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Abstract -- Tree networks of single server,
deterministic service time queues are often
used as models for packet flow in data com-
munication systems with Asynchronous
Transfer Mode (ATM) traffic. In this paper,
we present a method for analyzing packet
occupancy in these systems without making
any assumptions about the nature of the
underlying input processes. We demon-
strate how analysis of these multi-stage tree
systems can be reduced to the analysis of a
much simpler 2-stage equivalent model. We
also develop an expression for first
moments of queue occupancy in terms of
first moments of a simple 1-stage equiva-
lent model. From this, we observe an inter-
esting phenomenon for general types of
distributable inputs: Expected occupancy at
any interior queue within a multi-stage tree
network is a concave function of the multi-
ple exogenous input rates. Expected occu-
pancies in nodes on the edge of the network
are shown to be convex.

I. INTRODUCTION

In this paper we analyze the packet occu-
pancy in multi-input, single output tree sys-
tems of deterministic service time queues
(Fig. 1). Such systems are often used as mod-
els for packet flow in networks with ATM
traffic, where packets are broken into fixed
bit-length cells. These cells have a service
time proportional to their bit-length. Assum-
ing that the processing speed at each node is
the same, the cells thus have a deterministic
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Figure 1: A multi-stage tree network of queues.
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service time 7 in each node. In this paper, we
shall continue to use the term “packets” rather
than “cells,” keeping in mind that, unless oth-
erwise stated, the packets are fixed in length
and have deterministic service time 7.

Much of the previous work in this area has
concentrated on tandem chains of queues and
memoryless inputs ([1]-[4]). In [5], an aver-
age queue length analysis was performed for a
more general tree network using the proper-
ties of memoryless inputs. Their approach
relied on a lemma from [6] that used combi-
natorial analysis. The approach here is appli-
cable to more general input processes and the
analysis here is self-contained and applicable
to more than the mean queue length. We also
work in continuous time, which enables exact
analysis even when arrival streams are asyn-
chronous.

We first examine a simple case of such a
system: a 2-stage, 2-queue system with arbi-
trary exogenous packet arrival processes at
both the first and second stages. We develop a
simpler, one-queue equivalent model of this
system and prove that the input-output behav-
ior of the original system is preserved in this
equivalent model. This fact was presented
previously in [1] and used to analyze waiting
times in tandem chains of queues with memo-
ryless inputs. The approach used in this paper
was developed independently and differs from
that used in [1] as the proof presented here
emphasizes the equivalence on every sample
path.

We extend the use of this idea to analyze
multi-stage tree systems with arbitrary input
processes. We decompose the large system
into “atomic” blocks of 2-stage, 2-node sub-
systems, and then use our equivalent model
iteratively on each sub-system. The result is a
simplified 2-stage system in tandem with a
series of time delays or observation windows.



If the various input processes are all indepen-
dent and stationary, the time delays can be
ignored, and exact analysis of packet occu-
pancy in a multi-stage network can be reduced
to the analysis of a 2-stage equivalent model.

These models considerably reduce the com-
plexity of the original network. They can be
analyzed quite generally, and often occupancy
characteristics such as means, variances, and
aggregate distribution functions can be found
(see [7, 8]).

Here, we use this equivalent model to
develop an expression for mean occupancy at
any node in a multi-stage tree system in terms
of the mean occupancy of a single-stage (one
queue) system whose inputs are a superposi-
tion of the original exogenous inputs. As an
example, we develop explicit expressions for
the average occupancy in any node when the
exogenous inputs are (i) memoryless, and (i1)
periodic with independent phases.

Finally, we explore a concavity phenome-
non of expected occupancy. For a general
class of distributable inputs, we show that the
average queue length of any interior node in a
multi-stage, deterministic service time tree
system is a concave function of the exogenous
input rates. Expected occupancies in nodes at
the edge of the network are convex. This pro-
vides insight into buffering requirements and
rate assignments in ATM tree networks.
Deterministic service time queues at earlier
stages smooth traffic for downstream nodes.
Unbalanced loadings give the previous stage
queues the best situation for smoothing the
input process for the next stage.

II. THE 2-STAGE, 2-NODE SYSTEM

Here we analyze the simplest non-trivial
example of a multi-stage tree system: the 2-
stage, 2-node system of Fig. 2a. Exogenous
input streams with arbitrary arrival patterns
enter the system both at node 1 and at node 2.

