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Electromagnetic field diffusion in superconductors with gradual resistive transitions may exhibit a
peculiar (anomalous mode which does not exist in superconductors with shahpa) resistive
transitions. This is a “standing” mode. In the case of this mode, the electromagnetic field on a
superconductor boundary increases with time, while the region occupied by the electromagnetic
field within the superconductor does not expand. In this paper, an exact analytical solution to the
appropriate nonlinear diffusion equation is derived. It is demonstrated that this solution can be
physically interpreted as the standing mode. The standing mode solution is also obtained by using
a “rectangular profile” approximation and these two results are compared19@5 American
Institute of Physicg.S0021-897@6)03508-1

Models for superconducting hysteresis are based on thiar profile” approximation has led to the following equation
analytical study of electromagnetic field diffusion in hard for the zero frontzy(t), of the current density:
superconductors. In the critical state motiélthis study is . KN
usually performed under the assumption of ideshlarp re- f J(ndr= HoR [Jo(t)zg(t)—JO(O)zg(o)], (4
sistive transition. This assumption appreciably facilitates the 0 2
calculation of distribution of electric currents in supercon-yhich is valid for any monotonically increasing boundary
ductors of simple shapeplane slabs, circular cross-section congition J(t).
cylinders and leads to the rate independent models for su- | this paper, we intend to show that electromagnetic
perconducting hysteresis. _ field diffusion in superconductors with gradual resistive tran-

Actual resistive transitions in superconductors aregjtions may exhibit a peculiganomalousmode which does

gradual, and they are customarily described by the poweRot exist in superconductors with ideal resistive transitions.

law: This is a standing mode. In the case of this mode, the elec-
J\n tromagnetic field on a superconductor boundary increases
E= E) . (n>1). (1)  with time, while the region occupied by the electromagnetic

field does not expand. We shall first find the condition for the
In the above expressiok, is electric field,J is current den- eX|sten_ce Qf this mode by using the “rectangular_ profile”
sity, andk is a parameter which coordinates the dimension&PProximation and formuld4). Then, we shall derive the
in (1). The exponent fi” is a measure of the sharpness of the €Xact expressions for the standing mode through the analyti-
resistive transition and it varies in the range 7—1000. cal solution of nonlinear diffusion Eq2), that is without
The above power law can be used as a constitutive equéesortlng to the rectangular profile approximation. Finally,
tion for hard superconductors. This leads to the following’e Shall compare these two results. .
nonlinear diffusion equation for the current density in the 10 Start the discussion, we turn to He) and try to find

case of 1D problems: such a monotonically increasing boundary conditityft)
for which the zero frontzy(t), stands still. To this end, we
PEN A assume that(t)=z,=const, and, by differentiating both
?:“Ok ot @ sides of(4), we arrive at:

Previously, the analytical self-similar solutions of EQ)
were derived for zero initial condition and the following

boundary condition: s t)A

Jo(t)=J(0t)=ctP, (t=0, p=0). €©)]

It has been found that the electromagnetic field diffusion in 2
superconductors with gradual resistive transitions has some
features which are very similar to the electromagnetic field i
diffusion in superconductors with ideal resistive transitions.
Namely, it has been found that foe=7 the actual profile of
electric current density is almost rectangular. This has
prompted the suggestion to approximate the actual current
density profile by a rectangular one with the height equal to

the instantaneous valuk(t), of the (?U”ent qenSity onthe g 1. Rectangular approximation of current density profiles inside the
boundary of the superconduct@ee Fig. 1 This “rectangu-  superconducting half-space.
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N sion Eq.(2). It is remarkable that the standing mode solution
Jz b (1 _ can be obtained by using the method of separation of vari-

ables. Actually, this is the only solution which can be ob-
tained by this method. According to the method of separation
of variables, we look for the solution of ER) in the form:

I(z,t)=@(2)¢(1). (12
By substituting(12) into (2), after simple transformations we
derive:

7 "2 1 d?e"(2)  pok" dy(t)
e(z) dZ¢ gt dt

[

ail

(13

FIG. 2. Rectangular approximation of the standing mode. .
This means that

MoK™ di(t)
kK" d T d—:)\’ (14
n Hok™ 5 dJo(t) Y1) dt
Jo()=—F—2 ——. 5
2 dt 2 n
1 d%"(2)
The last expression can be transformed as follows: @ az M (15
2 5 dt= dJo(t) _ (6) where\ is some constant.
mok"Zg Jo(1) By integrating(14), we easily obtain:
By integrating both parts of6), we obtain: fok™ -1
2 1 o= (n—l)Mto—t)) | (19
o2 a1 196037 @)

wheret, is a constant of integration.
From (7), we derive: Equation(15) is more complicated than E¢L4) and its
integration is somewhat more involved. To integrate Eq.

Jo(t)= (1 — T (8) (15), we introduce the following auxiliary functions:
0)— —2—n t dé
( O ) QD=0 R2="ar. an

The last expression can be represented in the form:
From (17) and(15), we derive:

C
Jo(t)=mﬁ, 9 dR d?9  d2p" o
0 2o dZ2 " aZ ~re@=1e"(2). (18
where:
puok"Z2 2\ 1n—1 ,uok”zSJé’”(O) On the other hand
2n—1)) ' ©T T 2m-1) (10 dR dR d§ _dR 1d(R?)

