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Abstract

In this dissertation, we study the problems of structure design and optimal control

of consensus and synchronization networks. Our objective is to design controller that

utilize limited information exchange between subsystems in large-scale networks. To ob-

tain controllers with low communication requirements, we seek solutions to regularized

versions of the H2 optimal control problem. The proposed framework can be leveraged

for control design in applications like wide-area control in bulk power systems, frequency

regulation in power system/microgrids, synchronization of nonlinear oscillator networks,

etc. The structure of the dissertation is organized as follows.

In Part I, we focus on the optimal control problems in systems with symmetries and

consensus/synchronization networks. They are characterized by structural constraints

that arise either from the underlying group structure or the lack of the absolute mea-

surements for a part of the state vector. Our framework solves the regularized versions

of the H2 optimal control problems that allow the state-space representations that are

used to quantify the system’s performance and sparsity of the controller to be expressed

in different sets of coordinates. For systems with symmetric dynamic matrices, the

problem of minimizing the H2 or H∞ performance of the closed-loop system can be

cast as a convex optimization problem. Studying the symmetric component of a gen-

eral system’s dynamic matrices provides bounds on the H2 and H∞ performance of the

original system.

Part II studies wide-area control of inter-area oscillations in power systems. Our

input-output analysis examines power spectral density and variance amplification of

stochastically forced systems and offers new insights relative to modal approaches. To

improve upon the limitations of conventional wide-area control strategies, we also study

the problem of signal selection and optimal design of sparse and block-sparse wide-

area controllers. We show how different sparsity-promoting penalty functions can be

used to achieve a desired balance between closed-loop performance and communica-

tion complexity. In particular, we demonstrate that the addition of certain long-range

communication links and careful retuning of the local controllers represent an effective
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means for improving system performance.

In Part III, we apply the sparsity-promoting optimal control framework to two prob-

lem encounters in distributed networks. First, we consider the optimal frequency reg-

ulation problem in power systems and propose a principled heuristic to identify the

structure and gains of the distributed integral control layer. We define the proposed dis-

tributed PI-controller and formulate the resulting static output-feedback control prob-

lem. Second, we develop a structured optimal-control framework to design coupling

gains for synchronization of weakly nonlinear oscillator circuits connected in resistive

networks with arbitrary topologies. The structured optimal-control problem allows us

to seek a decentralized control strategy that precludes communications between the

weakly nonlinear Liénard-type oscillators.
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Chapter 1

Introduction

1.1 Motivation

This dissertation studies structure design and optimal control problems arise in dis-

tributed systems and consensus networks. In large networks of dynamical systems cen-

tralized information processing may impose heavy communication and computation

burden on individual subsystems. This motivates the development of localized feedback

control strategies that require limited information exchange between the subsystems in

order to reach consensus or guarantee synchronization. These problems are encoun-

tered in a number of applications ranging from biology to computer science to power

systems [1–11], see Fig. 1.1 for some examples. In each of these applications, it is of

interest to reach an agreement or to achieve synchronization by exchanging relative

information between the subsystems. The restriction on the absence of the absolute

measurements imposes structural constraints for the analysis and design.

Conventional optimal control of distributed systems relies on centralized implemen-

tation of control policies [12]. In large networks of dynamical systems centralized in-

formation processing may impose heavy communication and computation burden on

individual nodes. This motivates the development of localized feedback control strate-

gies that require limited information exchange between the nodes in order to reach

consensus or guarantee synchronization [2, 3, 5, 6, 10,11,13].

In this dissertation, our objective is to design controller structures and resulting

1
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(a) (b)

(c) (d)

Figure 1.1: (a) Fishes utilize local relative distance measurements to form a fish school.
(b) Computers achieve clock synchronization by exchanging local information in cyber
networks. (c) Satellites measure relative distances between each other to maintain
formations. (d) Generators exchange relative angle/frequency information to achieve
synchronization.

control strategies that utilize limited information exchange between subsystems in large-

scale networks. To design networks with low communication requirements, we seek

solutions to the regularized version of the standard H2 optimal control problem. Such

solutions trade off network performance and sparsity of the controller. For example,

in the context of wide-area control of power systems [14–16], the optimal controller

respects the structure of the original power network: in both open- and closed-loop

systems, only relative rotor angle differences between different generators appear in the
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state-space representation.

1.2 Main topics of the dissertation

In this section, we discuss the main topics of the dissertation.

1.2.1 Optimal sparse feedback design

In large networks of dynamical systems centralized information processing may impose

prohibitively expensive communication and computation burden [17,18]. This motivates

the development of theory and techniques for designing distributed controller architec-

tures that lead to favorable performance of large-scale networks. Recently, regularized

versions of standard optimal control problems were introduced as a means for achieving

this goal [19–23]. For example, in consensus and synchronization networks, it is of in-

terest to achieve desired objective using relative information exchange between limited

subset of nodes [1–11].

The objective is to design controllers that provide a desired tradeoff between the

network performance and the sparsity of the static output-feedback controller. This is

accomplished by regularizing the H2 optimal control problem with a penalty on commu-

nication requirements in the distributed controller. In contrast to previous work [19–21],

this regularization penalty reflects the fact that sparsity should be enforced in a spe-

cific set of coordinates. In [19–21], the elements of the state-feedback gain matrix were

taken to represent communication links. Herein, we present a unified framework where

a communication link is a linear function of the elements of the output-feedback gain

matrix.

The proposed framework addresses challenges that arise in systems with invariances

and symmetries, as well as consensus and synchronization networks. For example, the

block diagonal structure of spatially-invariant systems in the spatial frequency domain

facilitates efficient computation of the optimal centralized controllers [17]. However,

since the sparsity requirements are typically expressed in the physical space, it is chal-

lenging to translate them into frequency domain specifications. Furthermore, in wide-

area control of power networks [14–16], it is desired to design the controllers that respect
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the structure of the original system: in both open- and closed-loop networks, only rel-

ative rotor angle differences between different generators are allowed to appear. To

deal with these structural requirements, we introduce a coordinate transformation to

eliminate the average mode and assure stabilizability and detectability of the remaining

modes. Once again, it is desired to promote sparsity of the feedback gain in physical

domain and it is challenging to translate these requirements in the transformed set of

coordinates.

We leverage the alternating direction method of multipliers (ADMM) [24] to ex-

ploit the structure of the corresponding objective functions in the regularized optimal

control problem. ADMM alternates between optimizing the closed-loop performance

and promoting sparsity of the feedback gain matrix. The sparsity promoting step in

ADMM has an explicit solution and the performance optimization step is solved using

Anderson-Moore and proximal gradient methods. Our framework thus allows for per-

formance and sparsity requirements to be expressed in different set of coordinates and

facilitates efficient computation of sparse static output-feedback controllers.

For undirected consensus networks, the proposed approach admits a convex charac-

terization. Furthermore, for systems with invariances and symmetries, transform tech-

niques are utilized to gain additional computational advantage and improve efficiency.

For example, by bringing matrices in a state-space representation of a spatially invari-

ant systems into block-diagonal forms, the regularized optimal control problem amounts

to easily parallelizable task of solving a sequence of smaller, fully-decoupled problems.

While computational complexity of the algorithms that do not exploit spatially-invariant

structure increases cubicly with the number of subsystems, our algorithms exhibit a lin-

ear growth. After having identified a controller structure, the structured design step

optimizes the network performance over the identified structure.

1.2.2 Sparsity-promoting optimal control of systems with invariances

and symmetries

Structured control problems are, in general, challenging and nonconvex. Many recent

works have identified classes of systems for which structured optimal control problems

can be cast in convex forms. These include funnel causal and quadratically invariant sys-

tems [25,26], positive systems [27,28], structured and sparse consensus/synchronization
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networks [2,11,29–32], optimal sensor/actuator selection [33,34], and symmetric modi-

fications to symmetric linear systems [35].

In many large-scale problems, controller structure is vitally important. As such,

much effort has been devoted to developing scalable algorithms for nonconvex regu-

larized H2 and H∞ design problems [19, 21–23, 33, 34, 36, 37]. Although many recent

works have developed efficient algorithms for the nonconvex regularized H2 problems,

in general, regularized H∞ problems are difficult because the H∞ norm is nonsmooth.

We propose a principled approach to general regularized H2 and H∞ optimal con-

troller design. Our formulation treats control problems that minimize the H2 or H∞
norm by modifying the dynamical generator of a linear system, such as in linear state

feedback. In this part, we use symmetries in system structure to form convex problems

and gain computational advantage.

The contributions are twofold. First, in a similar vein as [35], we utilize the sym-

metric component of a general linear system to form a symmetric system for which the

regularized H2 and H∞ optimal control problems are convex. We implement the con-

trollers designed by this method on the original system. We show that this procedure

guarantees stability and that the closed-loop H2 and H∞ performance of the symmetric

system is an upper bound on the closed-loop H2 and H∞ performance of the original

system.

Second, we provide a way to gain computational advantage by exploiting the block-

diagonalizability of large scale systems. Such a structure arises, for example, in spatially-

invariant systems [17]. In [38], the authors took advantage of this property to develop

an efficient and scalable algorithm for sparsity-promoting feedback design. When a

spatially-invariant system is subject to a spatially-invariant control law, the dynamics

of the system can be represented as the sum of independent subsystems, making the

problem amenable to distributed optimization.

1.2.3 Wide-area control in power systems

Inter-area oscillations in bulk power systems are associated with the dynamics of power

transfers and involve groups of synchronous machines that oscillate relative to each

other. Figure 1.2 These system-wide oscillations arise from modular network topologies,

heterogeneous machine dynamics, adversely interacting controllers, and large inter-area
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power transfers. With increased system loads and deployment of renewables in re-

mote areas, long-distance power transfers will eventually outpace the addition of new

transmission facilities. This induces severe stress and performance limitations on the

transmission network and may even cause instability and outages [39].

0.5Hz

0.7Hz

0.22Hz

0.15Hz

0.33Hz

0.48Hz

0.8Hz

0.26Hz

Figure 1.2: A few typical inter-area oscillations in Europe.

Traditional analysis and control of inter-area oscillations is based on modal ap-

proaches [40,41]. Typically, inter-area oscillations are identified from the spatial profiles

of eigenvectors and participation factors of poorly damped modes [42, 43], and they

are damped via decentralized controllers, whose gains are carefully tuned using root

locus [44, 45], pole placement [46], adaptive [47], robust [48], and optimal [49] control

strategies. To improve upon the limitations of decentralized control, recent research

centers at distributed wide-area control strategies that involve the communication of

remote signals [50, 51]. See Fig. 1.3 for a comparison between conventional decentral-

ized control and wide-area control strategies. The wide-area control signals are typically

chosen to maximize modal observability metrics [52,53], and the control design methods

range from root locus criteria to robust and optimal control approaches [54–56].

The spatial profiles of the inter-area modes together with modal controllability and

observability metrics were previously used to indicate which wide-area links need to be

added and how supplemental damping controllers have to be tuned. Here, we depart

from the conventional modal approach and propose a novel methodology for analysis and
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(a) Decentralized control (b) Wide-area control

Figure 1.3: (a) Fully-decentralized control strategies implemented locally, ineffective
against inter-area oscillations. (b) Distributed wide-area control using remote signals,
effective against inter-area oscillations.

control of inter-area oscillations. In particular, we use input-output analysis to study

oscillations in stochastically forced power systems. A similar approach was recently

employed to quantify performance of consensus and synchronization networks [6, 11].

To identify wide-area control architectures and design optimal sparse controllers, we

invoke the paradigm of sparsity-promoting optimal control [19–21, 30]. Recently, this

framework was successfully employed for wide-area control of power systems [14,15,57,

58]. Here, we follow the formulation developed in [30] and find a linear state feedback

that simultaneously optimizes a quadratic optimal control criterion (associated with

incoherent and poorly damped oscillations) and induces a sparse control architecture.

The main novel contributions of our control design approach are highlighted below. We

improve the previous results [14, 15, 57, 58] at two levels: first, we preserve rotational

symmetry of the original power system by allowing only relative angle measurements in

the distributed controller, and, second, we allow identification of block-sparse control

architectures, where local information associated with a subsystem is either entirely

used (or discarded) for control.

We illustrate the utility of our approach using the IEEE 39 New England model [59].

We show how different sparsity-promoting penalty functions can be used to achieve a

desired balance between closed-loop performance and communication complexity. In

particular, we demonstrate that the addition of certain long-range communication links

and careful retuning of the local controllers represent an effective means for improving

system performance. For the New England model, it turns out that properly retuned
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and fully-decentralized controllers can perform almost as well as the optimal central-

ized controllers. Our results thus provide a constructive answer to the much-debated

question of whether locally observable oscillations in a power network are also locally

controllable [60].

1.2.4 Distributed-PI control in power systems

The basic task of power system operation is to match load and generation. In an

AC power grid, the synchronous frequency is a direct measure of the load-generation

imbalance, which makes frequency control the fundamental power balancing mechanism.

This task is traditionally accomplished by adjusting generation in a hierarchical three-

layer structure: primary (droop control), secondary (automatic generation control) and

tertiary (economic dispatch) layer, from fast to slow timescales, and from decentralized

to centralized architectures [61, 62]. With the increasing penetration of distributed

generation based on renewables, power systems are subject to larger and faster frequency

fluctuations which have to be compensated by more and more small-scale and distributed

generators. Thus, primary, secondary, and tertiary control tasks have to be handled in

an increasing plug-and-play fashion, that is, using only local measurements, private

model information, and without time-scale separations [63].

From a control-theoretic perspective, the three frequency control layers essentially

correspond to proportional-integral (PI) control and set-point scheduling to solve a re-

source allocation problem. A broad range of research efforts have recently been put

forward to decentralize these control tasks. While the primary layer is typically be-

ing implemented by means of proportional droop control, the secondary and tertiary

integral and set-point controllers can be realized in a plug-and-play fashion through

discrete-time averaging algorithms [64], continuous-time optimization approaches [65],

or distributed averaging-based proportional-integral (DAPI) controllers [66]; see [67] for

a recent literature review. Here, we focus on the simple yet effective DAPI controllers

advocated, among others, in [66–70] to coordinate the action of multiple integral con-

trollers through continuous averaging of the marginal injection costs to arrive at an

optimal solution for a tertiary resource allocation problem.

More generally, PI control is a simple and effective method, it is well known for its

ability to eliminate the influence of static control errors and constant disturbances, and it



9

is commonly used in many industrial applications [71,72]. For large-scale distributed sys-

tems DAPI-type control strategies have been used successfully for stabilization, distur-

bance rejection, and resource allocation, as summarized above for power systems [66–70]

as well as for general network flow problems and other applications [73,74]. DAPI-type

control strategies have also been studied from a pure theoretic perspective as natural

extension to proportional consensus control; see [75,76] and the seminal paper [77].

A common theme of the above studies on various DAPI-type controllers is that

the communication network among the integral controllers needs to be connected to

achieve stable disturbance rejection and resource allocation. However, to the best of

our knowledge, there are no studies addressing the question of how to optimally design

the cyber integral control network relative to the physical dynamics and interactions.

Here, we pursue this question for the special case of frequency regulation in a power

system and using the DAPI controllers advocated in [66,67,69,70,78–80].

In this section, we identify topology of the integral control communication graph and

design the corresponding edge weights for the DAPI controller. In previous studies, the

common assumption on the controller graph being undirected appears overly restric-

tive and requires many communication resources. Our proposed approach allows us to

identify stabilizing and optimal integral controllers with a sparse and directed commu-

nication architecture. As a preliminary pre-processing step, we introduce a coordinate

transformation to enforce the structural constraints on the rotor angles and auxiliary

integral states. In the new set of coordinates, the system dynamics are amenable to

both standard linear quadratic regulator tools as well as a `1 regularized version of the

standard H2 optimal control problem. We invoke the paradigm of sparsity-promoting

optimal control developed in [19–21] and seek a balance between system performance

and sparsity of the integral controller. An alternating direction method of multipliers

(ADMM) algorithm is used to iteratively solve the static output-feedback control prob-

lem. Similar techniques have recently been successfully used to solve wide-area control

problems in bulk power grids [14–16, 81, 82]. For the New England example, we show

that distributed integral control can achieve reasonable performance compared to the

optimal centralized controller. The optimal communication topology for the distributed

integral controller is directed and related to the rotational inertia and cost coefficients

of the synchronous generators.
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1.2.5 Design of optimal coupling gains for synchronization of nonlinear

oscillators

Synchronization of coupled Liénard-type oscillators is relevant to several engineering

applications [83, 84]. This chapter outlines a structured control-synthesis method to

regulate the voltage amplitudes of a class of weakly nonlinear Liénard-type oscillators

coupled through connected resistive networks with arbitrary topologies. The feedback

gain takes the connotation of a current gain (which scales the output current of the

oscillator); and the structured optimal-control problem is of interest since we seek a

decentralized control strategy that precludes communications between oscillators. The

problem setup is motivated by the application of controlling power-electronic invert-

ers in low-inertia microgrids in the absence of conventional synchronous generators. A

compelling time-domain approach to achieve a stable power system in this setting is to

regulate the inverters to emulate the dynamics of weakly nonlinear limit-cycle oscilla-

tors which achieves network-wide synchrony in the absence of external forcing or any

communication [85,86]. That said, this chapter offers several broad contributions to the

topic of synchronization of nonlinear dynamical systems coupled over complex networks.

First, we outline the control-synthesis approach with a broad level of generality to cover

a wide array of circuit applications; in addition to power-systems and microgrids, these

include solid-state circuit oscillators, semiconductor laser arrays, and microwave oscil-

lator arrays [84, 87, 88]. Second, majority of the synchronization literature is primarily

focused on phase- or pulse-coupled oscillator models [88, 89]. We depart from this line

of work and focus on the complementary problem of optimally regulating the amplitude

dynamics. (For the class of networks we study, phase synchrony can be guaranteed

under fairly mild assumptions.)

Circuits with voltage dynamics governed by Liénard’s equation are common in sev-

eral applications [90–92]. (The ubiquitous Van der Pol oscillator is a particular example.)

We study the setting where the oscillators are connected to a resistive network with an

arbitrary topology. The oscillator output currents are scaled by a gain which assumes

the focus of the control design. Designing coupling gains with a view to synchronize

the outputs of dynamical systems has been studied in a variety of applications [93–95].

The nonlinear dynamics complicate our problem setting, and the solution strategy we
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propose draws from a variety of circuit- and system-theoretic tools including averag-

ing methods for periodic nonlinear systems and structural reduction of electrical net-

works. Furthermore, conventional optimal control synthesis methods cannot guarantee

decentralized control strategies (translating to local current gains). To address this, we

leverage recent advances in structured control design.

