal values [157],

argmin
x

F (x) = argmin
x

Fµ(x), F ? = F ?µ .

This motivates study of the convergence properties of (6.23) in terms of the FB envelope.

Theorem 10. Let Assumption 2 hold. Then the forward-backward envelope associated

with proximal gradient flow dynamics (6.23) converge exponentially to F ?µ = F ? with

the rate ρ = γ(1− µLf ), i.e.,

Fµ(x(t)) − F ?µ ≤ e−ρt(Fµ(x(0)) − F ?µ), ∀ t ≥ 0.

Proof. We introduce a Lyapunov function candidate,

V (x) = Fµ(x) − F ?µ

where Fµ is the FB envelope. The derivative of V along the solutions of (6.23) is given

by

V̇ (x) = 〈∇Fµ(x), ẋ〉

= −
〈
∇Fµ(x), (I − µ∇2f(x))−1∇Fµ(x)

〉
= −

〈
Gµ(x), (I − µ∇2f(x))Gµ(x)

〉
where the last expression follows from (6.6). Since the gradient of f is Lf -Lipschitz

continuous, i.e., ∇2f(x) � LfI for all x ∈ Rn, Assumption 2 implies

− (I − µ∇2f(x)) � −(1 − µLf )I

and, thus,

V̇ (x) ≤ −(1 − µLf ) ‖Gµ(x)‖22

≤ −γ (1 − µLf ) (Fµ(x) − F ?µ)
(6.29)

is non-positive for µ ∈ (0, 1/Lf ). Moreover, combining the last inequality with the

definition of V yields,

V̇ ≤ −γ (1 − µLf )V



102

which implies

Fµ(x(t)) − F ?µ ≤ e−γ (1−µLf )t(Fµ(x(0)) − F ?µ).

Remark 12. When the proximal PL condition is satisfied, Fµ(x(t)) − F ?µ converges

exponentially but, in the absence of strong convexity, the exponential convergence rate

cannot be established for ‖x(t)−x?‖2. Thus, in the absence of strong convexity, although

the objective function converges exponentially fast, the solution to (6.23) does not enjoy

this convergence rate. To the best of our knowledge, the convergence rate of x(t) to the

set of optimal values x? is not known in this case.

6.4 Global exponential stability of Douglas-Rachford split-
ting dynamics We next introduce a continuous-time gradient flow dynamics

based on the well-known Douglas-Rachford splitting algorithm [162] and establish global

exponential stability for strongly convex f .

6.4.1 Non-smooth composite optimization problem The optimality con-

dition for non-smooth composite optimization problem (6.21) is given by

0 ∈ ∇f(x) + ∂g(x).

Multiplication by µ and addition/subtraction of x yields,

0 ∈ [I + µ∇f ] (x) + µ∂g(x) − x.

Since the proximal operator associated with the function µf is determined by the re-

solvent operator of µ∇f , we have

x = (I + µ∇f)−1(x − µ∂g(x)) = proxµf (x − µ∂g(x)).

Introducing a new variable z := x− µ∂g(x) allows us to bring the optimality condition

into the following form

x = proxµf (z)

or, equivalently,

µ∂g(x) = proxµf (z) − z.
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Now, adding x to both sides of this equation yields

[I + µ∂g] (x) = x + proxµf (z) − z

= 2proxµf (z) − z

which leads to,

x? = proxµg(2 proxµf (z?) − z?) = proxµf (z?). (6.30a)

Furthermore, the reflected proximal operators [166] of the functions f and g,

Rµf (z) := [2 proxµf − I](z), Rµg := [2 proxµg − I](z)

can be used to write optimality condition (6.30a) as

[RµgRµf ](z?) = z?. (6.30b)

This follows from (6.30a) and

[RµgRµf ](z) = z + 2(proxµg(2 proxµf (z) − z)− proxµf (z)).

Building on the optimality conditions, the DR splitting algorithm consists of the

following iterative steps,

xk = proxµf (zk)

yk = proxµg(2x
k − zk)

zk+1 = zk + 2α(yk − xk).

(6.31)

Under standard convexity assumptions [167], the DR splitting algorithm converges for

α ∈ (0, 1). Combining all the steps in (6.31) yields the first-order recurrence,

zk+1 = zk + 2α
(
proxµg(2x

k − zk) − xk
)

= [(1 − α)I + αRµgRµf ] (zk)
(6.32)

where zk converges to the fixed point of the operator RµfRµg and xk converges to the
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optimal solution of (6.21).

Optimality conditions (6.30) can be used to obtain the continuous-time gradient flow

dynamics to compute z?,

ż = −z + [RµgRµf ](z)

= proxµg(2 proxµf (z) − z) − proxµf (z)

= −GDRµ (z)

(6.33)

where GDRµ (z) is given by (6.12). We note that the discrete-time system (6.32) results

from the explicit forward Euler discretization of (6.33) with the stepsize α.

Remark 13. Using the definition of ∇FDRµ (x) in (6.11), the continuous-time sys-

tem (6.33) can be written as

ż = −µ
(
2∇proxµf (z) − I

)−1∇FDRµ (z)

where the inverse is well-defined for µ ∈ (0, 1/Lf ). Thus, the DR splitting algorithm

can be interpreted as a variable-metric gradient method on the DR envelope FDRµ [157].

The continuous-time dynamics (6.33) can be also seen as a feedback interconnection

of an LTI system

ż = Az + B u

ξ = C z
(6.34a)

with a nonlinear term,

u(z) := [RµgRµf ](z). (6.34b)

Herein, the matrices in LTI representation (6.34a) are given by

A = − I, B = I, C = I (6.34c)

and the corresponding transfer function is

H(s) = C(s I − A)−1B =
1

s + 1
I. (6.34d)
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We first characterize properties of nonlinearity u in (6.34b) and then, similar to

the previous section, employ the KYP lemma to establish the conditions for global

exponential stability of (6.34).

Lemma 11. Let Assumption 1 hold and let µ ∈ (0, 2/Lf ). Then, the operator Rµf is

σ-contractive,

‖Rµf (x) − Rµf (y)‖2 ≤ σ‖x − y‖2

where σ is given by

σ = max {|1 − µmf |, |1 − µLf |} < 1. (6.35)

Proof. Given zx := proxµf (x) and zy := proxµf (y), x and y can be computed as follows

x = zx + µ∇f(zx), y = zy + µ∇f(zy).

Thus,

‖Rµf (x) − Rµf (y)‖2 = ‖2(zx − zy) − (x− y)‖2

= ‖(zx − zy) − µ (∇f(zx)−∇f(zy))‖2

= ‖zx − zy‖2 + |µ(∇f(zx)−∇f(zy))‖2 −

2µ 〈∇f(zx)−∇f(zy), zx − zy〉

≤ max
{

(1 − µLf )2, (1 − µmf )2
}
‖zx − zy‖2

≤ σ ‖x − y‖2.

where the firm non-expansiveness of the proximal operator is used in the last step.

Moreover, according to Lemma 8, for µ ∈ (0, 2/Lf ) we have σ < 1, which completes the

proof.

Lemma 12. Let Assumption 1 hold and let µ ∈ (0, 2/Lf ). Then, the operator Rµg is

firmly non-expansive.
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Proof.

‖Rµg(x)−Rµg(y)‖22 = 4 ‖proxµf (x) − proxµf (y)‖22 + ‖x − y‖22 −

4
〈
x − y,proxµf (x) − proxµf (y)

〉
≤ ‖x − y‖22.

Remark 14. Since Rµg is firmly non-expansive and Rµf is σ-contractive, the composite

operator RµgRµf is also σ-contractive. Moreover, since the operator Rµf and nonlin-

earity u in (6.24b) have the same contraction parameters, the quadratic inequality that

describes nonlinearity (6.24b) can be also utilized to characterize the composite operator

RµgRµf .

Theorem 13. Let Assumption 1 hold. Then, the DR splitting dynamics (6.34) are

globally exponentially stable, i.e., there is c > 0 and ρ ∈ (0, 1− σ) such that,

‖z(t) − z?‖ ≤ c e−ρt‖z(0) − z?‖, ∀ t ≥ 0.

Proof. Note that although the nonlinearities in systems (6.20) and (6.34) are different,

they have the same quadratic characterizations. Moreover, the dynamics are the same

except for a multiplicative coefficient 1/µ. Thus, the KYP lemma implies the global

exponential stability of (6.34) if there exists ρ ∈ (0, 1) such that,

σ2Hρ(jω)∗Hρ(jω) − I ≺ 0, ∀ω ∈ R, (6.36)

where

Hρ(jω) = C (jωI − (A + ρI))−1B =
1

j ω + 1− ρ
I.

The inequality (6.36) is satisfied if,

σ2 − (1 − ρ)2 − ω2 < 0, ∀ω ∈ R

which proves ρ < 1− σ.
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6.4.2 Douglas-Rachford splitting on the dual problem The DR splitting

algorithm cannot be used to directly solve a problem with a more general linear equality

constraint,

minimize
x, z

f(x) + g(z)

subject to Tx + Sz = r
(6.37)

where T ∈ Rm×n, S ∈ Rm×n, and r ∈ Rm are problem data. However, it can be utilized

to solve the dual problem,

minimize
ζ

f1(ζ) + g1(ζ) (6.38)

where
f1(ζ) = f?(−T T ζ) + rT ζ

g1(ζ) = g?(−ST ζ)

and h?(ζ) := supx(ζTx − h(x)) is the conjugate of the function h. It is a standard

fact [167, 168] that solving the dual problem (6.38) via the DR splitting algorithm

is equivalent to using ADMM for the original problem (6.37). Next, we introduce a

gradient flow dynamics based on the DR splitting algorithm for solving (6.38) and

demonstrate global exponentially stability under the following assumption.

Assumption 3. Let the differentiable part f of the objective function in (6.37) be

strongly convex with parameter mf , let ∇f be Lipschitz continuous with parameter Lf ,

let the function g be proper, lower semicontinuous, and convex, and let the matrix T be

full row rank.

The continuous-time DR splitting algorithm

ζ̇ = proxµg1(2 proxµf1(ζ) − ζ) − proxµf1(ζ) (6.39)

can be used to compute the optimal solution ζ? to (6.38). It is well-known that the

conjugate functions are convex [126]. Since (6.39) is identical to (6.33), if f1 satisfies

the conditions in Assumption 1 global exponential stability of (6.39) follows from The-

orem 13. For a full row rank T , f1 is strongly convex and ∇f1 is Lipschitz continuous
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with parameters [166, Proposition 4],

Lf1 = ‖T T ‖2/mf , mf1 = θ2/Lf

where θ is a positive parameter that always exists and satisfies ‖T T ν‖ ≥ θ‖ν‖ for all

ν ∈ Rm. Thus, both f1 and g1 satisfy Assumption 3 and global exponential stability

of (6.39) follows from Theorem 13.

6.5 Concluding remarks We study a class of nonsmooth optimization

problems in which it is desired to minimize the sum of a continuously differentiable func-

tion with a Lipschitz continuous gradient and a nondifferentiable function. For strongly

convex problems, we employ the theory of integral quadratic constraints to prove global

exponential stability of proximal gradient flow and Douglas-Rachford splitting dynam-

ics. We also propose a generalization of the Polyak-Lojasiewicz condition to nonsmooth

problems and demonstrate the global exponential convergence of the forward-backward

envelope for the proximal gradient flow algorithm even in the absence of strong convex-

ity.



