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Abstract— We investigate two quantities of fundamental in- combinations. Specifically, the contributions of this papee
terest in a mobile ad-hoc network: the capacity region and te threefold:
minimum energy function of the network. The capacity regionis
defined as the closure of the set of all input rates that the natork
can stably support. The minimum energy function establishe a
lower bound on the amount of energy required to support a giva
set of input rates. We consider a specific model of the mobileda
hoc network that enables us to exactly compute these quanigs.
Further, we propose schemes that offer performance guaraees
that are arbitrarily close to these bounds at the cost of an
increased delay. The exact nature of the associated delayatteoff
when performance is pushed towards the minimum energy bound
is another fundamental characteristic of the network that is
discussed in this work.

1) We extend the simplified cell-partitioned model of [1],
[2] to treat inter-cell communication. We establish exact
capacity expressions for general user mobility processes
(possibly non-i.i.d. and non-uniform), assuming only a
well-defined steady state location distribution for the
users. Our analysis shows that the throughput optimal
solution for this extended model is also necessarily a
2-hop relay algorithm. Further, our analysis illuminates
the optimal decision strategies and precisely defines the
throughput optimal control law for choosing between
samecell andadjacentcell transmission. We then use
this insight to design a 2-hop relay algorithm that
can stabilize the network for all input rates within the
capacity region. We also compute an upper bound on the
delay of this algorithm. Our analytical technique can be
extended to systems with additional constraints as well.
(Section III)

2) We compute the exact expression for the minimum
energy required to stabilize this network, for all input
rates within capacity. Our result demonstrates a piece-
wise linear structure for the minimum energy function.
(Section IV)

3) We present gjreedyalgorithm whose energy cost can
be pushed arbitrarily close to the minimum energy at the
cost of an increased delay. We then discuss the energy-
delay tradeoff involved and note that the piecewise linear
special structure of the minimum energy function can be
exploited to design a multi-hop policy that achieves an
energy-delay tradeoff superior to that given in [10], and

I. INTRODUCTION

Two quantities that characterize the performance limits of
a mobile ad-hoc network are the capacity region and the
minimum energy function of the network. The capacity region
is defined as the closure of the set of all possible input rates
that the network can stably support considering all possibl
scheduling and routing algorithms that conform to the given
network structure. The minimum energy function can be
defined as the minimum time average energy (summed over
all users) required to stably support a given set of inpusat
It is, therefore, not possible for any scheme to support patin
rate at an energy cost lower than the minimum energy function
value. In this work, we compute these quantities exactlyafor
specific model of a mobile ad-hoc network. We then describe
schemes whose performance can be pushed arbitrarily close
to these bounds at the cost of an increased delay.

Asymptotic bounds on the capacity of static wireless
networks and mobile networks are developed by [3], [4]. ) .
Capacity-delay tradeoffs in such networks are considemned i even outp_erform the square-root tradeoif law given in
[11, [2], [6], [7]. [8]. However, litlle work has been done in  [+1l- (Section V) _ | _
computing theexactcapacity and energy expressions for these Our network model and assumptions are discussed in the
networks. Exceptions include a closed form expressiontfer tN€Xt section.
capacity of a fixed grid network in [5], and an expression for
the capacity of a mobile ad-hoc network in [1], [2]. Specif- Il. MODEL AND ASSUMPTIONS
ically, the work in [1], [2] uses a cell-partitioned strubtu 1y Newwork Model: We use the following cell partitioned
and assumes only same-cell transmissions are possible and otvork model: The network is partitioned i€ non-
that only a single packet can be sent on each transmission.

. ) X overlapping cells, not necessarily of the same size/shape
In this work, we extend this model to more general scenarios

(see Fig. 1). There ar®& users independently roaming

allowing adjacent cell communication and different ratavpr
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from cell to cell over the network. Note that there
could be “gaps” in the cell structure due to infeasible
geographic locations. We assume that the gaps do not



represents the rate of this process, i.e.

lim 2o Ai(7)

t—o00 t

=N w.p. 1

We assume that thed;(t) variables are i.i.d and
E{A;(t)} = \;. We also assume that packets generated
by useri are destined for a unique usgrand vice

versa. For simplicity, we assum® is even with the
Agapin following one-to-one pairing between usets— 2,3 <

the network 4,....,(N —1) < N, i.e., packets generated by uder
are destined for use? and those generated by user
are destined for user and so on.

4) Communication Model: We assume that two users can
communicateonly if they are in the same cell or in an

adjacent cell. Further, if the communication takes place
in the same cellR; packets can be transmitted from
the sender to the receiver if the sender uses full power.

Fig. 1. Anillustration of the cell-partitioned network Wisame and adjacent If the receiver is in an adjacent celR, packets can
cell communication and gaps in the structure be transmitted with full power. We assunfa > Ro.