Conventional optimal control design strategies typically return full feedback gain

matrices. (A full feedback gain matrix in our setting would imply that extraneous

communication links are required between the oscillators.) Since we seek a decentral-

ized control strategy so that voltage regulation can be guaranteed only by tuning the

local current gains, we leverage our expertise in structured feedback gain design for

distributed systems that has demonstrated its effectiveness in the domain of power net-

works [14–16, 30, 81]. In particular, we present a sparsity-promoting optimal control

design strategy [21] to design the current gains so that the differences between the oscil-

lator terminal-voltage amplitudes can be minimized. The objective of the optimization

problem is to tune the current gains to minimize the H2 norm of the system. In general,

the optimization problem is non-convex and difficult to solve. We utilize the alternating

direction method of multipliers (ADMM) algorithm to perform an iterative search for

the optimal solution.

The control design strategy outlined above is tailored to linear system descriptions.

The oscillator dynamics that derive from circuit laws are innately nonlinear and in

Cartesian coordinates. As such, they pose a challenge for control synthesis. To facili-

tate control design, we leverage polar-coordinate transformations, tools from averaging

theory, and linear systems theory [83,96]. First, by transforming the system into the po-

lar coordinates, we extract the amplitude and phase dynamics of the terminal voltages.

We then average the periodic dynamics and linearize the system around the nominal

operating point.

1.3 Dissertation structure

This dissertation consists of three parts. Each part focuses on a specific topis and

includes individual chapters that studies relevant subjects. In each chapter, we provide

background and motivation, problem formulation, design procedure, case study and
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conclusion.

Part I considers optimal control problems in systems with symmetries and consen-

sus/synchronization networks. These systems feature structural constraints that arise

either from the underlying group structure or the lack of the absolute measurements for

a part of the state vector. Chapter 2 propose a framework to solve the resulting sparsity-

optimal control problem, which aims to design controller that utilize limited information

exchange between subsystems in large-scale networks. Chapter 3 cast the problem of

minimizing the H2 or H∞ performance of the closed-loop system with symmetric dy-

namic matrices as a convex optimization problem. Moreover, it provides bounds on the

H2 and H∞ performance of the original system by studying the symmetric component

of a general system’s dynamic matrices.

Part II studies wide-area control of inter-area oscillation in bulk power systems.

Non-modal tools are employed to analyze and control inter-area oscillations. Input-

output analysis is used to examines power spectral density and variance amplification

of stochastically forced systems and offers new insights relative to modal approaches. To

improve upon the limitations of conventional wide-area control strategies, the problems

of signal selection and optimal design of sparse and block-sparse wide-area controllers

are studied. Case study on a bench mark example, the IEEE 39 New England model,

is provided.

Part III focuses on two applications in sparse control design of distributed systems.

Chapter 5 considers the optimal frequency regulation problem and propose a principled

heuristic to identify the topology and gains of the distributed integral control layer.

An `1-regularized H2-optimal control framework is employed for striking a balance be-

tween network performance and communication requirements. Illustrative example is

shown to demonstrate that the identified sparse and distributed integral controller can

achieve reasonable performance relative to the optimal centralized controller. Chapter

6 develops a structured optimal-control framework to design coupling gains for syn-

chronization of weakly nonlinear oscillator circuits connected in resistive networks with

arbitrary topologies. A sparsity-promoting optimal control algorithm is developed to

tune the optimal diagonal feedback-gain matrix with minimal performance sacrifice.
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1.4 Contributions of the dissertation

In this section, the structure of the dissertation is provided along with the main contri-

butions of each part.

Part I

Optimal sparse feedback design. The objective is to design controllers that pro-

vide a desired tradeoff between the network performance and the sparsity of the static

output-feedback controller. This is accomplished by regularizing the H2 optimal control

problem with a penalty on communication requirements in the distributed controller.

In contrast to previous work [19–21], this regularization penalty reflects the fact that

sparsity should be enforced in a specific set of coordinates. In [19–21], the elements of

the state-feedback gain matrix were taken to represent communication links. Herein, we

present a unified framework where a communication link is a linear function of the ele-

ments of the output-feedback gain matrix. We show how alternating direction method

of multipliers can be leveraged to exploit the underlying structure and compute sparsity-

promoting controllers. In particular, for spatially-invariant systems, the computational

complexity of our algorithms scales linearly with the number of subsystems. We also

identify a class of optimal control problems that can be cast as semidefinite programs

and provide an example to illustrate our developments.

Sparsity-promoting optimal control of systems with invariances and symme-

tries. A principled approach is proposed to general regularized H2 and H∞ optimal

controller design. Our framework formulates optimal control problems that minimize

the H2 or H∞ norm by modifying the dynamical generator of a linear system. We make

use of the symmetries in system structure to cast the resulting optimal control design as

convex problems and gain computational efficiency. We implement the controllers de-

signed by our framework on the original system. This procedure guarantees stability and

that the closed-loopH2 andH∞ performance of the symmetric system is an upper bound

on the closed-loop H2 and H∞ performance of the original system. In addition, we pro-

vide a mean to gain computational efficiency by exploiting the block-diagonalizability

of large scale systems. Such an example is provided for spatially-invariant systems.
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Part II

Decentralized optimal control of inter-area oscillations. To improve upon the

limitations of conventional decentralized controllers, we develop a distributed wide-area

control strategy that involve the communication of remote signals and provide a po-

tential approach for retuning of the existing decentralized control gains. We analyze

inter-area oscillations by means of the Ht norm of this system, as in recent related ap-

proaches for interconnected oscillator networks and multi-machine power systems. We

show that an analysis of power spectral density and variance amplification offers com-

plementary insights that complement conventional modal approaches. The main novel

contributions of our control design approach are as follows. We improve the previous

results [14,15,57,58] at two levels: first, we preserve rotational symmetry of the original

power system by allowing only relative angle measurements in the distributed controller,

and, second, we allow identification of block-sparse control architectures, where local

information associated with a subsystem is either entirely used or discarded for control.

We show how different sparsity-promoting penalty functions can be used to achieve a

desired balance between closed-loop performance and communication complexity. In

particular, we demonstrate that the addition of certain long-range communication links

and careful retuning of the local controllers represent an effective means for improving

system performance.

Part III

Design of distributed integral control action in power networks. We address

the question of how to optimally design the cyber integral control network relative to

the physical dynamics and interactions. Here, we pursue this problem for frequency

regulation in a power system and using the DAPI controllers advocated in [66, 67, 69,

70, 78–80]. We identify optimal structure of the integral control communication graph

and design the corresponding edge weights for the integral controller. We formulate the

design of integral controller as a static output-feedback control problem. The sparsity-

promoting optimal control algorithm is then used to solve the optimization problem.

Design of optimal coupling gains for synchronization of nonlinear oscillators.



15

This chapter outlines a structured control-synthesis method to regulate the voltage am-

plitudes of a class of weakly nonlinear Liénard-type oscillators coupled through con-

nected resistive networks with arbitrary topologies. Our framework offers several broad

contributions to the topic of synchronization of nonlinear dynamical systems coupled

over complex networks. First, we outline the control-synthesis approach with a broad

level of generality to cover a wide array of circuit applications; in addition to power-

systems and microgrids, these include solid-state circuit oscillators, semiconductor laser

arrays, and microwave oscillator arrays [84,87,88]. Second, majority of the synchroniza-

tion literature is primarily focused on phase- or pulse-coupled oscillator models [88,89].

We depart from this line of work and focus on the complementary problem of optimally

regulating the amplitude dynamics.



Part I

Sparsity-promoting optimal

control
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Chapter 2

Optimal Sparse Feedback Design

Optimal control problems in systems with symmetries and consensus/synchronization

networks are characterized by structural constraints that arise either from the under-

lying group structure or the lack of the absolute measurements for a part of the state

vector. Our objective is to design controller structures and resulting control strategies

that utilize limited information exchange between subsystems in large-scale networks.

To obtain controllers with low communication requirements, we seek solutions to regu-

larized versions of the H2 optimal control problem [97].

2.1 Motivation and background

We consider a class of control problems

˙̂x = Â x̂ + B̂1 d̂ + B̂2 û

ẑ = Ĉ1 x̂ + D̂ û

ŷ = Ĉ2 x̂

û = − K̂ ŷ

(2.1)

where x̂ is the state, d̂ and û are the disturbance and control inputs, ẑ is the performance

output, and ŷ is the measured output. The matrices Ĉ1 and D̂ are given by
[
Q̂1/2 0

]∗

and
[

0 R̂1/2
]∗

with standard assumptions on stabilizability and detectability of pairs

(Â, B̂2) and (Â, Q̂1/2). Here, (·)∗ denotes complex-conjugate transpose of a given matrix.

17
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The matrices Q̂ = Q̂∗ � 0 and R̂ = R̂∗ � 0 are the state and control performance

weights, and the closed-loop system is given by

˙̂x = (Â − B̂2 K̂ Ĉ2) x̂ + B̂1 d̂

ẑ =

[
Q̂1/2

− R̂1/2 K̂ Ĉ2

]
x̂.

(2.2)

We assume that there is a stabilizing feedback gain matrix K̂.

Our objective is to achieve a desired tradeoff between the H2 performance of sys-

tem (2.2) and the sparsity of a matrix that is related to the feedback gain matrix K̂

through a linear transformation T (K̂). To address this challenge we consider a regular-

ized optimal control problem

minimize
K̂

J(K̂) + γ g(T (K̂)) (2.3)

where J(K̂) is the H2 norm of system (2.2), γ is a positive regularization parameter,

and g(T (K̂)) is a sparsity-promoting regularization term (see Section 2.1.3 for details).

Linear transformation T (K̂) of the feedback gain K̂ in (2.3) reflects the fact that

sparsity should be enforced in a specific set of coordinates. This characterization is more

general than the one considered in [19–21] where the sparsity-promoting optimal control

was originally introduced and algorithms were developed. In contrast to [19–21], where

it was assumed that the state-space model is given in physically meaningful coordinates,

herein we only require that the states in (2.2) are related to these coordinates via a lin-

ear transformation T . One such example arises in spatially invariant systems where the

“spatial frequency” domain is convenient for minimizing quadratic performance objec-

tive [17], whereas sparsity requirements are naturally expressed in the physical domain.

Another class of problems is given by consensus and synchronization networks where

the absence of absolute measurements confines standard control-theoretic requirements

to a subspace of the original state-space.
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2.1.1 Problem formulation

As mentioned earlier, while it is convenient to formulate minimization of the quadratic

performance index in terms of the feedback gain K̂, it may be desirable to promote

sparsity in a different set of coordinates. By introducing an additional optimization

variable K, we bring (2.3) into the following form,

minimize
K̂,K

J(K̂) + γ g(K)

subject to T (K̂) − K = 0,
(2.4a)

where g(K) is a sparsity-promoting regularization term and T is a linear operator. In

the H2 setting, J(K̂) is given by

J(K̂) :=





trace
(

(Q̂+ Ĉ∗2K̂
∗R̂K̂Ĉ2)X̂

)
, K̂ stabilizing

∞, otherwise
(2.4b)

where the closed-loop controllability Gramian X̂ satisfies the Lyapunov equation

(Â − B̂2K̂Ĉ2) X̂ + X̂ (Â − B̂2K̂Ĉ2)∗ + B̂1B̂
∗
1 = 0. (2.4c)

Clearly, for any feasible K̂ and K, the optimal control problems (2.3) and (SP) are

equivalent. We note that the linear constraint in (SP) is more general than the constraint

considered in [19–21], where K̂ −K = 0. This introduces additional freedom in control

design and broadens applicability of the developed tools.

In the set of coordinates where it is desired to promote sparsity, the closed-loop

system takes the form

ẋ = (A − B2K C2)x + B1 d

z =

[
Q1/2

−R1/2K C2

]
x,

(2.5)

where K = T (K̂).
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2.1.2 Examples

Consensus and synchronization networks

Consensus and synchronization problems are of increasing importance in applications

ranging from biology to computer science to power systems [1–11, 14–16]. In each of

these, it is of interest to reach an agreement or to achieve synchronization between the

nodes in the network.

In consensus and synchronization networks with the state vector

x :=
[
p∗ q∗

]∗
∈ Rn

only relative differences between the components of the vector p(t) ∈ RN are allowed

to enter into (2.5). This requirement imposes structural constraints on the matrices

in (2.5), which are partitioned conformably with the partition of the state vector x,

A =

[
A11 A12

A21 A22

]
, Bi =

[
Bip

Biq

]
,

Q =

[
Qp 0

0 Qq

]
, K =

[
Kp Kq

]
.

(2.6)

For C2 = I, the restriction on the absence of the access to the absolute measurements

of the components of the vector p translates into the following requirements

A11 1 = 0, A21 1 = 0, Qp 1 = 0, Kp 1 = 0 (2.7)

where 1 is the vector of all ones. Under these conditions, the closed-loop system (2.5)

has an eigenvalue at zero and the corresponding eigenvector
[
1∗ 0∗

]∗
is associated

with the average of the vector p, p̄ := (1/N)1∗p. If the pairs (A,B2) and (A,Q1/2) are

stabilizable and detectable on the subspace S,

S :=

[
1

0

]⊥
=

[
1⊥

Rn−N

]

a coordinate transformation x̂ := Tx can be introduced to eliminate the average mode
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p̄ from (2.5).

To achieve the goal of eliminating the average mode, p̄ := (1/N)1∗p, we introduce

the following coordinate transformation

[
p

q

]

︸ ︷︷ ︸
x

=

[
U 0

0 I

]

︸ ︷︷ ︸
T+

[
ψ

q

]

︸ ︷︷ ︸
x̂

+

[
1

0

]
p̄

where the columns of the matrix U ∈ RN×(N−1) form an orthonormal basis for the

subspace 1⊥. For example, the columns of U can be obtained from the (N − 1) eigen-

vectors of the matrix Qp corresponding to the non-zero eigenvalues. Using properties

of the matrix U

U∗ U = I, U U∗ = I − (1/N)11∗, U∗ 1 = 0,

we equivalently have [
ψ

q

]

︸ ︷︷ ︸
x̂

=

[
U∗ 0

0 I

]

︸ ︷︷ ︸
T

[
p

q

]

︸ ︷︷ ︸
x

.

This change of coordinates brings the closed-loop system (2.5) into the form (2.2) which

does not contain the average mode p̄. The matrices in (2.2) are given by

Â := TAT+, B̂i := T Bi, Ĉ2 := C2 T
+

Q̂ := T+∗QT+, R̂ := R

with û = u, d̂ = d, ẑ = z. Finally, we note that the feedback gain matrices K̂ and K

are related by the transformation matrix T

K = T (K̂) = K̂ T ⇔ K̂ = K T+,

which has the right inverse T+, TT+ = I. In consensus and synchronization networks,

the rows of the matrix T form an orthonormal basis and we thus have T+ = T ∗.

We next provide particular examples that can be described by (2.2) and (2.5) with

structural constraints (4.4).
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Swing equation. In power networks, swing equation is used to characterize energy

exchange between generators [98]. After linearization around a stationary operating

point, the swing equation reduces to

M p̈ + D ṗ + Lp p = d + u (2.8)

where p is the vector of rotor angles, M and D are diagonal matrices of inertia and

damping coefficients, and Lp is the Laplacian matrix that describes the interaction

topology. By setting q := ṗ, (5.1) is brought into the state-space form (2.5)-(2.6) with

A =

[
0 I

−M−1 Lp −M−1D

]
, Bi =

[
0

M−1

]
. (2.9)

Since Lp1 = 0, the structural restrictions (4.4) are satisfied if Qp1 = 0 and Kp1 = 0.

Single-integrator consensus networks. Networks in which each node updates a

scalar variable pi using relative information exchange with its neighbors can be obtained

from (5.1) by setting the matrix M to zero; e.g., see [1]. In this case, the matrices in

the state-space model (2.5)-(2.6) simplify to A = −D−1 Lp and B1 = B2 = D−1.

Power systems. Models of power networks account for the dynamics of generators,

control devices, and algebraic equations that describe load flow, stators, and electronic

circuits. Control actions are typically executed using generator excitation via power

system stabilizers (PSS), governor control, or power electronics (FACTS). In addition

to the rotor angles p and frequencies v := ṗ, additional states r that account for fast

electrical devices are needed to describe the dynamics of the entire system. After lin-

earization at a stationary operating point, the state-space model can be written in the

form (2.5)-(2.6) by defining q :=
[
v∗ r∗

]∗
with

A11 := 0, A12 :=
[
I 0

]
,

A21 :=

[
−M−1 Lp

Arp

]
, A22 :=

[
−M−1D Aqr

Arq Arr

]
.

Since only differences between rotor angles of different generators enter into the original

nonlinear differential equations, this property is shared by the linearized set of equations,
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thereby implying A211 = 0. Furthermore, in the absence of the access to the absolute

rotor angle measurements both the matrix A in (2.6) and its closed-loop equivalent

in (2.5) have an eigenvalue at zero with the corresponding eigenvector
[
1∗ 0∗

]∗
.

Such formulation has been recently utilized in [16].

Spatially-invariant systems

For systems with invariances and symmetries, transform techniques can be used to bring

a large-scale analysis and design problems into a parametrized family of smaller prob-

lems. One such class is given by spatially invariant systems that evolve over a discrete

spatially-periodic domain (e.g., a one-dimensional circle or a multi-dimensional torus).

In this case, the matrices in (2.5) are block circulant matrices and the application of the

discrete Fourier transform (DFT) in the spatially invariant directions brings them into a

block-diagonal form (2.2). As shown in [17], the optimal centralized controllers for spa-

tially invariant systems with quadratic performance indices are also spatially invariant;

thus, in the transformed domain they also take the block-diagonal form. Consequently,

determining the optimal centralized controller amounts to easily parallelizable task of

solving a sequence of smaller, fully-decoupled optimal control problems.

For spatially-invariant systems (2.5) with block-circulant matrices, the application

of DFT

x̂ = T x, û = T u, d̂ = T d, ẑ = T z,

brings the closed-loop system (2.5) to the form (2.2) with block-diagonal matrices Â,

B̂1, B̂2, Ĉ2, Q̂, R̂, and K̂. Here, T is the discrete Fourier matrix and the feedback gain

matrices are related via a linear transformation [38],

K = T (K̂) = T ∗K̂ T.

2.1.3 Sparsity-promoting penalty functions

We briefly describe two classes of sparsity-promoting penalty functions. More sophisti-

cated penalties can also be introduced; see [16] for examples in power networks.
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Elementwise sparsity. The weighted `1-norm,

g(K) :=
∑

i, j

Wij |Kij | (2.10)

is a commonly used proxy for enhancing elementwise sparsity of the matrix K [99].

