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This article presents an analytical study of nonlinear diffusion of electromagnetic fields in
anisotropic superconducting media. The case of anisotropic media is treated as a perturbation of
isotropic media and analytical expressions for nonlinear diffusion of circularly polarized
electromagnetic fields are derived. ©1997 American Institute of Physics.
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Nonlinear diffusion of electromagnetic fields in supe
conductors has been a topic of increasing interest lat
However, only the case ofisotropic superconducting media
has been discussed. In this article, an attempt is mad
study nonlinear diffusion of circularly polarized electroma
netic fields inanisotropic media. This problem for isotropic
media was solved in Ref. 1 in the case of ideal resist
transitions and in Ref. 2 for gradual resistive transitions
scribed by the ‘‘power law.’’ The power law has been o
served in numerous experiments, and it has been extens
used in recent studies of nonlinear diffusion of electrom
netic fields in superconductors albeit only for linear polariz
tion of electric field~see, for instance, Ref. 3 and referenc
therein!.

In our discussions, the following constitutive relatio
for anisotropic superconducting media with gradual resis
transitions will be used:

Jx~Ex ,Ey!5~11e!kEx~A~11e!Ex
21~12e!Ey

2!1/n21,
~1!

Jy~Ex ,Ey!5~12e!kEy~A~11e!Ex
21~12e!Ey

2!1/n21,
~2!

wherek is a parameter that coordinates the dimensions
both sides in Eqs.~1! and ~2!, while e is some relatively
small parameter which accounts for the anisotropicity of
media. It is clear that the properties of superconductor e
into Eqs.~1! and ~2! through parametersn, e, andk.

In the limiting case ofe50, expressions~1! and ~2! are
reduced to

Jx
~0!~Ex ,Ey!5kEx~AEx

21Ey
2!1/n215kE1/n21Ex , ~3!

Jy
~0!~Ex ,Ey!5kEy~AEx

21Ey
2!1/n215kE1/n21Ey , ~4!

which are constitutive relations for isotropic superconduct
media with gradual resistive transitions described by
power law:E5(J/k)n, ~n.1!.

Thus, the anisotropic media with constitutive relatio
~1! and~2! can be mathematically treated as perturbations
isotropic media described by the power law. This sugge
that the perturbation technique can be very instrumenta
the mathematical analysis of nonlinear diffusion in anis
tropic media with constitutive relations~1! and ~2!. In the
limiting case ofn5`, expressions~1! and~2! describe ideal
~‘‘sharp’’ ! resistive transitions with critical current
Jx
c5(11e)k and Jy

c5(12e)k. It is also important to note
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that the Jacobian matrix forJ~E! defined by Eqs.~1! and~2!
is symmetric. This guarantees the absence of local cy
~hysteretic-type! losses.

Now, consider a plane circularly polarized electroma
netic wave penetrating superconducting half-spacez.0. The
magnetic field on the boundary of this half space is speci
as follows:

Hx~0,t !5Hm cos~vt1g!, Hy~0,t !5Hm sin~vt1g!.
~5!

By using the Maxwell equations, it is easy to find that t
distribution of electric field in half-spacez.0 satisfies the
following coupled nonlinear partial differential equations:

]2Ex

]z2
5m0

]Jx~Ex ,Ey!

]t
,

]2Ey

]z2
5m0

]Jy~Ex ,Ey!

]t
~6!

subject to the boundary conditions

]Ex

]z
~0,t !5m0vHm cos~vt1g!,

~7!]Ey

]z
~0,t !52m0vHm sin~vt1g!,

Ex~`!5Ey~`!50. ~8!

Next, by using the perturbation technique, we shall look
the solution of the boundary value problem~6!–~8! in the
form

Ex~z,t !5Ex
0~z,t !1eex~z,t !, ~9!

Ey~z,t !5Ey
0~z,t !1eey~z,t !, ~10!

We shall also use the followinge-expansions for constitutive
relations~1! and ~2!:

Jx~Ex ,Ey!5Jx
0~Ex ,Ey!

1eJx
0~Ex ,Ey!F11

12n

2n
•

Ex
22Ey

2

E2 G1•••,

~11!

Jy~Ex ,Ey!5Jy
0~Ex ,Ey!