2)

3)

Power allocation is restricted to the séb, 1}, i.e.,
each user either uses zero power or full power (we use
partition the network, so that it is possible for a single normalized value). We allow at most one transmitter

user to visit all cells. We assum@ is the number of in a cell at any given timeslot, though it may have
valid cells, not including such gaps. We can then define  multiple receivers (due to possible adjacent cell commu-
the user densityl = % users/cell. nication). Further, a user may potentially transmit and
Mobility Model: Time is slotted so that each user receive simultaneously. This model is conceivable if the

remains in its current cell for a timeslot and potentially users in neighboring cells use orthogonal communication
moves to a new cell at the end of the slot. We assume channels.

that each user movaadependenthyof the other users  This model allows us to treat scheduling decisions in each
according to @eneralmobility process. We assume onlycell independenthyof all other cells. It is possible to include
that the mobility process has a well-defined steady staddditional constraints in the communication model, e.gly @
location distributionr. over the cellsc € {1,2,...,C}. receiver per cell, no simultaneous transmission and rarept
This distribution could be non-uniform over the cellsetc. We note that this model can easily be extended to the
Thus, for example, our analysis can be used to compweenarios where users can choose from a finite set of power
the exact capacity and minimum energy for a network iallocations. Similarly, our model can also be extended ke ta
which users are performing a Markovian Random Walinto account channel states eachcommunication link. We
over the cells such that there exists a well-defined steadigcuss these extensions at the end of Sec.lll.

state location distribution for all users. We assume theIn this work, we restrict our attention to network control
steady state cell location distribution is the same for algorithms that operate according to the given networkcstru
all users. ture described above. A general algorithm within this class
We assume that the mobility model is ergodic and thatill make scheduling decisions about what packet to trafsmi
time average location probaiblities converge to thewhen, and to whom. For example, it may decide to transmit to
steady state location probabilities. We further assume a user in an adjacent cell rather than to some user in the same
that the mobility model has the following “renewable’cell, even though the transmission rate is smaller. However
property: Given any > 0, there exists a finite integéf we assume that the packets themselves are kept intact and are
such that the expected time average location probabilitpyt combined or network coded.

taken over any interval of siz& is within § of its long

term time average. That is, for any tine Ill. CAPACITY, DELAY AND A 2-HOP RELAY ALGORITHM

In this section, we compute the exact capacity of the
K1 network model previously described. We assume that allsuser
Z Pr[user in cell ¢ at time + r|H (t)] — 7. < & receivg packets at the same rate (Ae= _/\ for all i)!. The
capacity of the network is then the maximum rate¢hat the
network can stably support.
Theorem 1:The capacity of the network is:

1
K
=0

regardless of past history up to timiewhere H (t) is
the history up to time. { 2BagtFo(p-a)42Baq 4o’ —d) it R, > 2R,

Traffic Model: Packets are assumed to arrive at a usef =
according to some arrival proceds(t) which indicates
the number of packet arrivals in timeslofor useri. \; 1The scenario involving heterogeneous rates can be treatedrly.

2d
1" " / ’
2R19+R1p +2§odzq +R2(p'—q") if 2Ry > Ry > R»



Where for all ¢), then we have the following simpler expressions for

Z ,Prlfinding a S-D pair in a celt] q,p,q,p"
P=5 Zc 1Pr[fmdlng at leas® users in a celt] 1 N
¢ =& Zc ,Prlfinding exactlyl user in a cellc and its ¢=1-( E)
destlnatmn in an adjacent cell] B 1 1.y N 1. nvo1
p =21 Zc ,Prlfinding exactlyl user in a cellc and at least p=1-0- 6) E( 5)
1 user in an adjacent cell] N 1 c
q" = % CC_ZlPr[findi_ng no S-D pair in a celt but at leastl q¢ = 5(1 - E)N_l ZHadj(C)
S-D pair W|C§h an adjacent cell] c=1
p” = &> _,Prifinding no S-D pair in a cele and any N B B
adjacent cell but at leagt users in the celt] P = i 5)N S (1 — (1= Tagi(e)™ 1)

c=1

Note that the value of. does not vanish with the number
of usersN as long as the network density (1), i.e., the Assuming each cell has at mastdjacent cells (to the left,
number of cell”' is scaled appropriately @ grows. This is right, up and down respectively), an example of a mobility
in agreement with th€ (1) per user throughput for a mobileprocess that would give a uniform steady state locationidist
ad-hoc network, first observed in [4]. bution under our cell-partitioned network model is a random
The probabilities in the summations above are the steadialk where every time slot, each user stays in the previous
state probabilities associated with the steady state ce#l-1 cell with some probabilityl — 3 (such that) < 8 < 1), else
tion distributions of the users. Thus, using the steadyestatecides to move to an adjacent cell with probability4. If
cell location distributionr., we can exactly compute thesethere is no feasible adjacent cell (e.qg, if the previous el
probabilities for our network. These are given by: a corner cell and the new chosen cell doesn't exist), then the
user remains in the previous cell. This random walk forms
an irreducible and aperiodic Markov Chain since we assume
) that there are no partitions in the network and there are self
transitions with positive probability.
1 Z (1 (1 —7)N — Nm(1— ﬂ_c)Nfl) Thus, f[he .network can stably support users simultaneously
communicating at any ratd < u. We prove the theorem
in 2 parts. First, we establish the necessary condition by
) deriving an upper bound on the capacity anfy stabilizing
algorithm. Then, we establish sufficiency by presenting a
specific scheduling strategy and showing that the averdgg de
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p = éz (1 —(1- Hadj(c))Nfl)ch(l —m.)V~! is bounded under that strategy.
c=1 Proof of Necessity Let S be the set of all stabilizing
L1 c N2 N/2\ N . scheduling policies. Consider any particular poliecye S.
=5 Z 21( ; )w}:(l — ) _1(1 - (1- Hadj(c))z) Suppo§e it sucgessfu_lly delivers?, (T') packetg frpm sources
e=1i=1 to destinations involving'a” same cell transmissions artél’

