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Abstract— We investigate two quantities of fundamental in-
terest in a mobile ad-hoc network: the capacity region and the
minimum energy function of the network. The capacity regionis
defined as the closure of the set of all input rates that the network
can stably support. The minimum energy function establishes a
lower bound on the amount of energy required to support a given
set of input rates. We consider a specific model of the mobile ad-
hoc network that enables us to exactly compute these quantities.
Further, we propose schemes that offer performance guarantees
that are arbitrarily close to these bounds at the cost of an
increased delay. The exact nature of the associated delay tradeoff
when performance is pushed towards the minimum energy bound
is another fundamental characteristic of the network that is
discussed in this work.

I. I NTRODUCTION

Two quantities that characterize the performance limits of
a mobile ad-hoc network are the capacity region and the
minimum energy function of the network. The capacity region
is defined as the closure of the set of all possible input rates
that the network can stably support considering all possible
scheduling and routing algorithms that conform to the given
network structure. The minimum energy function can be
defined as the minimum time average energy (summed over
all users) required to stably support a given set of input rates.
It is, therefore, not possible for any scheme to support an input
rate at an energy cost lower than the minimum energy function
value. In this work, we compute these quantities exactly fora
specific model of a mobile ad-hoc network. We then describe
schemes whose performance can be pushed arbitrarily close
to these bounds at the cost of an increased delay.

Asymptotic bounds on the capacity of static wireless
networks and mobile networks are developed by [3], [4].
Capacity-delay tradeoffs in such networks are considered in
[1], [2], [6], [7], [8]. However, little work has been done in
computing theexactcapacity and energy expressions for these
networks. Exceptions include a closed form expression for the
capacity of a fixed grid network in [5], and an expression for
the capacity of a mobile ad-hoc network in [1], [2]. Specif-
ically, the work in [1], [2] uses a cell-partitioned structure
and assumes only same-cell transmissions are possible and
that only a single packet can be sent on each transmission.
In this work, we extend this model to more general scenarios
allowing adjacent cell communication and different rate-power
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combinations. Specifically, the contributions of this paper are
threefold:

1) We extend the simplified cell-partitioned model of [1],
[2] to treat inter-cell communication. We establish exact
capacity expressions for general user mobility processes
(possibly non-i.i.d. and non-uniform), assuming only a
well-defined steady state location distribution for the
users. Our analysis shows that the throughput optimal
solution for this extended model is also necessarily a
2-hop relay algorithm. Further, our analysis illuminates
the optimal decision strategies and precisely defines the
throughput optimal control law for choosing between
samecell andadjacentcell transmission. We then use
this insight to design a 2-hop relay algorithm that
can stabilize the network for all input rates within the
capacity region. We also compute an upper bound on the
delay of this algorithm. Our analytical technique can be
extended to systems with additional constraints as well.
(Section III)

2) We compute the exact expression for the minimum
energy required to stabilize this network, for all input
rates within capacity. Our result demonstrates a piece-
wise linear structure for the minimum energy function.
(Section IV)

3) We present agreedyalgorithm whose energy cost can
be pushed arbitrarily close to the minimum energy at the
cost of an increased delay. We then discuss the energy-
delay tradeoff involved and note that the piecewise linear
special structure of the minimum energy function can be
exploited to design a multi-hop policy that achieves an
energy-delay tradeoff superior to that given in [10], and
even outperform the square-root tradeoff law given in
[11]. (Section V)

Our network model and assumptions are discussed in the
next section.

II. M ODEL AND ASSUMPTIONS

1) Network Model: We use the following cell partitioned
network model: The network is partitioned intoC non-
overlapping cells, not necessarily of the same size/shape
(see Fig. 1). There areN users independently roaming
from cell to cell over the network. Note that there
could be “gaps” in the cell structure due to infeasible
geographic locations. We assume that the gaps do not
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Fig. 1. An illustration of the cell-partitioned network with same and adjacent
cell communication and gaps in the structure

partition the network, so that it is possible for a single
user to visit all cells. We assumeC is the number of
valid cells, not including such gaps. We can then define
the user densityd = N

C users/cell.
2) Mobility Model: Time is slotted so that each user

remains in its current cell for a timeslot and potentially
moves to a new cell at the end of the slot. We assume
that each user movesindependentlyof the other users
according to ageneralmobility process. We assume only
that the mobility process has a well-defined steady state
location distributionπc over the cellsc ∈ {1, 2, ..., C}.
This distribution could be non-uniform over the cells.
Thus, for example, our analysis can be used to compute
the exact capacity and minimum energy for a network in
which users are performing a Markovian Random Walk
over the cells such that there exists a well-defined steady
state location distribution for all users. We assume the
steady state cell location distributionπc is the same for
all users.
We assume that the mobility model is ergodic and that
time average location probaiblities converge to their
steady state location probabilitiesπc. We further assume
that the mobility model has the following “renewable”
property: Given anyδ > 0, there exists a finite integerK
such that the expected time average location probability
taken over any interval of sizeK is within δ of its long
term time average. That is, for any timet:

1

K

K−1
∑

τ=0

Pr[user in cell c at timet + τ |H(t)] − πc ≤ δ

regardless of past history up to timet, whereH(t) is
the history up to timet.

3) Traffic Model: Packets are assumed to arrive at a useri
according to some arrival processAi(t) which indicates
the number of packet arrivals in timeslott for useri. λi

represents the rate of this process, i.e.

lim
t→∞

∑τ=t−1
τ=0 Ai(τ)

t
= λi w.p. 1

We assume that theAi(t) variables are i.i.d and
E{Ai(t)} = λi. We also assume that packets generated
by user i are destined for a unique userj and vice
versa. For simplicity, we assumeN is even with the
following one-to-one pairing between users:1 ↔ 2, 3 ↔
4, ..., (N − 1) ↔ N , i.e., packets generated by user1
are destined for user2 and those generated by user2
are destined for user1 and so on.