The non-negative weights Wij provide additional flexibility relative to the standard `1-

regularization. An iterative reweighting method was introduced in [99] to provide better

approximation of the non-convex cardinality function. In the mth iteration, the weights

Wij are set to be inversely proportional to the absolute value of Kij in the previous

iteration,

Wm
ij = 1/

(
|Km−1

ij | + ε
)

where 0 < ε� 1 guards against Kij = 0.

Block sparsity. By selecting g(K) to penalize the Frobenius norm of the ijth block

of the matrix K,

g(K) :=
∑

i, j

Wij ‖Kij ‖F

sparsity can be enhanced at the level of submatrices [100]. In the iterative reweighting

algorithm, the absolute value should be replaced by the Frobenius norm of Kij

Wm
ij = 1/

(
‖Km−1

ij ‖F + ε
)
.

2.2 Class of convex problems

For an undirected consensus network in which each node updates a scalar value pi, we

next show that the sparsity-promoting optimal control problem can be formulated as

an SDP. The closed-loop system (2.5) with

A := −Lp, B1 = B2 := I, C2 = I, K := Lk
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can be written as
ṗ = −(Lp + Lk) p + d

z =

[
Q1/2

−R1/2 Lk

]
p

(2.11)

where the symmetric positive semi-definite matrices Lp and Lk satisfy Lp 1 = 0, Lk 1 =

0. These two Laplacian matrices contain information about the interconnection struc-

ture of the open-loop system and the controller.

The `1-regularized H2 optimal control problem can be formulated as

minimize
Lk

J(Lk) + γ ‖W ◦ Lk‖`1 . (2.12)

Here, ◦ denotes elementwise matrix multiplication and the solution to the algebraic

Lyapunov equation

(Lp + Lk)P + P (Lp + Lk) = Q + Lk RLk

determines the H2 of the closed-loop system, J(Lk) = trace (P ). It is readily shown

that the stability of (2.11) on the subspace 1⊥ amounts to positive-definiteness of the

matrix (Lp + Lk) on 1⊥. Under this condition, we can rewrite J(Lk) as

J(Lk) = trace
(
(Lp + Lk)

† (Q+ Lk RLk)
)

=
1

2
trace

(
(Lp + Lk + 1

N 11
T )−1(Q+ Lk RLk)

)

where (Lp + Lk)
† denotes the Moore-Penrose pseudoinverse of (Lp + Lk), and cast the

sparsity-promoting optimal control problem (2.12) to an SDP via the Schur complement,

minimize
Y,Z,Lk

1

2
trace (Y ) + γ 1TZ 1

subject to




Y

[
Q1/2

R1/2 Lk

]

( · )∗ Lp + Lk + 1
N 11

T


 � 0

Lk 1 = 0

−Z ≤ W ◦ Lk ≤ Z.

(2.13)
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For small size problems, the resulting SDP formulation can be solved efficiently using

available SDP solvers.

In addition to the optimal edge design in undirected consensus networks, several

other classes of problems admit convex characterizations: a class of optimal synchroniza-

tion problems [11], optimal actuator/sensor selection [33, 34], symmetric modifications

of symmetric systems [19,35], and diagonal modifications of positive systems [28].

2.3 Design of controller structure

We next develop an algorithm, based on the Alternating Direction Method of Multipliers

(ADMM), to solve the sparsity-promoting optimal control problem (2.4),

minimize
K̂,K

J(K̂) + γ g(K)

subject to T (K̂) − K = 0.

As we describe next, the introduction of the linear constraint in (SP) in conjunction

with utilization of the ADMM algorithm allows us to exploit the respective structures

of the objective functions J and g in (2.4).

2.3.1 Structure design via ADMM

The structure of feedback gains that strike a balance between quadratic performance of

the system and sparsity of the controller is designed via ADMM. The ADMM algorithm

starts by introducing the augmented Lagrangian

Lρ(K̂,K,Λ) = J(K̂) + γ g(K) +
〈

Λ, T (K̂) − K
〉

+
ρ

2

〈
T (K̂) − K, T (K̂) − K

〉

where Λ is the Lagrange multiplier, ρ is a positive scalar, and 〈·, ·〉 is the standard inner

product between two matrices. Instead of minimizing the augmented Lagrangian jointly
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with respect to K̂ and K, ADMM uses a sequence of iterations [24],

K̂k+1 = argmin
K̂

Lρ (K̂, Kk, Λk)

Kk+1 = argmin
K

Lρ (K̂k+1, K, Λk)

Λk+1 = Λk + ρ (T (K̂k+1) − Kk+1)

until primal and dual residuals are smaller than specified thresholds,

‖T (K̂k+1)−Kk+1‖F ≤ εp, ‖Kk+1 −Kk‖F ≤ εd.

It is readily shown that K̂-minimization step amounts to the quadratically-augmented

minimization of J(K̂),

K̂k+1 := argmin
K̂

(
J(K̂) +

ρ

2
‖T (K̂) − Hk‖2F

)

whereHk := Kk− (1/ρ) Λk. Similarly, using completion of squares, theK-minimization

problem can be brought into the following form

Kk+1 := argmin
K

(
γ g(K) +

ρ

2
‖K − V k‖2F

)

with V k := T (K̂k+1) + (1/ρ) Λk. Thus, updating K requires computation of the

proximal operator of the function g.

K-minimization step

For elementwise sparsity, the objective function in the K-minimization step takes sep-

arable form, ∑

i, j

(γ Wij |Kij | +
ρ

2

(
Kij − V k

ij

)2
),

and the update of K is obtained via convenient use of the soft-thresholding operator,

Kk+1
ij =





(1 − a/|V k
ij |)V k

ij |V k
ij | > a

0 |V k
ij | ≤ a
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where a := (γ/ρ)Wij . This analytical update of K is independent of the quadratic

performance index J . Similarly, for block sparsity, the minimizer is determined by

Kk+1
ij =





(1 − a/‖V k
ij‖F )V k

ij ‖V k
ij‖F > a

0 ‖V k
ij‖F ≤ a

where Kij and Vij are the corresponding submatrices.

K̂-minimization step

Finding the solution to the K̂-minimization problem represents the biggest challenge

to solving the sparsity-promoting optimal control problem (2.4) via ADMM. In what

follows, we introduce two methods to solve the K̂-minimization problem: the Anderson-

Moore method and the proximal gradient method.

Anderson-Moore method. For the H2 optimal control problem (2.4), the optimality

conditions in the K̂-minimization step are given by

(Â− B̂2K̂Ĉ2) X̂ + X̂ (Â− B̂2K̂Ĉ2)∗ = −B̂1B̂
∗
1 (NC-X)

(Â− B̂2K̂Ĉ2)∗P̂ + P̂ (Â− B̂2K̂Ĉ2) = −(Q̂+ Ĉ∗2K̂
∗R̂ K̂Ĉ2) (NC-P)

2(R̂K̂Ĉ2 − B̂∗2P̂ )X̂Ĉ∗2 + ρT †(T (K̂)−Hk) = 0 (NC-K)

where T † is the adjoint of the operator T ,

〈
K, T (K̂)

〉
=
〈
T †(K), K̂

〉
.

The unknowns in this system of nonlinear matrix-valued equations are the feedback gain

K̂ as well as the controllability and observability Gramians X̂ and P̂ of the closed-loop

system (2.2). These equations can have multiple solutions, each of which is a stationary

point of the K̂-minimization problem. In general, it is not known how many stationary

points exist or how to find all of them.

The Anderson-Moore method solves the above system of equations in an iterative

fashion. In each iteration, the algorithm starts with a stabilizing feedback matrix K̂

and solves two Lyapunov equations and one Sylvester equation. Specifically, it first
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solves (NC-X) and (NC-P) for controllability and observability Gramians X̂ and P̂

with K̂ being fixed. Then the Sylvester equation (NC-K) is solved for K̂ with X̂ and

P̂ being fixed.

For consensus and synchronization problems discussed in Section 2.1.2, we have

K = T (K̂) = K̂ T ⇔ K̂ = T †(K) = K T+

with TT+ = I. If the control weight R̂ is given by a scaled version of the identity matrix

R̂ = r I, r > 0

Sylvester equation (NC-K) can be explicitly solved for K̂,

K̂ =
(

2 B̂∗2 P̂ X̂ Ĉ∗2 + ρHk T+
)(

2 r Ĉ2 X̂ Ĉ∗2 + ρ I
)−1

.

Following [21], we can show that the difference between two consecutive updates of

K̂ forms a descent direction for

L(K̂) := J(K̂) +
ρ

2
‖ T (K̂) − Hk ‖2F .

In conjunction with backtracking, this can be used to determine step-size to guarantee

closed-loop stability and convergence to a stationary point of L(K̂).

Proximal gradient method. Proximal gradient method provides an alternative ap-

proach to solving the K̂-minimization step. It is based on a simple quadratic approxi-

mation of the quadratic objective function J(K̂) around current inner iterate K̂m,

J(K̂) ≈ J(K̂m) + 〈∇J(K̂m), K̂ − K̂m〉+
1

2αm
‖K̂ − K̂m‖2F

where αm denotes the step-size and

∇J(K̂m) = 2 (R̂ K̂m Ĉ2 − B̂∗2 P̂m) X̂m Ĉ∗2 .
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Using completion of squares, the K̂-minimization step can be written as

K̂m+1 = argmin
K̂

(
1

2αm
‖ K̂ −

(
K̂m − αm∇J(K̂m)

)
‖2F +

ρ

2
‖T (K̂)−Hk‖2F

)

and the optimality condition is given by

1

αm

(
K̂ −

(
K̂m − αm∇J(K̂m)

))
+ ρ T †

(
T (K̂)−Hk

)
= 0 (2.14)

For consensus and synchronization networks, T (K̂) = K̂T , and we have an explicit

update for K̂,

K̂m+1 =
1

1 + αm ρ

(
K̂m − αm∇J(K̂m) + αm ρH

k T+
)

The proximal gradient algorithm converge with rate O(1/m) if αm is smaller than the

reciprocal of the Lipschitz constant of ∇J [101]. Since the Lipschitz constant is difficult

to determine explicitly, we adjust αm via backtracking procedure that we describe next.

Furthermore, to enhance the speed of convergence, we initialize the step-size using the

Barzilai-Borwein (BB) method [102],

α0
m =

‖ K̂m − K̂m−1‖2F〈
K̂m−1 − K̂m,∇J(K̂m−1)−∇J(K̂m)

〉 ,

The BB method approximates the Hessian with a scaled version of the identity matrix

and it represents an effective heuristics for improving convergence rate. The initial step-

size α0
m is adjusted via backtracking to guarantee closed-loop stability and to make sure

that,

J(K̂m+1) ≤ J(K̂m) +
〈
∇J(K̂m), K̂m+1 − K̂m

〉
+

1

2αm
‖K̂m+1 − K̂m‖2F .

The proximal gradient method terminates when

‖∇L(K̂m)‖F ≤ εK̂ .
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Remark 1. For spatially-invariant systems, the computational complexity of each K̂-

minimization step is O(Nn3
s). Here, N denotes the number of subsystems and ns is the

number of states in each subsystem. This should be compared and contrasted to O(n3)

complexity, with n = Nns, for systems without spatially-invariant structure.

2.3.2 Polishing step

After having identified the sparsity pattern Sp via ADMM, we optimize the network

performance over the identified structure,

minimize
K̂

J(K̂)

subject to T (K̂) ∈ Sp.
(2.15)

We fix the sparsity pattern of K̂ and solve the optimal control problem (2.15) via an

ADMM algorithm, where the K̂-minimization step is the same as in Section 2.3.1 while

the K-minimization step is computed by projecting the new K = K̂T onto the convex

set Sp. This polishing step is used to further improve performance of sparse feedback

gains resulting from the structure design step.

2.4 Case study: synchronization network

Twenty nodes in an undirected disconnected network shown in Fig. 2.1 are randomly

distributed in a unit square. The nodes form three clusters and the network dynamics

are described by the swing equation (5.1). The state-space model is given by (2.5) with

C2 = I and the matrices A, B1, and B2 determined by (2.9). The graph Laplacian Lp is

obtained based on the proximity of the nodes: two nodes are connected if their distance

is not greater than 0.25. The control objective is to minimize performance metric that

penalizes angular kinetic energy and the mean square deviation from the angle average.

Information exchange links in the controller graph that result from elementwise

sparsity-promoting regularizer with iterative re-weighting are illustrated in Fig. 2.2.

Since local frequency measurements are readily available, the diagonal elements of the

frequency feedback gains are not penalized in the function g. The red lines mark the
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Figure 2.1: Topology of a disconnected plant network with 3 clusters and 20 nodes.

identified communication links (of either the rotational angles or the frequencies) be-

tween the nodes. As we increase γ, the controller graph becomes sparser. For γ = 1,

there are only two long-range links that connect two small clusters to the large cluster

of nodes. The controller makes the original disconnected graph connected by adding

links between different clusters, thereby guaranteeing synchronization and optimizing

the desired performance metric.

The structure of the feedback gain K for γ = 1 is shown in Fig. 2.3. The blue

dots denote local feedback gains and the red dots identify information that needs to be

communicated between different nodes. Since the frequency feedback gain matrix is di-

agonal, only local frequency measurements are required to form the control action. The

two red dots correspond to the two red long-range links in Fig. 2.2d and they indicate

that the controllers of the two furthest nodes require access to the angle measurements

of the node in the center of the domain. Dropping any of these two links would yield a

disconnected closed-loop network and synchronization would not be achieved.

Compared to the optimal centralized controller, the sparse controller with structure

shown in Fig. 2.2d compromises performance by 8.81%; see Fig. 2.4. In contrast, the

sparse controller in Fig. 2.2c has five additional long-range links and degrades perfor-

mance by only 3.4%.

Finally, for each value of the regularization parameter γ we compare and contrast

performance of the controller with the sparsity pattern shown in Fig. 2.3 with a heuris-

tic strategy that has the same sparsity level. The diagonal elements of the frequency

feedback gain are always non-zero and sparsity pattern for the rest of the elements is
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(a) γ = 0.0010 (b) γ = 0.0072

(c) γ = 0.0596 (d) γ = 1

Figure 2.2: Topology of controller network for different values of γ. Edges in the
controller network are marked with red lines.

Figure 2.3: Sparsity pattern of K for γ = 1.

randomly selected. For each sparsity level, we randomly select 100 off-diagonal patterns

and optimize feedback gains over the fixed structure. Figure 2.5 compares the aver-

age closed-loop performance degradation of this heuristic strategy to our method. For

each sparsity level, our approach yields smaller performance loss and offers significant

advantages for sparser control architectures (i.e., larger values of γ).
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Figure 2.4: Performance vs sparsity comparison with respect to the optimal centralized
controller Kc for 50 logarithmically-spaced points γ ∈ [ 10−3 , 1 ].
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Figure 2.5: Performance degradation comparison of K resulting from our framework
(dots) to the average of 100 feedback matrices of random sparsity patterns with same
sparsity level for each γ.

2.5 Concluding remarks

In this section, we have considered a regularized version of the standard H2 optimal

control problem where the regularization term serves as a proxy for inducing sparsity.

We consider a class of systems in which state-space representation is not cast in the set of

coordinates in which it is desired to enhance sparsity. This setup arises in systems with

invariances and symmetries as well as in consensus and synchronization networks. We

achieve desired performance with fewer communication links in the controller network

by promoting sparsity of the feedback gain matrix. Alternating direction method of

multipliers allows for performance and sparsity requirements to be expressed in different
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set of coordinates and facilitates efficient computation. A synchronization network

is provided as an illustrative example to demonstrate the value of our developments.

Recently, our generalized sparsity-promoting optimal control framework was used to

suppress inter-area oscillations in power networks [16].



Chapter 3

Sparsity-promoting optimal

control of systems with

invariances and symmetries

We take advantage of system invariances and symmetries to gain convexity and com-

putational advantage in regularized H2 and H∞ optimal control problems. For systems

with symmetric dynamic matrices, the problem of minimizing the H2 or H∞ perfor-

mance of the closed-loop system can be cast as a convex optimization problem. Al-

though the assumption of symmetry is restrictive, studying the symmetric component

of a general system’s dynamic matrices provides bounds on the H2 and H∞ perfor-

mance of the original system. Furthermore, we show that for certain classes of systems,

block-diagonalization of the system matrices can bring the regularized optimal control

problems into forms amenable to efficient computation via distributed algorithms.One

such class of systems is spatially-invariant systems, whose dynamic matrices are circu-

lant and therefore block-diagonalizable by the discrete Fourier transform [103].

36



37

3.1 Problem formulation

We consider the class of systems,

ẋ = (A − K(v))x + Bd

z =

[
C

R(v)

]
x

(3.1)

where v ∈ Rm is a design parameter, K(·) : Rm → Rn×n is a linear operator, x(t) ∈
Rn is the state vector, C is mapping from the state to a regulated output, R(v) is a

mapping from the state to a measure of control effort, d(t) ∈ Rp is a white stochastic

disturbance with E (d(t1) dT (t2)) = Iδ(t1 − t2), and E is the expectation operator.

Taking v = vec(F ), K(v) = B2F and R(v) = R1/2F where R � 0 ∈ Rp×p, F ∈ Rp×n,

and B2 ∈ Rn×p yields the traditional state feedback control problem. We consider v to

be constant in time.

Our objective is to design a stabilizing v that solves the regularized optimal control

problem,

minimize
v

J(v) + g(v)

subject to A − K(v) Hurwitz
(3.2)

where J(v) is a performance metric, taken to be either the closed loop H2 or H∞ norm,

and g(v) can be any convex function of v. The H2 performance, which we denote by

J2(v), is a measure of the variance amplification from the disturbances d to the regulated

output z in system (3.1),

J2(v) := lim
t→∞

E
(
zT (t) z(t)

)

which can be computed by

J2(v) = trace
(
X(CTC + RT (v)R(v))

)

where X is the controllability gramian

(A − K(v))X + X (A − K(v))T + BBT = 0.
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The H∞ performance metric, which we denote by J∞(v), is the maximum induced L2

gain from d to z in system (3.1),

J∞(v) := sup
‖d‖L2

≤1

‖z‖L2
‖d‖L2

,

where the L2 norm of a signal f is defined as,

‖f‖2L2 :=

∫ ∞

0
f2(t) dt.

This performance metric corresponds to the peak of the frequency response,

J∞(v) = sup
ω

σmax

(
C (jωI − (A + K(v) ) )−1B

)
.