1 & IN/2\ . . ~ adjacent cell transmissions in the intergal T'). Fix ¢ > 0.
P==>>" 21( / )wz(l — 7e)N7H(1 — Haq;(c))" For stability, there must exist arbitrarily large valuesioguch
that the total output rate is withia of total input rate. Thus:

Za OZb 0 ab( >N)\—

1)
Here, II,4;(c) denotes the sum of the conditional steady
state probabilities of a user being in any adjacent cell of Next, total number of packet transmissions(inT) is at

cell ¢ given that this user is not in cell, i.e., ,q;(c) = least) = o > 2o (a+b) X, (T) (because these many packets
1_17r Ziczl el adjacent to  WHETe 1 agjacent to ¢ IS an indicator were certainly dehvered_) Thls must be I_e_ss thar_l the mawimu
function taking valuel if cell i is adjacent to celt ando POSsible packet transmission opportunities defined a&).
otherwise. Thus:

In the expressions far”, p”, the terme? (N/?) i (1—7, )N = 1.
is the probability of finding users in a cell such that there are TY (T) 2 T Z Z(a +b)

no s;aurce-destination pairs. It can be obtained by notiafy th “TO b=0 9
N/2 s s
21 ((1’ )) is the probability of finding no source-destination pair = > Xo(T)+ T > X5(T)
i . a+b<2 a+b>2
is a cellgiven thati users are in that cell ar(dv) (1—m )N 1 1
is the probability of choosing out of N users. Clearlyz < 2 T Z Xop(T)
% since there must be at leabktsource-destination pair for a+b<2
- N
i> 5. _ _ (N/\—e ST X5, )(usmg 1)

As an example, if we consider the case when the steady state

. .. . . . a+b<2
location distribution is uniform over all cells (so that = =



Hence, noting that can be chosen to be arbitrarily smalljs exactly equal to its expectation with respect to the stead

we have:
Ye(T) + X3 (T) + X1 (1)

< li
A< lim ST N

T—o0

)

state user location distribution.

Thus, the capacity region can now be computed by calculat-
ing the expectation of¢ using the steady state probabilities
associated with the indicator variables and summing ouer al

DefineY,?(7) as the number of packet transmission 0ppogg|is. These are given by,p, ¢, ', q",p" for both cases of

tunities in cellc at time7. ThenYs(T) + X{,(T) + X§,(T)
can be written as a sum over all time slaetaand all cellsc
as follows:

1

v
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(Y*() + Xio(7) + X3 (7))

q
N
|
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3™ (V200) 4 Koo (r) + Xi,,)
=0 c=1
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ma (V) + X ) + Xglyc(T)) 3)
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Define Z3(r) = Y2 (1) + X{, () + X§, .(7) and Z¢(r)

N
Il
o
o
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Note that the above preference order clearly spells out
the structure of the throughput optimal strategy. Spedifica
depending on the values d?; and Rs, it can be used to
decide between same cell relay versus adjacent cell direct
transmission. We use this structure of the throughput adtim
strategy to design a 2-hop relay algorithm that we preseiit ne

Also note the factor of with the decision variables corre-
sponding to direct source-destination transmission.itimély,
each such transmission opportunity is better than a similar
opportunity between source-relay or relay-destinationaby
factor of 2 since the indirect transmissions need twice as
many opportunities to deliver a given number of packets to

maxses Z, (7). Also, define the following indicator decisionthe destination as compared to direct transmissions.

variables for any policys for somer € [0,7] andc € [1,C]:

1 if s schedules a same cell direct
transmission at rat&®; in cell c
else

1 if s schedules a same cell relay
transmission at rat®; in cell ¢
0 else

1 if s schedules an adjacent cell direct
transmission at rat®- in cell ¢
0 else

1 if s schedules an adjacent cell relay
transmission at rat&, in cell ¢
0 else

Thus, we can express:(r) as follows:

Z2r) = Y2(r) + Xip,o(7) + X51,0(7)

=R X7+ R X5+ Ro X5 + Ro X{ 4 Xio(7) + X5, (7)

= 2R X{ + R X§ + 2Ry X§ + Ro X§

Since only one of the decision variableslisand the rest
are 0, the preference order for decisions to maximizgr)
is evident. Specifically, it would b&{ < X§ < X§ < X§
when R; > 2R, and X{ < X§ < X§ < X§ when Ry <
Ry < 2R,. So in each celt, Z:(7) is maximized by choosing

the decisions in this preference order, only choosing a less
preferred decision when none of the more preferred dedsion 3)

are possible in that cell.
Thus, (from (2) and (3)):

!

1 -1 C
< lim ——
As i ooy

7=0 c=

Z¢(r)
1

As Zc(r) can take only a finite number of values (namely
Ry, R2,2R1,2R5,0) and is a function of the current state of

the ergodic user location processes, the time averag’]é(of)

Proof of Sufficiency Now we present an algorithm that
makes stationary randomized scheduling decisions and show
that it gives bounded delay for any rate< u, i.e., there exists
e > 0 such that\ + ¢ < 1 . We only consider the case when
Ri > 2R,. The other case is similar and is not discussed.

