Nonlinear diffusion in anisotropic superconductors
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This article presents an analytical study of nonlinear diffusion of electromagnetic fields in
anisotropic superconducting media. The case of anisotropic media is treated as a perturbation of
isotropic media and analytical expressions for nonlinear diffusion of circularly polarized
electromagnetic fields are derived. 897 American Institute of Physics.
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Nonlinear diffusion of electromagnetic fields in super- that the Jacobian matrix faE) defined by Egs(1) and(2)
conductors has been a topic of increasing interest latelyis symmetric. This guarantees the absence of local cyclic
However, only the case d$otropic superconducting media (hysteretic-typglosses.
has been discussed. In this article, an attempt is made to Now, consider a plane circularly polarized electromag-
study nonlinear diffusion of circularly polarized electromag- netic wave penetrating superconducting half-spae8. The
netic fields inanisotropic media. This problem for isotropic magnetic field on the boundary of this half space is specified
media was solved in Ref. 1 in the case of ideal resistivaas follows:
transitions and in Ref. 2 for gradual resistive transitions de- .
scribed by the “power Iaw.”gThe power law has been ob- Hx(0t)=Hp cogwt+y), Hy(0Ot)=Hp sinfowt+ y()5.)
served in numerous experiments, and it has been extensively
used in recent studies of nonlinear diffusion of electromagBy using the Maxwell equations, it is easy to find that the
netic fields in superconductors albeit only for linear polariza-distribution of electric field in half-space>0 satisfies the
tion of electric field(see, for instance, Ref. 3 and referencesfollowing coupled nonlinear partial differential equations:

therein). 2 >
. . . _ . J°E dJ,(E, E J°E 4, (Ey,E
In our discussions, the following constitutive relations > = o (Ex y), > = o y(Ex.Ey) (6)
for anisotropic superconducting media with gradual resistive Jt 9z dt
transitions will be used: subject to the boundary conditions
J(Ex Ey) = (1+ )KE,(\(1+ €)EZ+(1—€)EH M2, IBx o
JE, _ (7)
Jy(Ex,Ey)=(1- €)KE,(V(1+€)EZ+(1—e)E))¥ 1, Z7 (0=~ powHn sin(wt+7y),
)
Ex(0)=Ey()=0. ®

wherek is a parameter that coordinates the dimensions of
both sides in Eqs(l) and (2), while € is some re|ative|y Next, by USing the perturbation teChnique, we shall look for
small parameter which accounts for the anisotropicity of thehe solution of the boundary value problei®)—(8) in the
media. It is clear that the properties of superconductor entdPrm

into Egs.(1) and (2) through parametens, ¢, andk. E(zt)=E%zt)+ t 9
In the limiting case ofe=0, expressiongl) and(2) are (2D=Exz0+ee(z1), ©
reduced to Ey(z,1) =Ep(z,t) +eey(z,1), (10

J&O)(Ex JEy)=KE,( /—EiJr Ei)l/n—lz KEW-1E | 3) We §hal| also use t_he followingexpansions for constitutive
relations(1) and(2):

IPUE, Ey)=KE/(VEZ+E) Y 1=kE'™'E,, (4 J(Ey,Ey)=JI%E, E,)

1-n E2-E2

which are constitutive relations for isotropic superconducting 14
2n  E?

media with gradual resistive transitions described by the
power law:E=(J/k)", (n>1).

+eJ(E,.E,)

Thus, the anisotropic media with constitutive relations (1D
(1) and(2) can be mathematically treated as perturbations of  j (E, E,)=J%E,,E,)
. . . . . yi=x1=y y\=x1=y
isotropic media described by the power law. This suggests S
that the perturbation technique can be very instrumental in % Eal1 1-n BBy
the mathematical analysis of nonlinear diffusion in aniso- eJy(Ex.By) 2n ~ EZ '
tropic media with constitutive relationd) and (2). In the (12)

limiting case ofn=c, expressionsl) and(2) describe ideal
(“sharp”) resistive transitions with critical currents whereJ?(E, Ey) andJS(EX ,Ey) are defined by expressions
Ji=(1+¢€)k and J§=(1—e)k. It is also important to note (3) and(4), respectively, whil& = \/EX2+ Eyz. By substituting
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expressiong9)—(12) into Egs.(6) and boundary conditions
(7) and (8), and equating the terms of like powers ©fwe
end up with the following boundary value problems f&f,
EJ ande,, e,