The unregularized H2 and H∞-optimal linear state feedback problems can be cast in a

convex form via a suitable change of coordinates; however, this change of coordinates

does not preserve the structure of the design variable v.

For many applications, v has physical significance and penalizing it directly via g(v)

is desirable. For example, a quadratic penalty, ‖v‖22, would limit the magnitude of v,

and an `1 penalty, ‖v‖1 :=
∑

i |vi|, would promote sparsity.

Many structured optimal control problems can be cast in the form of (3.2). For

example, structured state feedback problems have been extensively studied with partic-

ular applications to consensus networks and power systems [16, 21, 30, 81, 82, 104, 105].

Two other applications are given below.

3.1.1 Applications

Design of edges in networks

The problem of adding undirected edges to an existing network can be cast in this

problem form. The dynamics are,

ẋ = −
(
L + E diag(v)ET

)
x + d
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where L is a directed graph Laplacian which contains information about how the nodes

are connected, E contains information about the locations of potential added edges,

and K(v) := E diag(v)ET is a diagonal matrix of added edge weights [106]. Taking the

regularizer to be the `1 norm g(v) =
∑

i |xi| would limit the number of edges added to

the network.

Combination drug therapy design for HIV treatment

The problem of designing drug dosages for treating HIV [107,108] can be cast as,

ẋ =

(
A −

m∑

k=1

vkDk

)
x + d.

Here, the elements of x represent populations of HIV mutants. The diagonal elements of

A represent each mutant’s replication rate and the off diagonal elements of A represent

the probability of mutation from one mutant to another. The components of the vector

v are dosages of different drugs, where Dk is a diagonal matrix containing information

about how efficiently drug k kills each HIV mutant. Here, quadratic regularization

g(v) = ‖v‖22 would limit the dose of the drugs prescribed and `1 regularization g(v) =
∑

i |xi| would limit the amount of drugs prescribed.

3.2 Symmetric system design

One class of system for which J2(v) and J∞(v) are convex arises when B = C = I,

and A and K(v) are symmetric matrices. Although this assumption seems restrictive,

studying such systems can inform the design of structured controllers for more general

classes of systems.

Any matrix A can be decomposed into its symmetric As =
1

2
(A+AT ) and antisym-

metric Aa =
1

2
(A−AT ) components. The system which corresponds to the symmetric

components of the general system (3.1),

ẋ = (As − Ks(v) ) x + d (3.3)
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where Ks(v) =
1

2
(K(v) +KT (v)) reveals interesting characteristics of the original sys-

tem.

In this section, we first show the convex formulations that correspond to the optimal

H2 and H∞ design of symmetric systems. We then establish stability guarantees and

performance bounds for applying controllers designed by solving the convex problem of

regularized optimal control on the symmetric system (3.3) to the original system (3.1).

Finally, we use perturbation analysis to show that the symmetric system is a high fidelity

approximation for systems which are dominated by the symmetric component.

3.2.1 Convex optimal control for symmetric systems

Although more general symmetric systems can be cast as convex problems, here we

assume B = C = I and R(v) = 0 to facilitate the transition to the discussion of spectral

properties and performance bounds.

H2-optimal control

When As = ATs is symmetric, the controllability Gramian of system (3.3) can be explic-

itly expressed as,

Xs = −1

2
(As − Ks(v) )−1

and, by taking a Schur complement, the regularized optimal H2 control problem can be

cast in a convex function of v and an auxiliary variable Θ,

minimize
v,Θ

1

2
trace(Θ) + g(v)

subject to

[
Θ I

I −As +Ks(v)

]
� 0.

(3.4)

The matrix As−Ks(v) is always invariable when it is Hurwitz. We note the structured

LQR problem (i.e., R(v) = R1/2Ks(v)) for symmetric systems can also be expressed as

an SDP by taking the Schur complement of Ks(v)RKs(v).
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H∞-optimal control

The peak of the frequency response of a symmetric system occurs at ω = 0.

Proposition 1. For a system (3.3) with symmetric dynamics, the disturbance that

achieves the maximum induced L2 amplification corresponds to the constant signal d(t) =

v where v is the right principal singular vector of A−1.

Proof. A symmetric matrix can be diagonalized as, As = UΛUT where Λ is a diagonal

matrix with the eigenvalues of As on the main diagonal and the columns of U contain

the corresponding eigenvectors. For such a matrix,

(jωI − As)
−1 = U diag

{
1

jω − λi

}
UT .

It is clear that ω = 0 maximizes the singular values of the above matrix. Thus, the H∞
norm of (3.3) can be characterized by σmax

(
−(As − K(v))−1

)
.

The H∞-optimal control problem for symmetric systems can therefore be expressed

as,

minimize
v,Θ

σmax(Θ) + g(v)

subject to

[
Θ I

I −As +Ks(v)

]
� 0.

(3.5)

As we show in the next subsection, this convex problem can be used for structured

H∞ control design. This is particularly advantageous because many of the existing

algorithms for general structured H2 control cannot be extended to the structured H∞
problem.

3.2.2 Stability and performance guarantees

Stability of the symmetric system (3.3) implies stability of the corresponding original

system (3.1).

Lemma 2. [35, Lemma 1] Let the symmetric part of A, As := (A+AT )/2, be Hurwitz.

Then, A is Hurwitz.

Remark 2. This is not a necessary condition; A may be Hurwitz even if As is not.
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Performance guarantees

The H2 and H∞ norms of the symmetric system are upper bounds on the H2 and H∞
norms of the original system.

Proposition 3. [35, Cor. 3] When the systems (3.1) and (3.3) are stable, the H2 norm

of the general system (3.1) is bounded from above by the H2 norm of the symmetric

system (3.3).

We show that an analagous bound holds for the H∞.

Proposition 4. When the systems (3.1) and (3.3) are stable, the H∞ norm of the gen-

eral system (3.1) is bounded from above by the H∞ norm of the symmetric system (3.3).

Proof. From the bounded real lemma [109], the H∞ norm of the general system (3.1)

is less than γ if there exists a P � 0 such that,

ATP + P A + I + γ−2 P 2 ≺ 0.

From Proposition 1, for the symmetric system (3.3), γ > σmax(A−1
s ). Taking P = γI for

any γ > σmax(A−1
s ) and substituting it into the above linear matrix inequality (LMI)

applied to the symmetric system (3.3) yields,

2 γ As + 2 I ≺ 0.

Since As is Hurwitz, As ≺ 0. Since γ > −λmax(A−1
s ), γ−1 < −λmin(As), so As ≺ −γ−1I.

Therefore the LMI is satisfied. Since Aa = −ATa , setting P = γI implies,

ATP + P A = 2 γ As

therefore substituting P into the bounded real lemma LMI for the general system (3.1),

where A = As +Aa, yields,

ATP + P A + I + γ−2 P 2 = 2 γ As + 2 I ≺ 0.
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3.2.3 Approximation bounds

In addition to being an upper bound, the H2 and H∞ norms of the symmetric (3.3) and

full (3.1) systems are close when A is dominated by the symmetric component.

Proposition 5. [35, Prop. 4] Let An be a normal matrix. The O(ε) correction to the

H2 norm of the system

ẋ = An x + d

from an O(ε) antisymmetric perturbation Aa is zero.

We show that a similar property holds for the H∞ norm.

Proposition 6. Let As be a symmetric matrix. The O(ε) correction to the H∞ norm

of the system

ẋ = As x + d

from an O(ε) antisymmetric perturbation Aa is zero.

Proof. From Proposition 1, theH∞ norm of the symmetric system is given by σmax(−A−1
s ).

The maximum singular value of a matrix is equivalent to,

σmax(X) = sup
‖v‖2≤1,‖w‖2≤1

vTXw.

Since As is symmetric, w = v. Taking an O(ε) antisymmetric perturbation Aa to the

above expression,

σmax (−(As + εAa)
−1) ≈ −vTA−1

s v + ε vTA−1
s AaA

−1
s v.

Since Aa is antisymmetric,
〈
A−1
s vvTA−1

s , Aa
〉

= 0.

3.3 Computational advantages for structured problems

Structured control is often of interest for large-scale systems. As such, the computa-

tional scaling of algorithms used to compute optimal controllers is very important. In

this section, we identify a class of systems which are amenable to scalable distributed

algorithms.
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When A and K(v) are always simultaneously block-diagonalizable, the dynamics of

the system can be expressed as the sum of independent subsystems. Define x̂ := Px

and let P be a unitary matrix such that,

˙̂x = (Â + K̂(v))x̂

where

Â := P AP T , K̂(v) := P K(v)P T ,

and, for any choice of v, Â + K̂(v) = blkdiag{Â11 + K̂11, · · · , ÂNN + K̂NN} is block-

diagonal with N blocks of size n× n each.

For problems of this form, computing optimal control strategies is much more effi-

cient in the x̂ coordinates because the majority of the computational burden in solving

problems (3.4) and (3.5) comes from the nN×nN LMI constraint involved in minimizing

the performance metrics J2(v) or J∞(v).

For this class of system, the H2-optimal control problem (3.4) can be expressed as,

minimize
v,Θi

1

2

∑

i

trace(Θi) + g(v)

subject to

[
Θi I

I −(Âs)ii + (K̂s(v))ii

]
� 0.

(3.6)

which is an SDP with N separate n × n LMI blocks. Since SDPs scale with the sixth

power of the LMI blocks, solving this reformulation scales with n6 as opposed to n6N6.

Analogously, the structured H∞-optimal control problem (3.5) can be cast as,

minimize
v,Θi

max
i

(σmax(Θi)) + g(v)

subject to

[
Θi I

I (Âs)ii − (K̂s(v))ii

]
� 0.

(3.7)

One important class of system which satisfies these assumptions is spatially-invariant

systems. This structure was used in [38] to develop efficient techniques for sparse feed-

back synthesis.
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3.3.1 Spatially-invariant systems

Spatially-invariant systems have a block-circulant structure which is block-diagonalizable

by a Discrete Fourier Transform (DFT). A spatially-invariant system can be represented

by N subsystems with n states each. The state vector x ∈ RnN is composed of N sub-

vectors xi ∈ Rn which denotes the state of the subsystem. The matrix A ∈ RnN×nN is

block-circulant with blocks of the size n× n. For example, when N = 3,

A =




A0 A1 A−1

A−1 A0 A1

A1 A−1 A0




where the blocks {A0, A−1, A1} ∈ Rn×n.

It was shown in [17] that the optimal feedback controller for a spatially-invariant

system is itself spatially-invariant. Assuming that the optimal sparse feedback con-

troller is also spatially-invariant is equivalent to assuming that K(v) is block-circulant.

Block circulant matrices are block-diagonalizable by the appropriate DFT. Let the block

Fourier matrix be

Φ := ΦN ⊗ In,

where In is the n × n identity matrix, ΦN is the N ×N discrete Fourier transform

matrix, and ⊗ represents the Kronecker product. By introducing the change of variables

x̂ := Φx, where

x̂ =
[
x̂T1 · · · x̂TN

]T
,

and x̂i ∈ Rn, the original system’s dynamics can be expressed as N independent n× n
subsystems,

Â =




Â11

Â22

Â33




Consequently, the optimal structured control problems (3.4) and (3.5) can be cast

as (3.6) and (3.7), which are more amenable to efficient computations.
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3.4 Examples

3.4.1 Directed Consensus Network

In this example, we illustrate the utility of the approach described in Section 3.2. Con-

sider the network dynamics given by a directed network as described in Section 3.1.1,

ẋ = −(L + E diag(v)ET )x

where L is a directed graph Laplacian, K(v) = Ediag(v)ET represents the addition

of undirected links, v is a vector that contains weights of these added links, and the

incidence matrix E describes which edges may be added or altered. The regularization

on v is given by,

g(v) = ‖v‖22 + γ
∑

i

|vi|

where the quadratic term limits the size of the edge weights, the `1 norm promotes

sparsity of added links, and γ > 0 parametrizes the importance of sparsity.

For this concrete example, the network topology is given by Figure 3.1. The potential

added edges can connect the following pairs of nodes: (1) − (2), (1) − (3), (1) − (5),

(1)− (6), (2)− (5), (2)− (6), (3)− (6), and (4)− (5).

Controllers were designed by solving problems (3.4) and (3.5) for the symmetric

version of the network over 50 log-distributed values of γ ∈ [10−4, 1]. The closed-loop

H2 and H∞ norms obtained by applying these controllers to the symmetric and original

systems are shown in Fig. 3.2. Figure 3.1 also shows which edges were added for γ = 1.

3.4.2 Swift-Hohenberg Equation

Here we illustrate the utility of the block-diagonalization we describe in Section 3.3.

Consider a particular realization of the Swift-Hohenberg equation [110],

∂tψ(t, x) = β ψ(t, x) − (1 + ∂xx)2 ψ(t, x) + v(x)ψ(t, x)

where β ∈ R, and ψ(t, ·), v(·) ∈ L2(−∞,∞), and v(x) is a spatially-invariant feedback

controller which is to be designed. A finite dimensional approximation of this system

can be obtained by using the differentiation suite from [111] to discretize the problem
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1

23

5

4

6

Figure 3.1: Directed network (black solid arrows) with added undirected edges ( red
dashed arrows). Both the H2 and H∞ optimal structured control problems yielded the
same set of added edges. In addition to these edges, the controllers tuned the weights
of the edges (1)− (3) and (1)− (5).

into N points and approximating the infinite domain with periodic boundary conditions

over the domain L2[0, 2π]. A sparse H2 feedback controller v(x) can then be identified

by solving problem (3.4).

We contrast this method with the approach we advocate in Section 3.3, where we

use the DFT to decompose the system into N first-order systems corresponding to

eigenfunctions of the Swift-Hohenberg equation and solve problem (3.6).

The state vector takes the form of ψ(x) evaluated at grid points in x where the

dynamics are given by,

ψ̇ = (A − V )ψ

where, A = βI − (I +D2)2. Here D is a discrete differentiation matrix from [111], and

V is the circulant state feedback matrix.

Using the DFT over x, the Swift-Hohenberg equation can be expressed as a set of

independent first-order systems,

˙̂
ψx = (ax − v̂x)ψ̂x

where ax := β− (1−κ2
x)2, and the new coordinates are ψ̂ := Pψ, P is the DFT matrix,

κx is the wavenumber (spatial frequency), and v̂ represents V in the Fourier space; i.e.,

V = P Tdiag(v̂)P .
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Figure 3.2: H2 and H∞ performance of the closed-loop symmetric system and the
original system subject to a controller designed at various values of γ.

We take the regularization term to be

g(v) = ‖V ‖2F + γ‖V ‖1

where ‖X‖1 :=
∑

ij |Xij | is the elementwise `1 norm and γ is a parameter which specifies

the emphasis on sparsity relative to performance.

For the H2 problem, the regularized optimal control problem is of the form of (3.4)

with Ks(v) = V and V is circulant. In that formulation, the problem is an SDP with

one N × N LMI block. In the Fourier space, the problem can be expressed as (3.6),

which takes the particular form,

minimize
v̂

1

2

∑ 1

−ax + v̂x
+ g

(
P Tdiag(v̂)P

)

subject to − ax + v̂x ≥ 0

which does not require the large SDP constraints in (3.4).

We solved the regularized H2 optimal control problem by solving the general formu-

lation (3.4) and the more efficient formulation (3.6) for β = 0.1, γ = 1 and N varying

from 5 to 51 using CVX, a general purpose convex optimization solver [112].

Taking advantage of spatial invariance yields a significant computational advantage,

as can be seen in Figure 3.3. Although both expressions of the problem yield the same
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solution, solving the realization in (3.6) is much faster and allows us to examine much

larger problem dimensions. In Figure 3.4, we show the spatially-invariant feedback

controller for one point in the domain, i.e., one row of V , computed for N = 101 at

γ = 0, γ = 0.1, and γ = 10..

Figure 3.3: Computation time for the general formulation (3.4) (blue ◦) and that which
takes advantage of spatial invariance (3.6) ( red ∗).

Figure 3.4: Feedback gain v(x) for the node at position x = 0, computed with N = 51
and γ = 0 (black solid), γ = 0.1 (blue dashed), and γ = 10 ( red dotted).
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3.5 Concluding remarks

We have provided a convex methodology for structured H2 and H∞ controller design

and a procedure to gain computational efficiency for spatially invariant systems and

problems with similar forms. Ongoing work will focus on deriving a bound on the

error between a general linear system and the system corresponding to its symmetric

component.



Part II

Wide-area control of power

systems

51



Chapter 4

Decentralized optimal control of

inter-area oscillations

Local and inter-area oscillations in bulk power systems are typically identified using

spatial profiles of poorly damped modes, and they are mitigated via carefully tuned

decentralized controllers. In this chapter, we employ non-modal tools to analyze and

control inter-area oscillations. Our input-output analysis examines power spectral den-

sity and variance amplification of stochastically forced systems and offers new insights

relative to modal approaches. To improve upon the limitations of conventional wide-

area control strategies, we also study the problem of signal selection and optimal design

of sparse and block-sparse wide-area controllers. In our design, we preserve rotational

symmetry of the power system by allowing only relative angle measurements in the

distributed controllers. For the IEEE 39 New England model, we examine performance

tradeoffs and robustness of different control architectures and show that optimal re-

tuning of fully-decentralized control strategies can effectively guard against local and

inter-area oscillations.

4.1 Modeling and control preliminaries

A power network is described by a nonlinear system of differential-algebraic equations.

Differential equations govern the dynamics of generators and their controllers, and the

algebraic equations describe quasi-stationary load flow and circuitry of generators and

52
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power electronics [98]. A linearization around a stationary operating point and elimi-

nation of the algebraic equations yield a linearized state-space model

ẋ = Ax + B1 d + B2 u. (4.1)

Here, x(t) ∈ Rn is the state, u(t) ∈ Rm is the generator excitation control input, and

d(t) ∈ Rp is the stochastic disturbance which may arise from power imbalance and

uncertain load demands [98]. For example, the choice B1 = B2 can be used to quantify

and mitigate the impact of noisy or lossy communication among spatially distributed

controllers [15].

4.1.1 Swing equations

The dominant electro-mechanical dynamics of a power system are given by the linearized

swing equations [98],

Mi θ̈i + Di θ̇i +
∑

j
Lij (θi − θj) = 0.