2 Hop Relay AlgorithmEvery timeslot, for all cells, do the
following:

1) If there exists a source-destination pair in the cell,
randomly choose such a pair (uniformly over all such
pairs in the cell). If the source has new packets for the
destination, transmit at ratg; (add dummy packets if

less thanR; packets present). Else remain idle.

If there is no source-destination pair in the cell but ¢her
are at leas® users in the cell, randomly designate one
user as the sender and another as the receiver. Then toss
an unfair coin such that the probability of “Head” is

1-2 wheres = §(e) and0 < & < 1. If the outcome
is “Head”, perform the first action below. Else, perform
the second.

a) Send new Relay packets in same célthe trans-
mitter has new packets for its destination, transmit
at rate R, (add dummy packets if less thaR,
packets present). Else remain idle.

b) Send Relay packets to their Destination in same
cell: If the transmitter has packets for the receiver,
transmit at rate?; (add dummy packets if less than
R, packets present). Else remain idle.

If there is onlyl user in the cell and its destination is
present in one of the adjacent cells, transmit at fate

if new packets present (add dummy packets if less than
Ry packets present). Else remain idle.

If there is onlyl user in the cell and its destination is
not present in one of the adjacent cells but there is at
least one user in an adjacent cell, randomly designate
one such user as the receiver and the only user in the
cell as the transmitter. Then toss @amfair coin such that

the probability of a “Head” is% whered = §(e) and

2)

4)



0 < § < 1. If the outcome is a “Head", perform the firstunfinished work satisfies the following condition for al ¢:
action below. Else, perform the second.

a) Send new Relay packets in adjacent céithe U”(t+ K) < max (U(C) Z ZM(C) )
transmitter has new packets for its destination,
transmit at rateR, (add dummy packets if less t+K—1 t+K 1
than R, packets present). Else remain idle. Z Zufﬁ) (1) + Z Aic(1)  (4)

b) Send Relay packets to their Destination in adjacent
cell: If the transmitter has packets for the receive(yhere
transmit at rateR; (add dummy packets if less thang, (7) = number of new type: arrivals to source nodé at
R, packets present). Else remain idle. the beginning of time slot

This algorithm is motivated by the proof of Theorem 1 since.s(7) = rate offered to type: packets in time slot- with
it follows the same preference order in making schedulingpdea as transmitter and nodeas receiver
decisions. Note that this algorithm restricts the path teagf The above condition is an inequality because the to-
all packets taat most2 hops because any packet that has be&al arrivals to nodez from other nodes may be less than
transmitted to a relay node is restricted from being tratigchi th:}f 12 Mm (7) if these other nodes have little or no
to any other node except its destination. packets to send.

We make use of the following Lyapunov Drift Lemma (from Now define the Lyapunov functiod(U) = Z#C[U;c)]?
[1]) to analyze the performance of this 2 Hop Relay AlgorithmThen we have the following expression for tié slot Lya-
Consider a network oV queues operating in slotted time, angounov Drift (from [1]):
let U(t) = (Ui(t), Uz2(t),...,Un(t)) represent a row vector

2
of unfinished work in each of the queues for timeslots E{LU(+ K)) - LU®)|U(t)} < K*BN
{0,1,2,...}. Here, the unfinished work/;(t) represents the (@, 1 P& ©,
number of backlogged packets destined for usdbefine a - 2KZU1' (t)E Z E{ Z“
non-negative functiorl.(U(¢)) of the unfinished work vector 17&0 =t
U(t) called a Lyapunov function. Then we have the following: - Z Mm Aie 7)|Q(t)} (5)

Lyapunov Drift Lemmalf there exists a positive integdt
such that for all timeslot$ and for allU(¢), the Lyapunov \yhere
function of unfinished workl.(U) evaluatedK' steps into the B — (4,,,, + ui", )2 + (uo% )2

Mmaz

future satisfies: A% = upper bound on the second moment of the exogenous
arrivals to any node
E{L(U(t+ K)) - LWM®)U®} < B->_ 07U 1) pin = maximum transmission rate into any node
i,c pot = maximum transmission rate out of any node

for some positive constants, {91@}, and ifE{L{U(t))} < Now note thatiK such that: Z”K ! {Zb i, ( ) —
oo for t € {0,1, ..., K — 1}, then the network is stable, and:

lim sup — Z [ZH E{U; (7

t—o0o

> Nm ( )—Aie(T )} is within 6/2 of the time average values

on ergodicity and renewability in the mobility model (seeSe
II) by noting that the functionals of user cell locationsals
converge over finite intervals of sizE.
Proof: This Lemma can be shown by using a telescoping The drift condition holds for any control policy that yields
series argument and is proved in [1]. general(?(t) rates. We next calculate the rates obtained
Theorem 2:For a cell partitioned network (it nodes by the 2 Hop Relay Algorithm. Since this algorithm makes
andC cells) as described above, with a capagitand input transmission decisions independent of the current backlog
rates\ for each user such that+ e < p for somee > 0, |evels, we can ignore the conditional expectation in the las
the average packet deldy under the 2 Hop Relay Algorithm symmation above. We have the following 2 cases

} Dl Hz -> . u(c) Aic. This follows from the assumptions

satisfies: 1) Node i generates typec packets: In this case,
D< O(KN) E{Ai.(7)} = AandE{>", M,(ﬁ) (t)} = 0 (since a source
€ node would never get back a packet that it generates). To

calculateL SV RS, 18 (1)}, we note that due

to the randomized nature of the 2 Hop Relay Algorithm,
packets from a given source node see the network only
as a source, destination and intermediate relays and
transmissions of packets from other sources are reflected

where K is a finite integer (that may depend @v) related
to the mixing time of the mobility process. i.e., the time
required for the mobility process to reach a “near steadg’sta
described in more detail in [1].