In the sequel, we show that if service times
of all packets in nodes 1 and 2 are determinis-
tic with length 7, then the system can be mod-
eled as a much simpler 1-queue system in
tandem with a pure delay or observation win-
dow. Under identical sets of inputs, the origi-
nal system and its equivalent model

simultaneously produce the same outputs for
all time. This equivalence relationship was
discovered independently and previously in
[1]. Here we state and prove the theorem with
greater detail and generality using sample
path arguments. This sample path theory pro-
vides a means for understanding and analyz-
ing the larger networks addressed in Section
[T and beyond.

Consider the system in Fig. 2a where inputs
x are sent through an initial queuing stage
with deterministic service time 7. The depar-
tures from this first stage are then added to the
external inputs y, and the superposition is sent
through the queuing system S ,. The nature of
the x, y input arrivals is arbitrary.

Consider the same sequences of packets, x
and y, as inputs to System B as shown in Fig.
2b. The queueing nodes S, and Sp, are iden-
tical. However, the first stage node that x
packets pass through in System A4 is now
replaced in System B by an observation win-
dow.

Description of Observation Window: Note
that the “observation window” is a passive
device that simply observes the number of
customers which travel through it during a
time interval 7. Inputs x enter this window,
pass through it, and exit after exactly 7 sec-
onds without having their relative positions
distorted in any way. Hence, the input to S,
coming from the window is simply a time-
delayed version of x (Fig. 3). Such a device
can also be viewed as a */D/~ queue.

The theorem below describes the equiva-
lence of Systems 4 and B, assuming that both
start out completely empty at time =0.

Theorem 1 (Equivalence Theorem): If the
service times within S, and Sg, of customers
entering from the x input line are greater than
or equal to 7, then:

1) The final stage systems S, and Sg, have
identical busy and idle periods.

ii) The entire system 4 (S, plus the first
stage) is empty if and only if the entire system
B is empty (S, plus the observation window).

These two statements are true even if pack-
ets from y have arbitrary service times. If, in
addition, the service times within S, and S,
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Figure 2: A 2-stage system and its equivalent

model. Sub-system S, is identical to Sg,.

of packets from both input lines x and y are
deterministically 7, where T > T, then:

ii1) The accumulated number of departures
from System A4 and System B is the same at
every instant of time, and hence the entire 2-
stage System A4 always has exactly the same
number of customers within it as the entire 2-
stage System B.

Caveat: Note here that the actual ordering of
the packets served may be shuffled in the
equivalent model--it is only the departure time
epochs that must remain the same for both
systems.

Proof of Theorem 1: We start out at time ¢,,
and suppose that at this time:

1. The first stages of both systems are empty.
2. Up to this point, all time epochs marking
the busy and idle periods of the second stage
systems S, and Sp, have been identical,

3. The amount of unfinished work left in the
final stages of both systems is identical.

We call the event that these three conditions
are satisfied simultaneously a simultaneous
renewal event. Such an event occurs at time 0
when there have been no outputs and both
systems are empty. Whether or not another
renewal occurs is irrelevant: we simply prove
our theorem over the entire (possibly infinite)
duration between simultaneous renewal
events.

Proof of (i): We start out at a simultaneous
renewal time ¢, assuming that S,, and Sp,
have had identical busy/idle periods up to and
including this time. Tracing the timeline of
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Figure 3: An example timing diagram of
inputs x and the corresponding outputs in both
the System A pre-stage queue and the System
B observation window.

events shown in Fig. 4, we show the busy/idle
periods remain synchronized until the next
renewal. The next event in the timeline occurs
at time #, when a busy period of the first stage
of System A begins. This busy period consists
of n packets {x, x,, ...,x} spaced closely
enough together so that the first stage queue in
System A does not empty until time #; when
the n™ packet x, exits the first stage and
moves into system Sy, (clearly, 7; = t,+nT).
The packet x; that initiates this busy period
travels through the first stages of Systems 4
and B in exactly the same manner, and enters
the second stages of both systems at time
t,*+T. Since the x, y inputs to systems Sy, and
Sp, are identical during the time interval [z,
tr+T], we know that throughout this interval
the amount of unfinished work in both S,
and Sp, is the same as are the busy and idle
periods of S, and Sp,

Since the service time of x packets in system
S5 1s at least as long as the service time 7 in
the front end system that feeds into it, system
S 4> cannot empty before time #5.