Chapter 7

Distributed proximal augmented

Lagrangian method for

nonsmooth composite

optimization

We study a class of nonsmooth composite optimization problems in which the con-

vex objective function is given by a sum of differentiable and nondifferentiable terms.

By introducing auxiliary variables in nondifferentiable terms, we provide an equivalent

consensus-based characterization that is convenient for distributed implementation. The

Moreau envelope associated with the nonsmooth part of the objective function is used

to bring the optimization problem into a continuously differentiable form that serves

as a basis for the development of a primal-descent dual-ascent gradient flow method.

This algorithm exploits separability of the objective function and is well-suited for in-

network optimization. We prove global asymptotic stability of the proposed algorithm

and solve the problem of growing undirected consensus networks in a distributed manner

to demonstrate its effectiveness.

7.1 Introduction We study a class of nonsmooth composite optimization

problems in which the convex objective function is a sum of differentiable and non-

differentiable functions. Among other applications, these problems emerge in machine

109
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learning, compressive sensing, and control. Recently, regularization has been used as

a promising tool for enhancing utility of standard optimal control techniques. In this

approach, commonly used performance measures are augmented with regularization

functions that are supposed to promote some desired structural features in the dis-

tributed controller, e.g., sparsity. Such an approach has received significant attention in

recent years [41,42,71,106,115,118,119], but computing optimal solutions in large-scale

problems still remains a challenge.

Generic descent methods cannot be used in the nonsmooth composite optimization

problems due to the presence of a nondifferentiable component in the objective function.

Moreover, these standard methods are not well-suited for distributed implementation.

An alternative approach is to separate the smooth and nonsmooth parts of the objective

function and use the alternating direction method of multipliers (ADMM). In [111], we

exploit separability of the objective function and utilize an ADMM-based consensus

algorithm to solve the regularized optimal control problem in a distributed manner over

multiple processors. Even though the optimal control problem is in general non-convex,

recent results can be utilized to show convergence to a local minimum [112]. However, in

an update step of the ADMM algorithm, all the processors halt to compute the weighted

average (the gathering step) [113].

Herein, we build on recent work [108] in which the structure of proximal oper-

ators associated with nonsmooth regularizers was exploited to bring the augmented

Lagrangian into a continuously differentiable form. Such an approach is suitable for de-

veloping an algorithm based on primal-descent dual-ascent gradient method. We use the

Arrow-Hurwicz-Uzawa gradient flow dynamics [77] and propose an algorithm that can

be implemented in a fully distributed manner over multiple processors. This increases

the computational efficiency and reduces the overall computation time. By exploiting

convexity of the smooth part of the objective function, we show asymptotic convergence

of our algorithm.

The point of departure of our work from [108] is that we study a more general

form of consensus optimization problems in which the optimization variable is a matrix
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and develop a fully distributed algorithm. Furthermore, while most existing primal-

dual techniques for nonsmooth distributed optimization employ subgradient flow meth-

ods [73,79,169], our approach yields a gradient flow dynamics with a continuous right-

hand side even for nonsmooth problems.

The rest of the chapter is structured as follows. In Section 7.2, we formulate the

nonsmooth composite optimization problem, discuss a motivating example, and provide

background on proximal operators and the consensus-based ADMM algorithm. In Sec-

tion 7.3, by exploiting the structure of proximal operators, we introduce the proximal

augmented Lagrangian. In Section 7.4, we use the Arrow-Hurwicz-Uzawa method to

develop the gradient flow dynamics that are well-suited for distributed computations

and prove global asymptotic stability. In Section 7.5, we discuss distributed implemen-

tation, in Section 7.6, we provide examples, and, in Section 7.7, we offer concluding

remarks.

7.2 Problem formulation We consider a composite convex optimization

problem,

minimize
x

n∑
i= 1

fi(x) + g(x) (7.1)

where x ∈ Rm is the optimization variable, the functions fi are continuously differen-

tiable, and the function g is possibly nondifferentiable. This problem can be brought

into a standard consensus form by introducing n local variables xi and a global variable

z,

minimize
xi, z

n∑
i= 1

fi(xi) + g(z)

subject to xi − z = 0, i = 1, . . . , n.

(7.2)

Even though this reformulation increases the number of optimization variables, it

facilitates distributed computations by bringing the objective function into a separa-

ble form. Clearly, the solutions to (7.1) and (7.2) coincide but, in contrast to (7.1),

optimization problem (7.2) is convenient for distributed implementation. Solving (7.2)

on a single processor is not necessarily more computationally efficient than solving the

original problem via a centralized algorithm. However, optimization problem (7.2) can

be split into n separate subproblems over n different processors. In such a setup, each
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processor solves an optimization problem that involves a local objective function fi of a

single local variable xi. This is advantageous for large-scale systems where centralized

implementation is prohibitively complex and cannot be afforded.

7.2.1 Motivating application Problem (7.1) arises in feedback design when a

performance metric, e.g., the H2 norm, is augmented with a regularization function

to promote structural features in the optimal controller. Herein, we discuss the prob-

lem of growing undirected consensus networks and show that the objective function is

separable; thereby, it completely fits into the framework (7.2).

We consider the controlled undirected network,

ψ̇ = −Lp ψ + d + u

ζ =

[
Q1/2

0

]
ψ +

[
0

R1/2

]
u

where d and u are the disturbance and control inputs, ψ is the state, and ζ is the

performance output. The dynamic matrix Lp is the Laplacian matrix of the plant

network and symmetric matrices Q � 0 and R � 0 specify the state and control weights

in the performance output. For memoryless control laws,

u = −Lx ψ

where Lx is the Laplacian matrix of the controller graph, the closed-loop system is given

by

ψ̇ = − (Lp + Lx)ψ + d

ζ =

[
Q1/2

−R1/2Lx

]
ψ.

(7.3)

In the absence of exogenous disturbances, the network converges to the average of the

initial node values ψ̄ = (1/n)
∑

i ψi(0) if and only if it is connected [2]. Let Q :=

I − (1/n)11T penalizes the deviation of individual node values from average. The

objective is to minimize the mean square deviation from the network average by adding

a few additional edges, specified by the graph Laplacian Lx of a controller network. If
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E is the incidence matrix of the controller graph, Lx can be written as

Lx = E diag (x)ET

where diag (x) is a diagonal matrix containing the optimization variable x ∈ Rm (i.e., the

vector of the edge weights in the controller graph). Regularization terms may be used

to promote sparsity of the controller network or to impose some additional constraints

on the edge weights. The matrix Lx that optimizes the closed-loop performance and has

certain structural properties can be obtained by solving the regularized optimal control

problem

minimize
x

f(x) + g(x). (7.4)

Here, f is the function that quantifies the closed-loop performance, i.e. the H2 norm,

and g is the regularization function that is introduced to promote certain structural

properties of Lx. For example, when it is desired to design Lx with a specified pattern

of zero elements, g is an indicator function of the set that characterizes this pattern [114].

When it is desired to promote sparsity of Lx, the `1 norm g(x) = γ
∑

i |xi| can be used

as a sparsity-enhancing regularizer, where γ is the positive parameter that characterizes

emphasis on sparsity [42].
Next, we exploit the square-additive property of the H2 norm to provide an equiv-

alent representation that is convenient for large-scale and distributed optimization. As

shown in [106], up to an additive constant, the square of the H2 norm (from d to ζ) is

determined by

f(x) = trace
(
(E diag (x)ET + Lp)

†(I + LpRLp)
)

+ diag
(
ETRE

)T
x

where the pseudo-inverse of the closed-loop graph Laplacian is given by

(Ediag(x)ET + Lp)
† = (Ediag(x)ET + (1/n)11T + Lp)

−1.

It is easy to show that f(x) can be written as

f(x) =
n∑

i= 1

fi(x)
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where

fi(x) = ξTi
(
E diag (x)ET + (1/n)11T + Lp

)−1
ξi + (1/n) diag

(
ETRE

)T
x. (7.5)

Here, ξi = (I + LpRLp)
1/2 ei is the ith column of the square root of the matrix

(I + LpRLp). Moreover, it can be shown that the gradient of fi(x) is given by

∇fi(x) = (1/n) diag
(
ETRE

)
− νi(x) ◦ νi(x) (7.6)

where ◦ is the elementwise multiplication and

νi(x) = ET
(
E diag (x)ET + (1/n)11T + Lp

)−1
ξi. (7.7)

In what follows, we provide essential background on the proximal operators that we

utilize for the latter developments.

7.2.2 Background

Proximal operators

The proximal operator of the function g is given by

proxµg(v) := argmin
z

g(z) +
1

2µ
‖z − v‖2,

and the Moreau envelope determines the corresponding value function,

Mµg(v) := g(proxµg(v)) +
1

2µ
‖proxµg(v) − v‖22. (7.8)

Irrespective of differentiability of g, Moreau envelope is a continuously differentiable

function and its gradient is given by [76],

∇Mµg(v) =
1

µ
(v − proxµg(v)). (7.9)

The above defined functions play essential role in our subsequent developments.
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Alternating Direction Method of Multipliers (ADMM)

We next demonstrate that a standard consensus algorithm based on the ADMM [113]

can be used to solve the problem (7.2). This algorithm is well-suited for distributed

implementation in which each processor solves an optimization problem. More details

can be found in [111].

The augmented Lagrangian associated with (7.2) is given by

Lµi(xi, z;λ) := g(z) +

n∑
i= 1

( fi(xi) + 〈λi, xi − z〉 +
1

2µi
‖xi − z‖22) (7.10)

where λi’s are the Lagrange multipliers and µi’s are positive parameters. The distributed

ADMM algorithm consists of the following iterative steps,

xk+1
i = argmin

xi
fi(xi) +

1

2µi
‖xi − uki ‖22

zk+1 = argmin
z

g(z) +

n∑
i=1

1

2µi
‖z − vki ‖22

λk+1
i = λki +

1

µi

(
xk+1
i − zk+1

)
where

uki := zk − µi λ
k
i

vki := xk+1
i + µi λ

k
i .

The xi-minimization step can be done via distributed computation by spreading

subproblems to n different processors. On the other hand, the update of z amounts to

the evaluation of the proximal operator of the function g,

zk+1 = proxµ̂g

(
µ̂

n∑
i= 1

1

µi
vki

)
.

where µ̂ := (
∑

i 1/µi)
−1. Thus, the update of z requires gathering each xk+1

i and the

associated Lagrange multipliers λki in order to form vki .

The above presented consensus algorithm is standard (e.g., see [113]). We have pre-

viously used this algorithm for distributed design of structured feedback gains in [111].
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Recently, convergence of this algorithm was established even for problems with non-

convex objective functions fi [112].

7.3 Proximal augmented Lagrangian The interconnection graph

between the nodes in the consensus-based formulation in (7.2) is given by a star graph.

Each node has access to the internal node of the star graph with the state z. This topol-

ogy yields the z-update in ADMM that requires gathering the states of all subsystems.

Recently, an algorithm based on the proximal augmented Lagrangian for solving (7.2)

was developed in [108]. To avoid the above described computational requirement in the

z-update of the ADMM algorithm, we propose a primal-dual algorithm based on the

proximal augmented Lagrangian that can be implemented in a fully distributed manner.

Problem (7.2) can be equivalently written as,

minimize
xi, z

n∑
i= 1

fi(xi) + g(z)

subject to xi − xj = 0, (i, j) ∈ I

xk − z = 0,

(7.11)

where I is the set of indices between 1 and n such that any index appears in one pair

of the set at least once. This set characterizes structure of the information exchange

network between the agents. The interaction topology is given by a connected graph.