Proof: Let Ui(c) (t) represent the amount of unfinished work

of type c (i.e. nymber of p_aCketS destined for noa)gthat 2The case where nodeis the receiver for type: packets doesn't arise
are queued up in nodeat timet. The K-step dynamics of since the summation is ovérs ¢



simply as random ON/OFF service opportunities. Therenough to cover any scheduling restriction structure. H@®m
fore, the outgoing service rate for packets generated bhyamounts to:

the source is equal to the sum of the rate at which the

source is scheduled to transmit directly to its destination 1 c

and the rate at which it is scheduled to transmit to one of ) < 2_1[-3{ max (Yj(t) + X500 + X&,c(t)) }

the relay users. Let these ratesrheandr, respectively. N 58 4

Also let the transmission rate out of the relay nodes be Thgrefore the optimal resource allocation is to schedule to

r3. Then the total rate of transmission over the networljﬁaximizezcc:l (Yj(t) +X1507c(t) +X§1,c(t)? subject to the
I

Ijsji\rflglt;]remptoﬁe)lbility of choosing source-relay ana‘:hef’“"”g restrictiops. For. the s-peci.fic ce _—partitidmaodel .
relay-destination transmissions, we have considered here, this maX|m|zat|c_>r! is ach_|eved by follcg/vl_n

' the preference order of the decision variables as described
1= 5r ©6) earlier. This enables us to exactly compute the capacithief t
T 1467 network. It is possible to do the same for extensions to this
In the 2 Hop Relay Algorithm, a direct source-toimodelinvolving other constraints. For example, if we irmtgu

destination transmission is scheduled whenever therelfi§ constraint that a user cannot simultaneously transmait a
a source-destination pair is the same cell or there is od§ceive, then the above maximization becomes a maximum-

1 node is a cell and its destination is in an adjacent ceatch type problem which is difficult to distribute cell bylice
Thus, using the result from the proof of Theorem 1, w8 possible distributed solution is to define an Aloha like MAC

have: scheme in which each node decides to be either a transmitter
or receiver with probability 1/2, and then maximize the abov
C(Riq+ Raq') = N1y (7)  metric.
Our model for the channel state process is idealized in
at transmissions are assumed to be error-free. But itidhou
be noted that our technique can be used to get expressions

T2

Similarly, the sum total transmissions in the networlﬁ1
can be expressed in terms of the quantifieendp’ as

follows: for the capacity region when the channel stateseaohlink
C(Rip+ Rop') = N(r1 + 19 +13) (8) are described by some fading process which in turn affects
] the achievable transmission rates. We would like to poirit ou
Using these, we have: that the capacity will not be a scaled version of the value
(1+6)(Riq + Raq’) + (1 — 6)(Ryp + Rop') calculated for the basic model; rather, multi-user divgrsan
Tt T = 2d be exploited to maintain competitive capacity region. It is

also possible to use our technique for scenarios where each

By definition, K is the number of slots required for ser follows its own distinct mobility process, althougte th
the mobility process to reach a near steady state. Sinte y P ' 9

the total outgoing rate is only a function of the Steadfg:g?g;%gfy make the expressions for the capacity region
. e t+K—1 .
state location distributiong > E{Y, 12 (1)}

R T=t The 2 Hop Relay Algorithm presented earlier makes

is within 6/2 of r; 4+ r, as obtained above. heduling decisi v based h |

Choosings — de the above expres- scheduling decisions purely based on the current user loca-
Rip+Rap' —R1q—Rogq'—d! tions. It certainly does not attempt to minimize the delay in

sion is at leasy, — /2 where 1S thg capacity O.f the the network. The main objective behind this algorithm is to
network. Thus, the last summation in (5) for this case . - L . .
: establish the sufficient condition for the capacity regioad-
is at leasty —e/2 — X\ >¢/2 > 0.

. ) . } _rem. The delay performance can be improved using altemativ
2) ONogf;szlg]y: tzyF:_?g palé:lgleats.'l‘l’ll t:rl'ihcmasfcﬁég(gs} ;an scheduling strategies. In fact, schemes that make use ofque
-l P y Algorit uies Soacklog information in making scheduling decisions arensho
MISSIoNs out of relay no_des with h|_gh¢r probability tha?o outperform a stationary, randomized scheduling styaileg
into relay nodes, and using the definition/sf we have: [1]. Similarly, schemes that exploit the mobility patteritioe
t+K—1 users (e.g. [9]) can get better delay performance.