These equations are obtained by neglecting fast electrical dynamics and eliminating the

algebraic load flow. Here, θi and θ̇i are the rotor angle and frequency of generator i, Mi

and Di are the generator inertia and damping coefficients, and Lij is the (i, j) element

of the network susceptance matrix indicating the interactions between generators i and

j [15]. Even though the swing equations do not fully capture complexity of power

systems, they nicely illustrate the causes of inter-area oscillations: Inter-area oscillations

originate from sparse links between densely connected groups of generators (so-called

areas). These areas can be aggregated into coherent groups of machines which swing

relative to each other using the slow coherency theory [113, 114]. Our goal is to design

wide-area controllers to suppress inter-area oscillations.

4.1.2 Problem formulation

Under a linear state-feedback,

u = −Kx
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the closed-loop system takes the form

ẋ = (A − B2K)x + B1 d

z =

[
z1

z2

]
=

[
Q1/2

−R1/2K

]
x

(4.2)

where z is a performance output with state and control weights Q and R. We choose R

to be the identity matrix and a state objective that quantifies a desired potential energy

and the kinetic energy stored in the electro-mechanical dynamics,

xTQx = θTQθ θ +
1

2
θ̇TM θ̇.

Here, M = diag (Mi) is the inertia matrix and the matrix Qθ penalizes the deviation of

angles from their average θ̄(t) := (1/N)1T θ(t),

Qθ = I − (1/N)11T (4.3)

where N is the number of generators and 1 is the vector of all ones. In a power system

without a slack bus, the generator rotor angles are only defined in a relative frame of

reference, as can be observed in the swing equations. Thus, they can be rotated by a

uniform amount without changing the fundamental dynamics (4.1). We preserve this

rotational symmetry and study problems in which only differences between the compo-

nents of the vector θ(t) ∈ RN enter into (4.2). As a result of the rotational symmetry,

both the open-loop A-matrix and the performance weight Qθ have an eigenvalue at zero

which characterizes the mean of all rotor angles.

By expressing the state vector as

x(t) :=

[
θ(t)

r(t)

]
∈ Rn

where r(t) ∈ Rn−N represents the rotor frequencies and additional states that account

for fast electrical dynamics, we arrive at the structural constraints on the matrices
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in (4.2),

A

[
1

0

]
= 0, Qθ 1 = 0, K

[
1

0

]
= 0.

In earlier work [14,15], we have removed this rotational symmetry by adding a small

regularization term to the diagonal elements of the matrix Qθ. This has resulted in a

controller that requires the use of absolute angle measurements to stabilize the average

rotor angle. Such a regularization induces a slack bus (a reference generator with a fixed

angle) and thereby alters the structure of the original power system.

We preserve the natural rotational symmetry by restricting our attention to rela-

tive angle measurements. This requirement implies that the average rotor angle has

to remain invariant under the state feedback u = −Kx. To cope with these addi-

tional structural constraints, the sparsity-promoting approach of [21] has been recently

augmented in [30].

To eliminate the average-mode θ̄ from (4.2) we introduce the following coordinate

transformation [30],

x =

[
θ

r

]
=

[
U 0

0 I

]

︸ ︷︷ ︸
T

ξ +

[
1

0

]
θ̄ (4.4)

where the columns of the matrix U ∈ RN×(N−1) form an orthonormal basis that is

orthogonal to span (1). For example, these columns can be obtained from the (N − 1)

eigenvectors of the matrix Qθ in (4.3) that correspond to the non-zero eigenvalues. In

the new set of coordinates, ξ(t) = T Tx(t) ∈ Rn−1, the closed-loop system takes the form

ξ̇ = (Ā − B̄2F ) ξ + B̄1 d

z =

[
z1

z2

]
=

[
Q̄1/2

−R1/2 F

]
ξ

(4.5)

where

Ā := T TAT, B̄i := T TBi, Q̄1/2 := Q1/2 T.

The feedback matrices K and F (in the original x and new ξ coordinates, respectively)
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are related by

F = K T ⇔ K = F T T .

Because of a marginally stable average mode, the matrix A in (4.2) is not Hurwitz.

The coordinate transformation (4.4) eliminates the average angle θ̄ from (4.2), thereby

leading to (5.15) with Hurwitz Ā. In the presence of stochastic disturbances, θ̄(t) drifts

in a random walk. Since θ̄ is not observable from the performance output z (which

quantifies the mean-square deviation from angle average, kinetic energy, and control

effort), z has a finite steady-state variance. This variance is determined by the square

of the H2 norm of system (5.15).

4.2 Input-output analysis

The conventional analysis of inter-area oscillations in power systems is based on spatial

profiles of eigenvectors and participation factors of poorly damped modes. Similarly,

traditional control design builds on a modal perspective [42, 43]. In systems with non-

normal A-matrices, modal analysis may lead to misleading conclusions about transient

responses, amplification of disturbances, and robustness margins [115–117]. Non-normal

matrices are common in power systems; such matrices do not have orthogonal eigenvec-

tors and they cannot be diagonalized via unitary coordinate transformations.

In what follows, we utilize an approach that offers additional and complementary

insights to modal analysis. This approach is based on the input-output analysis, where

the input d is the source of excitation and the output z is the quantity that we care

about. In stochastically forced systems, input-output analysis amounts to the study

of power spectral density and variance amplification. Our approach builds on the H2

paradigm [12], which analyzes and mitigates amplification of white stochastic distur-

bances.

4.2.1 Power spectral density and variance amplification

We next provide a brief overview of the power spectral density and variance amplifi-

cation analyses of linear dynamical systems. Let H(jω) denote the frequency response
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of (5.15),

z(jω) = H(jω) d(jω).

The Hilbert-Schmidt norm determines the power spectral density of H(jω),

‖H(jω)‖2HS = trace (H(jω)H∗(jω)) =
∑

σ2
i (H(jω))

where σi’s are the singular values of the matrix H(jω). The H2 norm quantifies the

steady-state variance (energy) of the output z of stochastically forced system (5.15). It

is obtained by integrating the power spectral density over all frequencies [12],

‖H‖22 := lim
t→∞

E
(
zT (t) z(t)

)
=

1

2π

∫ ∞

−∞
‖H(jω)‖2HS dω

where E is the expectation operator. Equivalently, the matrix solution X to the Lya-

punov equation,

(Ā − B̄2F )X + X (Ā − B̄2F )T = −B̄1B̄
T
1

can be used to compute the H2 norm [12],

J(F ) := ‖H‖22 = trace
(
X (Q̄ + F TRF )

)

= trace (Z1) + trace (Z2) .
(4.6)

Here, X is the steady-state covariance matrix of the state ξ in (5.15), X := limt→∞E (ξ(t) ξT (t)),

and the covariance matrices of the outputs z1 and z2 are determined by

Z1 := lim
t→∞

E
(
z1(t) zT1 (t)

)
= Q̄1/2X Q̄1/2

Z2 := lim
t→∞

E
(
z2(t) zT2 (t)

)
= R1/2F X F TR1/2.

Note that trace (Z1) and trace (Z2) quantify the system’s kinetic and potential energy

and the control effort, respectively. In particular, the eigenvalue decomposition of the

matrix Z1,

Z1 =
∑

λi yi y
T
i
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determines contribution of different orthogonal modes yi to the kinetic and potential

energy in statistical steady-state. The total energy is given by trace (Z1), i.e., the

sum of the eigenvalues λi of the covariance matrix Z1. Each mode yi contributes λi

to the variance amplification and the spatial structure of the most energetic mode is

determined by the principal eigenvector y1 of the matrix Z1.

4.3 Sparse and block-sparse optimal control

In this section, we study the problem of optimal signal selection and optimal design

of wide-area controllers. We approach this problem by invoking sparsity-promoting

versions of the standard H2 optimal control formulation. We build on the framework

developed in [19–21, 30] which is aimed at finding a state feedback that simultane-

ously optimizes the closed-loop variance and induces a sparse control architecture. This

is accomplished by introducing additional regularization terms to the optimal control

problem. These serve as proxies for penalizing the number of communication links in

the wide-area controller, thereby inducing a sparse control architecture.

4.3.1 Elementwise sparsity

As shown in Section 4.2, the H2 norm of system (5.15) is determined by (4.6). While

the H2 performance is expressed in terms of the feedback matrix F in the new set of

coordinates, it is necessary to enhance sparsity of the feedback matrix K in the physical

domain. A desired tradeoff between the system’s performance and the sparsity of K is

achieved by solving the regularized optimal control problem [30],

minimize
F,K

J(F ) + γ g(K)

subject to F T T − K = 0.
(4.7)

The regularization term in (SP) is given by the weighted `1-norm of K,

g(K) :=
∑

i, j

Wij |Kij |
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which is an effective proxy for inducing elementwise sparsity [99]. The weights Wij ’s

are updated iteratively using the solution to (SP) from the previous iteration; see [99]

for details. In (SP), γ is a fixed positive scalar that characterizes the emphasis on

the sparsity level of the feedback matrix K. A larger value of γ introduces a sparser

feedback gain K at the expense of degrading the closed-loop performance.

We solve the optimal control problem (SP) for different values of the positive regu-

larization parameter γ via the alternating direction method of multipliers; see [21, 30]

for algorithmic details. This allows us to identify a parameterized family of distributed

control architectures that strikes an optimal balance between competing performance

and sparsity requirements.

4.3.2 Block sparsity

In power systems, only rotor angle differences enter into the dynamics and information

about absolute angles is not available. It is thus advantageous to treat rotor angles

separately from the remaining states in the control design. We partition K conformably

with the partition of the state vector x,

K =
[
Kθ Kr

]

where Kθ and Kr are the feedback gains acting on the rotor angles and the remaining

states, respectively.

The actuators in wide-area control range from Power System Stabilizers (PSSs) to

power electronics devices (FACTS) to HVDC links. While our design methodology is

general, in the sequel we restrict our presentation to PSSs. For PSSs the control action

is usually formed in a fully-decentralized fashion using local measurements of frequencies

and power injections. We represent the vector r as

r =
[
rT1 · · · rTN

]T

where ri is the vector of states of the controlled generator i (modulo angles). If Kr

is partitioned conformably with the partition of the vector r, then the block-diagonal

elements of Kr provide a means for retuning the local control action. Since ri is readily
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available to the controller of generator i, in what follows we do not introduce sparsity-

promoting penalty on the block-diagonal elements of Kr. On the other hand, there

are many options for treating the components of Kr associated with the states of other

generators. We next illustrate three possible options.

Consider a system of four generators with controllers. The states of each con-

trolled generator are given by angle, frequency, fluxes, and excitation control system;

see Fig. 4.1. Sparsity of the inter-generator control gains can be enhanced either via

elementwise or group penalties. Inter-generator information exchange can be treated

with an elementwise penalty in the same way as in Section 4.3.1; see Fig. 4.1a for an

illustration. On the other hand, group penalties [100] can be imposed either on the

states of individual generators or on the states of all other generators; cf. Figs. 4.1b

and 4.1c.

(a) elementwise

(b) group states of individual generators

(c) group states of all other generators

Figure 4.1: Block structure of the feedback matrix K. • denote relative angle feedback
gains, • and • represent local and inter-generator frequency and PSS gains, respectively.

The above objectives can be accomplished by solving the sparsity-promoting optimal

control problem

minimize J(F ) + γθ gθ(Kθ) + γr gr(Kr)

subject to F T T −
[
Kθ Kr

]
= 0

(4.8)
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where

gθ(Kθ) :=
∑

i, j

Wij |Kθij |. (4.9a)

On the other hand, for the three cases discussed and illustrated in Fig. 4.1 the corre-

sponding regularization functions are

gr1(Kr) :=
∑

i, j

Wij | (Is ◦ Kr)ij | (4.9b)

gr2(Kr) :=
∑

i 6= k

βikWik || eTi (Is ◦ Kr) ◦ vTk ||2 (4.9c)

gr3(Kr) :=
∑

i

βiWi || eTi (Is ◦ Kr) ||2 (4.9d)

where i = {1, · · · ,m}, j = {1, · · · , n−N}, k = {1, · · · , N}, and

βik = card
(
eTi (Is ◦ Kr) ◦ vTk

)

βi = card
(
eTi (Is ◦ Kr)

)
.

(4.9e)

The elementwise penalty (4.9b) eliminates individual components of the feedback gain.

In contrast, the group penalties (4.9c) and (4.9d) simultaneously eliminate feedback

gains associated with a particular generator or feedback gains associated with all other

generators, respectively. The cardinality function card(·) in (4.9e) counts the number

of nonzero elements of a matrix, ◦ is elementwise matrix multiplication, Is ∈ Rm×(n−N)

is the structural identity matrix (see Fig. 4.2 for the structure of Is), ei ∈ Rm is the ith

unit vector, and vk ∈ Rn−N is the structural identity vector. This vector is partitioned

conformably with the partition of the vector r,

vk :=
[
ϑT1 · · · ϑTN

]T

where ϑl = 1 for l = k and ϑl = 0 for l 6= k.

We note that the Euclidean norm (‖ · ‖2, not its square) is a widely used regularizer

for enhancing group sparsity [100]. The group weights Wik’s and Wi’s are updated

iteratively using the solution to (4.8) from the previous iteration [99]. The scaling

factors βik and βi account for variations in the group sizes.
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Figure 4.2: Structural identity matrix Is with • representing locations of 1’s.

4.4 Case study: IEEE 39 New England model

The IEEE 39 New England Power Grid model consists of 39 buses and 10 detailed

two-axis generator models; see Fig. 5.1. All loads are modeled as constant power loads.

Generators 1 to 9 are equipped with PSSs, and generator 10 is an equivalent aggregated

model representing the transmission network of a neighboring area. This generator has

an inertia which is an order of magnitude larger than the inertia of other generators.

Figure 4.3: The IEEE 39 New England Power Grid and its coherent groups identified
using slow coherency theory.

The uncontrolled open-loop system is unstable, and PSSs are used for stabilization

and to suppress local oscillations. For the subsequent analysis and the wide-area control

design, we assume that the PSS inputs are embedded in the open-loop matrix A ∈ R75×75

in (4.2). The transfer function of the local PSS controller on the ith generator is given

by

ui(s) = ki ·
Tw,is

1 + Tw,is
· 1 + Tn1,is

1 + Td1,is
· 1 + Tn2,is

1 + Td2,is
· θ̇i(s)



63

with controller gains Tw,i = 5, Tn1,i = Tn2,i = 0.1, Td1,i = Td2,i = 0.01, ki = 3 for

i ∈ {1, · · · , 9}. This set of PSS control gains stabilizes the unstable open-loop system,

but it still features several poorly-damped modes. Our objective is to augment the local

PSS control strategy with an optimal wide-area controller in order to simultaneously

guard against inter-area oscillations and weakly dampened local oscillations.

Our computational experiments can be reproduced using the code available at:

www.umn.edu/∼mihailo/software/lqrsp/matlab-files/lqrsp wac.zip

4.4.1 Analysis of the open-loop system

Despite the action of the local PSS controllers, modal and participation factor analyses

reveal the presence of six poorly-damped modes in the New England power grid model;

see Table 4.1 and Fig. 4.4. Mode 4 is a local mode because it only involves oscillations

between generators 2 and 3, which belong to the same coherent group. All other modes

are inter-area modes where groups of generators oscillate against each other. Since

these inter-area modes are poorly damped with damping ratios as low as 1.20% and

2.61%, the local PSS controllers need to be complemented by supplementary wide-area

controllers to improve the damping of the inter-area oscillations.

We depart from the modal perspective and examine the power spectral density

and variance amplification of the open-loop system. This type of analysis allows us to

identify (i) the temporal frequencies for which large amplification occurs; and (ii) the

spatial structure of strongly amplified responses.

Table 4.1: Poorly-damped modes of New England model

mode eigenvalue damping freq. coherent
no. pair ratio [Hz] groups

1 −0.0882± j 7.3695 0.0120 1.1618 1,6,7,8 vs. 2,3,9
2 −0.1788± j 6.8611 0.0261 1.0918 2,3,6,7 vs.1,4,5,8,9
3 −0.2404± j 6.5202 0.0368 1.0377 1,2,3,8,9 vs. 4-7
4 −0.4933± j 7.7294 0.0637 1.2335 2 vs. 3
5 −0.4773± j 6.9858 0.0682 1.1141 6,7 vs. 1-5,8,9
6 −0.3189± j 4.0906 0.0777 0.6525 10 vs. all others

Figure 4.5 illustrates the power spectral density of the open-loop system. The largest

peak occurs at ω1 = 7.2925 rad/s (f1 = ω1/2π = 1.1606 Hz) and it corresponds to mode
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(a) Mode 1 (b) Mode 2 (c) Mode 3

(d) Mode 4 (e) Mode 5 (f) Mode 6

Figure 4.4: Polar plots of the angle components of the six poorly-damped modes for the
open-loop system.

1 in Table 4.1 and Fig. 4.4. Another resonant peak at ω2 = 4.0930 rad/s (f2 = 0.6514

Hz) corresponds to mode 6 in Table 4.1 and Fig. 4.4. The red dots in Fig. 4.5b indicate

all six poorly-damped modes.

(a) (b)

Figure 4.5: (a) Power spectral density of the open-loop system; (b) zoomed version of
the red square shown in (a). Red dots denote poorly-damped modes from Table 4.1.
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The contribution of each generator to the steady-state variance is shown in Fig. 4.6.

The diagonal elements of the output covariance matrix Z1 contain information about

mean-square deviation from angle average and variance amplification of frequencies of

the individual generators. From Fig. 4.6, we see that the largest contribution to the

variance amplification arises from the misalignment of angles of generators 1, 5, and 9,

and misalignment of frequencies of generators 1 and 9.

Figure 4.6: Diagonal elements of the open-loop covariance matrix Z1 determine contri-
bution of each generator to the variance amplification.

Similar observations can be made from Fig. 4.7. In Fig. 4.7a, we observe two domi-

nant eigenvalues of the output covariance matrix Z1. We also show the spatial structure

of the three principal eigenvectors (modes) of Z1, which contain 47.5% of the total vari-

ance. Although the angle and frequency fluctuations in experiments and nonlinear

simulations are expected to be more complex than the structures presented in Fig. 4.7,

the spatial profiles identified here are likely to play significant role in amplification of

disturbances in power systems.