4) Communication Model: We assume that two users can
communicateonly if they are in the same cell or in an
adjacent cell. Further, if the communication takes place
in the same cell,R1 packets can be transmitted from
the sender to the receiver if the sender uses full power.
If the receiver is in an adjacent cell,R2 packets can
be transmitted with full power. We assumeR1 ≥ R2.
Power allocation is restricted to the set{0, 1}, i.e.,
each user either uses zero power or full power (we use
normalized value). We allow at most one transmitter
in a cell at any given timeslot, though it may have
multiple receivers (due to possible adjacent cell commu-
nication). Further, a user may potentially transmit and
receive simultaneously. This model is conceivable if the
users in neighboring cells use orthogonal communication
channels.

This model allows us to treat scheduling decisions in each
cell independentlyof all other cells. It is possible to include
additional constraints in the communication model, e.g., only 1
receiver per cell, no simultaneous transmission and reception
etc. We note that this model can easily be extended to the
scenarios where users can choose from a finite set of power
allocations. Similarly, our model can also be extended to take
into account channel states oneachcommunication link. We
discuss these extensions at the end of Sec.III.

In this work, we restrict our attention to network control
algorithms that operate according to the given network struc-
ture described above. A general algorithm within this class
will make scheduling decisions about what packet to transmit,
when, and to whom. For example, it may decide to transmit to
a user in an adjacent cell rather than to some user in the same
cell, even though the transmission rate is smaller. However,
we assume that the packets themselves are kept intact and are
not combined or network coded.

III. C APACITY, DELAY AND A 2-HOP RELAY ALGORITHM

In this section, we compute the exact capacity of the
network model previously described. We assume that all users
receive packets at the same rate (i.e.λi = λ for all i)1. The
capacity of the network is then the maximum rateλ that the
network can stably support.

Theorem 1:The capacity of the network is:

µ =

{

2R1q+R1(p−q)+2R2q′+R2(p
′−q′)

2d if R1 ≥ 2R2
2R1q+R1p′′+2R2q′′+R2(p′−q′)

2d if 2R2 > R1 ≥ R2

1The scenario involving heterogeneous rates can be treated similarly.
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where
q = 1

C

∑C
c=1Pr[finding a S-D pair in a cellc]

p = 1
C

∑C
c=1Pr[finding at least2 users in a cellc]

q′ = 1
C

∑C
c=1Pr[finding exactly1 user in a cellc and its

destination in an adjacent cell]
p′ = 1

C

∑C
c=1Pr[finding exactly1 user in a cellc and at least

1 user in an adjacent cell]
q′′ = 1

C

∑C
c=1Pr[finding no S-D pair in a cellc but at least1

S-D pair with an adjacent cell]
p′′ = 1

C

∑C
c=1Pr[finding no S-D pair in a cellc and any

adjacent cell but at least2 users in the cellc]
Note that the value ofµ does not vanish with the number

of usersN as long as the network density isO(1), i.e., the
number of cellsC is scaled appropriately asN grows. This is
in agreement with theO(1) per user throughput for a mobile
ad-hoc network, first observed in [4].

The probabilities in the summations above are the steady
state probabilities associated with the steady state cell loca-
tion distributions of the users. Thus, using the steady state
cell location distributionπc, we can exactly compute these
probabilities for our network. These are given by:

q =
1

C

C
∑

c=1

(

1 − (1 − π2
c )N/2

)

p =
1

C

C
∑

c=1

(

1 − (1 − πc)
N − Nπc(1 − πc)

N−1
)

q′ =
1

C

C
∑

c=1

(

Πadj(c)Nπc(1 − πc)
N−1

)

p′ =
1

C

C
∑

c=1

(

1 − (1 − Πadj(c))
N−1

)

Nπc(1 − πc)
N−1

q′′ =
1

C

C
∑

c=1

N/2
∑

i=1

2i

(

N/2

i

)

πi
c(1 − πc)

N−i
(

1 − (1 − Πadj(c))
i
)

p′′ =
1

C

C
∑

c=1

N/2
∑

i=2

2i

(

N/2

i

)

πi
c(1 − πc)

N−i(1 − Πadj(c))
i

Here, Πadj(c) denotes the sum of the conditional steady
state probabilities of a user being in any adjacent cell of
cell c given that this user is not in cellc, i.e., Πadj(c) =

1
1−πc

∑C
i=1 πc1i adjacent to c where 1i adjacent to c is an indicator

function taking value1 if cell i is adjacent to cellc and 0
otherwise.

In the expressions forq′′, p′′, the term2i
(

N/2
i

)

πi
c(1−πc)

N−i

is the probability of findingi users in a cell such that there are
no source-destination pairs. It can be obtained by noting that

2i (
N/2

i )
(N

i )
is the probability of finding no source-destination pair

is a cellgiven thati users are in that cell and
(

N
i

)

πi
c(1−πc)

N−i

is the probability of choosingi out of N users. Clearly,i ≤
N
2 since there must be at least1 source-destination pair for
i > N

2 .
As an example, if we consider the case when the steady state

location distribution is uniform over all cells (so thatπc = 1
C

for all c), then we have the following simpler expressions for
q, p, q′, p′:

q = 1 − (1 − 1

C2
)N/2

p = 1 − (1 − 1

C
)N − N

C
(1 − 1

C
)N−1

q′ =
N

C2
(1 − 1

C
)N−1

C
∑

c=1

Πadj(c)

p′ =
N

C2
(1 − 1

C
)N−1

C
∑

c=1

(

1 − (1 − Πadj(c))
N−1

)

Assuming each cell has at most4 adjacent cells (to the left,
right, up and down respectively), an example of a mobility
process that would give a uniform steady state location distri-
bution under our cell-partitioned network model is a random
walk where every time slot, each user stays in the previous
cell with some probability1 − β (such that0 < β < 1), else
decides to move to an adjacent cell with probabilityβ/4. If
there is no feasible adjacent cell (e.g, if the previous cellis
a corner cell and the new chosen cell doesn’t exist), then the
user remains in the previous cell. This random walk forms
an irreducible and aperiodic Markov Chain since we assume
that there are no partitions in the network and there are self-
transitions with positive probability.