Notice now that because there is no queue-
ing in the observation window, the work
delivered to Sp, during the interval [7, + T, 1]
is greater than or equal to the work delivered
to Sy, for all 10Oz, +7T,4]. Thus, after time
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Figure 4: Events between renewal times #; and ¢-



ty+T, Sp, cannot empty before S5, and hence
both S, and S, are busy on the interval
[t,+T, t3]. By time 5, both S, and Sz, have
had the same total work delivered to them and
both have had the same busy/idle periods.
Thus, they both have exactly the same unfin-
ished work at time 3. Finally, both first stages
are empty at #3, so there is a renewal event at
t3, and (1) is proved. []

Proof of (ii): Suppose System B is empty.
Thus, Sp, is empty, and hence S, must be

empty by statement (i). Since the observation
window of System B is empty, no packets
have entered from the x input line for at least
T seconds. Therefore, no packets have entered
the first stage of System A4 for at least 7 sec-
onds. Thus, if this first stage now contains
packets, then these packets must have been in
the system 7 seconds earlier. But if this is the
case, then the packet that was in service at the
first stage of System A at that time would have
been sent to the second stage Sy,, and it
would now be in the system S,,. (Recall that
service times of x packets in S, and Sg, are
no shorter than 7 seconds). This contradicts
the fact that S, is empty. Hence, the first and
second stages of System A are empty.

The converse implication follows from a
similar argument, and (ii) is proved. []

Notice that up to this point, we have only
assumed that packets from the x input stream
have a deterministic service time 7" within the
first queuing stage of System A, and that their
service times within the second stage systems
Sy, and Sp, are at least as large as 7. Thus,
statements (i) and (ii) hold even if service
times of x packets within S, and Sg, are vari-
able with a minimum time of 7 seconds. Fur-
thermore, the packets from the y input stream
can have any type of arbitrarily distributed
service times as long as they are the same for
both Systems A and B. However, to prove
statement (iii) we use the assumption that all
packets (from both the x and y streams) have a
fixed service time 7 > T within S, and Sp).

Proof of (iii): If the service times of all pack-
ets in S, and Sp, are identically 7 seconds,
then all packets are homogeneous and any

rearrangement of packet orderings is irrele-
vant to the output processes of S , and Sp,.
Since the final stages of Systems 4 and B start
and stop serving packets at exactly the same
times (statement (i)), all individual packet
output epochs are the same and the two sys-
tems have exactly the same number of packets
within them at every instant of time. [J

III. MULTI-STAGE TREE REDUCTION

Here we use Theorem 1 to show that all
multi-stage tree systems with deterministic
service times can be reduced to two-stage
equivalent models. Our method is to decom-
pose the complex tree system into its “atomic”
2-stage, 2-node sub-systems, and then to
apply the equivalent model result of Theorem
1 to these sub-systems.

Consider the multi-stage system of Fig. 5,
which consists of nodes {1, 2, 3, 6} on the
edge of the network, and nodes {4, 5, 7, 8} in
the interior. Each node has an exogenous
input source. Interior nodes additionally have
endogenous inputs coming from previous
stages.

We represent the exogenous source inputs
by their normalized rates p, = \,7 where A,
is the arrival rate at node i and T is the service
time common to all queues. By Little’s Theo-
rem p, can be thought of as the loading con-
tribution from source i. For stability, we
assume that p,<I.

Construction of an Equivalent System: Sup-
pose we wish to understand the packet
dynamics in node 8 of Fig. 5. We can reduce
the complexity of the problem by applying
Theorem 1 to all nodes on the edge of the net-
work. For example, consider edge node 1 and
interior node 4 as a 2-node sub-unit of the
larger network. Treating the exogenous input
P; as the “x” stream from Theorem 1, and the
remaining inputs to node 4 as a collective “y”
stream, we replace node 1 with an observation
window (Fig. 6). This creates an equivalent
system in which the queueing dynamics of all
nodes beyond node 4 are unchanged.

Theorem 2 (Multi-Stage Tree Reduction):
Suppose all queues in a multi-stage tree have
deterministic service time 7, and all exoge-
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Figure 5: A 4-layer tree network.

nous input lines are stationary and indepen-
dent of one another. Then, the steady-state
queue length distribution for an arbitrary node
of the tree is identical to the distribution in an
equivalent 2-stage model.

The equivalent model is formed by remov-
ing all nodes more than 1-stage beyond the
node in question, and placing their corre-
sponding exogenous inputs directly into the
remaining queues.

Example: Consider node 7 of Fig. 5. The
equivalent 2-stage system model is given in
Fig. 7.