P O(ERE)  PEy  dJ)(ELE))
g2 Mg g2 TR T g
(13
0
aZX (Ot)=wuoHy, cogwt+17),
JEO (14)
y_ .
=7~ @woHn sinfwt+y),
Ef(e) =Ey()=0 (15
and
N A - N
R J— —_ +_
922 “Oat(aEX(EX'Ey)eX aEy(EX’Ey)ey
1-n (ED)°—(Ey)?
_ ., 2| 10/p0 g0 o LX y
Mo ot |:‘JX(EX7Ey) 1+ 2n (EO)2 ’
(16)
P e FRAN 930
y_ 2 Y (=0 =0 Yy o0
02 Mo (0EX (ExEyect JE, (EX’EY)EY)
J 1-n (E)°—(Ey)?
— . 0/=0 =0 _ X y
- Moﬁt[Jy(EX,Ey)(l TR =0 ,
(17)
% 0t)= 2 (01)=0 t t)=0 18
—_ = —= = o0 = o0 =
o7 (O0=—"(0)=0, e(=)=e,(x,t)=0. (18

The boundary value probleril3)—(15) describes the

Ly 24
" omze Em (24
By substituting(19) and(20) into Egs.(16) and(17) and by
using expression@) and(4), after straightforward but some-
what lengthy transformations we derive the following equa-
tions fore, ande:

9%e, 12 2.9 1+n+1—n
922 Hoom 1T 5t | 2n T 2n

ve, 2 Meingwtto
eywsm Jow (2)]

X cos 2wt + 6(z)]

z\#"Y g (3n+1
= o0 mEm 1—2—0) E: an coj wt+6(z)]
1-n
+—cos$wt+0(z)]], (25
4n
J’ey 12 29 1-n g
o2 Meom| Lo o & 5, SinJwt+6(2)]
1+n 1-n
tey o0 WCOSZ(MH‘G(Z)]
z\#"Y g (3n+1
Z_MOO'mEm(l—Z—O) E(T S|r{wt+0(z)]
1-n | 26
Wsmf—.{wtv%'(z)] . (26)

To simplify the above equations, we introduced new state
variables

ep(z,t)=e,(z,t) +iey(zt), (27)
W(z,t) =6 (z,t)—iey(zt). (29

By looking for the solution in terms of Fourier series

penetration of circularly polarized electromagnetic wave in

isotropic superconducting half-spage-0. The solution to

this problem has been found in Ref. 2. For the case when the (P(Z’t):k;m Par+1(2)€

initial phasey in Eq. (11) is such that the initial phase &°

on the boundaryz=0) is equal to zero, this solution can be

written as follows:

ES(z,t)zEm(l—;)a cod wt+6(2)], (19)
0
E)zt)=Ep| 1— — ’ si wt+ 6(2)], (20)
Z
42n(n+1)(3n+1)2 I
= . om=kEYN-1 21
“ (n=1)Vouoon 7 &
0(z)=a" In(l— zi) (22
0
,_2n B va2n(n+1)
S T 23

andE,, is determined from the equation
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o

i(2k+ 1) ot

(29

Pz = 2 () (30
k=—o

it can be shown that onlys, ¢_4, ¥, andy_, are not equal

to zero. Foreg and ¢, the following coupled ordinary differ-

ential equationgODES can be derived:

2 0 i2a”
2] des +l1-2
2, dZ IX3| ap3 Z 1
2n/(n—1)+i3a"
=1 §3Em( 1-— (31
Zy
. Z2d2¢1. oy Z—i2¢z
2, 42 I X1 @iy Z ®3
7 2n/(n—1)+ia”
=i lem( 1- —) , (32
Zy
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FIG. 1. Magnitude of perturbations(z/z,) andes(z/z,) at n=co.