Moreover, the index k ∈ {1, . . . , n} can be chosen arbitrarily. In what follows, we study

one particular instance of problem (7.11).

Without loss of generality, we assume that k = n and that the underlying com-

munication network between different nodes in (7.11) is given by a path graph. By

introducing the optimization variable X,

X :=
[
x1 · · · xn

]
∈ Rm×n

the column vector en,

en =
[

0 0 · · · 1
]T
∈ Rn
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and the matrix T ,

T =


1 0 · · · 0

−1 1 · · · 0
...
...

. . .
...

0 0 · · · −1

 ∈ Rn×(n−1)

we can rewrite (7.11) as,

minimize
X, z

f(X) + g(z)

subject to X T = 0,

X en − z = 0.

(7.12)

In (7.12), the matrix T is the incidence matrix of an undirected path network that

connects n nodes. We note that any connected network can be used to build the

information exchange structure between the nodes. For an arbitrary connected graph

with m edges, the matrix T ∈ Rn×m has to satisfy the following properties,

T T1 = 0, T T T = L,

where 1 is the vector of all ones and L ∈ Rn×n is the Laplacian matrix of the underlying

graph. This is exactly the problem (6.37) that we discussed in the previous Chapter 6.

In Sec. 6.4.2, we have introduced a gradient flow dynamics based on the DR splitting

algorithm that can be used to solve the dual form of the problem (7.12) with a guaran-

teed global exponential convergence under certain assumptions 3. Herein, we provide an

algorithm based on proximal augmented Lagrangian to solve the primal problem that is

well-suited for distributed implementation and we show global asymptotic convergence.

The augmented Lagrangian associated with (7.12) is given by

Lµi(X, z;λ, Y ) = f(X) + g(z) + 〈λ,X en − z〉 + 〈Y,X T 〉 +
1

2µ1
‖X en − z‖22 +

1

2µ2
‖X T‖2F

(7.13)

where λ ∈ Rm and Y ∈ Rm×(n−1) are the Lagrange multipliers and µ1 and µ2 are

positive parameters. The proximal augmented Lagrangian is obtained by evaluating the
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augmented Lagrangian on the manifold that results from the explicit minimization of

Lµi with respect to z [108]. This yields a function that is once but not twice continuously

differentiable with respect to both the primal variable X and the dual variables λ and

Y .

The proximal augmented Lagrangian associated with (7.12) is given by

Lµi(X;λ, Y ) = Lµi(X, z?µ1(X;λ);λ, Y ) =

f(X) + Mµ1g(X en + µ1 λ) − µ1

2
‖λ‖22 + 〈Y,X T 〉 +

1

2µ2
‖X T‖2F ,

(7.14)

where Mµ1g is the Moreau envelope of the function g(z) and z?µ1(X;λ) is given by

z?µ1(X;λ) = proxµ1g(X en + µ1 λ)

and by substituting z? in the augmented Lagrangian (7.13), the proximal augmented

Lagrangian can be written as (7.14).

7.4 Arrow-Hurwicz-Uzawa gradient flow The proximal augmented

Lagrangian is a continuously differentiable function because the Moreau envelope is con-

tinuously differentiable. This facilitates the use of the Arrow-Hurwicz-Uzawa algorithm

which is a primal-descent dual-ascent gradient flow method. In this algorithm, the

primal variable X and the dual variables λ and Y are updated simultaneously. The

gradient flow dynamics are given by

Ẋ = −∇XLµ(X;λ, Y )

λ̇ = +∇λLµ(X;λ, Y )

Ẏ = +∇Y Lµ(X;λ, Y ).

By taking the derivatives, the updates can be written as

Ẋ = − (∇f(X) + ∇Mµ1g(X en + µ1 λ) eTn +
1

µ2
X T T T + Y T T )

λ̇ = µ1∇Mµ1g(X en + µ1 λ) − µ1 λ

Ẏ = X T.

(7.15)
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It is worth to note that if f(x) is separable, i.e. f(x) =
∑

i fi(xi), the gradient ∇f(X)

is an m× n matrix and can be written as

∇f(X) =
[
∇f1(x1) . . . ∇fn(xn)

]
.

Asymptotic convergence Our subsequent developments are based on the following

assumption

Assumption 4. The function f is continuously differentiable and convex, and the func-

tion g is proper, lower semicontinuous, and convex.

We show that under Assumption 4, dynamics (7.15) are globally asymptotically

stable and converge to (X?, λ?, Y ?) where each of the columns of X? is the optimal

solution to (7.1). The optimal primal and dual points (X?, λ?, Y ?) satisfy the following

first order optimality conditions

∇f(X?) + λ? eTn + Y ? T T = 0 (7.16a)

X? en − z? = 0 (7.16b)

∂g(z?) − λ? 3 0 (7.16c)

X? T = 0 (7.16d)

where ∂g is the subgradient of g.

Proposition 14. Let Assumption 4 hold. Then, gradient flow dynamics (7.15) are

globally asymptotically stable, i.e., they converge globally to the optimal primal and dual

points (X?, λ?, Y ?) of (7.12).

Proof. We introduce a change of variables

X̃ := X − X?, λ̃ := λ − λ?, Ỹ := Y − Y ?

and a Lyapunov function

V (X̃, λ̃, Ỹ ) =
1

2

〈
X̃, X̃

〉
+

1

2

〈
λ̃, λ̃

〉
+

1

2

〈
Ỹ , Ỹ

〉
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where (X̃, λ̃, Ỹ ) satisfy

˙̃X = ∇f(X?)− ∇f(X) − 1

µ1
m̃ eTn −

1

µ2
X̃ T T T − Ỹ T T ,

˙̃
λ = −µ1 λ̃ + m̃, ˙̃Y = X̃ T,

(7.17)

with

m̃ := µ1 (∇Mµ1g(X en + µ1 λ)−∇Mµ1g(X
? en + µ1 λ

?)) .

Based on [108, Lemma 2], we can write

P (X̃en + µ1λ̃) = proxµ1g(Xen + µ1 λ) − proxµ1g(X
?en + µ1 λ

?), (7.18)

where I is the identity matrix and P is a positive semidefinite matrix such that P � I.

Thus, from (7.9) we have,

m̃ = (I − P ) (X̃en + µ1 λ̃). (7.19)

The derivative of the Lyapunov function candidate along the solutions of (7.17) is

determined by

V̇ =
〈
X̃, ˙̃X

〉
+
〈
λ̃,

˙̃
λ
〉

+
〈
Ỹ , ˙̃Y

〉
= −

〈
X̃,∇f(X) − ∇f(X?)

〉
− µ1

〈
λ̃, P λ̃

〉
−

1

µ1

〈
(I − P ) X̃en, X̃ en

〉
− 1

µ2

〈
X̃ T T T , X̃

〉
.

Since f is convex, the first term in nonpositive. Moreover, by utilizing 0 � P � I,

it follows that V̇ ≤ 0. We next invoke LaSalle’s invariance principle [170] to establish

global asymptotic stability.

The points (X̃, λ̃, Ỹ ) in the set

S = {(X̃, λ̃, Ỹ ) | V̇ (X̃, λ̃, Ỹ ) = 0},
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satisfy

∇f(X? + X̃) = ∇f(X?), (7.20a)

λ̃ ∈ ker(P ), (7.20b)

X̃ en ∈ ker(I − P ), (7.20c)

X̃T ∈ span{[1 · · · 1 ]}, (7.20d)

where ker(A) denotes the null space of the matrix A and A ∈ span{[1 · · ·1 ]} signifies

that each column of the matrix A is given by a scalar multiple of the vector of all ones,

1. From (7.19), for the points in this set, we have m̃ = µ1λ̃. In order to identify the

largest invariant set in S, we evaluate dynamics (7.17) under constraints (7.20) to obtain

˙̃X = − λ̃ eTn − Ỹ T T ,
˙̃
λ = 0, ˙̃Y = 0. (7.21)

Thus, the invariant set is characterized by λ̃eTn + Ỹ T T = 0 for constant λ̃ and Ỹ . To

complete the proof, we need to show that the largest invariant set in S yields

(X,λ, Y ) = (X?, λ?, Y ?) + (X̃, λ̃, Ỹ ),

that satisfy optimality conditions (7.16).

Points (X,λ, Y ) satisfy optimality condition (7.16a) if

∇f(X) + (λ̃ + λ?) eTn + (Ỹ + Y ?)T T = 0.

For any (X̃, λ̃, Ỹ ) in the invariant set, we can use (7.20a) to replace∇f(X) with∇f(X?).

Furthermore, since λ̃eTn + Ỹ T T = 0, the resulting (X,λ, Y ) satisfy (7.16a). Moreover,

the substitution of Pλ̃ = 0 and (I − P )X̃en = 0 to (7.18) yields

Xen − X?en = proxµ1g(Xen + µ1 λ) − proxµ1g(X
?en + µ1 λ

?).

The optimality condition (7.16b) leads to

Xen = proxµ1g(Xen + µ1 λ) = z
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which implies that the pair (X, z) satisfies (7.16b). We next show that the optimality

condition (7.16c) holds for any (z, λ) in this set. Taking sub-differential of the proximal

operator of the function g in (7.8) yields

∂g(z) + 1
µ1

(z − v) 3 0

where v is an arbitrary vector. Choosing v = Xen + µ1λ and utilizing the fact that

Xen = z yields the third optimality condition (7.16c). Furthermore, X̃T = 0 yields

XT = 0. Thus, X satisfies (7.16d) and the dynamics (7.15) converges asymptotically

to the optimal points (X?, λ?, Y ?).

7.5 Distributed implementation In this section, we exploit the struc-

ture of the problem and show that the gradient flow dynamics (7.15) is well-suited for

distributed implementation. In this case, the underlying interconnection network is

given by a path graph. We first discuss how the gradient flow of the primal variable X

can be implemented in a distributed manner and then show that the dual variables can

be also updated in a distributed fashion.

7.5.1 Primal update The vector xk denotes the kth column of the matrix X.

Each of the columns from k = 2, . . . , (n− 1) can be updated in a distributed manner as

follows

ẋk = −∇fk(xk) −
1

µ2
(2xk − xk−1 − xk+1) − yk + yk−1, (7.22a)

where the vector yk is the kth columns of the matrix Y . Thus, each agent only uses

its neighbors’ states and the corresponding dual variables to update its own state. The

updates for the first and last column of X which are x1 and xn are different than the

other updates and can be written as follows

ẋ1 = −∇f1(x1) − x1 − x2

µ2
− y1 (7.22b)

ẋn = −∇fn(xn) − ∇Mµ1g(xn + µ1 λ) − 1

µ2
(xn − xn−1) + yn−1. (7.22c)



123

Similarly, we can see only local information exchange and access to local dual variable

is required for these two updates.

7.5.2 Dual updates The dual variable λ is a column vector and its update can be

done by using the following column update

λ̇ = µ1∇Mµ1g(xn + µ1 λ) − µ1 λ. (7.22d)

Thus, we only need the state of the nth agent to update its value. The second dual

variable Y is an m× (n− 1) matrix and the kth column of it, yk, can be updated using

only the states of xk and xk+1 agents for k = 1, . . . , (n− 1),

ẏk = xk − xk+1. (7.22e)

7.6 Computational experiments In this section, we employ our al-

gorithm for growing connected resistive Erdös-Rényi networks with edge probability

1.05 log(n)/n for different number of nodes using multiple cores. We choose the control

weight matrix R = I and a state weight matrix that penalizes the mean-square devia-

tion from the network average, Q = I − (1/n)11T . Moreover, the incidence matrix of

the controller is such that there are no joint edges between the plant and the controller

graphs. This algorithm is implemented in a distributed fashion by splitting the problem

into N separate subproblems over N different cores. We have provided a parallel im-

plementation in Matlab and have executed tests on a machine featuring an Intel Core

i7-3770 with 16GB of RAM to measure the performance of the algorithm.