4.4.2 Sparsity-promoting optimal wide-area control

Elementwise sparsity

We first consider an optimal sparse controller whose structure is identified using the

solution to (SP). Sparsity patterns of the feedback matrix K ∈ R9×75 for different

values of γ are illustrated in Fig. 4.8. The blue dots denote information coming from the

generators on which the particular controller acts, and the red dots identify information

that needs to be communicated from other generators. For γ = 0.0818, the identified
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(a) Eigenvalues of Z1 (b) λ1(Z1)

(c) λ2(Z1) (d) λ3(Z1)

Figure 4.7: (a) Eigenvalues; and (b)-(d) eigenvectors corresponding to the three largest
eigenvalues λi of the open-loop output covariance matrix Z1.

wide-area control architecture imposes the following requirements: (i) the controller of

generator 9, which contributes most to the variance amplification of both angles and

frequencies, requires angle and field voltage measurements of the aggregate generator

10; (ii) the controller of generator 5 requires the difference between its angle and the

angle of the equivalenced model 10; and (iii) the controllers of generators 1, 4, and 7

utilize the field voltage information of generators 10, 5, and 6, respectively.

When γ is increased to 0.1548, only one long-range link remains. This link is iden-

tified by the red dot in Fig. 4.8b, indicating that the controller of generator 9 requires

access to the angle mismatch relative to generator 10. By further increasing γ to 0.25, we

obtain a fully-decentralized controller. Compared to the optimal centralized controller,

our fully-decentralized controller degrades the closed-loop performance by about 3.02%;

see Fig. 4.9. This fully-decentralized controller can be embedded into the local generator
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excitation system by directly feeding the local measurements to the automatic voltage

regulator, thereby effectively retuning the PSS controller.

In earlier work [14, 15], a small regularization term was added to the diagonal el-

ements of the matrix Qθ in order to provide detectability of the average mode. This

has resulted in a controller that requires access to the absolute angle measurements to

stabilize the average rotor angle. Our results indicate that long-range links identified

in [14,15] do not have significant influence on the system performance.

(a) γ = 0.0818, card (K) = 43

(b) γ = 0.1548, card (K) = 38

(c) γ = 0.2500, card (K) = 35

Figure 4.8: Sparsity patterns of K resulting from (SP).

Block sparsity

Three identified sparsity patterns of the feedback matrix resulting from the solution

to (4.8), with gθ and gr given by (4.9a) and (4.9d), are shown in Fig. 4.10. In all

three cases, structures of the angle feedback gains agree with the elementwise sparse

controllers; cf. Fig. 4.8. On the other hand, the group penalty (4.9d) yields block-

diagonal feedback gains that act on the remaining states of generators 1-9. Since no

information exchange with aggregate generator 10 is required, this part of the controller

can be implemented in a fully-decentralized fashion in all three cases.
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Figure 4.9: Performance vs sparsity comparison of sparse K and the optimal centralized
controller Kc for 50 logarithmically-spaced points γ ∈ [ 10−4 , 0.25 ].

(a) γ = 0.0697, card (K) = 66

(b) γ = 0.0818, card (K) = 64

(c) γ = 0.2500, card (K) = 62

Figure 4.10: Sparsity patterns of K resulting from (4.8).

Compared to the optimal centralized controller, a fully-decentralized controller with

structure shown in Fig. 4.10c compromises performance by only 2.34%; see Fig. 4.11. We

recall that the fully-decentralized controller with structure shown in Fig. 4.8c degrades

performance by 3.02%; cf. Fig. 4.9. Since the block-sparse controller has more degrees

of freedom than the elementwise sparse controller, performance improvement does not

come as a surprise. We finally note that the jumps in the number of non-zero elements
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Figure 4.11: Performance vs sparsity comparison of block-sparse K and the optimal cen-
tralized controller Kc for 50 logarithmically-spaced points γ = γθ = γr ∈ [ 10−4 , 0.25 ].

in Fig. 4.11 are caused by elimination of the entire off-diagonal rows of the feedback

gain Kr that acts on states different from relative angles.

4.4.3 Comparison of open- and closed-loop systems

We next compare performance of the open-loop system and the closed-loop systems with

optimal centralized and fully-decentralized sparse and block-sparse controllers. The

structures of these fully-decentralized controllers are shown in Fig. 4.8c and Fig. 4.10c,

respectively.

Figure 4.12 compares the spectra of the open- and closed-loop systems. As Fig. 4.12a

illustrates, all three controllers (centralized as well as decentralized sparse and block-

sparse) move the open-loop spectrum away from the imaginary axis. The dashed lines

in Fig. 4.12 identify damping lines. Typically, the mode is considered to have sufficient

damping if it is located to the left of the 10% cyan damping line. The numbered

black asterisks to the right of the 10% damping line in Fig. 4.12b correspond to the six

poorly-damped modes of the open-loop system. Other damping lines show that all of

our controllers significantly improve the damping of the system by moving the poorly-

damped modes deeper into the left-half of the complex plane. This demonstrates that

minimization of the variance amplification (i.e., the closed-loop H2 norm) represents an

effective means for improving damping in power systems.

Figure 4.13 provides a comparison between the power spectral densities of the four
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( λ
i)

Re (λi) Re (λi)
(a) Spectra of open- and close-loop systems (b) Zoomed version of (a)

Figure 4.12: The eigenvalues of the open-loop system and the closed-loop systems with
sparse/block-sparse/centralized controllers are represented by ∗, ◦, �, and 2, respec-
tively. The damping lines indicate lower bounds for damping ratios and they are repre-
sented by dashed lines using the same colors as for the respective eigenvalues. The 10%
damping line is identified by cyan color. The numbered black asterisks correspond to
the six poorly-damped modes given in Table 4.1.

cases. All three controllers successfully suppress the resonant peaks associated with the

poorly-damped modes and significantly improve performance. We also note that the

fully-decentralized sparse controllers perform almost as well as the optimal centralized

controller for high frequencies; for low frequencies, we observe minor discrepancy that

accounts for 2− 3% of performance degradation in the variance amplification.

Figure 4.13: Power spectral density comparison.



71

(a) Variance amplification (b) Zoomed version of (a)

Figure 4.14: Eigenvalues of the output covariance matrix Z1. ∗ represents the open-
loop system, ◦, � and 2 represent the closed-loop systems with sparse, block-sparse,
and optimal centralized controllers, respectively.

Figure 4.14 displays the eigenvalues of the output covariance matrix Z1 for the four

cases mentioned above. Relative to the open-loop system, all three feedback strategies

significantly reduce the variance amplification. A closer comparison of the closed-loop

systems reveals that the diagonal elements of the output covariance matrix are equalized

and balanced by both the optimal centralized and the decentralized controllers; see

Fig. 4.14b. Similar to the modal observations discussed in [15], the optimal sparse and

block-sparse feedback gains not only increase the damping of the eigenvalues associated

with the inter-area modes, but also structurally distort these modes by rotating the

corresponding eigenvectors.

We use time-domain simulations of the linearized model to verify performance of

decentralized block-sparse controller. Figure 4.15 shows the trajectories of rotor angles

and frequencies for the open- and closed-loop systems for two sets of initial condi-

tions. These are determined by the eigenvectors of open-loop inter-area modes 2 and

6 in Table 4.1. Clearly, the decentralized block-sparse controller significantly improves

performance by suppressing the inter-area oscillations between groups of generators.

Furthermore, relative to the open-loop system, the transient response of the closed-loop

system features shorter settling time and smaller maximum overshoot.
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Figure 4.15: Time-domain simulations of the linearized model of the IEEE 39 New
England power grid. The rotor angles and frequencies of all generators are shown. The
closed-loop results are obtained using the fully-decentralized block-sparse controller.
The initial conditions are given by the eigenvectors of the poorly-damped inter-area
modes 2 (left) and 6 (right) from Table 4.1.

4.4.4 Robustness analysis

We close this section by examining robustness to the operating point changes of both

open- and closed-loop systems. Random load perturbations are used to modify the oper-

ating point of the nonlinear system. The loads, that are used for the analysis and control
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Figure 4.16: Performance histograms of open- and closed-loop linearized systems (with
nominal controllers) for 10, 000 uniformly distributed operating points.

synthesis, are altered via uniformly distributed perturbations that are within ±20% of

the nominal loads. The performance of the nominal centralized and decentralized con-

trollers on the perturbed linearized model is evaluated by examining the closed-loop H2

norm.

Figure 4.16 shows the distribution of performance change for 10, 000 operating points

around the original equilibria. We observe bell-shaped distributions with symmetric and

narrow spread around the nominal performance. In spite of significant changes in the

operating points, both centralized and fully-decentralized controllers are within 2% of

the nominal performance. In contrast, same perturbations can degrade performance

of the open-loop system by as much as 15%. Thus, our decentralized controllers also

reduce the sensitivity and improve the robustness with respect to setpoint changes.

To account for delays in communication channels, asynchronous measurements, and
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Figure 4.17: Multivariable phase margins as a function of γ.

fast unmodeled dynamics, we utilize multivariable phase margin to quantify the ro-

bustness of our sparse optimal controllers. In Fig. 4.17, we investigate how the phase

margins of the closed-loop systems change with the sparsity-promoting parameter γ.

As our emphasis on sparsity increases, multivariable phase margins degrade gracefully

and stay close to a desirable phase margin of 60◦.

Our approach thus provides a systematic way for designing optimal sparse con-

trollers with favorable robustness margins and performance guarantees even in a fully-

decentralized case.

4.5 Concluding remarks

We have analyzed inter-area oscillations in power systems by studying their power spec-

tral densities and output covariances. Our analysis of the open-loop system identifies

poorly-damped modes that cause inter-area oscillations. We have also designed sparse

and block-sparse feedback controllers that use relative angle measurements to achieve
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a balance between system performance and controller architecture. By placing increas-

ing weight on the sparsity-promoting term we obtain fully-decentralized feedback gains.

Performance comparisons of open- and closed-loop systems allowed us to understand the

effect of the control design approach both in terms of system performance and with re-

gards to the resulting control architecture. For the IEEE 39 New England model we have

successfully tested our analysis and control design algorithms. We have also provided

a systematic method for optimal retuning of fully-decentralized excitation controllers

that achieves comparable performance to the optimal centralized controller.



Part III

Optimal control in distributed

networks
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Chapter 5

Design of distributed integral

control action in power networks

Recently distributed integral controllers relying on averaging and communication have

been proposed as effective means for optimal frequency regulation in power systems, load

balancing of network flows, and as natural extensions to static consensus controllers.

Typically, only the questions of stability, disturbance rejection, and steady-state re-

source allocation are addressed in the literature, and the problems of transient perfor-

mance and optimal communication network design remain open. In this chapter we

consider the optimal frequency regulation problem and propose a principled heuristic to

identify the topology and gains of the distributed integral control layer. We employ an

`1-regularized H2-optimal control framework as a means for striking a balance between

network performance and communication requirements [118].

The resulting optimal control problem is solved using the alternating direction

method of multipliers algorithm. For the IEEE 39 New England benchmark problem,

we demonstrate that the identified sparse and distributed integral controller can achieve

reasonable performance relative to the optimal centralized controller. Interestingly, the

identified control architecture is directed and correlates with the generator rotational

inertia and cost coefficients.

77
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5.1 Synchronous frequency and power sharing

In this section, we briefly summarize background material on synchronous frequency

and economic load sharing. In the linearized swing equations [61]

M ω̇ = − Lp θ − Dω + η + u, (5.1)

(θ, ω) ∈ R2n are the generator rotor angles and frequencies, u ∈ Rn is the governor

control action, and η ∈ Rn is a disturbance input accounting for stochastic fluctuations

in generation and load, which we model as white noise signals. The diagonal matrices

M and D are positive definite with diagonal elements being the generator inertia and

damping coefficients, and Lp = LTp ∈ Rn×n is the network susceptance matrix, We

assume that the network is connected so that Lp1 = O, where 1 and O are vectors of

unit entries and zeros of appropriate sizes.

Synchronous frequency: If one assumes the existence of a synchronous steady-state

with θ̇i = ωsync ∈ R for all i ∈ {1, . . . , n}, then by summing all equations in (5.1) in

steady state, we obtain the synchronous frequency explicitly as

ωsync =

∑n
i=1 ui∑n
i=1 Di

+

∑n
i=1 ηi∑n
i=1 Di

. (5.2)

The control objective is to design a secondary control strategy so that the frequency

deviations converge to zero.

Resource allocation: Aside from driving the frequency deviations to zero it is also

desirable to schedule the injections ui(t) to balance load and generation while minimizing

the operational cost [62]:

minimize
u

n∑

i=1

Ei u
2
i

subject to

n∑

i=1

(ui + ηi) = 0.

(5.3)

Here Ei > 0 is the cost coefficient for source i ∈ {1, . . . , n}. The optimization problem

(5.3) is convex and the essential insight from the optimality conditions is that all units
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should produce at identical marginal costs of generation:

Ei u
∗
i = Ej u

∗
j for all i, j ∈ {1, . . . , n}. (5.4)

Observe that the budget constraint equation in (5.3) also guarantees a zero frequency

deviation in (5.2). A special case of the identical marginal cost requirement is the

classical proportional power sharing [119] criterion

u∗i
Pi

=
u∗j

Pj
, (5.5)

where Pi is the rating of source i. Clearly, the power sharing objective is a special case

of the resource allocation problem (5.3) if one sets each cost coefficient Ei to 1/Pi.

5.2 Distributed integral control

In this section, we first introduce the problem setup and describe a model for frequency

control of power systems. We then formulate the design of distributed integral action as

a static output-feedback control problem. In the absence of sparsity constraints, we use

an augmented Lagrangian method to determine optimal centralized integral controller.

5.2.1 Problem setup

The frequency error can in principle be driven to zero via decentralized integral action

of the form
u = −K1 s

ṡ = ω,
(5.6)

where s denotes the auxiliary integral states, and K1 is a diagonal feedback matrix.

It is well known, however, that such decentralized integral controllers do not achieve

steady-state optimality [67]. Furthermore, they are prone to instabilities that may arise

from biased measurement errors [69].

To remedy these shortcomings, we consider the distributed averaging-based integral
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controller also used in [66–70]

u = −E−1 z

ż = K̃1 ω − LI z.
(5.7)

Here, z is the vector of auxiliary distributed integral states, E and K̃1 are diag-

onal matrices of cost coefficients and positive gains, respectively, LI is the Lapla-

cian matrix of a connected communication graph in the integral controller. Since
∑n

i=1 żi =
∑n

i=1 K̃1,i ωi, any steady-state solution of (5.7) satisfies ωi = 0, i.e., the

frequency deviations are driven to zero. Because of LIz = −LIEu = 0, any steady-

state solution of (5.7) also satisfies the identical marginal cost criterion (5.4). Hence,

the controller (5.7) achieves optimal frequency regulation.

By substituting (5.7) to (5.1) yields the closed-loop system

θ̇ = ω

M ω̇ = −Lp θ − Dω − E−1 z + η

ż = K̃1 ω − LI z.

(5.8)

Without loss of generality, we assume that integral controllers are installed on all the

generators. We also assume that K̃1 is a known diagonal matrix and confine our at-

tention to the design of the Laplacian matrix LI . Equivalently, (5.8) can be written

as 


θ̇

ω̇

ż


 =




0 I 0

−M−1Lp −M−1D −(EM)−1

0 K̃1 −K̃2LI




︸ ︷︷ ︸
Âcl




θ

ω

z




︸ ︷︷ ︸
x̂

+




0

M−1

0




︸ ︷︷ ︸
B̂1

d

where the control action is embedded in the closed-loop system matrix Âcl. Our objec-

tive is to identify topology of LI and to design the corresponding edge weights in order

to optimally enhance performance of the closed-loop network (5.8) in the presence of

stochastic disturbances η.
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5.2.2 Static output-feedback control problem

The design of LI can be formulated as a static output-feedback problem for a system

with a state-space model

˙̂x = Â x̂ + B̂1 η + B̂2 v , (5.9)

where x̂ =
[
θT ωT zT

]T
is the state vector, and the auxiliary control is defined as

v = −GĈ2x̂. Here, G := LI is the control gain to be designed, and the matrices in (5.9)

are partitioned conformably with the state x̂

Â =




0 I 0

−M−1Lp −M−1D −(EM)−1

0 K̃1 0




B̂1 =




0

M−1

0


 , B̂2 =




0

0

I


 , Ĉ2 =

[
0 0 I

]
.

(5.10)

That fact that Ĉ2 only contains zero and identity submatrices, enables us to apply

the sparsity-promoting optimal control framework developed in [19–21]. We will discuss

the details later in Section 5.3.

Since the graph Laplacian of the integral controller satisfies LI1 = 0, we can use

similar coordinate transformation on the auxiliary integral states z. It is noteworthy

that the average mode z̄ is not eliminated from the dynamics, because we can see that

absolute value of z is needed to form the integral control action in (5.7), i.e. −E−1 does

not have Laplacian property. Before introducing the coordinate transformation, we first

define the performance output and weight matrices for states and control inputs.

The closed-loop system resulting from (5.9) is given by,

˙̂x = (Â − B̂2GĈ2) x̂ + B̂1 η

y =

[
Q1/2

−R1/2GĈ2

]
x̂.

(5.11)

Here, y is the performance output, R = RT � 0 is the control weight, and the state
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weight Q = QT � 0 is selected as

Q =




Qθ 0 0

0 Qω 0

0 0 Qz




with Qθ = Qz = I − (1/n)11T and Qω = M . The performance output y in (5.11)

accounts for deviations from the averages of θ and z, as well as the kinetic energy and

the control effort of the system. The choice of performance indices is inspired by [16] for

designing wide-area controller. Hence, ‖y‖22 = xTQx penalizes frequency deviations and

non-identical integral states similar to the distributed averaging-based integral controller

(5.7) thereby accelerating the convergence of the integral error state. Together with

the frequency penalty Qω, the penalty Qθ on non-identical angle variables aids in the

convergence of the dynamics (5.1) as in [15, 16]. Finally, inspired by the quadratic

criterion (5.3) a suitable choice for the control weight is R = E.

In a power system without a slack bus, the generator rotor angles are only defined in

a relative frame of reference, as can be observed in the linearized swing equations (5.1).

Thus, all rotor angles θ can be rotated by a uniform amount without changing the

dynamics (5.1). Since only differences between the components of θ(t) ∈ Rn enter

into (5.8), this rotational symmetry is preserved in the closed-loop system (5.10) as

well.

By introducing a coordinate transformation [16,30]

θ = U ψ + 1 θ̄, (5.12a)

we can eliminate the marginally stable average mode θ̄ = 1T θ/n from (5.8) and the pre-

serve rotational symmetry. Here, ψ ∈ Rn−1 and the columns of the matrix U ∈ Rn×(n−1)

form an orthonormal basis of the subspace orthogonal to span (1). For example, the

columns of U can be obtained from the (n − 1) eigenvectors of the projector matrix
(
I − (1/n)11T

)
. The matrix U has the following properties

UT U = I, U UT = I − (1/n)11T , UT 1 = O.
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Furthermore, since the Laplacian matrix of the integral controller satisfies LI1 = O, we

can use similar coordinate transformation on the auxiliary integral states z to ensure

the Laplacian property of LI in our control design,

z = U φ + 1 z̄, (5.12b)

where z̄ = 1T z/n is the average integral state. Note that, in contrast to θ̄, the average

of the integral state z̄ actually enters into the closed-loop dynamics (5.8).