—=——=R——=-— (19
Thus, we have established that, if the current density on dz df dz dg 2 de

the boundary of superconducting half-space varies with timgsy, equating the right-hand sides (f8) and(19), we obtain
according to the expressior{8)—(10), then the zero front

zo(t), of the current density stands still during the time in-  d(R®) _
: L ———=2\60". (20
terval O<t<t,. In other words, during this time interval the de
electromagnetic field diffusion exhibits a standing mode._ . ) )
This mode is illustrated by Fig. 2. By integrating Eq/(20), we find:
It is desirable to express the boundary condition for the n
standing mode in terms of magnetic figtt}(t) on the su- R(2)=\— )\[0(2)]”“’2” (21)
perconductor boundary. This can be easily accomplished by
using (9) and Ampere’s Law, which leads to: In (21), a constant of integration was set to zero. This can be
cz justified on physical grounds. Indeed, the magnetic field
Ho(t)zwm- (11 should vanish at the zero front, that is at the same point

where J(z,t) vanishes. By usind12) and (17), it can be
Our previous derivation has been based on the “rectanshown that the magnetic field addz,t) are proportional to
gular profile” approximation for the electric current density. R(z) and 6'"(z), respectively. This means that the above
Next, we shall derive the expressions for the standing modevo functions should vanish simultaneously. This is only
solution without resorting to the above approximation, butpossible if the integration constant (81) is set to zero.
rather through an analytical solution of the nonlinear diffu-  Next, by using(17) in (21), we find:
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do(z)
dz

2n

n+1

= N O(z) "2, (22

By integrating(22), we derive:
(n—1)?

[0(2)]n_l/n:2(n+l)n

N(zZo—2), (23

wherez, is a constant of integration.
From (17) and (23), we obtain:
(n_ 1)2)\ 1n—-1
2(n+1)n
Now, by substituting(16) and (24) into (12), we find the

following analytical(and exac} solution of nonlinear diffu-
sion Eq.(2):

e(2)= (20-2)° (29)

(N—1) uok"(zg—2z)?| ¥ 1

2(n+1)n(ty—t)

J(z,t)= (25)

It is remarkable that, as a result of substitution, the constant

\ cancels out, and the solutid@5) does not depend ok at
all.

The obtained solutio25) can be physically interpreted
as follows. Suppose that at tinte=0 the electric current
density satisfies the following initial condition:

(N—1) uok"(zg—2)?]" 1 it 0
. if 0sz<z
J(z,00= 2(n+1)ntg °
0, if 0sz=z
(26)

Suppose also that the current density satisfies the following

boundary condition during the time intervai@ <t,:

(n_ 1)1“’0an(2) 1h-1
2(n+21)n(ty—t)

Jo(t)=J(0t)= (27)

Then, according tq25), the exact solution to the initial-
boundary value probleni26)—(27) for the nonlinear diffu-
sion EqQ.(2) can be written as follows:

(N—1) pok"(zo—2)%| M1 i 0<z<
, if 0sz=z
Jz,)={ | 2(n+1)n(to—t) °
0, if Z>Zo.
(29)

A
Jiz, 1)
3

Zo z

FIG. 3. Current density profiles corresponding to the exact analytical solu-
tion of the diffusion equation.

Z,
Ho(t)=f “I(zt)dz (29)
0
By substituting(28) into (29) and performing the integration,
we obtain:

n—1 (n—1)uok"z5 Y1

n+1 % 2(n+ n(ty—t)

It is also instructive to compare the above exact standing
mode solution with the standing mode expressions derived
on the basis of the rectangular profile approximation. First, it
is clear from formula(28) (and Fig. 3 that, for sufficiently
large “n”, the actual current density profiles for the standing
mode are almost rectangular. Second, it is apparent that the
boundary condition(27) can be written in the fornf9) with
“c”and “ty" defined as follows:

Ho(t)= (30

(n—1)uok"zg| "
2(n+1)n '
(n—1) k2335~ "(0)
0o 2(n+1)n (31)

By comparing(31) with (10), it can be concluded that for
sufficiently large n” these expressions are practically iden-
tical. Thus, the rectangular profile approximation is fairly
accurate as far as the prediction of the standing mode diffu-
sion is concerned.

The origin of the standing mode can be elucidated on
physical grounds as follows. Under the boundary condition
(27), the electromagnetic energy entering the superconduct-

This solution is illustrated by Fig. 3 and it is apparent that iting material at any instant of time is just enough to affect the
has the physical meaning of the standing mode. It is als@lmost uniform increase in electric current density in the re-
clear from formula(28) (and Fig. 3 that the above solution gion (0<z=<z;) already occupied by the field, but insuffi-
has the following self-similarity property: the profiles of cient to affect the further diffusion of the field into the ma-
electric current density for different instants of time can beterial.
obtained from one another by dilatidar contraction along This research has been supported by the U. S. Depart-
the J-axis. In other words, these profiles remain similar toment of Energy, Engineering Research Program.
gne apothgr. Th|_s suggests t.hat solut{@B) can be derived 1. P. Bean, Phys. Rev. Le8, 250 (1962,

y using dimensional analysis. However, we shall not delvez¢ p gean’ Rev. Mod. Phy86, 31 (1964.
further into this matter. 3H. London, Phys. Lett6, 162 (1963.

From the practical point of view, it is desirable to ex- ‘5‘33 v?/ Ellilt(:_holé and D-.F; %lglgkelrég\cta Metall. Mattg®, 995 (1991.

press the boundgry conditig@7) for the standing mode in 5C. J. G. 'Siumrﬁgreg% ) E (Evet?é, IEEE Trans. MagAG-23, 1179
terms of magnetic fieldH,(t) on the superconductor bound-
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ary. According to Ampere’s Law, we have: 1. D. Mayergoyz, J. Appl. Physr6, 7130(1994.

6604 J. Appl. Phys., Vol. 79, No. 8, 15 April 1996 I. D. Mayergoyz and M. Neely

Downloaded-14-Jan-2003-t0-18.78.0.48.-Redistribution-subject-to-AlP-license-or-copyright,~see=http://ojps.aip.org/japol/japcr.jsp