LSS ST R By L) ST,
T=t b a

€

IV. MINIMUM ENERGY FUNCTION

> r3 > € for o>

1535 9 — ¢ We now investigate the minimum energy function of the

cell-partitioned network under consideration. The minimu
Thus, the last summation in (5) for this case is positivénergy functiond()\) is defined as the minimum time average
as well. power required to stabilize an input rateer user, considering
Choosingd = max 7 +R2p/7d§1q7R2q/fd’ QT;E), we can all po_ssible scheduling and routing algorithms_th_at conform to
apply the Lyapunov Drlﬁ Lemma to bound the average packigte given network structure. In [10], [12], the minimum eger
occupancy. Using Little's Theorem, the average delay p&mction is formally defined as the solution to an optimiaati
packet satisfies the bound in Theoreni2. problem. We use the same definition.

Discussion, Other Extensions and Implicatinihe proof We exactly compute this function for our network model.

of the capacity for the cell-partitioned network is generd@pecifically, we assume that all users receive packets at the




same rate (i.eA; = A for all 7). Also, we consider the case

when Ry > 2Rs. (®()\) for the case whe®; < 2R, has a
different expression, but the proof is similar). Q, 2 x |700 = 0 & chab -\
Theorem 3:The minimum energy functiof®(\) per user of a,b
the cell-partitioned network is a piecewise linear curweegi x
. A 10
by the following: o = {m & < Cl}
A ; 1
B if A Qs 2 {:B R—Zaxab§01+02
2 2 2R : 1
sy=1 # (- %) "o "
= (p+9) | 1 ()\ . Rl(p-&-q)) if C 1
2d :’/RQ 2dR - Qs 4 T R—Zaxab-f— % <ci+co+c3
(p+422 ) +%(/\_ 1(p+¢12)d+ 2q) if D 1 2
wherec; is the maximum rate of source-destination transmis-
where sion opportunities in the same cell, + ¢ is the maximum
A=0<A< 212%;‘1 rate of all possible same cell transmission opportunitied a
B= 212%_501 <A< w c1 + ¢ + c3 is the maximum rate of all same cell or source-
C = Bilera) oy Ri(p+q)+2Raq destination adjacent cell transmission opportunitiegh@uit
=T 2d = — 2d

double counting).
Using the results from Theorem 1, we know that =
q/d,c1 + ca =p/d,c1 4+ ca+cs = (p+q')/d. For example,
Thus, the network can stably support users simultaneou%gq_ ¢')/d can be written ask Zf—o X1(t) + Xo(t) + X3(t)
communicating at any rate < » with an energy cost that canyhere ., (¢) is the maximum number of direct same cell
be pushed arbitrarily close t®()\) (at the cost of increased opportunities, X,(t) is the maximum number of indirect
delay). We prove the theorem ih parts. First, we establish same cell opportunitiegivenall direct opportunities are used
the necessary condition by deriving a lower bound on thgq X;(t) is the maximum number of direct adjacent cell
energy cost ofany stabilizing algorithm. Then, we establishopportunitiesgivenall same cell opportunities are used. Since
sufficiency by presenting a specific scheduling strategy agfly one of these three opportunities can used is a given cell
showing that the average delay is bounded under that poligy. 5 time slot, the maximum total sum is fixed and hence
Proof of NecessityConsider a scheduling strategy that stae; + co + c3 = (p + ¢') /d.
bilizes the system. Lek,,(T') denote the number of packets Define f(z)= 3", ,(a/Ri+b/R2)xap, which is simply the
delivered by the strategy from sources to destinatior{8,ii’) right hand side of (9). Because> f(x), and because €
that involve exactlyn same cell and adjacent cell transmis- Qy N Q1 N Qs N O3, we have that:
sions. For simplicity, assume that the strategy is ergoai .
yields well defined time average energy expendituaad well ez megomglz?%gzmgg (x) (10)
defined time average values for;, where:

_ Ri(p+q)+2R2q’

Furthermore, for any functiop(z) such thatg(x) < f(z)
for all , and for any sef) that contains the s&?y N Q; N

. 1 Q5 N Q3, we have:
Tap= lim = Xap(T) e > inf g(x) (11)
& xze)

. . o This follows because the function to be minimized is
The average energy costof this policy satisfies: smaller, and the infimum is taken over a less restrictive set.

We define four new constraint sef), 21,2, Q3 as fol-

e >3 (a/Ry +b/Re)tas (9) lows:
a,b
Q 2 Q
L

This follows by noting that enough packets may not be(),

available during a transmission. )
. ~ x

Note thatzgy = 0, and so the only possible non-zerg, Qo x % + & D T <o
variables are for(a,b) pairs that are integers, non-negative, ! La>2
and such thata,b) # (0,0). Let ¢ = (x4) represent the
coll_ection ofzqy va_riables, and note that these variables must), 2 o |20 2 Z Tuo + Zor <cp4co+es
satisfy the constraint € y N Q2 N Q, N Q3, where the four Ry Ry %= Ry
constraint sets are defined below:

O

[l

_ It can be seen that each 6k, (2,2, is a subset of
0o, 21, Q2,3 respectively. Therefore)o N2y N Q2 N Q3 is
3The general case can be proven similarly. a subset of2g N Q; NNy N Q3.