Proof of Theorem 2: Consider a single node
within a multi-stage tree. In order to ensure
equivalent representation of this node in our
simpler model, we isolate this node and keep
the input processes on each line feeding into it
the same. The endogenous inputs to the node
in question are the departure processes from
the previous stage nodes. Using Theorem 1
iteratively, we find that these departure pro-
cesses are unchanged when we use observa-
tion windows to replace all nodes which are
more than one stage behind the node in ques-
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Figure 6: Using Theorem 1 iterativley to obtain
an equivalent system for node 8 of Fig. 5.
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Figure 7: An equivalent model for node 7
of Fig. 5.

tion. An example is shown in Fig. 6. Now, by
the stationarity and independence of the lines
feeding into the pre-stages, the time delays
introduced by the observation windows do not
effect the arrival statistics. Therefore, we can
ignore all observation windows and treat these
inputs as if they were directly applied to the
corresponding queues of the 2-stage model. [

Theorem 2 demonstrates that solving for the
occupancy statistics in a general 2-stage sys-
tem (shown in Fig. 8a) provides a solution
that characterizes arbitrary multi-stage config-
urations. For this reason, it suffices to restrict
our attention to 2-stage systems.

Note that our Theorem 1 is general enough
to cover the case when the deterministic ser-
vice times in the downstream nodes are not
identical, but are the monotonically increasing
(ie, T, <T,<..<T,). Considering this case,
we find that all of our analysis works in the
exact same manner, and hence our reduction
result of Theorem 2 also holds for the case
when service times are monotonically
increasing with each stage. However, our
equivalence model fails when the determinis-
tic service times {7;} decrease at some stage.
Finding a good model to handle this scenario
remains an open problem.

IV. EXPECTED OCCUPANCY

Theorems 1 and 2 enable exact analysis of
tree networks with general types of input
sources, and can be used to find queueing
means, variances, and smoothing properties
(see [7,8]). Here, we illustrate a simple
method of calculating the expected number of
packets in any node of a multi-stage tree. We
assume that all service times are deterministi-



cally T seconds, and that the exogenous arriv-
als are independent and stationary. Using
Theorem 2, we can reduce any such multi-
stage tree system to a general 2-stage equiva-
lent model with G nodes at the first stage, as
shown in Fig. 8a. The input processes {x}
feeding into the first stage nodes of Fig. 8a are
composed of superpositions of the original
exogenous inputs.

Let A; be the arrival rate from process x;, and
let p, = \,7 be the normalized rate. Let us
suppose that the mean occupancy for a single
stage queue with a superposition of these
inputs can be determined. Specifically, let
O(py+p,+...+ps) represent the expected
number of packets in a single-stage */D/1 sys-
tem with inputs x, x,, ...x;. Notice that the O
function here is not simply a function of the
sum total of loadings p,+p, +... +p,, but it is
also a function of the actual types of processes
that generate these loadings. To be more pre-
cise, we could write Oy x; . xg(Po+ .- +Pg)-
However, we will continue to use the more
compact notation above, keeping in mind that

SYSTEMA x, p,
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\ Por Xo
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-
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Figure 8: The general 2-stage network
and its equivalent model.

there are G+1 underlying input processes.

Also define p = p,+p,+... +p; to be the
total normalized rate into the final stage
queue. By Little’s Theorem, p also represents
the total loading on the final queue, i.e., the
probability that the server in the final node is
busy. We make the stability assumption p<1.

Using Theorem 1 iteratively on System A of
Fig. 8a, we obtain its equivalent model. This
model is illustrated as System B in Fig. 8b.
Observing the diagrams, we have:

E(# packets in System A4)

=0(p)) + ... +O(pg) + E(#in S )
E(# packets System B)
= E(# in window) +Q(p,+p, + ... + pg)

= (P—Pg) +O(Pp+ P+ ... +Pg)

(1)

2)

Statement (iii) of Theorem 1 indicates that
the total number of packets in both Systems 4
and B will be the same at every instant of
time. We can thus equate (1) and (2), which
leads to:

E#inSy5) = (p—py) + Q(Po+ Py + ... +Pg)
-(0(p) *+ ...+ 0(pg)) (3)