The solve times are averaged over 10 trials and the speedup relative to a single core

is displayed in Fig 7.1. It demonstrates that the algorithm is scalable. In particular,

multi-core execution outperforms running just on a single core. Moreover, the speed-up

is even higher for larger networks since overheads of parallel execution are less and more

time is spent on actual parallel computation.
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Figure 7.1: Speedup ratio versus the number of the cores used for growing connected
resistive networks with n nodes.

7.7 Concluding remarks We have studied a class of convex nonsmooth

composite optimization problems in which the objective function is a combination of dif-

ferentiable and nondifferentiable functions. By exploiting the structure of the probelm,

we have provided an equivalent consensus-based characterization and have developed an

algorithm based on primal-descent dual-ascent gradient flow method. This algorithm

exploits the separability of the objective function and is well-suited for distributed im-

plementation. Convexity of the smooth part of the objective function is utilized to prove

global asymptotic stability of our algorithm. Finally, by exploiting the structure of the

H2 norm, we have employed this algorithm to design a sparse controller network that

improves the performance of the closed-loop system in a large-scale undirected consen-

sus network in a distributed manner. An example is provided to demonstrate the utility

of the developed approach. We are currently working on implementing this algorithm

in C++ and will use it to solve structured optimal control problems for large-scale

systems in a distributed manner.



Part IV

Data-driven and model-free

distributed control
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Chapter 8

Data-driven proximal algorithms

for the design of structured

optimal feedback gains

Distributed feedback design and complexity constrained control are examples of prob-

lems posed within the domain of structured optimal feedback synthesis. The optimal

feedback gain is typically a non-convex function of system primitives. However, in recent

years, algorithms have been proposed to obtain locally optimal solutions. In applica-

tions to large-scale distributed control, the major obstacle is computational complexity.

This chapter addresses complexity through a combination of linear-algebraic techniques

and computational methods adapted from both machine learning and reinforcement

learning. It is shown that for general classes of optimal control problems, the objective

function and its gradient can be computed from data. Transformations borrowed from

the theory of reinforcement learning are adapted to obtain simulation-based algorithms

for computing the structured optimal H2 feedback gain. Customized algorithms based

on proximal gradient descent, incremental proximal gradient, an ADMM are tested in

computational experiments and their relative merits are discussed.

8.1 Introduction In this chapter, by exploiting the square-additive property

of the H2 norm, we provide efficient algorithms to solve the regularized H2 optimal

control problem. We demonstrate that the objective function and its gradients can
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be evaluated without solving large-scale Lyapunov equations. In particular, our ap-

proach is inspired by the framework developed in [171, 172] where an iterative method

for computing the structured linear quadratic regulator is proposed. Herein, we ad-

dress complexity through a combination of linear-algebraic techniques and computa-

tional methods adapted from both machine learning and reinforcement learning. We

approach the structured optimal control problem via a data-driven framework that does

not require knowledge of the system parameters and avoids the need to solve large-scale

matrical equations. For the structured optimal H2 state-feedback problem, we show

that the objective function and its gradient can be computed from data and develop

customized proximal algorithms based on gradient descent and incremental gradient

method.

Moreover, we exploit separability of the objective function and utilize an ADMM-

based consensus algorithm to solve the regularized optimal control problem in a dis-

tributed manner over multiple processors. Even though the optimal control problem

is in general non-convex, recent results can be utilized to show convergence to a lo-

cal minimum [112]. The ADMM-based consensus algorithm that we use is standard

(e.g., see [113]) but, to the best of our knowledge, it has not been previously used for

distributed design of structured feedback gains. Even though the optimal control prob-

lem is in general non-convex, recent results can be utilized to show convergence to a

local minimum [112]. The ADMM-based consensus algorithm that we use is standard

(e.g., see [113]) but, to the best of our knowledge, it has not been previously used for

distributed design of structured feedback gains.

Our presentation is organized as follows. In Section 8.2, we describe the regularized

structured optimal control problem. In Section 8.3, a square-additive property of the

H2 norm is used to obtain a decomposition of the objective function and its gradient

and duality arguments are utilized to transform these into quantities that can be es-

timated from experiments or simulations. In Section 8.4, we illustrate how structure

of symmetric systems and undirected consensus networks can be exploited to simplify

computations. In Section 8.5, proximal algorithms of tractable complexity for solving

the structured optimal control problem are described and computational experiments

are provided. In Section 8.6, we propose an ADMM-based consensus algorithm to solve

the regularized optimal control problem in a distributed manner. Finally, in Section 8.7,
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the chapter is concluded with remarks and a summary of outstanding challenges.

8.2 Problem formulation Consider the LTI control system in state-space

form
ψ̇ = Aψ + B u

ζ =

[
Q1/2

0

]
ψ +

[
0

R1/2

]
u

(8.1)

where ψ(t) ∈ Rn is the state, u(t) ∈ Rq is the control input, and ζ(t) ∈ Rn+q is the

performance output. The matrices are all of compatible dimensions, and the standard

assumptions are imposed: Q � 0, R � 0, (A,B) is stabilizable and (A,Q1/2) is de-

tectable.

The control input is defined by state-feedback,

u(t) = −K ψ(t)

with gain matrix K ∈ Rq×n. The closed-loop system is thus

ψ̇ = Acl ψ

ζ =

[
Q1/2

−R1/2K

]
ψ

(8.2)

with Acl := A−BK.

Closed-loop performance is quantified by the square of the L2 norm of the impulse

response for the closed-loop system, which is expressed using either of the following

expressions:

f(K) = trace (P )

= trace
(
(Q + KTRK)L

) (8.3)

where P � 0 is the closed-loop observability Gramian,

ATclP + P Acl + Q + KTRK = 0 (8.4)
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and L � 0 is the closed-loop controllability Gramian,

Acl L + LATcl + I = 0. (8.5)

Our objective is to promote certain structural properties of the feedback gain matrix

K by solving the regularized optimal control problem

minimize
K

f(K) + g(K) (8.6)

where f is given by (8.3) and g is the regularization function. When it is desired to

design K to belong to a set S with a specified pattern of zero elements [114], g is an

indicator function associated with the underlying sparsity constraints,

g(K) :=

 0 K ∈ S

∞ K 6∈ S.

Similarly, the `1 norm and the nuclear norm are commonly used convex proxies for

promoting sparsity, or for designing K with low rank. In this case, g(K) = γ
∑

i, j |Kij |
or g(K) = γ‖K‖∗ = γ

∑
i σi(K), where γ is a positive regularization parameter and σi

is the ith singular value.

In general, the optimization problem (8.6) is not convex because f is a non-convex

function of K. The proximal augmented Lagrangian method [108] can be used to

compute a local minimum of (8.6); for details, see [173]. The minimization (8.6) remains

non-convex even in the absence of the regularization function g. Of course, in this special

case it reduces to the standard LQR problem, and the globally optimal solution is given

by

K? = R−1BTP

where P is the unique positive definite solution of the algebraic Riccati equation,

ATP + PA + Q − P BR−1BTP = 0.

The recent work [117] established conditions for convergence of gradient descent methods
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for the standard LQR problem to the global minimum, in spite of the lack of convexity.

The goal of this chapter is twofold: first is to obtain algorithms of tractable complex-

ity for truly large-scale problems. A second goal is to solve the regularized, structured

optimal control problem without knowledge of the underlying model. The approach to

the second goal is a component of our approach to the first: a data-driven framework

is proposed for computing the optimal feedback gain, with unknown matrices A and B

in (8.2). This approach also avoids the need to solve large-scale Lyapunov equations.

8.3 Computation from data A square-additive property of the H2 norm

is used to obtain a decomposition of the objective function f and its gradient ∇f .

Duality arguments are then used to transform each term into a quantity that can be

estimated from experiments or simulations. The resulting algorithm obtains estimates

of the optimal gain without solving a Lyapunov equation, and without knowledge of the

system parameters.

The gradient of f with respect to K is given by [135],

∇f(K) = 2 (RK − BTP )L. (8.7)

In what follows, we use the three decompositions

L =
n∑

k= 1

Lk, f(K) =
n∑

k= 1

fk, ∇f(K) =
n∑

k= 1

∇fk

where Lk � 0 solves the Lyapunov equation

Acl L
k + Lk ATcl + eke

T
k = 0, (8.8)

ek is the kth unit vector in the canonical basis of Rn, and

fk(K) = trace
(
(Q + KTRK)Lk

)
∇fk(K) = 2 (RK − BTP )Lk.

(8.9)
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8.3.1 Computation of P and L from data The solution to (8.8) can be ex-

pressed

Lk =

∫ ∞
0

eAclt eke
T
k eA

T
clt dt =

∫ ∞
0

ψk(t) (ψk(t))T dt (8.10)

where ψk(t) := eAclt ek is the solution to

ψ̇k = Acl ψ
k, ψk(0) = ek, k = 1, . . . , n. (8.11)

This leads to the first component of the data-driven architecture: for a given feedback

gain K, the term KLk that appears both in f and ∇f can be expressed as the integral

KLk =

∫ ∞
0

uk(t) (ψk(t))T dt

where ψk(t) and uk(t) = Kψk(t) are obtained from simulations or experiments of sys-

tem (8.11).

Similarly, the observability Gramian is given by

P =

∫ ∞
0

eA
T
clt (Q + KTRK) eAclt dt

and its (i, j)th component is

Pi,j =

∫ ∞
0

(ϕi(t))T (Q + KTRK)ϕj(t) dt (8.12)

where ϕi(t) := eAclt ei is the solution to

ϕ̇i = Acl ϕ
i, ϕi(0) = ei, i = 1, . . . , n.

Thus, using 2n forward-in-time numerical simulations, the gradient of the objective

function ∇f(K) can be computed without solving a Lyapunov equation. Computation

can be further reduced by avoiding multiplication of P and Lk in (8.9). A data-driven

approach to compute the product PLk directly is introduced in the next subsection.
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8.3.2 Computation of PL from data As showed in [111,172], the product PLk

that appears in ∇fk(K) can be expressed as

Xk := PLk = −
∫ ∞

0
φk(t) (ψk(t))T dt (8.13)

where φk is obtained from the solution of the adjoint system

φ̇k = −ATcl φ
k + (Q + KTRK)ψk

φk(∞) = 0
(8.14)

and ψk is the solution to (8.11). Thus, numerical simulations of the primal and adjoint

systems (8.11) and (8.14) along with numerical evaluations of the corresponding integrals

can be used to compute Lk, PLk, fk, and ∇fk.

Next, we show that the matrix Xk in (8.13) can be computed without simulating

the adjoint system (8.14). This is a critically important step in the model-free setup

where only experimental or numerical data is available. Introduce the new variable

ηk := (Q + KTRK)ψk

so that (8.14) becomes

φ̇k = −ATcl φ
k + ηk, φk(∞) = 0 (8.15)

which admits the solution,

φk(t) =
[
Hηk

]
(t) = −

∫ ∞
t

e−A
T
cl(t− τ) ηk(τ) dτ. (8.16)

The linear operator H is introduced here to facilitate an adjoint transformation below.