2eJy
0~Ex ,Ey!F12

12n

2n
•

Ex
22Ey

2

E2 G •••,
~12!

whereJx
0(Ex ,Ey) andJy

0(Ex ,Ey) are defined by expression
~3! and~4!, respectively, whileE 5 AEx

21Ey
2. By substituting
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expressions~9!–~12! into Eqs.~6! and boundary conditions
~7! and ~8!, and equating the terms of like powers ofe, we
end up with the following boundary value problems forEx

0,
Ey
0 andex , ey :

]2Ex
0

]z2
5m0

]Jx
0~Ex

0,Ey
0!

]t
,

]2Ey
0

]z2
5m0

]Jy
0~Ex

0,Ey
0!

]t
,

~13!

]Ex
0

]z
~0,t !5vm0Hm cos~vt1g!,

~14!
]Ey

0

]z
52vm0Hm sin~vt1g!,

Ex
0~`!5Ey

0~`!50 ~15!

and

]2ex
]z2

2m0

]

]t S ]Jx
0

]Ex
~Ex

0,Ey
0!ex1

]Jx
0

]Ey
~Ex

0,Ey
0!eyD

5m0

]

]t FJx0~Ex
0,Ey

0!S 11
12n

2n
•

~Ex
0!22~Ey

0!2

~E0!2
D G ,

~16!

]2ey
]z2

2m0

]

]t S ]Jy
0

]Ex
~Ex

0,Ey
0!ex1

]Jy
0

]Ey
~Ex

0,Ey
0!eyD

52m0

]

]t FJy0~Ex
0,Ey

0!S 12
12n

2n
•

~Ex
0!22~Ey

0!2

~E0!2
D G ,

~17!

]ex
]z

~0,t !5
]ey
]z

~0,t !50, ex~`,t !5ey~`,t !50. ~18!

The boundary value problem~13!–~15! describes the
penetration of circularly polarized electromagnetic wave
isotropic superconducting half-spacez.0. The solution to
this problem has been found in Ref. 2. For the case when
initial phaseg in Eq. ~11! is such that the initial phase ofE0

on the boundary~z50! is equal to zero, this solution can b
written as follows:

Ex
0~z,t !5EmS 12

z

z0
D a8

cos@vt1u~z!#, ~19!

Ey
0~z,t !5EmS 12

z

z0
D a8

sin@vt1u~z!#, ~20!

z05
A4 2n~n11!~3n11!2

~n21!Avm0sm

, sm5kEm
1/n21, ~21!

u~z!5a9 lnS 12
z

z0
D , ~22!

a85
2n

n21
, a95

A2n~n11!

n21
~23!

andEm is determined from the equation
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Hm5
ua81 ia9u

vm0z0
Em . ~24!

By substituting~19! and~20! into Eqs.~16! and~17! and by
using expressions~3! and~4!, after straightforward but some
what lengthy transformations we derive the following equ
tions forez andey :

]2ex
]z2

2m0smS 12
z

z0
D 22 ]

]t FexS 11n

2n
1
12n

2n

3cos 2[vt1u(z)] D1ey
12n

2n
sin 2@vt1u~z!#G

5m0smEmS 12
z

z0
D 2/~n21! ]

]t H 3n11

4n
cos@vt1u~z!#

1
12n

4n
cos 3@vt1u~z!#J , ~25!

]2ey
]z2

2m0smS 12
z

z0
D 22 ]

]t Fex 12n

2n
sin 2@vt1u~z!#

1eyS 11n

2n
2
12n

2n
cos 2@vt1u~z!# D G

52m0smEmS 12
z

z0
D 2/~n21! ]

]t S 3n11

4n
sin@vt1u~z!#

2
12n

4n
sin 3@vt1u~z!# D . ~26!

To simplify the above equations, we introduced new st
variables

w~z,t !5ex~z,t !1 iey~z,t !, ~27!

c~z,t !5ex~z,t !2 iey~z,t !. ~28!

By looking for the solution in terms of Fourier series

w~z,t !5 (
k52`

`

w2k11~z!ei ~2k11!vt, ~29!

c~z,t !5 (
k52`

`

c2k11~z!ei ~2k11!vt ~30!

it can be shown that onlyw3, w21, c1, andc23 are not equal
to zero. Forw3 andc1 the following coupled ordinary differ-
ential equations~ODEs! can be derived:

S 12
z

z0
D 2 d2w3

dz2
2 ix3Faw31S 12

z

z0
D i2a9

c1G
5 i z3EmS 12

z

z0
D 2n/~n21!1 i3a9

~31!