where
1-n 1+n
Xok+1= (2k+ Dopoom ——, a=3_, (33
1-n 3n+1

{3=30mo0m 7 V1T OKoOm (34)

4n
The solution of Eqs(31) and (32) should be subject to the
boundary conditions

d d
2 0="2(0)=0, gs=)=in(=)=0. (39

Similar ODEs can be derived f@r_, andi_5;. However, this
can be avoided becauge; andy, as well asp_5; and¢; are
complex conjugate.

The particular solution of ODE$31) and (32) has the
form

z\*s z\M
¢<3p><z>=c3(1—z—) , &m:cl(l—z—) ., (39
0 0
where
2n 34" 2n ; 3
)\3—m+l a’, 7\1—n_1+la’. (37)

CoefficientsC5; and C, satisfy the following simultaneous
equations:

[7\3()\3_1)_X332<2)]C3_i)(32%c1:iZSZgEma (38
—ix125Ca+[N1(M—1) =i x1aZ]C1=111Z3E.  (39)

It is clear from Eqgs.(21), and(33), (34), and (37) that the
coefficients in Eqs(38), and (39) depend only om. This
opens the opportunity to compute the ratiGs/E,, and
C4/E,, as functions of.

It can be showh that the solution of homogeneous
ODEs corresponding to Eq€31) and(32) has the form

z B z B—i2a"
¢gh><z):A(1——), ¢5h>(z):B(1—_)
Zy Zy

(40)
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where g is the solution of the following characteristic equa-
tion:

(82— B—ixsaZ)[(B—i2a")2—(B—i2a")—ix,aZ]
+X3x125=0. (41

It can be shown that the above characteristic equation has
two roots,; and 3,, with positive real parts. By using these
roots and expressiori86) and(40), the solution of Eqs(31),
and(32) can be written as follows:

z\B1 7\ B2 z \ 3
= ——| + ——] + -—
P3(z)=Aq| 1 Z Al l Z Gyl %

(42
7z B1—i2a" G Bo—i2a”
(2)=B,4 1—2—0 +B, 1—2—0
z\M
+C; 1——) . (43
Zy

The unknown coefficients,, A,, B4, andB, can be found
from the boundary condition&85) at z=0 and from the fact
that expression&t0) should satisfy homogeneous ODEs cor-
responding to Eq931) and (32). This yields the following
simultaneous equations for the above coefficients:

B1A1+ BoA,=—\3C3, (44)
(B1—i2a")B1+(By—i2a")B,=—\.Cq, (45)
(Bi—B1—ix382)A1~i x3Z5B1=0, (46)
(B5— B2—ix382) A~ i x3Z5B2=0. (47)

Again, it is easy to see that the coefficients of characteristic
Eq. (41) as well as the coefficients of simultaneous Egs.
(44)—(47) depend only om. This allows one to compute the
roots8; and B3, as well as the ratio8,/E,, A/E,, B;/E,,
and B,/E,, as functions ofn. In the limiting case o=~
(ideal resistive transition-critical state mogedne can com-
pute specific numerical values of the above quantities. These
values are as follows:B8;=2+iv2, B,=1.921+i3.699,
C./En=3-i9v2/16, C4/E,,=i9v2/16, A,/E, =—0.129
+i0.116,A,/E,=0.071-i0.990,B,/E,,= —0.043+i0.039,
B,/E,,= —1.899+i0.513. By using these values, all desired
guantities can be found. For instance, the magnitudes of the
first and third harmonice; ande; of the perturbation can be
computed as the functions af The results of these compu-
tations are shown in Fig. 1. For gradual resistive transitions
(finite n), the rootsB; and B,, as well as all the mentioned
coefficients, have been computed as functions.dfhe lack
of space prohibits us from presenting these computations.
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