The structural constraints on θ and z are enforced by the following conditions

Qθ 1 = O, Lp 1 = O

Qz 1 = O, LI 1 = O.

As an additional benefit, the above choice of Qz penalizes the z variable relative to the

vector 1, and thus facilitates the achievement of the identical marginal cost criterion

(5.4).

To eliminate the marginally stable average-angle-mode θ̄ and preserve the relative

information exchange requirement for the dynamics of z, we combine (5.12a) and (5.12b)

to obtain the following coordinate transformation




θ

ω

z




︸ ︷︷ ︸
x̂

=




U 0 0 0

0 I 0 0

0 0 1 U




︸ ︷︷ ︸
T1




ψ

ω

z̄

φ




︸ ︷︷ ︸
x

+




1

0

0

0



θ̄.

(5.13)

Equivalently, x can be expressed in terms of x̂ as




ψ

ω

z̄

φ




︸ ︷︷ ︸
x

=




UT 0 0

0 I 0

0 0 (1/n)1T

0 0 UT




︸ ︷︷ ︸
T2




θ

ω

z




︸ ︷︷ ︸
x̂

.
(5.14)
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The properties of the matrix U imply that the matrices T1 and T2 satisfy T2 T1 = I and

T1 T2 =




I − (1/n)11T 0 0

0 I 0

0 0 I


 .

In the new set of coordinates, the closed-loop system (5.7) takes the form

ẋ = (A − B2 F C2)x + B1 η

y =

[
Q1/2

−R1/2 F C2

]
x

(5.15)

where

A = T2 Â T1, B1 = T2 B̂1, Q = T T1 Q̂ T1,

and BT
2 =

[
0 0 0 U

]T
, C2 =

[
0 0 0 I

]
. The matrices B2 and C2 are parti-

tioned conformably with the partition of the state vector x. The feedback matrices G

and F (in the x̂ and x coordinates, respectively) are related by

F = GU ⇔ G = F UT .

For this static-output feedback problem (5.15), the control objective is to achieve a

desirable tradeoff between the H2 performance of (5.15) and the sparsity of the feedback

gain G. The H2 norm from the disturbance η to the output y, which quantifies the

steady-state variance (energy) of y of the stochastically forced system (5.15), is defined

as

J(F ) :=





trace
(
BT

1 P (F )B1

)
F stabilizing

∞ otherwise

where the closed-loop observability Gramian P satisfies the Lyapunov equation

(A − B2 F C2)TP + P (A − B2 F C2) = − (Q + CT2 F
TRF C2).

While the performance is expressed in terms of the feedback gain matrix F , we will
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enhance sparsity of the Laplacian matrix G = LI in the original coordinates; see Sec-

tion 5.3.

5.2.3 Optimal design of the centralized integral action

We first focus on the design the centralized integral controller G = LI that minimizes the

H2 norm of the closed-loop system, we follow the augmented Lagrangian approach for

structured feedback synthesis [120,121]. Since the matrix Ĉ2 in (5.15) only contains zero

and identity submatrices, we can formulate the static output-feedback problem (5.15)

as a structured state-feedback optimal control problem

ẋ = (A − B2K)x + B1 η

y =

[
Q1/2

−R1/2K

]
x

(5.16)

where K satisfies the following structural constraint

K :=
[
Kψ Kω Kz̄ Kφ

]
=
[

0 0 0 F
]
. (5.17)

Finding a solution of the structured optimal control problem (5.16) amounts to solving

minimize
K

J(K)

subject to K ∈ S,
(5.18)

where J(K) is the H2 norm of system (5.16) parameterized as a function of K, and S
is a set of stabilizing feedback gains K satisfying the structural constraint (5.17). The

algebraic characterization of the structural constraint is given by

K ∈ S ⇔ K ◦ IS = K,

where ◦ is the elementwise matrix multiplication and

IS =
[

0 0 0 11T
]

is partitioned conformably with the partition of the state x.
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The augmented Lagrangian method developed in [120] solves a sequence of un-

structured problems iteratively, and the minimizers of the unstructured problems con-

verge to a minimizer of the optimal control problem (5.18). The resulting centralized

LI = G = FUT can be used as a warm-start for the sparsity-promoting optimal control

problem that is discussed next.

5.3 Sparsity-promoting optimal control

A sparsity-promoting optimal control framework for finding a state feedback that simul-

taneously optimizes the closed-loop variance and induces a sparse control architecture

was developed in [19–21]. In this section, we extend this approach to a static output-

feedback optimal control problem.

While we want to minimize the H2 norm in terms of the feedback matrix F in

the new set of coordinates, we would like to promote sparsity of the Laplacian matrix

G = LI in the physical domain. This procedure is used to identify sparse structure of

the integral control layer. This is accomplished by considering the regularized optimal

control problem

minimize
F,G

J(F ) + γ g(G)

subject to F UT − G = 0.
(SP)

The regularization term in (SP) is determined by

g(G) :=
∑

i, j

Wij |Gij |

which is an effective proxy for inducing elementwise sparsity in the feedback gain G [99].

The weights Wij ’s are updated iteratively using the solution to (SP) from the previ-

ous iteration; see [99] for details. In (SP), γ is positive regularization parameter that

characterizes the emphasis on the sparsity level of the feedback matrix G.

The linear constraint in (SP) allows us to exploit structure of the objective func-

tions J and g with the ADMM algorithm. ADMM brings two benefits to the sparsity-

promoting control problem: separability of g(G) and differentiability of J(F ). The

penalty function g(G) is separable with respect to the individual elements of the ma-

trix, however, the closed-loop H2 norm can not be decomposed into componentwise
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functions of the feedback gain. By separating g(G) and J(F ) in the minimization of the

augmented Lagrangian Lρ, we can determine analytically the solution to the G mini-

mization problem. On the other hand, the square of the closed-loop H2 norm J(F ) is a

differentiable function of F , and this is in contrast to g(G) which is a non-differentiable

function.

Next we describe the ADMM algorithm for solving (SP), see [21, 30] for additional

details.

Initialization

We follow the augmented Lagrangian approach introduced in Section 5.2.3 to design

an optimal F0 = GU to initialize the iterative procedure.

Form augmented Lagrangian

Lρ(F,G,Λ) = J(F ) + γ g(G) + trace
(
ΛT (F UT − G)

)
+

ρ

2
‖F UT −G ‖2F

where Λ denotes the matrix of Lagrange multipliers and ‖ · ‖F is the Frobenius norm of

a matrix.

Iterative ADMM algorithm

Fm+1 = argmin
F

Lρ (F, Gm, Λm)

Gm+1 = argmin
G

Lρ (Fm+1, G, Λm)

Λm+1 = Λm + ρ (Fm+1 UT − Gm+1).

Here, m represents the iteration index. Using the fact that UTU = I, it is readily shown

that the F -minimization step amounts to solving the following optimization problem

Fm+1 = argmin
F

(
J(F ) +

ρ

2
‖F − Hm‖2F

)

where Hm := (Gm − (1/ρ)Λm)U. We apply the KKT necessary conditions [122] for
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optimality of Lρ(F,Gm,Λm), and the following equations need to be satisfied

(A − B2 F C2)L + L (A − B2 F C2)T = −B1B
T
1

(A − B2 F C2)TP + P (A − B2 F C2) =

− (Q + CT2 F
TRF C2) 2 (RF C2 − BT

2 P )LCT2 + ρ (F − Hm) = 0.

The resulting set of the matrix-valued equations is solved using the iterative procedure

developed in [21].

Similarly, properties of the matrix U can be used to bring the G-minimization prob-

lem into the following form

Gm+1 = argmin
G

(
γ g(G) +

ρ

2
‖G − V m‖2F

)

where V m := Fm+1UT + (1/ρ)Λm and the unique solution is obtained via the soft

thresholding operator,

G,+1
ij =





(1 − a/|V m
ij |)V m

ij |V m
ij | > a

0 |V m
ij | ≤ a.

Here, a := (γ/ρ)Wij and, for a given V m
ij , Gm+1

ij is either set to zero or it is obtained by

moving V m
ij towards zero with the amount (γ/ρ)Wij .

Stopping criterion

‖Fm+1 UT −Gm+1‖ ≤ ε, ‖Gm+1 −Gm‖ ≤ ε

The ADMM algorithm stops when both primal and dual residuals are smaller than

specified thresholds.

Polishing step Finally, we fix the sparsity pattern of G identified using ADMM and

solve the optimal control problem with the identified structural constraints. This pol-

ishing step improves the H2 performance relative to the feedback gain identified by

ADMM; see [21] for additional details.
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5.4 Case study: IEEE 39 New England model

The IEEE 39 New England Power Grid model consists of 39 buses and 10 detailed

two-axis generator models; see Fig. 5.1. All loads are modeled as constant power loads.

As previously mentioned, we assume that all the generators are equipped with integral

controllers. We extract network susceptance matrix Lp and inertia matrix M of the

IEEE 39 New England model from Power System Toolbox [123]. We set the the damping

coefficients Di of each generator to be 0.1Mi, and the diagonal positive control gain

matrix K̃1 to be identity matrix. The values of the cost coefficients Ei are chosen to

be Ei = 0.9 for i ∈ {1, 2, 3, 4, 6, 7, 8, 9, 10}, E5 = 0.1, i.e., we assume that generator 5

cost the least to operate while all other generators have the same cost coefficients. The

state matrices and performance indices are defined as outlined in Section 5.2.2.

Next, we illustrate that our proposed static output feedback sparsity-promoting

optimal control framework is an efficient way to achieve a balance between the system

performance and sparsity level of LI . In Fig 5.2, we show the sparsity pattern of the

feedback matrix G = LI ∈ R10×10 for different value of γ. The blue dots denote

local feedback control gains, and the red dots identify information that needs to be

communicated between different generators. For γ = 0.001, LI is dense and recovers

the communication pattern of the conventional integral controller as shown in Fig. 5.2a.

When γ increases from 0.001 to 0.101, the 5th column of LI becomes sparse while the

5th row becomes the only row with all nonzero elements. This indicates that most

generators do not care about generator 5 that has the smallest cost coefficient. At the

same time, integral controller on generator 5 has to gather information from all other

generators to achieve desired performance of the network.

By further increasing γ to 4.715, the structure of LI shows that integral state in-

formation of generator 1, 3, 6, 9, 10, which have the five largest inertia, is gathered by

other integral controllers. Apparently, six other generators need to access information

from generator 10, since it has the largest inertia and thus the most reliable frequency

measurement in the integral control. Finally, when γ = 10, only 11 long-range links are

required, and integral controller on generator 10 is no longer needed. Since generator 10

is an equivalent aggregated model representing the transmission network of a neighbor-

ing area, it has an oversized inertia coefficient and thus also little control agility. Hence,
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Fig. 9. The New England test system [10], [11]. The system includes
10 synchronous generators and 39 buses. Most of the buses have constant
active and reactive power loads. Coupled swing dynamics of 10 generators
are studied in the case that a line-to-ground fault occurs at point F near bus
16.

test system can be represented by

δ̇i = ωi,
Hi

πfs
ω̇i = −Diωi + Pmi − GiiE

2
i −

10∑

j=1,j ̸=i

EiEj ·

· {Gij cos(δi − δj) + Bij sin(δi − δj)},

⎫
⎪⎪⎬
⎪⎪⎭

(11)

where i = 2, . . . , 10. δi is the rotor angle of generator i with
respect to bus 1, and ωi the rotor speed deviation of generator
i relative to system angular frequency (2πfs = 2π × 60Hz).
δ1 is constant for the above assumption. The parameters
fs, Hi, Pmi, Di, Ei, Gii, Gij , and Bij are in per unit
system except for Hi and Di in second, and for fs in Helz.
The mechanical input power Pmi to generator i and the
magnitude Ei of internal voltage in generator i are assumed
to be constant for transient stability studies [1], [2]. Hi is
the inertia constant of generator i, Di its damping coefficient,
and they are constant. Gii is the internal conductance, and
Gij + jBij the transfer impedance between generators i
and j; They are the parameters which change with network
topology changes. Note that electrical loads in the test system
are modeled as passive impedance [11].

B. Numerical Experiment

Coupled swing dynamics of 10 generators in the
test system are simulated. Ei and the initial condition
(δi(0),ωi(0) = 0) for generator i are fixed through power
flow calculation. Hi is fixed at the original values in [11].
Pmi and constant power loads are assumed to be 50% at their
ratings [22]. The damping Di is 0.005 s for all generators.
Gii, Gij , and Bij are also based on the original line data
in [11] and the power flow calculation. It is assumed that
the test system is in a steady operating condition at t = 0 s,
that a line-to-ground fault occurs at point F near bus 16 at
t = 1 s−20/(60Hz), and that line 16–17 trips at t = 1 s. The
fault duration is 20 cycles of a 60-Hz sine wave. The fault
is simulated by adding a small impedance (10−7j) between
bus 16 and ground. Fig. 10 shows coupled swings of rotor
angle δi in the test system. The figure indicates that all rotor
angles start to grow coherently at about 8 s. The coherent
growing is global instability.

C. Remarks

It was confirmed that the system (11) in the New Eng-
land test system shows global instability. A few comments
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Fig. 10. Coupled swing of phase angle δi in New England test system.
The fault duration is 20 cycles of a 60-Hz sine wave. The result is obtained
by numerical integration of eqs. (11).

are provided to discuss whether the instability in Fig. 10
occurs in the corresponding real power system. First, the
classical model with constant voltage behind impedance is
used for first swing criterion of transient stability [1]. This is
because second and multi swings may be affected by voltage
fluctuations, damping effects, controllers such as AVR, PSS,
and governor. Second, the fault durations, which we fixed at
20 cycles, are normally less than 10 cycles. Last, the load
condition used above is different from the original one in
[11]. We cannot hence argue that global instability occurs in
the real system. Analysis, however, does show a possibility
of global instability in real power systems.

IV. TOWARDS A CONTROL FOR GLOBAL SWING

INSTABILITY

Global instability is related to the undesirable phenomenon
that should be avoided by control. We introduce a key
mechanism for the control problem and discuss control
strategies for preventing or avoiding the instability.

A. Internal Resonance as Another Mechanism

Inspired by [12], we here describe the global instability
with dynamical systems theory close to internal resonance
[23], [24]. Consider collective dynamics in the system (5).
For the system (5) with small parameters pm and b, the set
{(δ,ω) ∈ S1 × R | ω = 0} of states in the phase plane is
called resonant surface [23], and its neighborhood resonant
band. The phase plane is decomposed into the two parts:
resonant band and high-energy zone outside of it. Here the
initial conditions of local and mode disturbances in Sec. II
indeed exist inside the resonant band. The collective motion
before the onset of coherent growing is trapped near the
resonant band. On the other hand, after the coherent growing,
it escapes from the resonant band as shown in Figs. 3(b),
4(b), 5, and 8(b) and (c). The trapped motion is almost
integrable and is regarded as a captured state in resonance
[23]. At a moment, the integrable motion may be interrupted
by small kicks that happen during the resonant band. That is,
the so-called release from resonance [23] happens, and the
collective motion crosses the homoclinic orbit in Figs. 3(b),
4(b), 5, and 8(b) and (c), and hence it goes away from
the resonant band. It is therefore said that global instability
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Figure 5.1: The IEEE 39 New England Power Grid.

(a) γ = 0.001, card (G) = 100 (b) γ = 0.101, card (G) = 91

(c) γ = 4.715, card (G) = 23 (d) γ = 10, card (G) = 20

Figure 5.2: Sparsity pattern of G resulting from (SP).

it is not surprising to drop this virtual controller. Our observation shows that the

optimal communication architecture correlates with both inertia and cost coefficients.

In Fig. 5.3, we compare performance degradation and sparsity level for different
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Figure 5.3: Performance vs sparsity comparison of sparse G and the optimal centralized
controller Gc for 50 logarithmically-spaced points γ ∈ [ 10−3 , 10 ].

values of γ. Compared to the optimal centralized integral controller Gc, our sparse G

in Fig 5.2d degrades system performance by only 16.15%. Therefore, by constructing

only 11 long-range links for the integral controller architecture, reasonable performance

is achieved compared to the optimal centralized feedback gain Gc.

5.5 Concluding remarks

In this section, we propose a distributed PI-control strategy for frequency control in

power systems. We formulate the topology identification and design of integral controller

as a static output-feedback control problem. A coordinate transformation is introduced

to enforce the structural constraints on the rotor angles and auxiliary integral states.

We find the solution by solving the sparsity-promoting optimal control problem, which

balances the tradeoff between system performance and sparsity of the controller. Our

development is validated by a benchmark power system example.



Chapter 6

Design of optimal coupling gains

for synchronization of nonlinear

oscillators

This chapter develops a structured optimal-control framework to design coupling gains

for synchronization of weakly nonlinear oscillator circuits connected in resistive networks

with arbitrary topologies. The oscillators are modeled as weakly nonlinear Liénard-type

circuits, and the coupling gain amounts to the current gain which scales the output

current of the oscillator. The structured optimal-control problem allows us to seek a

decentralized control strategy (equivalently, a diagonal feedback matrix) that precludes

communications between oscillators. To this end, a sparsity-promoting optimal control

algorithm is developed to tune the optimal diagonal feedback-gain matrix with minimal

performance sacrifice [124]. This involves solving an H2 optimal control problem with

`1 regularization by applying the alternating direction method of multipliers (ADMM).

Simulation studies with application to voltage regulation in islanded networks composed

of power-electronic inverters are provided to validate the approach.

92
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6.1 System of coupled weakly nonlinear oscillator circuits

We begin this section with a description of the oscillator dynamics, and then describe

the network interactions.

6.1.1 Nonlinear oscillator model

The oscillator dynamics are governed by

v̈ + ε f(v) v̇ + ω2v = κ εω u̇(t) , (6.1)

where v is the terminal voltage, u is the input current, κ is the current gain (interchange-

ably referred as the coupling gain), ε is a positive real constant, and ω is the frequency

of the voltage waveform for the unforced (u = 0) system in the so-called quasi-harmonic

limit ε ↘ 0 [96]. All subsequent discussions assume operation in this quasi-harmonic

limit since the terminal-voltage dynamics in this limit are approximately sinusoidal [96].