Thus, the network can stably support users simultaneously
communicating at any rateλ < µ. We prove the theorem
in 2 parts. First, we establish the necessary condition by
deriving an upper bound on the capacity ofany stabilizing
algorithm. Then, we establish sufficiency by presenting a
specific scheduling strategy and showing that the average delay
is bounded under that strategy.

Proof of Necessity: Let S be the set of all stabilizing
scheduling policies. Consider any particular policys ∈ S.
Suppose it successfully deliversXs

ab(T ) packets from sources
to destinations involving“a” same cell transmissions and“b”
adjacent cell transmissions in the interval(0, T ). Fix ǫ > 0.
For stability, there must exist arbitrarily large values ofT such
that the total output rate is withinǫ of total input rate. Thus:

∑∞
a=0

∑∞
b=0 Xs

ab(T )

T
≥ Nλ − ǫ (1)

Next, total number of packet transmissions in(0, T ) is at
least

∑∞
a=0

∑∞
b=0(a+b)Xs

ab(T ) (because these many packets
were certainly delivered). This must be less than the maximum
possible packet transmission opportunities defined asY s(T ).
Thus:

1

T
Y s(T ) ≥ 1

T

∞
∑

a=0

∞
∑

b=0

(a + b)Xs
ab(T )

≥ 1

T

∑

a+b<2

Xs
ab(T ) +

2

T

∑

a+b≥2

Xs
ab(T )

≥ 1

T

∑

a+b<2

Xs
ab(T )

+
2

T

(

(Nλ − ǫ) −
∑

a+b<2

Xs
ab(T )

)

(using (1))
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Hence, noting thatǫ can be chosen to be arbitrarily small,
we have:

λ ≤ lim
T→∞

Y s(T ) + Xs
10(T ) + Xs

01(T )

2TN
(2)

DefineY s
c (τ) as the number of packet transmission oppor-

tunities in cellc at timeτ . ThenY s(T ) + Xs
10(T ) + Xs

01(T )
can be written as a sum over all time slotsτ and all cellsc
as follows:

T−1
∑

τ=0

(

Y s(τ) + Xs
10(τ) + Xs

01(τ)
)

=
T−1
∑

τ=0

C
∑

c=1

(

Y s
c (τ) + Xs

10,c(τ) + Xs
01,c(τ)

)

≤
T−1
∑

τ=0

C
∑

c=1

max
s∈S

(

Y s
c (τ) + Xs

10,c(τ) + Xs
01,c(τ)

)

(3)

DefineZs
c (τ) = Y s

c (τ) + Xs
10,c(τ) + Xs

01,c(τ) and Ẑc(τ) =
maxs∈S Zs

c (τ). Also, define the following indicator decision
variables for any policys for someτ ∈ [0, T ] andc ∈ [1, C]:

Xc
1 =







1 if s schedules a same cell direct
transmission at rateR1 in cell c

0 else

Xc
2 =







1 if s schedules a same cell relay
transmission at rateR1 in cell c

0 else

Xc
3 =







1 if s schedules an adjacent cell direct
transmission at rateR2 in cell c

0 else

Xc
4 =







1 if s schedules an adjacent cell relay
transmission at rateR2 in cell c

0 else

Thus, we can expressZs
c (τ) as follows:

Zs
c (τ) = Y s

c (τ) + Xs
10,c(τ) + Xs

01,c(τ)

= R1X
c
1 + R1X

c
2 + R2X

c
3 + R2X

c
4 + Xc

10(τ) + Xc
01(τ)

= 2R1X
c
1 + R1X

c
2 + 2R2X

c
3 + R2X

c
4

Since only one of the decision variables is1 and the rest
are 0, the preference order for decisions to maximizeZs

c (τ)
is evident. Specifically, it would beXc

1 ≺ Xc
2 ≺ Xc

3 ≺ Xc
4

when R1 ≥ 2R2 and Xc
1 ≺ Xc

3 ≺ Xc
2 ≺ Xc

4 when R2 ≤
R1 < 2R2. So in each cellc, Zs

c (τ) is maximized by choosing
the decisions in this preference order, only choosing a less
preferred decision when none of the more preferred decisions
are possible in that cell.

Thus, (from (2) and (3)):

λ ≤ lim
T→∞

1

2TN

T−1
∑

τ=0

C
∑

c=1

Ẑc(τ)

As Ẑc(τ) can take only a finite number of values (namely
R1, R2, 2R1, 2R2, 0) and is a function of the current state of
the ergodic user location processes, the time average ofẐc(τ)

is exactly equal to its expectation with respect to the steady
state user location distribution.

Thus, the capacity region can now be computed by calculat-
ing the expectation of̂Zc using the steady state probabilities
associated with the indicator variables and summing over all
cells. These are given byq, p, q′, p′, q′′, p′′ for both cases of
interest.2

Note that the above preference order clearly spells out
the structure of the throughput optimal strategy. Specifically,
depending on the values ofR1 and R2, it can be used to
decide between same cell relay versus adjacent cell direct
transmission. We use this structure of the throughput optimal
strategy to design a 2-hop relay algorithm that we present next.

Also note the factor of2 with the decision variables corre-
sponding to direct source-destination transmission. Intuitively,
each such transmission opportunity is better than a similar
opportunity between source-relay or relay-destination bya
factor of 2 since the indirect transmissions need twice as
many opportunities to deliver a given number of packets to
the destination as compared to direct transmissions.

Proof of Sufficiency: Now we present an algorithm that
makes stationary randomized scheduling decisions and show
that it gives bounded delay for any rateλ < µ, i.e., there exists
ǫ > 0 such thatλ + ǫ ≤ µ . We only consider the case when
R1 ≥ 2R2. The other case is similar and is not discussed.

2 Hop Relay Algorithm: Every timeslot, for all cells, do the
following:

1) If there exists a source-destination pair in the cell,
randomly choose such a pair (uniformly over all such
pairs in the cell). If the source has new packets for the
destination, transmit at rateR1 (add dummy packets if
less thanR1 packets present). Else remain idle.