Equation (3) expresses the formula for
expected occupancy at any node of a multi-
stage tree network (with deterministic service
times 7) in terms of expected occupancies of
single stage systems. The inputs to these sin-
gle stage systems are a superposition of the
exogenous inputs to the original tree network.
Below we provide explicit formulas for the
cases when the exogenous inputs are memory-
less and when they are superpositions of inde-
pendent periodic sources with period P (as in
constant bit rate voice streams).
Example--Memoryless Inputs: The Q(p) func-
tion for memoryless inputs simply becomes
the expected occupancy of an M/D/1 queue.
This can be obtained using the well known P-
K formula (see [9, 11]), and the result is:

2

- P
op) = P"‘m 4)

Hence, for the system of Fig. 8a, we use (4)
in (3) to find:
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Notice that if identical loadings p; = p/G
are used on each input line and the number of
first stage queues G is increased to infinity,
then the expected occupancy in the second
stage converges to Q(p). This illustrates the
intuitive notion that the superposition of a
large number of independent and identical
low rate streams looks Poisson to a queue.

Example--Periodic (CBR) Inputs: Here we

consider continuous bit rate input streams
with periodic arrivals and independent phases.
This type of traffic model is often used for
voice data or for fixed bit rate video. There are
M total flows, and each flow is a P-periodic
arrival process. Stationarity holds because we
assume that the first arrival of each flow is
uniformly distributed over the first period
interval [0, P). We have (M -M,) of the iid
flows distributed over the G first stage nodes,
where M; flows feed into node i, and
M,+M,+..+M.=(M-M,). The remaining
M, flows feed directly into the final queue.

For this type of input process, the exact
complementary distribution function C,,[n]
for single stage systems with M independent,
periodic inputs of period P (p=MT/P < 1) is
obtained in [10]. We state their expression:
Fornsm, C\[n] =

M—nDM DE(‘_TD]H-"B[

Uk +A00p0

k=1

Using this, the expected occupancy for a
single stage system can be written as:

—k—
kM n[P/T—M+nE|(6)

PO O p/T—k O

M-1
o(p) = Op/r[M] = z Cylnl
n=0
where we use the Op/;{M] notation as a more
convenient way to express Q(p) for this type
of input process. From (3) we have:
M-1
E#inSyy) = (M -My)(T/P)+ z Cy[n]

n=0

(7

M1-1 MG-1

{ z Cyln] +... + z CMG[”]}(g)
n=0 n=0

These examples demonstrate the power that
Theorems 1 and 2 provide for exactly analyz-
ing complex networks: By these theorems, we
find that node occupancy in multi-stage sys-
tems can be understood in terms of node
occupancy of simpler systems.

V. A CONCAVITY RESULT

Theorem 2 indicates that multi-stage sys-
tems can be reduced to simpler 2-stage equiv-
alent models. We thus keep our attention on 2-
stage systems and explore an interesting con-
cavity result for expected occupancy. This
result provides a starting point for addressing
questions concerning the optimal loading dis-
tributions on the input lines of multi-stage tree
networks of queues. The result gives an
important precise statement to the notion that
a deterministic service time queue smooths
the arrival process for downstream nodes. It
shows that balanced loading minimizes the
effect of this smoothing function.

Recall that Q x,(p;) Tepresents the expected
occupancy in a single stage queueing system
with input process X, and loading p,. We
wish to show a result about the convexity of
Q(p) as a function of p . In order for this type
of statement to make sense, we must parame-
terize an input stream by its loading value.
The idea is to consider only input processes
that can be represented as a sum of iid subflow
processes. The loading is then determined by
the number of subflow components used.

Definition: A process X with loading p is M-
distributable iff:

X = X; 9)

M =

i=1

where each of the component processes X, is
iid with loading p, = p/M.

A process is infinitely distributable if it is
M-distributable for all M.

The Poisson process is the canonical exam-
ple an infinitely distributable process although
it is not the only one.

For an M-distributable input process we can
now consider the function Q(kA) for



A=p/M and k = 0,1,...,M. Note that such
a Q(kA) function is monotonically increasing
in k as adding another subflow to the input
flow can only increase the number in the
queueing system. Finally, we note that we
must define what we mean by a convex func-
tion with a discrete domain.

Definition: The function Q(kA) 1is convex in k
iff:

O((k +1)A) - Q(kD) 2 Q(kD) — O((k - 1)A)

for r=1,2,... M—1.

This definition of convexity preserves the
usual notions of convexity generally known
for functions of a continuous variable or con-
tinuous multivariables.

Theorem 3 (Convexity of average queue
length): For an M-distributable input process
entering a deterministic service time queue,
the function giving the expected number of
packets in the queueing system, Q(k4) , is
convex.