This operator and its adjoint H∗ are defined defined on L2([0,∞)) → Rn. For any

functions ξ, χ ∈ L2([0,∞)), we have by definition 〈χ,Hξ〉 = 〈H∗χ, ξ〉; see, e.g., [174].

An explicit representation for µ = H∗γ is obtained using elementary calculus:

µ(t) =

∫ t

0
eAcl(t− τ)γ(τ) dτ.
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The (i, j)th element of the matrix Xk can be expressed

Xk
i,j := eTi Xk ej = −

∫ ∞
0

φki (t)ψ
k
j (t) dt

= −
〈
ψkj , φ

k
i

〉 (8.17)

where φki (t) := eTi φ
k(t) and ψkj (t) := eTj ψ

k(t) are the ith and jth elements of the vectors

φk(t) and ψk(t), respectively, and the inner product is in L2([0,∞)). By substituting

the expression (8.16) for φk in (8.17), we obtain

Xk
i,j = −

〈
ψkj , e

T
i Hη

k
〉

= −
〈
H∗ei ψ

k
j , η

k
〉

=:
〈
ξki,j , η

k
〉
. (8.18)

Applying the expression for H∗ then gives

ξki,j(t) := −
[
H∗eie

T
j ψ

k
]

(t) =

∫ t

0
eAcl(t− τ) ei eTj ψ

k(τ) dτ.

This implies that ξki,j can be obtained as the solution to the LTI system,

ξ̇ki,j = Acl ξ
k
i,j + ei eTj ψ

k, ξki,j(0) = 0. (8.19)

Thus, to compute ∇f(K) for a given gain K, the only systems that need to be simulated

are the forward in time systems (8.11) and (8.19). The system (8.11) is unforced, and

its solution determines the input to the forced system (8.19).

Remark 15. Similar adjoint techniques are used in analysis of reinforcement learning.

The proof that the TD(1) algorithm solves a minimum norm problem is based on related

adjoint transformations [175, 176]. And, a similar adjoint transformation is a crucial

step in a Q-learning algorithm for deterministic continuous-time systems [177].

Remark 16. By writing the Lyapunov equation for the controllability Gramian as (8.8),

unlike the requirement of stochastic simulations in [172], only deterministic simulations

are needed in the present framework.

Remark 17. Since the optimal unstructured gain K? only depends on the closed-loop

observability Gramian P (which can be obtained from the solution of the algebraic Riccati
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equation), L does not influence K? and its computation can be avoided. To promote

structure (e.g., via proximal algorithms) we need to compute both P and L to form ∇f .

In contrast, only computation of P is required to form natural policy gradient, which is

defined as [178, 179],

∇h(K) = ∇f(K)L−1 = 2 (RK − BTP ). (8.20)

8.4 Systems with special structure If the underlying system has

additional structure, evaluation of both the objective function and the corresponding

gradients can be further simplified. We next illustrate how structure of symmetric sys-

tems and undirected consensus networks can be exploited to simplify computations. In

both cases, the closed-loop L2 norm has an explicit convex dependance on the opti-

mization variable and there is no need to conduct simulations of the adjoint system and

numerically evaluate the underlying integrals.

Symmetric systems

Let A and K in (8.2) be symmetric matrices and let B = I. For a stabilizing K, the L2

norm of the impulse response for the closed-loop system (8.2) is determined by

f(K) =
1

2
trace

(
(K − A)−1(Q + KRK)

)
.

Convex dependence of f on K can be established via a straightforward use of the Schur

complement. Furthermore, the design for symmetric systems provides a useful starting

point for the design of non-symmetric systems [180].

Equivalently, f(K) can be written as

f(K) =
1

2
trace

(
(K − A)−1(Q + ARA)

)
+

1

2
trace (RK) +

1

2
trace (RA)

=
1

2

n∑
i= 1

fi(K)
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where

fi(K) = qTi (K − A)−1qi + aTi (K − A)−1ai + rTi (K + A) ri.

The vectors indexed by i in this expression are given by

qi = Q1/2 ei, ri = R1/2 ei, ai = Ari

where ei is the ith canonical basis vector in Rn. Furthermore, the gradient of fi with

respect to K is given by

∇fi(K) = ri r
T
i − (K − A)−1qi q

T
i (K − A)−1 − (K − A)−1ai a

T
i (K − A)−1

Thus, there is no need to compute and store the inverse of the matrix K − A in

order to evaluate fi(K) and ∇fi(K); only actions of (K−A)−1 on the vectors qi and ai

is necessary. For example, the preconditioned conjugate gradients method can be used

to compute them efficiently.

Remark 18. The vector (K − A)−1qi represents the steady-state solution of a stable

linear system

ψ̇i = (A − K)ψi + qi

and it can be computed via numerical integration. This illustrates that the symmetric na-

ture of the closed-loop system (8.2) allows us to avoid the need for numerical integration

of the corresponding adjoint system.

Undirected consensus networks

For undirected consensus networks with n nodes, the matrices A and K∈ Rn×n in (8.2)

determine the graph Laplacians of the plant and controller networks, respectively. In the

absence of exogenous disturbances, the network converges to the average of the initial

node values ψ̄ = (1/n)
∑

i ψi(0) if and only if it is connected [2]. Let B = I and let

Q := I − (1/n)11T penalize the deviation of individual node values from average. The

objective is to minimize the mean square deviation from the network average by adding

a few additional edges, specified by the graph Laplacian K of a controller network. If
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E is the incidence matrix of the controller graph, K can be written as

K(x) = E diag (x)ET

where diag (x) is a diagonal matrix containing the optimization variable x ∈ Rm (i.e., the

vector of the edge weights in the controller graph). Regularization terms may be used

to promote sparsity of the controller network or to impose some additional constraints

on the edge weights.

As shown in [106], up to an additive constant, the L2 norm of the impulse response

for the closed-loop system is determined by

f(x) = trace
(
(E diag (x)ET − A)†(I + ARA)

)
+ diag

(
ETRE

)T
x

where the pseudo-inverse of the closed-loop graph Laplacian is given by

(E diag (x)ET −A)† = (E diag (x)ET + (1/n)11T −A)−1.

It is easy to show that f(x) can be written as

f(x) =
n∑

i= 1

fi(x)

where

fi(x) = ξTi
(
E diag (x)ET + (1/n)11T −A

)−1
ξi + (1/n) diag

(
ETRE

)T
x.

(8.21)

Here, ξi = (I + ARA)1/2 ei is the ith column of the square root of the matrix (I +

ARA). Moreover, it can be shown that the gradient of fi(x) is given by

∇fi(x) = (1/n) diag
(
ETRE

)
− νi(x) ◦ νi(x) (8.22)

where ◦ is the elementwise multiplication and

νi(x) = ET
(
E diag (x)ET + (1/n)11T −A

)−1
ξi. (8.23)
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As for symmetric systems, there is no need to compute and store the inverse of the

matrix in (8.23) and the preconditioned conjugate gradients method can be used to

compute the gradient efficiently.

We next provide a proposition on the Lipschitz continuity of the gradient of fi

for connected resistive networks which enables us to choose appropriate step-size for

proximal gradient algorithms. In such networks, the plant graph is connected and all

edge weights in both the plant and the controller graphs are non-negative.

Proposition 15. The gradient of fi for connected resistive networks is Lipschitz con-

tinuous with the Lipschitz constant

Li = ξTi Â(0)−1E ET Â(0)−1 ξi ‖ET Â(0)−1E‖2 (8.24)

where Â(x) = E diag (x)ET + (1/n)11T −A.

Proof. For a convex and twice differentiable function fi, the gradient ∇fi is Lipschitz

continuous with Lipschitz constant Li, if

∇2fi(x) � Li I

or, equivalently, zT ∇2fi(x) z ≤ Li ‖z‖2. It can be shown that the second order deriva-

tive of fi is given by

∇2fi(x) = (νi ν
T
i ) ◦ (ET Â(x)−1E).

Thus, zT ∇2fi(x) z can be written as

ξTi Â(x)−1EDz E
T Â(x)−1EDz E

T Â(x)−1ξi

where Dz := diag(z). For positive definite matrices S and T with S � T , we have

zTS z ≤ zTT z and

zTS z ≤ λmax(S) ‖z‖2 ≤
√
λmax(STS) ‖z‖2 = ‖S‖2 ‖z‖2
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for any vector z. Therefore,

Dz E
T Â(x)−1EDz � ‖ET Â(0)−1E‖2 ‖z‖2.

As a result,

zT ∇2fi(x) z ≤ νi(0)T νi(0) ‖ET Â(0)−1E‖2 ‖z‖2

where νi(0) = ET Â(0)−1 ξi.

8.5 Proximal algorithms Algorithms of tractable complexity are intro-

duced here for solving the regularized structured optimal control problem (8.6). A

standard proximal gradient descent algorithm is considered as a starting point. It is

argued however that computing the full gradient may be prohibitively expensive. Thus,

we propose a more efficient algorithm based on incremental proximal gradient that is

well-suited for the design of structured optimal feedback gains in large-scale systems.

8.5.1 Proximal gradient descent The proximal gradient algorithm is a first-

order method that extends standard gradient descent to a class of non-smooth composite

optimization problems. In our setup, it iteratively updates the feedback gain K via

application of the proximal operator associated with the function g on the standard

gradient descent update. The algorithm is initialized with a stabilizing K0 and the

iterates are determined by,

K l+1 = proxαlg

(
K l − αl∇f(K l)

)
where l is the iteration index and αl is the step-size. At each iteration, the step-size is

selected via backtracking to guarantee sufficient descent of the objective function and

stability of closed-loop system (8.2). To enhance practical performance, we use the

Barzilai-Borwein (BB) step-size initialization [127].

For any matrix V and a positive scalar α, the proximal operator of the function g

is defined as [76],

proxαg(V ) := argmin
Z

(
g(Z) +

1

2α
‖Z − V ‖2F

)
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where ‖ · ‖F is the Frobenius norm. In particular, for g(K) = γ ‖K‖1 = γ
∑

i, j |Kij |, we

have

K l+1 = Sγαl

(
K l − αl∇f(K l)

)
where Sκ(V ) is the soft-thresholding function that acts on the individual entries Vij of

the matrix V according to Sκ(Vij) = sign (Vij) max (|Vij | − κ, 0). In the absence of the

regularization function g in (8.6), the proximal gradient algorithm simplifies to standard

gradient descent with the updates K l+1 = K l − αl∇f(K l).

Recall that estimates of ∇f(K l) require the matrices KL and PL. These can be

computed or estimated from data using the techniques described in the previous section.

Remark 19. The step-size αl is adjusted via backtracking to ensure stability of closed-

loop system (8.2) at each iteration. It is initialized using the BB method which provides

a heuristic for approximating the Hessian of the function f via the scaled version of the

identity matrix [127], (1/αl)I. At the lth iteration, the initial BB step-size

αl,0 :=
‖K l − K l−1‖22

trace ((K l−1 − K l)T (∇f(K l−1) − ∇f(K l)))
(8.25)

is adjusted via backtracking until system (8.2) is stable and sufficient descent is achieved

at each iteration, i.e.,

f(K l+1) < f(K l) + trace
(
(K l+1 − K l)T ∇f(K l)

)
+ 1

2αl
‖K l+1 − K l‖22.

(8.26)

The algorithm stops when the generalized gradient map becomes smaller than the given

tolerance,

‖
K l − proxαlg

(
K l − αl∇f(K l)

)
αl

‖ < ε.