2) If there is no source-destination pair in the cell but there
are at least2 users in the cell, randomly designate one
user as the sender and another as the receiver. Then toss
an unfair coin such that the probability of “Head” is
1−δ
2 where δ = δ(ǫ) and 0 < δ < 1. If the outcome

is “Head”, perform the first action below. Else, perform
the second.

a) Send new Relay packets in same cell:If the trans-
mitter has new packets for its destination, transmit
at rateR1 (add dummy packets if less thanR1

packets present). Else remain idle.
b) Send Relay packets to their Destination in same

cell: If the transmitter has packets for the receiver,
transmit at rateR1 (add dummy packets if less than
R1 packets present). Else remain idle.

3) If there is only1 user in the cell and its destination is
present in one of the adjacent cells, transmit at rateR2

if new packets present (add dummy packets if less than
R2 packets present). Else remain idle.

4) If there is only1 user in the cell and its destination is
not present in one of the adjacent cells but there is at
least one user in an adjacent cell, randomly designate
one such user as the receiver and the only user in the
cell as the transmitter. Then toss anunfair coin such that
the probability of a “Head” is1−δ

2 whereδ = δ(ǫ) and
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0 < δ < 1. If the outcome is a “Head”, perform the first
action below. Else, perform the second.

a) Send new Relay packets in adjacent cell:If the
transmitter has new packets for its destination,
transmit at rateR2 (add dummy packets if less
thanR2 packets present). Else remain idle.

b) Send Relay packets to their Destination in adjacent
cell: If the transmitter has packets for the receiver,
transmit at rateR2 (add dummy packets if less than
R2 packets present). Else remain idle.

This algorithm is motivated by the proof of Theorem 1 since
it follows the same preference order in making scheduling
decisions. Note that this algorithm restricts the path lengths of
all packets toat most2 hops because any packet that has been
transmitted to a relay node is restricted from being transmitted
to any other node except its destination.

We make use of the following Lyapunov Drift Lemma (from
[1]) to analyze the performance of this 2 Hop Relay Algorithm.
Consider a network ofN queues operating in slotted time, and
let U(t) = (U1(t), U2(t), ..., UN (t)) represent a row vector
of unfinished work in each of the queues for timeslotst ∈
{0, 1, 2, ...}. Here, the unfinished workUi(t) represents the
number of backlogged packets destined for useri. Define a
non-negative functionL(U(t)) of the unfinished work vector
U(t) called a Lyapunov function. Then we have the following:

Lyapunov Drift Lemma:If there exists a positive integerK
such that for all timeslotst and for all U(t), the Lyapunov
function of unfinished workL(U) evaluatedK steps into the
future satisfies:

E{L(U(t + K)) − L(U(t))|U (t)} ≤ B −
∑

i,c

θ
(c)
i U

(c)
i (t)

for some positive constantsB, {θ(c)
i }, and if E{L(U(t))} <

∞ for t ∈ {0, 1, ..., K − 1}, then the network is stable, and:

lim sup
t→∞

1

t

t−1
∑

τ=0

[

∑

i

θiE{Ui(τ)}
]

≤ B

Proof: This Lemma can be shown by using a telescoping
series argument and is proved in [1].

Theorem 2:For a cell partitioned network (withN nodes
andC cells) as described above, with a capacityµ and input
ratesλ for each user such thatλ + ǫ ≤ µ for someǫ > 0,
the average packet delayD under the 2 Hop Relay Algorithm
satisfies:

D ≤ O(KN)

ǫ

whereK is a finite integer (that may depend onN ) related
to the mixing time of the mobility process. i.e., the time
required for the mobility process to reach a “near steady state”,
described in more detail in [1].

Proof: Let U
(c)
i (t) represent the amount of unfinished work

of type c (i.e. number of packets destined for nodec) that
are queued up in nodei at time t. The K-step dynamics of

unfinished work satisfies the following condition for alli 6= c:

U
(c)
i (t + K) ≤ max

(

U
(c)
i (t) −

t+K−1
∑

τ=t

∑

b

µ
(c)
ib (τ), 0

)

+

t+K−1
∑

τ=t

∑

a

µ
(c)
ai (τ) +

t+K−1
∑

τ=t

Aic(τ) (4)

where
Aic(τ) = number of new typec arrivals to source nodei at
the beginning of time slotτ
µab(τ) = rate offered to typec packets in time slotτ with
nodea as transmitter and nodeb as receiver

The above condition is an inequality because the to-
tal arrivals to nodei from other nodes may be less than
∑t+K−1

τ=t

∑

a µ
(c)
ai (τ) if these other nodes have little or no

packets to send.
Now define the Lyapunov functionL(U) =

∑

i6=c[U
(c)
i ]2.

Then we have the following expression for theK slot Lya-
punov Drift (from [1]):

E{L(U(t + K)) − L(U(t))|U (t)} ≤ K2BN

− 2K
∑

i6=c

U
(c)
i (t)

1

K

t+K−1
∑

τ=t

E

{

∑

b

µ
(c)
ib (τ)

−
∑

a

µ
(c)
ai (τ) − Aic(τ)|U (t)

}

(5)

where
B = (Amax + µin

max)2 + (µout
max)2

A2
max = upper bound on the second moment of the exogenous

arrivals to any node
µin

max = maximum transmission rate into any node
µout

max = maximum transmission rate out of any node

Now note that∃K such that 1
K

∑t+K−1
τ=t E

{

∑

b µ
(c)
ib (τ) −

∑

a µ
(c)
ai (τ)−Aic(τ)

}

is within δ/2 of the time average values
∑

b µ
(c)
ib − ∑

a µ
(c)
ai − λic. This follows from the assumptions

on ergodicity and renewability in the mobility model (see Sec.
II) by noting that the functionals of user cell locations also
converge over finite intervals of sizeK.