We now find four different bounds fot, each having the
form e > aX + 3. These bounds define the four piecewise
linear regions ofb(A). Throughout, we assume thatR; <
1/Rs, so that:

1 < 2 < 1 < 2
Ri R~ Ry Ry

(the opposite case/R; > 1/R» can be treated similarly,
and leads to a different set of bounds).

1) Note thatf(x) > 7=, , Zap. Therefore:

e > inf —Zxab

mEQg

(12)

Because the constraifily is given by> v zab = A
the above infimum is equal v/ R;. Therefore we have
our first linear constraint for any algorithm that yields a
time average energy of

(13)

(a,b)#(1,0)
This is because(a/R; + b/R;) > 2/R; for any
non-negative integer paifa,b) such that(a,b) #
{(0,0),(1,0)} (using (12). Therefore, we have:

4)

. T | 2
e> inf + — g
2chont | B Rl (a,b#(m)

The right hand side is equal to the solution of the
following problem:

Minimize: S0 + 237 11 o) Tab
Subject to: >apTab = A

10
7=

The above optimization is equivalent to minimizing
«TlO/Rl + Q/Rl(/\ - «TlO) SUbjeCt tOl‘lo/Rl < ;. The
solution is clearly to choose,;y = R;c1, and hence we
have:

2
e> 7O (14)

3) Next note that:
X
f(m ﬁ"i__zan"" Zxab
2 b£0

which follows from case 2 as well as becausea?,; <
b/ Rs for all positiveb.
Thus, we have:

e > ~ mf ~ IlO Rl Z Tao + = Z Lab

x€QENN1NQ2 b;é()

This is equivalent to the following minimization:

Minimize: ””10 + R1 ZGZQ Tao +
R%()\ — 10 = Y452 Tao)
Subject to: ””10 <c

2
mi"‘R_IE:a>2$aO Scl+02

Ry

where we have aggregated the constraiit, za, = .
Lettingy = > -, zq0 and simplifying the optimization
metric, we find the above optimization is equivalent to:

Minimize: —xlO(R—2 - RLI) y(RLz - Rll) + R%
Subiject to: ”;f <

zio 4 2y
R +R1 SCI+CQ

It is not difficult to show that the above optimization is
solved whenzqg 4+ 2y = R1(c1 + ¢2). We thus have:

HRE . A 1 1
Minimize: 7 —r0(g — 7))
Ri(ci+e2)—z10 1 2
() (g - ®)
Subiject to: ””R—lf <ec

The coefficient multiplying the:, variable is—1/2R;,
and hence the optimal solution is given by = Ric1,
yielding:

2y (@15)

R(C+
D)

e>i+(cl—|—02)—R—;

Ry
Finally note that

which follows from case 3 as well as beca®se?, <
b/ Ry for all b > 2.
Thus, we have:

. o1
e > inf ——|——Zxa0+——|——2xab
xc) b>2

where
Q=0NU NN

This is equivalent to the following minimization (using

Za,b Tap = A):

S 5
Minimize: B+ D2 Tao + B+

2

7 (A =210 = 2,59 Ta0 — To1)
Subject to: ””R—ll“ <¢c

B+ Y se a0 S €1
B+ B D sa a0 + B <ot
Again lettingy = ) -, and S|mpl|fy|ng the op-

timization metric, we find the above optimization is
equivalent to:



2) ”;—;q <A< %: Here, all packets are sent ei-

A= ther using source-destination transmission opportumitie
in the same cell or source-relay and relay-destination
transmission opportunities in the same cell.

3) w <AL %jwzq/: In this case, all pack-
ets are sent using same cell or adjacent cell source-
destination transmission opportunities.

/)\‘:,(R';(l;)+q) i 2R,0’)/2d
o) i q) Blta2Ra’ -\ ) Here, all transmission oppor-

2d
tunities are used.
*:/R o+l To make the presentation simpler, we only discuss the
1 et . .
——————————— second case wher@c}—q <A< w. The basic idea
; and performance analysis for other cases are similar. Define

g control parametel’ > 1.

i Minimum Energy AlgorithmEvery timeslot, for all cells,

A do the following:

1) If there exists a source-destination pair in the cell,
randomly choose such a pair (uniformly over all such
pairs in the cell). If the source has new packets for
the destination, transmit at rat®;, with probability
Piirect = 1 — 7-. Else remain idle.

2) If there is no source-destination pair in the cell but ¢her
are at leas® users in the cell, randomly designate one

Fig. 2. An illustration of the minimum energy functioh(\) showing the
piecewise linear structure

Minimize: z10(7 — ) +y(5 — 75) — %2 + user as the sender and another as the receiver. Then toss
92 an unfair coin such that the probability of “Head” is
Ro 1-6 —
: = , Whered = d(e) and0 < § < 1 and
Subject to: 2o < ¢ g ety ©
A q 1
- R 7 —a(l—v)
R, R, — 1 2 Prelay — L3 Z*q v

N
&‘

o4 Wy <ofoto
If the outcome is “Head”, perform the first action below.
Else, perform the second.

a) Send new Relay packets in same célthe trans-

mitter has at leask; packets of type “relay” for its

e> 22 +(c1+ o) — &(01 +2¢5) —cs  (16) destination, transmit at ratg; . Else remain idle.
2 2 b) Send Relay packets to their Destination in same

cell: If the transmitter has at leagt; packets of

The above optimization is solved wheng = Ricq,
10 + 21/ =R (Cl +CQ> andel = Rocs. We thus have:

Thus, ®(\) function is obtained by combining these four ; h , ,
bounds. Fig. 2 shows this. We note thi)\) is a piecewise type “relay” for the receiver, transmit at raf,
linear function. Else remain idle.