8.5.2 Incremental proximal gradient Next, we exploit the separable structure

obtained in Section 8.2 to speed up computations and save memory. This formulation

allows to work with a single function fk and its gradient ∇fk in the controller design,

which reduces computational complexity and allows implementation at scale.

We start with an initial stabilizing gain K0, and at each iteration we solve the
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following optimization problem

minimize
K

fk(K) + g(K). (8.27)

The explicit solution to (8.27) is given by

K l+1 = proxαlg

(
K l − αl∇fk(K l)

)
.

Here, prox is the proximal operator of the function g, and αl is a step-size. This is the

incremental proximal gradient algorithm because, at each iteration, the optimization

variable is updated in the negative direction of a single element of the gradient where

the index k is selected in a random manner. At each iteration, we choose step-size to

be O(1/l) and adjust it to guarantee stability of closed-loop system (8.2).

Incremental and stochastic gradient based algorithms have recently found widespread

use in large-scale optimization and machine learning. High variance that results from es-

timating the full gradient ∇f using samples of its entries can result in slow convergence.

Moreover, to ensure convergence, the step-size has to decay to zero.

In the first few iterations, the objective function in the incremental proximal gradient

decreases dramatically but it starts to oscillate after that. Thus, in large-scale optimiza-

tion problems where having high accuracy may not be achievable, these methods are

useful because of their fast initial convergence rate.

8.6 An ADMM-based consensus algorithm We next demon-

strate that a standard consensus algorithm based on the Alternating Direction Method

of Multipliers (ADMM) is well-suited for distributed design of optimal structured feed-

back gains. As shown in Section 8.3, the regularized optimal control problem can be

written as

minimize
K

N∑
i= 1

fi(K) + g(K). (8.28)

This characterization is suitable for distributed implementation in which each processors

solves an optimization problem. By introducing N local variables Ki and a global
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variable K0, problem (8.28) can be brought into a standard consensus form,

minimize
Ki,K0

N∑
i= 1

fi(Ki) + g(K0)

subject to Ki − K0 = 0, i = 1, . . . , N.

(8.29)

This formulation increases the number of optimization variables but it brings the ob-

jective function into a separable form and facilitates distributed computations. When

implemented on a single machine, solving the reformulated problem is not necessarily

more computationally efficient than solving the original problem using centralized al-

gorithms. However, this formulation allows to work with a local objective function fi

that depends on a single local variable Ki. This is advantageous for large-scale systems

where centralized algorithms cannot be afforded (e.g., because of the computational cost

associated with solving the large-scale Lyapunov equations).

The augmented Lagrangian associated with (8.29) is

L(Ki,K0; Λ) = g(K0) +

N∑
i=1

( fi(Ki) + 〈Λi,Ki −K0〉 +
ρi
2
‖Ki −K0‖2F ) (8.30)

where Λi’s are the Lagrange multipliers and ρi’s are positive parameters. The ADMM

algorithm consists of the following iterative steps,

Kk+1
i = argmin

Ki

fi(Ki) +
ρi
2
‖Ki − Uki ‖2F

Kk+1
0 = argmin

K0

g(K0) +
N∑
i=1

ρi
2
‖K0 − V k

i ‖2F

Λk+1
i = Λki + ρi

(
Kk+1
i − Kk+1

0

)
where

Uki := Kk
0 − (1/ρi) Λki

V k
i := Kk+1

i + (1/ρi) Λki .

The Ki-minimization step can be done via distributed computation by spreading

subproblems to N different processors. On the other hand, the update of K0 amounts



142

to the evaluation of the proximal operator of the function g,

Kk+1
0 = proxg/(Nρ̄)

(
1

Nρ̄

N∑
i= 1

ρiV
k
i

)
.

where ρ̄ := (1/N)
∑

i ρi. Thus, the update of K0 requires gathering each Kk+1
i and the

associated Lagrange multipliers Λki in order to form V k
i .

Remark 20. The above presented consensus algorithm is standard (e.g., see [113])

but to the best of our knowledge it has not been previously used for optimal design of

structured feedback gains via distributed optimization. Recently, convergence of this al-

gorithm was established even for problems with non-convex objective functions fi [112].

The authors of [112] also show that additional computational advantage can be gained

by updating only a subset of Ki’s in each iteration and offer several alternative imple-

mentations to speed computations.

Remark 21. The update of each Ki amounts to the computation of the proximal oper-

ator associated with fi,

Kk+1
i = proxfi/ρi

(
Uki

)
However, while the proximal operators of commonly used regularization functions are

easy to evaluate, the computation of proxfi/ρi is significantly more involved. In [42],

the proximal operator associated with the closed-loop H2 norm f(K) was computed using

the Anderson-Moore algorithm. This approach requires computation of the closed-loop

controllability and observability gramians. In contrast, the developments of Section 8.3

facilitate computation of proxfi/ρi via a proximal gradient algorithm that avoids the

need for solving large-scale Lyapunov equations.

Remark 22. For the problem of growing connected resistive consensus networks [106],

Algorithm 3 in [112] can be used to solve the Ki-minimization step in the ADMM-

based algorithm explicitly. The key point of departure compared to the standard ADMM

implementation is linearization in the Ki-minimization step of the function fi with a

Lipschitz continuous gradient around the current K0 iterate. This offers a significant

speed-up and enables an explicit update of Ki.



143

Figure 8.1: A mass-spring-damper system on a line.

8.6.1 Computational experiments We next provide examples to illustrate the

performance of proximal algorithms. The acronym proxG represents the proximal gra-

dient and proxIG is the incremental proximal gradient. We have implemented all algo-

rithms in Matlab. In all examples, we choose R = I and Q = I.

The algorithms were tested for a mass-spring-damper (MSD) model with N masses,

illustrated in Figure 8.1. Our goal is to find the local minimum of the problem (8.6)

with g(K) = γ ‖K‖1, where γ is the sparsity-promoting parameter and the `1 norm is

a proxy for inducing sparsity in the feedback gain matrix. The MSD system with N

masses has n = 2N states where the first N states denote the positions and the rest are

velocities. We consider the case where all masses, spring, and damping constants are

equal to one, which results in the state-space model with

A =

[
0 I

−T −T

]
, B =

[
0

I

]

where T is an N×N tridiagonal symmetric Toeplitz matrix with 2 on the main diagonal

and −1 on the first upper and lower sub-diagonals, and I and 0 are N ×N identity and

zero matrices.

Sparsity-promoting controllers were designed for this model with N = 10 masses

and compared with the ADMM-based algorithm [42] that does not utilize the iterative

re-weighting scheme. The algorithms were initialized with the (unstructured) optimal

feedback gain K?. Figure 8.2 shows how the sparsity pattern of the controller changes

as the value of the parameter γ is increased. It is worth to note that all algorithms give

the same structure of K with very close feedback gain values. For γ = 0, the optimal

feedback controller is given by a dense matrix and as γ increases the controller becomes

sparser. It is diagonal when γ = 1, and for sufficiently large γ the gain is identically

zero. This is a feasible solution because the open-loop system is stable.
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Figure 8.2: Structure of feedback gains resulting from the solution to (8.6) for different
values of the regularization parameter γ for an MSD system with N = 10 masses. The
number of non-zero elements in K is denoted by nz.

Next, we employ the ADMM-based consensus algorithm to design optimal struc-

tured feedback gains in a distributed fashion by splitting the problem into N separate

subproblems over N different cores. We have provided a parallel implementation in

C++ using pthreads library and executed tests on a machine featuring an Intel Core

i7-3770 with 16GB of RAM to measure the performance of the algorithm. We use our

algorithm for growing a connected resistive network with n = 20 nodes. The plant graph

is given by an Erdös-Rényi network with edge probability 1.05 log(n)/n. We choose the

control weight matrix R = I and a state weight matrix that penalizes the mean-square

deviation from the network average, Q = I− (1/n)11T . Moreover, the incidence matrix

of the controller is such that there are no joint edges between the plant and the con-

troller graphs. As discussed in Section 8.4, for consensus networks, the controller can

be written as a function of the vector of the edge weights x. Thus, the H2 norm of the

closed-loop system is f(x) and the regularization function is given by g(x) = γ ‖w ◦ x‖1
where w is the vector of the weights. Since the plant network is resistive and connected,

all the edge weights are nonnegative, thereby if the added edges have nonnegative edge

weights, the closed-loop system is stable. We can write the smooth and nonsmooth

parts of the objective function as f(x) + γ wTx and g(x) = I+(x) where I+(x) is an

indicator function for nonnegative orthant.
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We solve the problem (8.28) to find the controller graph for 500 logarithmically-

spaced values of γ ∈ [0.001, 0.3] using the path-following iterative reweighted algorithm

as a proxy for inducing sparsity [125]. We set the weights to be inversely proportional

to the magnitude of the solution x at the previous value of γ following by a polishing

step that computes the optimal weights of identified edges; see [106].

As γ increases, the number of nonzero edges decreases and the closed-loop perfor-

mance deteriorates. As shown in Fig. 8.3, relative to the optimal centralized vector of

the edge weights, xc, the H2 loss decreases as the sparsity of the vector of the edge

weights x increases. In particular, for γ = 0.3, there is only one nonzero element in the

vector of the edge weights. The identified sparse controller in this case uses only 0.62% of

the edges, relative to the optimal centralized controller, i.e., card(x)/card(xc) = 0.62%

and achieves a performance loss of 23.47%, i.e., (J − Jc)/Jc = 23.47%.

c
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rd
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rd

(x
c
)

(a)

(J
−
J
c
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J
c

(b)

(J
−
J
c
)/
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(c)

γ γ card(x)/card(xc)

Figure 8.3: (a) Sparsity level; (b) performance degradation; and (c) the optimal trade-
off between the performance degradation and the sparsity level of the optimal sparse
x compared to the optimal centralized controller xc. The results are obtained for a
randomly generated Erdös-Rényi network with n = 20 nodes.

Next, we employ our algorithm for growing connected resistive networks with differ-

ent number of nodes using multiple cores. The solve times are averaged over 10 trials

and the speedup relative to a single core is displayed in Fig 8.4. This figure demonstrates

that the algorithm is scalable. In particular, multi-core execution outperforms running

just on a single core. The speed-up is even higher for larger networks since overheads

of parallel execution are smaller and more time is spent on actual parallel computation.
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Figure 8.4: Speedup ratio versus the number of the cores used for growing connected
resistive networks with n nodes.

8.7 Concluding remarks This chapter provides a step towards a compre-

hensive theory for distributed and structured optimal control of LTI systems. Even

within the linear setting there are many open questions, including

• Development of simulation-based methods in the presence of disturbances and

uncertainty;

• Construction of truly recursive algorithms, similar to those used in traditional

reinforcement learning settings;

• Techniques to avoid local minima, and finding conditions that ensure non-existence

of local minima for f ;

• Development of algorithms that combine proximal methods with natural policy

gradient.

Extensions to nonlinear control will probably require more modest objectives since

it is not an easy task to compute the performance of a given policy. However, both

Q-learning and TD-learning are based on value function approximation. Consequently,

as in the present work, these algorithms can be designed so that each value function

approximation serves as a Lyapunov function for the current approximating policy.
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This provides bounds on performance, as well as stability. Consequently, algorithms

for computation of structured stabilizing policies with good performance are not out of

reach even for nonlinear control systems.