The drift condition holds for any control policy that yields
generalµ(c)

ij (t) rates. We next calculate the rates obtained
by the 2 Hop Relay Algorithm. Since this algorithm makes
transmission decisions independent of the current backlog
levels, we can ignore the conditional expectation in the last
summation above. We have the following 2 cases2 :

1) Node i generates typec packets: In this case,
E{Aic(τ)} = λ andE{∑a µ

(c)
ai (τ)} = 0 (since a source

node would never get back a packet that it generates). To
calculate 1

K

∑t+K−1
τ=t E{

∑

b µ
(c)
ib (τ)}, we note that due

to the randomized nature of the 2 Hop Relay Algorithm,
packets from a given source node see the network only
as a source, destination and intermediate relays and
transmissions of packets from other sources are reflected

2The case where nodei is the receiver for typec packets doesn’t arise
since the summation is overi 6= c
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simply as random ON/OFF service opportunities. There-
fore, the outgoing service rate for packets generated by
the source is equal to the sum of the rate at which the
source is scheduled to transmit directly to its destination
and the rate at which it is scheduled to transmit to one of
the relay users. Let these rates ber1 andr2 respectively.
Also let the transmission rate out of the relay nodes be
r3. Then the total rate of transmission over the network
is N(r1 + r2 + r3).
Using the probability of choosing source-relay and
relay-destination transmissions, we have

r2 =
1 − δ

1 + δ
r3 (6)

In the 2 Hop Relay Algorithm, a direct source-to-
destination transmission is scheduled whenever there is
a source-destination pair is the same cell or there is only
1 node is a cell and its destination is in an adjacent cell.
Thus, using the result from the proof of Theorem 1, we
have:

C(R1q + R2q
′) = Nr1 (7)

Similarly, the sum total transmissions in the network
can be expressed in terms of the quantitiesp andp′ as
follows:

C(R1p + R2p
′) = N(r1 + r2 + r3) (8)

Using these, we have:

r1 + r2 =
(1 + δ)(R1q + R2q

′) + (1 − δ)(R1p + R2p
′)

2d

By definition, K is the number of slots required for
the mobility process to reach a near steady state. Since
the total outgoing rate is only a function of the steady
state location distribution,1K

∑t+K−1
τ=t E{∑b µ

(c)
ib (τ)}

is within δ/2 of r1 + r2 as obtained above.
Choosingδ = dǫ

R1p+R2p′−R1q−R2q′−d , the above expres-
sion is at leastµ − ǫ/2 whereµ is the capacity of the
network. Thus, the last summation in (5) for this case
is at leastµ − ǫ/2 − λ ≥ ǫ/2 > 0.

2) Nodei relays typec packets: In this case,E{Aic(τ)} =
0. Since the 2 Hop Relay Algorithm schedules trans-
missions out of relay nodes with higher probability than
into relay nodes, and using the definition ofK, we have:

1

K

t+K−1
∑

τ=t

E

{

∑

b

µ
(c)
ib (τ) −

∑

a

µ
(c)
ai (τ)

}

≥ r3 − r2 − δ

≥ 2δ

1 + δ
r3 > ǫ for δ >

ǫ

2r3 − ǫ

Thus, the last summation in (5) for this case is positive
as well.

Choosingδ = max( dǫ
R1p+R2p′−R1q−R2q′−d , ǫ

2r3−ǫ ), we can
apply the Lyapunov Drift Lemma to bound the average packet
occupancy. Using Little’s Theorem, the average delay per
packet satisfies the bound in Theorem 2.2

Discussion, Other Extensions and Implications: The proof
of the capacity for the cell-partitioned network is general

enough to cover any scheduling restriction structure. From(3),
it amounts to:

λ ≤ 1

2N
E

{

max
s∈S

C
∑

c=1

(

Y s
c (t) + Xs

10,c(t) + Xs
01,c(t)

)}

Therefore the optimal resource allocation is to schedule to
maximize

∑C
c=1

(

Y s
c (t)+Xs

10,c(t)+Xs
01,c(t)

)

subject to the
scheduling restrictions. For the specific cell-partitioned model
considered here, this maximization is achieved by following
the preference order of the decision variables as described
earlier. This enables us to exactly compute the capacity of the
network. It is possible to do the same for extensions to this
model involving other constraints. For example, if we include
the constraint that a user cannot simultaneously transmit and
receive, then the above maximization becomes a maximum-
match type problem which is difficult to distribute cell by cell.
A possible distributed solution is to define an Aloha like MAC
scheme in which each node decides to be either a transmitter
or receiver with probability 1/2, and then maximize the above
metric.

Our model for the channel state process is idealized in
that transmissions are assumed to be error-free. But it should
be noted that our technique can be used to get expressions
for the capacity region when the channel states oneach link
are described by some fading process which in turn affects
the achievable transmission rates. We would like to point out
that the capacity will not be a scaled version of the value
calculated for the basic model; rather, multi-user diversity can
be exploited to maintain competitive capacity region. It is
also possible to use our technique for scenarios where each
user follows its own distinct mobility process, although the
asymmetry may make the expressions for the capacity region
more complex.

The 2 Hop Relay Algorithm presented earlier makes
scheduling decisions purely based on the current user loca-
tions. It certainly does not attempt to minimize the delay in
the network. The main objective behind this algorithm is to
establish the sufficient condition for the capacity region theo-
rem. The delay performance can be improved using alternative
scheduling strategies. In fact, schemes that make use of queue
backlog information in making scheduling decisions are shown
to outperform a stationary, randomized scheduling strategy in
[1]. Similarly, schemes that exploit the mobility pattern of the
users (e.g. [9]) can get better delay performance.

IV. M INIMUM ENERGY FUNCTION

We now investigate the minimum energy function of the
cell-partitioned network under consideration. The minimum
energy functionΦ(λ) is defined as the minimum time average
power required to stabilize an input rateλ per user, considering
all possible scheduling and routing algorithms that conform to
the given network structure. In [10], [12], the minimum energy
function is formally defined as the solution to an optimization
problem. We use the same definition.