S 12
z

z0
D 2 d2c1

dz2
2 ix1Fac11S 12

z

z0
D 2 i2a9

w3G
5 in1EmS 12

z

z0
D 2n/~n21!1 ia9

, ~32!
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x2k115~2k11!vm0sm

12n

2n
, a5

11n

12n
, ~33!

z353vm0sm

12n

42n
, n15vm0sm

3n11

4n
. ~34!

The solution of Eqs.~31! and ~32! should be subject to the
boundary conditions

dw3

dz
~0!5

dc1

dz
~0!50, w3~`!5c1~`!50. ~35!

Similar ODEs can be derived forw21 andc23. However, this
can be avoided becausew21 andc1 as well asw23 andw3 are
complex conjugate.

The particular solution of ODEs~31! and ~32! has the
form

w3
~p!~z!5C3S 12

z

z0
D l3

, c1
~p!5C1S 12

z

z0
D l1

, ~36!

where

l35
2n

n21
1 i3a9, l15

2n

n21
1 ia9. ~37!

CoefficientsC3 and C1 satisfy the following simultaneous
equations:

@l3~l321!2x3az0
2#C32 ix3z0

2C15 i z3z0
2Em , ~38!

2 ix1z0
2C31@l1~l121!2 ix1az0

2#C15 in1z0
2Em . ~39!

It is clear from Eqs.~21!, and ~33!, ~34!, and ~37! that the
coefficients in Eqs.~38!, and ~39! depend only onn. This
opens the opportunity to compute the ratiosC1/Em and
C3/Em as functions ofn.

It can be shown2 that the solution of homogeneou
ODEs corresponding to Eqs.~31! and ~32! has the form

w3
~h!~z!5AS 12

z

z0
D b

, c1
~h!~z!5BS 12

z

z0
D b2 i2a9

,

~40!

FIG. 1. Magnitude of perturbationse1~z/z0! ande3~z/z0! at n5`.
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whereb is the solution of the following characteristic equ
tion:

~b22b2 ix3az0
2!@~b2 i2a9!22~b2 i2a9!2 ix1az0

2#

1x3x1z0
450. ~41!

It can be shown that the above characteristic equation
two roots,b1 andb2, with positive real parts. By using thes
roots and expressions~36! and~40!, the solution of Eqs.~31!,
and ~32! can be written as follows:

w3~z!5A1S 12
z

z0
D b1

1A2S 12
z

z0
D b2

1C2S 12
z

z0
D l3

,

~42!

c1~z!5B1S 12
z

z0
D b12 i2a9

1B2S 12
z

z0
D b22 i2a9

1C1S 12
z

z0
D l1

. ~43!

The unknown coefficientsA2, A2, B1, andB2 can be found
from the boundary conditions~35! at z50 and from the fact
that expressions~40! should satisfy homogeneous ODEs co
responding to Eqs.~31! and ~32!. This yields the following
simultaneous equations for the above coefficients:

b1A11b2A252l3C3 , ~44!

~b12 i2a9!B11~b22 i2a9!B252l1C1 , ~45!

~b1
22b12 ix3az0

2!A12 ix3z0
2B150, ~46!

~b2
22b22 ix3az0

2!A22 ix3z0
2B250. ~47!

Again, it is easy to see that the coefficients of characteri
Eq. ~41! as well as the coefficients of simultaneous Eq
~44!–~47! depend only onn. This allows one to compute th
rootsb1 andb2 as well as the ratiosA1/Em , A2/Em , B1/Em ,
andB2/Em as functions ofn. In the limiting case ofn5`
~ideal resistive transition-critical state model!, one can com-
pute specific numerical values of the above quantities. Th
values are as follows:b1521i&, b251.9211i3.699,
C1/Em53

22i9&/16, C3/Em5 i9&/16, A1/Em 520.129
1 i0.116,A2/Em50.0712 i0.990,B1/Em520.0431 i0.039,
B2/Em521.8991 i0.513. By using these values, all desire
quantities can be found. For instance, the magnitudes of
first and third harmonicse1 ande3 of the perturbation can be
computed as the functions ofz. The results of these compu
tations are shown in Fig. 1. For gradual resistive transitio
~finite n!, the rootsb1 andb2, as well as all the mentioned
coefficients, have been computed as functions ofn. The lack
of space prohibits us from presenting these computation
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