Chapter 9

Conclusions

This dissertation focuses on structure identification and optimal control of large-scale

networks of dynamical systems. To overcome the challenges in this area, we combine

tools and ideas from control theory, distributed optimization, reinforcement learning,

and compressive sensing to develop distributed estimation and control strategies that

require limited information exchange between the individual subsystems. In the first

and second parts, we have studied the problems of optimal distributed design and in-

ference of large-scale networks of dynamical systems. We have developed theoretical

and computational frameworks to solve these problems. In particular, we have designed

and implemented customized optimization algorithms that are well-suited for solving

the above-mentioned problems in large-scale dynamical systems. In the third chapter,

we have studied the convergence properties of these algorithms from system-theoretic

point of view. We have utilized control-theoretic tools to view different optimization al-

gorithms as dynamical systems and study their convergence properties by using stability

analysis techniques from control theory. Finally, in the last chapter, we have provided a

data-driven framework for the structured optimal control problem that does not require

knowledge of the system parameters and avoids the need to solve large-scale matrical

equations.

Future directions

The current research on design and control of networks can be extended to make

them applicable to a larger class of systems such as unbalanced time-varying large-scale

148
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networks. We have also developed an algorithm to recover the underlying undirected

network topology of a complex system using partially available statistical data. We

will extend this framework to identify the structure of directed networks which is a

more challenging problem since the resulting optimization problem is non-convex. Also,

we are utilizing optimization theoretical results to develop a new model with more

complicated dynamics than first-order consensus. Furthermore, we are extending the

work on distributed computation over networks to solve the non-smooth optimization

problems with more than one regularizers. In this case, the dynamical system of the

primal-dual updates is more complicated and convergence analysis is more challenging.

Moreover, we will extend the data-driven framework to be truly recursive, similar to

those used in traditional reinforcement learning settings and will combine the proximal

methods with natural policy gradient. The framework can be generalized by developing

simulation-based methods in the presence of disturbances and uncertainty.
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[9] D. Zelazo, S. Schuler, and F. Allgöwer. Performance and design of cycles in

consensus networks. Syst. Control Lett., 62(1):85–96, 2013.

150



151

[10] B. Bamieh, M. R. Jovanovic, P. Mitra, and S. Patterson. Coherence in large-

scale networks: dimension dependent limitations of local feedback. IEEE Trans.

Automat. Control, 57(9):2235–2249, September 2012. (2013 George S. Axelby

Outstanding Paper Award).

[11] Lin Xiao and Stephen Boyd. Fast linear iterations for distributed averaging.

Systems & Control Letters, 53(1):65–78, 2004.

[12] C. W. Reynolds. Flocks, herds and schools: A distributed behavioral model. ACM

SIGGRAPH Computer Graphics, 21(4):25–34, 1987.
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[72] A. Nedić and A. Ozdaglar. Distributed subgradient methods for multiagent opti-

mization. IEEE Trans. on Automat. Control, 54(1):48–61, 2009.

[73] Jing Wang and Nicola Elia. A control perspective for centralized and distributed

convex optimization. In Proceedings of the 50th IEEE Conference on Decision

and Control and the 10th European Control Conference, pages 3800–3805, 2011.

[74] P. Latafat, L. Stella, and P. Patrinos. New primal-dual proximal algorithm for

distributed optimization. In Proceedings of the 55th IEEE Conference on Decision

and Control, pages 1959–1964, 2016.

[75] P. Latafat, N. Freris, and P. Patrinos. A new randomized block-coordinate primal-

dual proximal algorithm for distributed optimization. IEEE Trans. Automat.

Control, 2019. doi:10.1109/TAC.2019.2906924.

[76] N. Parikh and S. Boyd. Proximal algorithms. Foundations and Trends in Opti-

mization, 1(3):123–231, 2013.

[77] K. J. Arrow, L. Hurwicz, H. Uzawa, and H. B. Chenery. Studies in linear and

non-linear programming. 1958.

[78] D. Feijer and F. Paganini. Stability of primal–dual gradient dynamics and appli-

cations to network optimization. Automatica, 46(12):1974–1981, 2010.

[79] Ashish Cherukuri, Enrique Mallada, and Jorge Cortés. Asymptotic convergence

of constrained primal–dual dynamics. Syst. Control Lett., 87:10–15, 2016.



158

[80] A. Cherukuri, E. Mallada, S. Low, and J. Cortes. The role of convexity on saddle-

point dynamics: Lyapunov function and robustness. IEEE Trans. Automat. Con-

trol, 63(8):2449–2464, 2018.

[81] N. K. Dhingra, S. Z. Khong, and M. R. Jovanovic. The proximal augmented

lagrangian method for nonsmooth composite optimization. IEEE Trans. Automat.

Control, 64(7):2861–2868, July 2019.

[82] G. Qu and N. Li. On the exponential stability of primal-dual gradient dynamics.

IEEE Control Syst. Lett., 3(1):43–48, 2018.

[83] W. Su, S. Boyd, and E. Candes. A differential equation for modeling Nesterov’s

accelerated gradient method: Theory and insights. J. Mach. Learn. Res., 17:1–43,

2016.

[84] A. Wibisono, A. C. Wilson, and M. I. Jordan. A variational perspective on ac-

celerated methods in optimization. Proc. Natl. Acad. Sci., 113(47):E7351–E7358,

2016.

[85] G. França, D. Robinson, and R. Vidal. ADMM and accelerated ADMM as con-

tinuous dynamical systems. 2018. arXiv:1805.06579.

[86] B. Shi, S. Du, M. I. Jordan, and W. Su. Understanding the acceleration phe-

nomenon via high-resolution differential equations. 2018. arXiv:1810.08907.

[87] M. Muehlebach and M. I. Jordan. A dynamical systems perspective on Nesterov

acceleration. 2019. arXiv:1905.07436.

[88] J. I. Poveda and N. Li. Inducing uniform asymptotic stability in time-

varying accelerated optimization dynamics via hybrid regularization. 2019.

arXiv:1905.12110.

[89] A. Nedic and A. Ozdaglar. Distributed subgradient methods for multi-agent op-

timization. IEEE Trans. Automat. Control, 54:48, 2009.

[90] D. Feijer and F. Paganini. Stability of primal-dual gradient dynamics and appli-

cations to network optimization. Automatica, 46(12):1974–1981, 2010.



159

[91] A. Cherukuri, E. Mallada, S. Low, and J. Cortés. The role of convexity in saddle-

point dynamics: Lyapunov function and robustness. IEEE Trans. Automat. Con-

trol, 63(8):2449–2464, 2017.

[92] A. Brown and M. Bartholomew-Biggs. Some effective methods for unconstrained

optimization based on the solution of systems of ordinary differential equations.

J. Optimiz. Theory App., 62(2):211–224, 1989.

[93] J. Schropp and I. Singer. A dynamical systems approach to constrained minimiza-

tion. Numer. Func. Anal. Opt., 21(3-4):537–551, 2000.

[94] J. Zhang, A. Mokhtari, S. Sra, and A. Jadbabaie. Direct Runge-Kutta discretiza-

tion achieves acceleration. In Advances in Neural Information Processing Systems,

pages 3900–3909, 2018.

[95] B. Hu, P. Seiler, and A. Rantzer. A unified analysis of stochastic optimization

methods using jump system theory and quadratic constraints. In Proceedings of

the 2017 Conference on Learning Theory, pages 1157–1189, 2017.

[96] B. Hu and L. Lessard. Dissipativity theory for Nesterov’s accelerated method.

In Proceedings of the 34th International Conference on Machine Learning, pages

1549–1557, 2017.

[97] M. Fazlyab, A. Ribeiro, M. Morari, and V. M. Preciado. Analysis of optimiza-

tion algorithms via integral quadratic constraints: Nonstrongly convex problems.

SIAM J. Optim., 28(3):2654–2689, 2018.

[98] S. Hassan-Moghaddam and M. R. Jovanovic. Distributed proximal augmented

lagrangian method for nonsmooth composite optimization. In Proceedings of the

2018 American Control Conference, pages 2047–2052, Milwaukee, WI, 2018.

[99] S. Hassan-Moghaddam and M. R. Jovanovic. On the exponential convergence rate

of proximal gradient flow algorithms. In Proceedings of the 57th IEEE Conference

on Decision and Control, pages 4246–4251, Miami, FL, 2018. (Invited paper).

[100] D. Ding, B. Hu, N. K. Dhingra, and M. R. Jovanovic. An exponentially convergent

primal-dual algorithm for nonsmooth composite minimization. In Proceedings of



160

the 57th IEEE Conference on Decision and Control, pages 4927–4932, Miami, FL,

2018.

[101] J. Seidman, M. Fazlyab, V. Preciado, and G. Pappas. A control-theoretic ap-

proach to analysis and parameter selection of Douglas-Rachford splitting. 2019.

arXiv:1903.11525.

[102] H. Mohammadi, M. Razaviyayn, and M. R. Jovanovic. Variance amplification

of accelerated first-order algorithms for strongly convex quadratic optimization

problems. In Proceedings of the 57th IEEE Conference on Decision and Control,

pages 5753–5758, Miami, FL, 2018.

[103] H. Mohammadi, M. Razaviyayn, and M. R. Jovanovic. Performance of noisy

nesterov’s accelerated method for strongly convex optimization problems. In Pro-

ceedings of the 2019 American Control Conference, pages 3426–3431, Philadelphia,

PA, 2019.

[104] H. Mohammadi, M. Razaviyayn, and M. R. Jovanovic. Robustness of accelerated

first-order algorithms for strongly convex optimization problems. IEEE Trans.

Automat. Control, 2019. submitted; also arXiv:1905.11011.

[105] S. Michalowsky, C. Scherer, and C. Ebenbauer. Robust and structure exploit-

ing optimization algorithms: An integral quadratic constraint approach. 2019.

arXiv:1905.00279.

[106] S. Hassan-Moghaddam and M. R. Jovanovic. Topology design for stochastically-

forced consensus networks. IEEE Trans. Control Netw. Syst., 5(3):1075–1086,

September 2018.

[107] A. Beck and M. Teboulle. A fast iterative shrinkage-thresholding algorithm for

linear inverse problems. SIAM J. Imaging Sci., 2(1):183–202, 2009.

[108] N. K. Dhingra, S. Z. Khong, and M. R. Jovanovic. A second order primal-dual

method for nonsmooth convex composite optimization. IEEE Trans. Automat.

Control, 2017. conditionally accepted; also arXiv:1709.01610.



161

[109] W. Shi, Q. Ling, G. Wu, and W. Yin. Extra: An exact first-order algorithm for

decentralized consensus optimization. SIAM J. Optim., 25(2):944–966, 2015.

[110] B. Gharesifard and J. Cortés. Distributed continuous-time convex optimization

on weight-balanced digraphs. IEEE Trans. Autom. Control, 59(3):781–786, 2014.

[111] S. Hassan-Moghaddam and M. R. Jovanovic. Distributed design of optimal struc-

tured feedback gains. In Proceedings of the 56th IEEE Conference on Decision

and Control, pages 6586–6591, Melbourne, Australia, 2017.

[112] M. Hong, Z. Q. Luo, and M. Razaviyayn. Convergence analysis of alternating

direction method of multipliers for a family of nonconvex problems. SIAM J.

Optimiz., 26(1):337–364, 2016.

[113] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein. Distributed optimiza-

tion and statistical learning via the alternating direction method of multipliers.

Foundations and Trends in Machine Learning, 3(1):1–124, 2011.

[114] F. Lin, M. Fardad, and M. R. Jovanovic. Augmented lagrangian approach to

design of structured optimal state feedback gains. IEEE Trans. Automat. Control,

56(12):2923–2929, December 2011.