We exactly compute this function for our network model.
Specifically, we assume that all users receive packets at the
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same rate (i.e.λi = λ for all i). Also, we consider the case
when R1 ≥ 2R2. (Φ(λ) for the case whenR1 < 2R2 has a
different expression, but the proof is similar).

Theorem 3:The minimum energy functionΦ(λ) per user of
the cell-partitioned network is a piecewise linear curve given
by the following:

Φ(λ) =



























λ
R1

if A
2q
2d + 2

R1

(

λ − 2R1q
2d

)

if B

(p+q)
2d + 1

R2

(

λ − R1(p+q)
2d

)

if C

(p+q+2q′)
2d + 2

R2

(

λ − R1(p+q)+2R2q′

2d

)

if D

where
A ≡ 0 ≤ λ < 2R1q

2d

B ≡ 2R1q
2d ≤ λ < R1(p+q)

2d

C ≡ R1(p+q)
2d ≤ λ < R1(p+q)+2R2q′

2d

D ≡ R1(p+q)+2R2q′

2d ≤ λ < µ

Thus, the network can stably support users simultaneously
communicating at any rateλ < µ with an energy cost that can
be pushed arbitrarily close toΦ(λ) (at the cost of increased
delay). We prove the theorem in2 parts. First, we establish
the necessary condition by deriving a lower bound on the
energy cost ofany stabilizing algorithm. Then, we establish
sufficiency by presenting a specific scheduling strategy and
showing that the average delay is bounded under that policy.

Proof of Necessity: Consider a scheduling strategy that sta-
bilizes the system. LetXab(T ) denote the number of packets
delivered by the strategy from sources to destinations in(0, T )
that involve exactlya same cell andb adjacent cell transmis-
sions. For simplicity, assume that the strategy is ergodic3 and
yields well defined time average energy expendituree and well
defined time average values forxab where:

xab
△

= lim
T→∞

1

T
Xab(T )

The average energy coste of this policy satisfies:

e ≥
∑

a,b

(a/R1 + b/R2)xab (9)

This follows by noting that enough packets may not be
available during a transmission.

Note thatx00 = 0, and so the only possible non-zeroxab

variables are for(a, b) pairs that are integers, non-negative,
and such that(a, b) 6= (0, 0). Let x = (xab) represent the
collection ofxab variables, and note that these variables must
satisfy the constraintx ∈ Ω0 ∩Ω1 ∩Ω2 ∩ Ω3, where the four
constraint sets are defined below:

3The general case can be proven similarly.

Ω0
△

=







x

∣

∣

∣

∣

∣

∣

x00 = 0 &
∑

a,b

xab = λ







Ω1
△

=

{

x

∣

∣

∣

∣

x10

R1
≤ c1

}

Ω2
△

=







x

∣

∣

∣

∣

∣

∣

1

R1

∑

a,b

axab ≤ c1 + c2







Ω3
△

=







x

∣

∣

∣

∣

∣

∣

1

R1

∑

a,b

axab +
x01

R2
≤ c1 + c2 + c3







wherec1 is the maximum rate of source-destination transmis-
sion opportunities in the same cell,c1 + c2 is the maximum
rate of all possible same cell transmission opportunities and
c1 + c2 + c3 is the maximum rate of all same cell or source-
destination adjacent cell transmission opportunities (without
double counting).

Using the results from Theorem 1, we know thatc1 =
q/d, c1 + c2 = p/d, c1 + c2 + c3 = (p + q′)/d. For example,
(p + q′)/d can be written as1T

∑T
t=0 X1(t) + X2(t) + X3(t)

where X1(t) is the maximum number of direct same cell
opportunities,X2(t) is the maximum number of indirect
same cell opportunitiesgivenall direct opportunities are used
and X3(t) is the maximum number of direct adjacent cell
opportunitiesgivenall same cell opportunities are used. Since
only one of these three opportunities can used is a given cell
in a time slot, the maximum total sum is fixed and hence
c1 + c2 + c3 = (p + q′)/d.

Definef(x)△

=
∑

a,b(a/R1 + b/R2)xab, which is simply the
right hand side of (9). Becausee ≥ f(x), and becausex ∈
Ω0 ∩ Ω1 ∩ Ω2 ∩ Ω3, we have that:

e ≥ inf
x∈Ω0∩Ω1∩Ω2∩Ω3

f(x) (10)

Furthermore, for any functiong(x) such thatg(x) ≤ f(x)
for all x, and for any set̃Ω that contains the setΩ0 ∩ Ω1 ∩
Ω2 ∩ Ω3, we have:

e ≥ inf
x∈Ω̃

g(x) (11)

This follows because the function to be minimized is
smaller, and the infimum is taken over a less restrictive set.

We define four new constraint sets̃Ω0, Ω̃1, Ω̃2, Ω̃3 as fol-
lows:

Ω̃0
△

= Ω0

Ω̃1
△

= Ω1

Ω̃2
△

=







x

∣

∣

∣

∣

∣

∣

x10

R1
+

2

R1

∑

a≥2

xa0 ≤ c1 + c2







Ω̃3
△

=







x

∣

∣

∣

∣

∣

∣

x10

R1
+

2

R1

∑

a≥2

xa0 +
x01

R2
≤ c1 + c2 + c3







It can be seen that each ofΩ0, Ω1, Ω2, Ω3 is a subset of
Ω̃0, Ω̃1, Ω̃2, Ω̃3 respectively. Therefore,Ω0 ∩ Ω1 ∩ Ω2 ∩ Ω3 is
a subset of̃Ω0 ∩ Ω̃1 ∩ Ω̃2 ∩ Ω̃3.
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We now find four different bounds fore, each having the
form e ≥ αλ + β. These bounds define the four piecewise
linear regions ofΦ(λ). Throughout, we assume that2/R1 ≤
1/R2, so that:

1

R1
<

2

R1
≤ 1

R2
<

2

R2
(12)

(the opposite case2/R1 > 1/R2 can be treated similarly,
and leads to a different set of bounds).