Proof of Sufficiency Now we present an algorithm that Note that the above algorithm does not use any adjacent cell
makes stationary randomized scheduling decisions and sHéapsmission opportunities. All packets are sent over astmo
that for any feasible input ratd < p, its average energy 2 hops using only same cell transmissions. We now analyze
cost can be pushed arbitrarily close to the minimum valiBe performance of this algorithm.
®(\) with bounded delay. However, the delay bound grows Theorem 4:For a cell partitioned network (wittv' nodes
asymptotically as the average energy cost is minimized. Thed C cells) as described above, with a capacityand
exact nature of this energy-delay tradeoff is discussedién tminimum energy functior® (), the average energy costof
next section. the Minimum Energy Algorithm with input rates for each

Similar to the 2 Hop Relay Algorithm, this strategy alséiSer such that + ¢ < p for somee > 0 and a control
restricts packets to at most 2 hops. However, the differbese Parameter/ =V (e) > 1, satisfies:
in that it greedilychooses transmission opportunities involving
smaller energy cost over other higher cost opportunitigs. A
opportunity with higher cost is usexhly when the given input
rate cannot be supported using all of the low cost oppoiamit

e > B() + 0(5)

with an average packet deldy given by:

Thus, depending on the input ratethe algorithm uses only D < O(KNV)
a subset of the transmission opportunities as follows: - €
1) 0< A< 2’;”;‘1: In this case, all packets are sent usingthere K represents a parameter indicating the time required

only source-destination transmission opportunities & tHor the mobility process to reach a “near steady state”, de-
same cell. scribed in more detail in [1].
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Proof: It can be seen that for the case under consideratidar general mobility processes (possible non-uniform amakn
each user either transmits directly to its destinationamgmits i.i.d) and our analytical technique can be extended to other
new packets to a relay or transmits relayed packets to theindels with additional scheduling constraints.
destination. Each such transmission involves unit eneocgy ¢  We also proposed scheduling strategies that can achieve
and therefore the average energy costan be expressed inthese bounds arbitrarily closely at the cost of an increased
terms of the rates of these transmission opportunitiestHeste delay. The key observation is that such capacity and minimum
be r1,r, and rs respectively. We have (using results fronenergy achieving schemes are necessarily 2-hop relay algo-

Theorem 2):

e=7r1+1r2+73

q p—ql—20 p—ql+o
:_Pirec ——Prea ——Prea
g t + p 5 lay p 5 lay

q p—q
:_Pirec —Prea
g t + d lay
A 1
:g(l_in—qR—l—%(l—v)

d Vv d %
2\ ¢ 1
- -Ta-9)
Ry d Vv
q
=d(A —
()+dV

rithms. Although these schemes make scheduling decisions
purely based on the current user location, their averageydel

is bounded. The delay performance can be improved using
other information (like queue backlogs, mobility patteets.).

We have focused on network control algorithms that operate
according to the given network structure. We assumed that
the packets themselves are kept intact and are not combined
or network coded. An interesting future direction of this
research would be to discover if network coding can be used to
either increase capacity or reduce average energy expeadit
perhaps by augmenting the network model to include coding
options and to also exploit the broadcast channel strucasre
in [13].

The delay of this scheme can be analyzed using the same

procedure used in the proof of Theorem 2. We first apply
the Lyapunov Drift Lemma to bound the average packéf
occupancy. Using Little’s Theorem, the average delay per
packet satisfies the bound in Theoren™. 2]
A natural question to ask is if it is possible to get better
delay performance by using alternative scheduling stiateg 3]
We discuss this in the next section.
(4]
V. OPTIMAL ENERGY DELAY TRADEOFF [5]

The optimal energy-delay tradeoff for a single queue over
a single fading channel was first characterized in [11]. I w
shown that, under strict convexity assumptions on the rate-
power curve of the system, any set of algorithms (param-
eterized byV > 1) that yield average power required fort”]
stability within O(1/V) of the minimum power required for
stability must have average queueing delay greater than[&r
equal toQ(+/V). It has recently been shown in [12] that for[g]
multi-user wireless downlink systems, if the minimum ernyerg
function®(X) is piecewise linear about the rate vecigthen  [10]
it is possible to beat thi§2(v/V) bound. In fact, a delay of
O(log(V)) is achievable as the average power is pushed within
O(1/V) of the minimum power, although this was only shown
for single hop networks. [

Since the minimum energy function for the cell-partitioneg )
network that we consider here has a piecewise liner straictur
it would be interesting to develop such an algorithm for this
network that can achieve the optimal energy-delay tradeoff

VI. CONCLUSIONS

In this work, we investigated two quantities of fundamental
interest in a mobile ad-hoc network: the network capacity
and the minimum energy function. Using a cell-partitioned
model of the network, we obtainexkactexpressions for both
these quantities in terms of the network parameters (number
of nodes N and number of cells) and the steady state
location distribution of the mobility process. Our resuitsid
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