[115] N. Matni and V. Chandrasekaran. Regularization for design. IEEE Trans. Au-

tomat. Control, 61(12):3991–4006, 2016.

[116] S. Dean, H. Mania, N. Matni, B. Recht, and S. Tu. On the sample complexity of

the linear quadratic regulator. 2017. arXiv:1710.01688.

[117] M. Fazel, R. Ge, S. M. Kakade, and M. Mesbahi. Global convergence of policy

gradient methods for linearized control problems. 2018. arXiv:1801.05039.

[118] S. Schuler, P. Li, J. Lam, and F Allgöwer. Design of structured dynamic output-
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Appendix A

Proximal PL condition

The generalization of the PL condition to nonsmooth problems was introduced in [164]

and is given by
1

2
Dg(x, Lf ) ≥ κ (F (x) − F ?) (A.1)

where κ is a positive constant, Lf is the Lipschitz constant of ∇f , and Dg(x, α) is given

by

− 2αmin
y

(
〈∇f(x), y − x〉+

α

2
‖y − x‖22 + g(y)− g(x)

)
. (A.2)

Herein, we show that if proximal PL condition (A.1) holds, there is a lower bound

given by (6.19) on the norm of the generalized gradient map Gµ(x). For µ ∈ (0, 1/Lf ),

Dg(x, 1/µ) ≥ Dg(x, Lf ), and, thus, inequality (A.1) also holds for Dg(x, 1/µ). Moreover,

from the definition of Dg(x, α) given by (A.2), it follows that

Dg(x, 1/µ) =
2

µ
(F (x) − Fµ(x))

where F := f + g and Fµ is the associated FB envelope. Substituting this expression

for Dg(x, 1/µ) to (A.1) yields,

1

µ
(F (x) − Fµ(x)) ≥ κ (F (x) − F ?). (A.3)
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From (6.5), the smooth part of the objective function f can be written as

f(x) = Fµ(x) − g(proxµg(x − µ∇f(x))) +

µ 〈∇f(x), Gµ(x)〉 − µ

2
‖Gµ(x)‖22

and substituting this expression for f to both sides of (A.3) yields

(µκ− 1)
2 ‖Gµ(x)‖22 ≥ κ (Fµ(x) − F ?) + (µκ− 1)

µ g(x) −
(µκ− 1)

µ g( proxµg(x − µ∇f(x))) +

(µκ − 1) 〈∇f(x), Gµ(x)〉 .

(A.4)

Since

Gµ(x) − ∇f(x) ∈ ∂g(x)

the subgradient inequality (6.18) implies

0 ≤ µ ‖Gµ(x)‖22 ≤ g(x) − g(proxµg(x − µ∇f(x))) +

µ 〈∇f(x), Gµ(x)〉 .
(A.5)

Thus, if µκ− 1 > 0, inequality (A.4) can be written as

(µκ− 1)
2 ‖Gµ(x)‖22 ≥ κ (Fµ(x) − F ?).

Moreover, if µκ− 1 < 0, let α := −(µκ− 1) ≥ 0. From (A.4) and (A.5), we have

α

2
‖Gµ(x)‖22 ≥ κ (Fµ(x) − F ?).

Thus, in both cases the inequality holds for α = |µκ− 1|. Furthermore, it can be shown

that [157],

F ? = F ?µ and argmin F = argmin Fµ.

Thus, F ? can be substituted by F ?µ and we have

‖Gµ(x)‖22 ≥ γ (Fµ(x) − F ?µ)
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where γ := 2κ/α.

A.1 Pointwise quadratic inequality Herein, we provide a pointwise

quadratic inequality that characterizes the nonlinear map u(x) = proxµg(x− µ∇f(x))

in (6.24b). Since the proximal operator of g is firmly nonexpansive [76], it is Lipschitz

continuous with parameter 1 and we have

‖u − û‖22 ≤ ‖(x− µ∇f(x)) − (x̂− µ∇f(x̂))‖22. (A.6)

Expanding the right-hand-side of (A.6) yields,

‖u − û‖22 ≤ ‖x − x̂‖22 + µ2‖∇f(x) − ∇f(x̂)‖22 −

2µ 〈x − x̂,∇f(x) − ∇f(x̂)〉

and utilizing inequality (6.17) for an mf -strongly convex function f with an Lf -Lipschitz

continuous gradient, the last inequality can be further simplified as,

‖u − û‖22 ≤ (1 −
2µmfLf
Lf +mf

) ‖x − x̂‖22 +

(µ2 − 2µ

Lf +mf
) ‖∇f(x) − ∇f(x̂)‖22.

(A.7)

Now, depending on the sign of µ − 2/(Lf +mf ) either (6.15) or (6.16) can be used to

upper bound the second term on the right-hand-side of (A.7) and obtain

‖u − û‖22 ≤ max
{

(1 − µLf )2, (1 − µmf )2
}
‖x − x̂‖22. (A.8)

Choosing η given by (6.26) completes the proof of Lemma 7. We note that this con-

traction property has been also exploited in [97,181].



Appendix B

On the exponential convergence

rate of proximal gradient flow

algorithms

Herein, we describe a primal-descent dual-ascent gradient flow dynamics based on proxi-

mal augmented Lagrangian (6.20) can be used for distributed optimization. We provide

a distributed implementation and prove global exponential stability in the presence of

strong convexity.

B.0.1 Distributed optimization Let us consider the unconstrained optimiza-

tion problem,

minimize
x

n∑
i= 1

fi(x)

where x ∈ Rn is the optimization variable and f :=
∑

i fi is a strongly convex objective

function. It is desired to solve this problem over an undirected connected network

with the incidence matrix ET and the graph Laplacian L := ETE. To accomplish this

objective, we reformulate it as,

minimize
x

n∑
i= 1

fi(xi) + g(Ex) (B.1a)
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where x := [x1 · · · xn ]T and g(Ex) is an indicator function associated with the equality

constraint Ex = 0,

g(Ex) =

 0, Ex = 0,

∞, otherwise.
(B.1b)

This constraint is introduced to ensure asymptotic agreement between the node values

xi(t) ∈ R.

As demonstrated in [108], the primal-descent dual-ascent gradient flow dynamics

based on the proximal augmented Lagrangian (6.20) can be used to solve this problem.

The resulting gradient flow dynamics are given by,

ẋ = −∇f(x) − 1
µ Lx − ỹ

˙̃y = Lx,
(B.2)

where L = ETE is the Laplacian matrix of the underlying communication graph between

neighboring nodes and the vector ỹ := ET y belongs to the orthogonal complement of

the vector of all ones. This setup is well-suited for distributed implementation in which

each node only shares its state xi with its neighbors and maintains the corresponding

dual variable ỹi. A Lyapunov-based argument was used in [182] to prove the exponential

convergence of (B.2). Herein, we provide an alternative proof that utilizes the theory of

IQCs to establish global exponential stability of (B.2) under the condition that 1T ỹ(0) =

0.

Assumption 5. Let the differentiable part f :=
∑

i fi(x) of the objective function

in (B.1) be strongly convex with parameter mf , let ∇f be Lipschitz continuous with

parameter Lf , let the regularization function g be proper, lower semicontinuous, and

convex, let ET be incidence matrix of a connected undirected network, and let 1T ỹ(0) = 0

in (B.2).

From Assumption 5 it follows that the graph Laplacian L := ETE is a positive

semidefinite matrix with one zero eigenvalue. Thus, it can be decomposed as

L = V ΛV T =
[
U 1

n 1

] [ Λ0 0

0 0

][
UT

1
n 1

T

]
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where the columns of V are the eigenvectors of L, Λ0 is a diagonal matrix of the nonzero

eigenvalues of L, and the matrix U satisfies,

UTU = I, UT1 = 0, U UT = I − 1
n 11

T . (B.3)

By introducing a change of variables[
ψ

x̄

]
=

[
UTx
1
n 1

Tx

]
,

[
φ

ȳ

]
=

[
UT ỹ
1
n 1

T ỹ

]

with ψ ∈ Rn−1 and φ ∈ Rn−1, (B.2) can be written as
ψ̇

˙̄x

φ̇

˙̄y

 =


− ( 1

µ Λ0 + mfI)ψ − φ − UTu

− 1
n 1

Tu − mf x̄ − ȳ

Λ0 ψ

0

 (B.4)

where u = ∇f(x)−mfx, and from the properties (B.3) of the matrix U we have,

x =
[
U 1

] [ ψ

x̄

]
. (B.5)

By choosing ȳ(0) = 0, we have ȳ ≡ 0. Thus, the ȳ-dynamics can be eliminated

from (B.4), which yields

ẇ = Aw + B u

ξ = C w

u = ∇f(ξ) − mfξ.

(B.6a)



175

Here, w := [ψT x̄ φT ]T , ξ := x,

A =


− ( 1

µ Λ0 + mfI) 0 − I

0 −mf 0

Λ0 0 0



B =


−UT

− 1
n 1

T

0

 , C =
[
U 1 0

]
(B.6b)

and the corresponding transfer function is

H(s) = −
[
U 1

] H1(s) 0

0
1

s+mf

[ UT

1
n 1

T

]
(B.6c)

where

H1(s) = diag

(
s

s2 + (λi/µ + mf ) s + λi

)
.

Furthermore, under Assumption 5 with u = ∇f(ξ) −mfξ, for any ξ and ξ̂ ∈ Rn, we

have [31], [
ξ − ξ̂
u− û

]T [
0 (Lf −mf )I

(Lf −mf )I −2I

][
ξ − ξ̂
u− û

]
� 0.

We now employ the KYP lemma to establish global exponential stability of (B.6a).

Theorem 16. Let Assumption 5 hold. Then proximal gradient flow dynamics (B.6a)

are globally exponentially stable, i.e., there is τ, 0 < ρ < mf such that,

‖w(t) − w?‖ ≤ τ e−ρt ‖w(0) − w?‖

.

Proof. The KYP lemma implies global exponential stability if[
Hρ(jω)

I

]∗
Π

[
Hρ(jω)

I

]
≺ 0, ∀ω ∈ R (B.7)
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where

Π =

[
0 (Lf −mf )I

(Lf −mf )I −2I

]
Hρ(jω) = H(jω − ρ).

It is easy to show that (B.7) holds for all ω ∈ R if

2 I − (Lf − mf ) (H∗ρ (jω) + Hρ(jω)) � 0.

This condition yields a decoupled family of inequalities,

ω2 + (mf − ρ)2 + (Lf − mf )(mf − ρ) > 0 (B.8)

(ω2 − bi(ρ))2 + ci(ρ)ω2 + di(ρ) > 0 (B.9)

which have to hold for all ω ∈ R and for i = 1, . . . , n− 1. Condition (B.8) clearly holds

if ρ ∈ (0,mf ). On the other hand, checking (B.9) amounts to checking a decoupled

family of quadratic inequalities in ω2 where bi(ρ), ci(ρ), and di(ρ) are parameters that

depend on µ, Lf , mf , λi, and ρ. At ρ = 0, these are given by

bi(0) = λi/µ, ci(0) = (λi/µ + mf ) (λi/µ + Lf ), di(0) = 0.

Positivity of bi(0) and ci(0) for each i and continuity of bi(ρ), ci(ρ), and di(ρ) with

respect to ρ imply the existence of ρ > 0 that guarantees (B.9) for each ω ∈ R and each

i = 1, . . . , n− 1, which completes the proof.
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