1) Note thatf(x) ≥ 1
R1

∑

a,b xab. Therefore:

e ≥ inf
x∈Ω̃0

1

R1

∑

a,b

xab

Because the constraint̃Ω0 is given by
∑

a,b xab = λ,
the above infimum is equal toλ/R1. Therefore we have
our first linear constraint for any algorithm that yields a
time average energy ofe:

e ≥ λ

R1
(13)

2) Next note that:

f(x) ≥ x10

R1
+

2

R1

∑

(a,b) 6=(1,0)

xab

This is because(a/R1 + b/R2) ≥ 2/R1 for any
non-negative integer pair(a, b) such that (a, b) 6=
{(0, 0), (1, 0)} (using (12). Therefore, we have:

e ≥ inf
x∈Ω̃0∩Ω̃1





x10

R1
+

2

R1
xab

∑

(a,b) 6=(1,0)





The right hand side is equal to the solution of the
following problem:

Minimize: x10

R1

+ 2
R1

∑

(a,b) 6=(1,0) xab

Subject to:
∑

a,b xab = λ
x10

R1

≤ c1

The above optimization is equivalent to minimizing
x10/R1 + 2/R1(λ − x10) subject tox10/R1 ≤ c1. The
solution is clearly to choosex10 = R1c1, and hence we
have:

e ≥ 2λ

R1
− c1 (14)

3) Next note that:

f(x) ≥ x10

R1
+

2

R1

∑

a≥2

xa0 +
1

R2

∑

b6=0

xab

which follows from case 2 as well as because1/R2 ≤
b/R2 for all positiveb.
Thus, we have:

e ≥ inf
x∈Ω̃0∩Ω̃1∩Ω̃2





x10

R1
+

2

R1

∑

a≥2

xa0 +
1

R2

∑

b6=0

xab





This is equivalent to the following minimization:

Minimize: x10

R1

+ 2
R1

∑

a≥2 xa0 +
1

R2

(λ − x10 −
∑

a≥2 xa0)

Subject to: x10

R1

≤ c1

x10

R1

+ 2
R1

∑

a≥2 xa0 ≤ c1 + c2

where we have aggregated the constraint
∑

a,b xab = λ.
Letting y =

∑

a≥2 xa0 and simplifying the optimization
metric, we find the above optimization is equivalent to:

Minimize: −x10(
1

R2

− 1
R1

) − y( 1
R2

− 2
R1

) + λ
R2

Subject to: x10

R1

≤ c1

x10

R1

+ 2y
R1

≤ c1 + c2

It is not difficult to show that the above optimization is
solved whenx10 + 2y = R1(c1 + c2). We thus have:

Minimize: λ
R2

− x10(
1

R2

− 1
R1

)

−(R1(c1+c2)−x10

2 )( 1
R2

− 2
R1

)

Subject to: x10

R1

≤ c1

The coefficient multiplying thex10 variable is−1/2R1,
and hence the optimal solution is given byx10 = R1c1,
yielding:

e ≥ λ

R2
+ (c1 + c2) −

R1

R2
(c1 +

c2

2
) (15)

4) Finally note that

f(x) ≥ x10

R1
+

2

R1

∑

a≥2

xa0 +
x01

R2
+

2

R2

∑

≥2

xab

which follows from case 3 as well as because2/R2 ≤
b/R2 for all b ≥ 2.
Thus, we have:

e ≥ inf
x∈Ω̃





x10

R1
+

2

R1

∑

a≥2

xa0 +
x01

R2
+

2

R2

∑

b≥2

xab





where
Ω̃ = Ω̃0 ∩ Ω̃1 ∩ Ω̃2 ∩ Ω̃3

This is equivalent to the following minimization (using
∑

a,b xab = λ):

Minimize: x10

R1

+ 2
R1

∑

a≥2 xa0 + x01

R2

+
2

R2

(λ − x10 −
∑

a≥2 xa0 − x01)

Subject to: x10

R1

≤ c1

x10

R1

+ 2
R1

∑

a≥2 xa0 ≤ c1 + c2

x10

R1

+ 2
R1

∑

a≥2 xa0 + x01

R2

≤ c1 + c2 + c3

Again letting y =
∑

a≥2 xa0 and simplifying the op-
timization metric, we find the above optimization is
equivalent to:
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λ

φ(λ)

λ=µ

λ=R1/d

λ=R1(p+q)/2d

λ=(R1(p+q) + 2R2q’)/2d

Fig. 2. An illustration of the minimum energy functionΦ(λ) showing the
piecewise linear structure

Minimize: x10(
1

R1

− 2
R2

) + y( 2
R1

− 2
R2

) − x01

R2

+

2 λ
R2

Subject to: x10

R1

≤ c1

x10

R1

+ 2y
R1

≤ c1 + c2

x10

R1

+ 2y
R1

+ x01

R2

≤ c1 + c2 + c3

The above optimization is solved whenx10 = R1c1,
x10 +2y = R1(c1 + c2) andx01 = R2c3. We thus have:

e ≥ 2λ

R2
+ (c1 + c2) −

R1

R2
(c1 + 2c2) − c3 (16)

Thus, Φ(λ) function is obtained by combining these four
bounds. Fig. 2 shows this. We note thatΦ(λ) is a piecewise
linear function.

Proof of Sufficiency: Now we present an algorithm that
makes stationary randomized scheduling decisions and show
that for any feasible input rateλ < µ, its average energy
cost can be pushed arbitrarily close to the minimum value
Φ(λ) with bounded delay. However, the delay bound grows
asymptotically as the average energy cost is minimized. The
exact nature of this energy-delay tradeoff is discussed in the
next section.

Similar to the 2 Hop Relay Algorithm, this strategy also
restricts packets to at most 2 hops. However, the differencelies
in that it greedilychooses transmission opportunities involving
smaller energy cost over other higher cost opportunities. An
opportunity with higher cost is usedonly when the given input
rate cannot be supported using all of the low cost opportunities.

Thus, depending on the input rateλ, the algorithm uses only
a subset of the transmission opportunities as follows:

1) 0 ≤ λ < 2R1q
2d : In this case, all packets are sent using

only source-destination transmission opportunities in the
same cell.