Function f : R→ R satisfies the conditions in Liénard’s theorem [84] for existence of a

unique and stable limit cycle, in particular,

(A1) f(v) is continuously differentiable ∀v.

(A2) f(v) is an even function, i.e., f(v) = f(−v),∀v.

(A3) Function F (v) :=
∫ v

0 f(z)dz has exactly one positive zero at v = v0, is negative

for 0 < v < v0, is positive and nondecreasing ∀v > v0, and lim
v→∞

F (v)→∞.

Examples of nonlinear circuits that admit terminal-voltage dynamics of the form (6.1)

include the ubiquitous Van der Pol oscillator (see Fig. 6.1 for more details), the dead-

zone oscillator [85], a class of operational transconductance amplifiers [92], and dynamic

translinear oscillator circuits [91].

To extract the amplitude and phase dynamics from (6.1), we seek a dynamical system

representation in polar coordinates. To this end, define the change of variables v =

r cos(φ), ω
∫ t

0 v dt = r sin(φ), where r denotes the radius of the oscillator limit cycle, and

φ represents the instantaneous phase of the resulting oscillations. It is straightforward
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Figure 6.1: The Van der Pol oscillator circuit with a current gain κ admits the dynamics
in (6.1). In this case, ω = 1/

√
LC, ε =

√
L/C, and h(v) =

∫
f(v)dv = αω(v − βv3/3)

where α and β are positive real constants.

to show that with this change of coordinates, we recover the following model:

ṙ = ε (h(r cosφ) + κω u(t)) cosφ,

φ̇ = ω −
(
ε

r
h(r cosφ) − ε κω

u(t)

r

)
sinφ, (6.2)

where h(z) :=

∫
f(z)dz. In subsequent developments, we will find it useful to work

with the following model:

ṙ = ε (h(r cos(ωt + θ)) + κω u(t)) cos(ωt + θ),

θ̇ = − ε
r

(h(r cos(ω t + θ)) + κω u(t)) sin(ω t + θ). (6.3)

where we define θ(t) := φ(t) − ωt, with θ representing the phase offset with respect to

the rotating reference frame of frequency ω. Since the system (6.3) is non-autonomous

but periodic in t, we leverage averaging methods to obtain an autonomous system which

admits similar dynamics [96]. In particular, for small values of ε we can average the

periodic vector fields in (6.3) to obtain the so-called slow flow equations which are

accurate up to O(ε) [125].

Let us denote r and θ to be the 2π/ω-averaged values of the periodic signals r and

θ, respectively. In the quasi-harmonic limit, i.e., ε ↘ 0, we apply standard averaging

arguments using ε as the small parameter, to obtain the averaged dynamics [96, Theorem
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10.4] [83, 126]

[
ṙ

θ̇

]
=
εω

2π

∫ 2π/ω

0

[
h(r cos(ωt+ θ))) cos(ωt+ θ)

−1
rh(r cos(ωt+ θ)) sin(ωt+ θ)

]
dt

+
εκω2

2π

∫ 2π/ω

0

[
u(t) cos(ωt+ θ)

−1
ru(t) sin(ωt+ θ)

]
dt

=
ε

2π


−f(r) + ω2

∫ 2π
ω

0 u(t) cos(ωt+ θ)dt

−κω2
∫ 2π

ω
0

u(t)
r sin(ωt+ θ)dt


 , (6.4)

where

f(r) := 4

∫ r

0
f(σ)

√
1− σ2

r2 dσ. (6.5)

6.1.2 Resistive electrical network

We consider a collection of N oscillators with dynamics of the form (6.1) (or equiva-

lently, (6.4)) connected in a resistive electrical network. The oscillators are assumed

to be identical in all aspects except for the current gains. The nodes of the resistive

electrical network are collected in the set A, and branches (edges) are collected in the

set E := {(j, `)} ⊂ A × A. Let N := {1, . . . , N} ⊆ A denote nodes that the oscillators

are connected to, and denote the set of internal nodes as I := A\N . Shunt loads—also

modeled as resistances—are connected to the internal nodes I. Denote the vectors that

collect the nodal current injections and node voltages in the network by iA and vA, re-

spectively. Note that since the network is resistive, iA and vA are real-valued functions

of time. The electrical coupling between the oscillators is described by Kirchhoff’s and

Ohm’s laws, which read in matrix-vector form as

iA = GA vA, (6.6)

with entries of the conductance matrix GA given by

[GA]j` :=





gj +
∑

(j,k)∈E gjk, if j = `,

−gj`, if (j, `) ∈ E ,
0, otherwise,

(6.7)



96

with gj ∈ R≥0 denoting the shunt conductance at node j, and gj` = g`j ∈ R≥0 the

conductance of the line (j, `).

Let i=[i1, . . . , iN ]T and v=[v1, . . . , vN ]T be the vectors of inverter current injections

and terminal voltages, respectively, and let iI and vI be the vectors collecting the current

injections and nodal voltages for the interior nodes. Note that entries of iI are zero.

With this notation in place, we can rewrite (6.6) as

[
i

0

]
=

[
GNN GNI

GT
NI GII

][
v

vI

]
. (6.8)

For the resistive networks we consider in this work, GII is always nonsingular due to

irreducible diagonal dominance [127]. Therefore, the second set of equations in (6.8) can

be uniquely solved for the interior voltages, vI . Then, we obtain the following equations

relating the oscillator current injections and terminal voltages:

i = l
(
GNN − GNI G

−1
II G

T
NI
)
v =: Gv. (6.9)

We refer to the matrix G in (6.9) as the Kron-reduced conductance matrix and this model

reduction through a Schur complement of the conductance matrix is known as Kron

reduction [127]. Notice that the entries of G define the effective electrical conductances

between the oscillators in the network, as well as the effective local resistive loads for

each oscillator. An illustration of Kron reduction for a network with three oscillators is

shown in Fig. 6.2. Under some mild assumptions on the originating network, it follows

that the Kron-reduced network is fully connected [127].

With a slight abuse of notation, we denote the effective shunt-conductance load for

the jth oscillator by gj , and the effective conductance of the (j, `) line in the Kron-

reduced electrical network by gj` in all subsequent discussions. Also, we will find it

useful to define gjj := gj +
∑N

k=1,k 6=j gjk.
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6.1.3 System dynamical model in polar coordinates

With this notation in place, for the resistive network, the current input for the jth

oscillator, uj(t) is given by:

uj(t) = − ij(t) = −
N∑

`=1

gj` r` cos(ωt + θ`). (6.10)

Substituting (6.10) in (6.4), and denoting θj` = θj − θ`, we get the following polar-

coordinates representation for the dynamics of the jth oscillator:

drj
dt

= −ε f(rj)

2π
− κj εω

2
gjj rj +

κjεω

2

N∑

`=1,`6=j
gj` r` cos(θj`), (6.11a)

dθj
dt

= l − κj ε ω

2 rj

N∑

`=1,`6=j
gj` r` sin(θj`). (6.11b)

6.1.4 State-space representation of linearized system

Our objective is to design an optimal set of coupling gains, κ1, . . . , κN , that ensure

the terminal voltages of the nonlinear oscillator dynamics in (6.11) are regulated to a

common value. For the class of oscillator models we consider, it is known that there

exists a unique and stable limit cycle with radius req which satisfies f(req) = 0 [84].

With a view towards leveraging control design techniques from linear systems theory,

we linearize the system around (req1N , θeq) (where 1N denotes N ×1 vector of all ones);

Figure 6.2: Kron reduction illustrated for a network of three oscillators. In this example,
A = {1, . . . , 5}, N = {1, 2, 3}, and I = {4, 5}.
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θeq is the phase-synchronized equilibrium (we comment on it next). The Jacobian of

the system around the equilibrium point can be partitioned into blocks as follows:

J =

[
JA JB

JC JD

]
. (6.12)

The entries of JA, JB, JC, and JD are specified as:

[
JA

]
j`

=





− ε

2π
f ′(req) − κj

εω

2
gjj if j = `

κj
εω

2
gjl cos(θeq,j`) if j 6= `

[
JB

]
j`

= −κj
εω

2
gj` req sin(θeq,j`)

[
JC

]
j`

=





κj
ε ω

2 req

∑N
`=1,`6=j gj` sin(θeq,j`) if j = `

−κj
ε ω

2
gj` sin(θeq,j`) if j 6= `

[
JD

]
j`

=





0 if j = `

κj
ε ω

2
gj` cos(θeq,j`) if j 6= `

,

where f ′(req) represents the derivative of f(·) evaluated at req. An inspection of the

above Jacobian reveals that the phase-synchronized equilibrium i.e., θeq,j = θeq,` ∀j, `,
is locally exponentially stable. First, notice that J is block diagonal for this equilibrium

and therefore around this equilibrium, the evolution of amplitudes and phases are de-

coupled. Furthermore, while JD is a real skew-symmetric matrix (which implies that all

its eigenvalues are purely imaginary), leveraging LaSalle’s invariance principle it can be

shown that phase synchronized equilibrium is locally exponentially stable [128, Theorem

4.3]. With these arguments in place, we proceed with the linearized (and decoupled)

amplitude dynamics.

For small perturbations about the equilibrium point, we express r = 1Nreq+r̃, where

r̃ := [r̃1 r̃2 · · · r̃N ]T. By defining states x = r̃, the linearized system can be written in
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the state-space model

ẋ = lÂ x + u + B̂ d

= −
( ε

2π
f
′
(req)IN +

εω

2
KdG

)
x + B̂ d (6.13)

where IN is the N ×N identity; Â = − ε
2π f

′
(req)IN ; the control input, u = − εω

2 KdGx

(with a slight abuse of notation with regard to (6.1)); and B̂ is the input matrix for

external disturbances d. Recall that G is the Kron-reduced conductance matrix, and

Kd = diag{κ1, . . . , κN}. With regard to control synthesis, Kd takes the connotation

of the feedback-gain matrix. In general, B̂ can be chosen according to the application;

and in this particular case, we make the choice B̂ = G. With due regard to the optimal

control problem to be formulated in Section 6.2, we define the vector of performance

outputs, z, as follows:

z =

[
Q̂1/2

−R̂1/2KdG

]
x, (6.14)

where Q̂ is the state penalty matrix; and R̂ is the control input penalty matrix.

A cursory inspection of (6.13)-(6.14) indicates two impediments in applying con-

ventional linear feedback control design approaches: i) the closed-loop system is not in

standard feedback control form, (the standard form would be ẋ = (Â − GK)x + B̂d);

ii) there is a structural constraint on the feedback gain matrix, K, being diagonal (of

the form Kd). To reformulate the problem so that conventional linear feedback control

design approaches can be used, we first introduce a change of variables, ψ = Gx. Note

that G is invertible when the network has shunt loads [129]. The state-space model for

the system in these new coordinates can be expressed in the following form:

ψ̇ = (A − GKd)ψ + B d

ξ =

[
Q1/2

−R1/2Kd

]
ψ,

(6.15)

where
A = GÂG−1, B = GB̂

Q = G−1 Q̂G−1, R = R̂.



100

Next, we introduce an optimal control design method that will allow us to synthesize a

diagonal feedback gain matrix.

6.2 Design of current gains

In this section, we introduce a sparsity-promoting optimal control algorithm developed

in [21, 30] to synthesize optimal current gains for the oscillators with the objective of

regulating their terminal voltages to a common value.

6.2.1 Linear quadratic control design

We cast the task of synthesizing the current gains as an optimal feedback control design

problem. With reference to (6.15), we select the state penalty matrix Q̂ = IN to ensure

that the terminal-voltage amplitudes of all circuits coincide. Furthermore, we set the

control input penalty matrix R̂ = ρIN , ρ ∈ R+. The closed-loop H2 norm from input

disturbance d to performance output z is defined as

J(K) :=





trace
(
BT P (K)B

)
K stabilizing

∞ otherwise,
(6.16)

where the closed-loop observability Gramian P (K) satisfies the Lyapunov equation

(A − GK)TP + P (A − GK) = −(Q + KTRK), (6.17)

and K is the feedback-gain matrix. Conventional H2 control design methods, such as

the Linear Quadratic Regulator (LQR) problem, provide us with an optimal centralized

controller. In our problem setting, dense feedback gain matrices require communica-

tion links to relay information about oscillator currents. However, we want to ensure

that the feedback matrix is diagonal so that each oscillator only requires local current

measurements. Next, we introduce the sparsity-promoting optimal control algorithm to

incorporate the structure constrain on the feedback matrix K to get a fully diagonal

matrix Kd.
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Figure 6.3: Sparsity-promoting optimal current gain design illustrated for a Kron-
reduced network and two oscillators. As the sparsity emphasis γ increases, K becomes
sparser and we eventually recover a diagonal matrix, Kd, which corresponds to local cur-
rent gains. Dotted lines indicate communication links that correspond to dense feedback
gain matrices.

6.2.2 Sparsity-promoting optimal control

Consider the following optimization problem:

minimize J(K) + γ g(F )

subject to K − F = 0,
(6.18)

where J(K) is defined in (6.16), g(F ) is the sparsity-promoting penalty function, and

γ is the emphasis on sparsity. When γ is zero, objective function (6.18) only minimizes

J(K), which provides us with the optimal centralized controller. As γ increases, the

emphasis on the sparsity penalty function increases, so we obtain sparser feedback-

gain matrices, at the expense of system performance. See Fig. 6.3 for an illustration.

By decoupling the objective functions J and g and introducing the linear constraint

K−F = 0 in (6.18), the alternating direction method of multipliers (ADMM) algorithm

suggests a solution approach by exploiting the separability of g and differentiability of

J ; see [21,30] for the details of the algorithm. The penalty function g(F ) is determined

by a weighted `1 norm [21]:

g(F ) :=
∑

i, j

Wij |Fij |, (6.19)

where Wij = 1/(|Fij |+ε) are positive weights, see [99] for detailed procedure of selecting

Wij ’s.
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The algorithm consists of the following steps: First, we form the augmented La-

grangian; then we use ADMM for the augmented Lagrangian minimization, which in-

cludes a K-minimization step, an F -minimization step, and a dual-variable update step.

ADMM identifies a specific sparsity pattern and provides a good initial condition for

the structured feedback design. Finally, we implement a polishing step, which involves

solving a structured H2 problem for the fixed controller structure. Readers are referred

to [21,30] for further information.

6.3 Case study

To verify the effectiveness of our algorithm for optimal current-gain design, we test it on

a resistive network with the same topology as the the IEEE 37-bus benchmark network

and a collection of N = 7 Van der Pol oscillators (see Fig. 6.6 for the network topology).

The dynamics of the oscillators can be described using (6.1) with f(v) = αω(1− βv2),

where α and β are positive constants. (See Fig. 6.1 for a detailed circuit schematic). It

follows from (6.11) that the averaged voltage-amplitude dynamics of the jth oscillator

are:

Figure 6.4: Schematic diagram of the electrical network. The topology is adopted from
the IEEE 37-bus network.
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Figure 6.5: Evolution of averaged amplitudes and phases with time for the nonlinear
system in (6.11).
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Figure 6.6: Performance versus sparsity comparison of sparse K and the optimal cen-
tralized controller Kc.

d

dt
rj = − ε αω

(
−1

2
rj +

β

8
r3
j

)
− κj ε ω

2
gjj rj +

κj ε ω

2

N∑

`=1,`6=j
gj` r` cos(θj`). (6.20)

Linearizing (6.20) around the stable equilibrium point of the decoupled oscillator, req =

2/
√
β [96], and acknowledging that the phase-synchronized equilibrium is locally expo-

nentially stable, we recover the state-space model of the form (6.13) with Â = −εαωIN .

For the simulations that follow, we pick α = 0.90, β = 4, ω = 2π60 rad/s, ε = 0.19;

conductances of the lines in the IEEE-37-bus network are sourced from [130].
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Fig. 6.5 shows the averaged voltage magnitude and phase trajectories of all seven

oscillators when we apply unit current gains (without control design) to the original

nonlinear coupled system (6.11). It is evident that the terminal-voltage magnitudes do

not synchronize as time evolves but the phases synchronize innately.

6.3.1 Optimal current-gain design

The sparsity-promoting optimal control problem in (6.18) is solved with 30 logarithmically-

spaced points for γ ∈ [10−4, 10−2]. In Fig. 6.6, we can see that as emphasis on spar-

sity increases, the number of nonzero elements in the feedback matrix—returned by

the cardinality function card(.)—reduces. For γ = 10−2, the sparsity-promoting opti-

mal control algorithm returns a diagonal feedback controller, Kd with diagonal entries:

κ1 = 0.0033, κ2 = 0.0047, κ3 = 0.0026, κ4 = 0.0025, κ5 = 0.0047, κ6 = 0.0038,

κ7 = 0.0029. With this fully decentralized controller, we drop 80% of the nonzero ele-

ments in the feedback matrix compared to the optimal centralized controller (denoted

by Kc with corresponding cost Jc), at the expense of only 0.01% performance loss.

(a) Linearized system (b) Nonlinear system

Figure 6.7: Oscillator terminal-voltage magnitudes with designed current gains applied
at time t = 0.1 s.
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6.3.2 Time-domain simulations for original nonlinear and linearized

models

To demonstrate the efficacy of our control design method, we simulate both the linear

model (6.15) and the original nonlinear model (6.20) for Van der pol oscillators, with

the optimal κ’s that are obtained from the sparsity-promoting optimal control algo-

rithm. Fig. 6.7 shows the trajectories of the averaged terminal-voltage magnitudes for

each inverter with optimal gains applied at time t = 0.1 s, with unit current gains as

initial values. From the figure, it is clear that calibrating the current gains leads to

synchronization of terminal voltage amplitudes. Furthermore, since the original nonlin-

ear system also achieves amplitude synchronization, it validates our linearized design

perspective.

6.4 Concluding remarks

In this chapter, we introduced a systematic way of designing current gains for weakly

nonlinear circuits governed by Liénard’s equation in a resistive electrical network. The

output current of each oscillator is scaled by a current gain; and the objective is to

synthesize an optimal set of current gains to ensure voltage regulation in the network.

We apply a sparsity-promoting optimal control method to design the current gains. The

optimization problem targets simultaneously achieving a desirable system performance

and preserving the sparsity pattern, which is the diagonal structure of the feedback

matrix. An iterative ADMM algorithm is used to solve the `1 regularized version of the

standard H2 optimal control problem. Ongoing research is focused on extending the

approach to cover networks with inductive and capacitive elements.
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for a class of distributed systems. In Proceedings of the 2011 American Control

Conference, pages 2050–2055, 2011.



108

[20] F. Lin, M. Fardad, and M. R. Jovanović. Sparse feedback synthesis via the al-
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