2) 2R1q
2d ≤ λ < R1(p+q)

2d : Here, all packets are sent ei-
ther using source-destination transmission opportunities
in the same cell or source-relay and relay-destination
transmission opportunities in the same cell.

3) R1(p+q)
2d ≤ λ < R1(p+q)+2R2q′

2d : In this case, all pack-
ets are sent using same cell or adjacent cell source-
destination transmission opportunities.

4) R1(p+q)+2R2q′

2d ≤ λ < µ: Here, all transmission oppor-
tunities are used.

To make the presentation simpler, we only discuss the
second case whereR1q

d ≤ λ < R1(p+q)
2d . The basic idea

and performance analysis for other cases are similar. Definea
control parameterV > 1.

Minimum Energy Algorithm: Every timeslot, for all cells,
do the following:

1) If there exists a source-destination pair in the cell,
randomly choose such a pair (uniformly over all such
pairs in the cell). If the source has new packets for
the destination, transmit at rateR1 with probability
Pdirect = 1 − 1

V . Else remain idle.
2) If there is no source-destination pair in the cell but there

are at least2 users in the cell, randomly designate one
user as the sender and another as the receiver. Then toss
an unfair coin such that the probability of “Head” is
1−δ
2 Prelay , whereδ = δ(ǫ) and0 < δ < 1 and

Prelay =
λ

R1

− q
d(1 − 1

V )
p−q
2d

If the outcome is “Head”, perform the first action below.
Else, perform the second.

a) Send new Relay packets in same cell:If the trans-
mitter has at leastR1 packets of type “relay” for its
destination, transmit at rateR1. Else remain idle.

b) Send Relay packets to their Destination in same
cell: If the transmitter has at leastR1 packets of
type “relay” for the receiver, transmit at rateR1.
Else remain idle.

Note that the above algorithm does not use any adjacent cell
transmission opportunities. All packets are sent over at most
2 hops using only same cell transmissions. We now analyze
the performance of this algorithm.

Theorem 4:For a cell partitioned network (withN nodes
and C cells) as described above, with a capacityµ and
minimum energy functionΦ(λ), the average energy coste of
the Minimum Energy Algorithm with input ratesλ for each
user such thatλ + ǫ ≤ µ for some ǫ > 0 and a control
parameterV = V (ǫ) > 1, satisfies:

e ≥ Φ(λ) + O(
1

V
)

with an average packet delayD given by:

D ≤ O(KNV )

ǫ

whereK represents a parameter indicating the time required
for the mobility process to reach a “near steady state”, de-
scribed in more detail in [1].
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Proof: It can be seen that for the case under consideration,
each user either transmits directly to its destination or transmits
new packets to a relay or transmits relayed packets to their
destination. Each such transmission involves unit energy cost
and therefore the average energy coste can be expressed in
terms of the rates of these transmission opportunities. Letthese
be r1, r2 and r3 respectively. We have (using results from
Theorem 2):

e = r1 + r2 + r3

=
q

d
Pdirect +

p − q

d

1 − δ

2
Prelay +

p − q

d

1 + δ

2
Prelay

=
q

d
Pdirect +

p − q

d
Prelay

=
q

d
(1 − 1

V
) +

p − q

d

λ
R1

− q
d (1 − 1

V )
p−q
2d

=
2λ

R1
− q

d
(1 − 1

V
)

= Φ(λ) +
q

dV

The delay of this scheme can be analyzed using the same
procedure used in the proof of Theorem 2. We first apply
the Lyapunov Drift Lemma to bound the average packet
occupancy. Using Little’s Theorem, the average delay per
packet satisfies the bound in Theorem 4.2

A natural question to ask is if it is possible to get better
delay performance by using alternative scheduling strategies.
We discuss this in the next section.

V. OPTIMAL ENERGY DELAY TRADEOFF

The optimal energy-delay tradeoff for a single queue over
a single fading channel was first characterized in [11]. It was
shown that, under strict convexity assumptions on the rate-
power curve of the system, any set of algorithms (param-
eterized byV > 1) that yield average power required for
stability within O(1/V ) of the minimum power required for
stability must have average queueing delay greater than or
equal toΩ(

√
V ). It has recently been shown in [12] that for

multi-user wireless downlink systems, if the minimum energy
functionΦ(~λ) is piecewise linear about the rate vector~λ, then
it is possible to beat thisΩ(

√
V ) bound. In fact, a delay of

O(log(V )) is achievable as the average power is pushed within
O(1/V ) of the minimum power, although this was only shown
for single hop networks.

Since the minimum energy function for the cell-partitioned
network that we consider here has a piecewise liner structure,
it would be interesting to develop such an algorithm for this
network that can achieve the optimal energy-delay tradeoff.

VI. CONCLUSIONS

In this work, we investigated two quantities of fundamental
interest in a mobile ad-hoc network: the network capacity
and the minimum energy function. Using a cell-partitioned
model of the network, we obtainedexactexpressions for both
these quantities in terms of the network parameters (number
of nodesN and number of cellsC) and the steady state
location distribution of the mobility process. Our resultshold

for general mobility processes (possible non-uniform and non-
i.i.d) and our analytical technique can be extended to other
models with additional scheduling constraints.

We also proposed scheduling strategies that can achieve
these bounds arbitrarily closely at the cost of an increased
delay. The key observation is that such capacity and minimum
energy achieving schemes are necessarily 2-hop relay algo-
rithms. Although these schemes make scheduling decisions
purely based on the current user location, their average delay
is bounded. The delay performance can be improved using
other information (like queue backlogs, mobility patternsetc.).

We have focused on network control algorithms that operate
according to the given network structure. We assumed that
the packets themselves are kept intact and are not combined
or network coded. An interesting future direction of this
research would be to discover if network coding can be used to
either increase capacity or reduce average energy expenditure,
perhaps by augmenting the network model to include coding
options and to also exploit the broadcast channel structure, as
in [13].
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