Proof of Theorem 3: Consider the determinis-
tic service time queues represented in Fig. 9.
A switch has been added to the top input as
we will compare the situation in system S,
when the top input is present and when it is
not. Let 7i,y(S,) ( 7igrr(S,) ) be the average
number of packets in the S, queueing system
when the top source is ON (OFF). Using The-
orem 1 we can write: (eqs. 10,11)

non(S;) + Q(kB) + O(B) = (k+1)A+QO((k +1)4)

norp(Sy) + O((k—1)A) + O(B) = kA + Q(kD)
which lead to egs. (12, 13) below:
non(S,) —(k+1)A = O((k +1)A) - O(kD) — O(B)
nopr(Sy) —kD = Q(kD) —O((k—1)A) - O(B),

B o

(k—1)A

el P
s ]

Figure 9: The queueing system used for the
convexity proof, with an ON/OFF switch.

Consider the queueing system S, when the
top source is ON. While the expected number
in the S, system is #,y(S,) , the expected
number in the S, server alone is equal to the
loading of the S, system, (k+1)A . The left
side of (12) represents the expected number in
the queue of system S, with the top source
ON while the left side of (13) represents the
expected number in the queue of system S,
with the top source OFF. A sample function
argument similar to that used in the proof of
Theorem 1 shows formally the not surprising
fact that the average number of packets in the
queue of system S, is never less when the top
source is ON than when the top source is
OFF:

Aon(Sy) = (k + 1)A27ppp(S)) -k (14)
So,

O((k+ 1)A) - 0(kD) 2 O(kA) - O((k—1)A) (13)
0

This theorem also holds for infinitely-dis-
tributable inputs. Analysis shows that as
M - « ,the Q(p) curve becomes a continu-
ous, monotonically increasing convex func-
tion of a continuous variable. Memoryless
inputs are infinitely-distributable, and we
clearly see that the corresponding Q(p) func-
tion given in (4) is continuous, monotonically
increasing, and convex.

Two Stage Systems: We now consider the two
stage system with distributable inputs shown
in Fig. 10. We are interested in finding an
“optimal” distribution for the input loadings.
Should all loadings be distributed over the
pre-stage units equally? Will an imbalance be
helpful or hurtful? The following theorem
provides insight into this question. We get the
proof of the theorem as a straightforward
application of Theorem 3.

Theorem 4 (Convexity and concavity of two
stage systems): Assume the input process
(P1,--» Pg) 1n Fig. 10 is distributable with
fixed total loading p = py + ... + pg. Then:

(1) The expected occupancy in the first stage
system of Fig. 10 is a convex symmetric func-



tion of the input loadings py, ..., pg- The occu-
pancy at this stage is minimized when all
loadings are distributed uniformly.

(1) The expected occupancy in the final
stage of the system in Fig. 10 is a concave
symmetric function of the input loadings
Pi.---» Pg- The occupancy at this stage is max-
imized when all loadings are distributed uni-
formly.

Proof of Theorem 4:

Proof of (i): The expected occupancy at the
first stage is just the sum of the expected
occupancies in the individual first stage
queues:  O(p;) + O(p,) + ... + O(ps) . Each of
the individual terms of the sum are convex
functions by Theorem 3. Hence, the sum will
also be convex. Clearly, the expected occu-
pancy at the first stage is a symmetric function
of the input loadings. The minimum of this
convex symmetric function is thus achieved
when all input loadings are distributed
equally. [

Proof of (ii): Using Theorem 1, we can use an
equivalent model of the system in Fig. 10 to
find that the expected occupancy in the whole
system is p + Q(p), where p = p, +... +pg;.
Note that this value depends only on the total
loading, not on the particular loading assign-
ments (Pq, .., Pg)- Hence, the expected occu-
pancy in the second stage is just the total
occupancy minus the first stage occupancy:

— "
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Figure 10: A 2-stage system with distrib-
utable inputs.

E(Occupancy at second stage)

=p+0(p)-[2(p) +... + O(ps)] (16)

For a fixed total loading p, the above is just
a constant minus a convex symmetric func-
tion. Hence, the expected second stage occu-
pancy is a concave symmetric function, whose
maximum is achieved when all individual
loadings p; are equal (p; = p/G). U

Notice that adding an exogenous input p to
the second stage in Fig. 10 (and redefining the
total loading to be p = p,+p, +... +p;) does
not change the concavity property of the
expected occupancy in this node as a function
of (py, Py ---»Pg) - However, it is clear that the
symmetry is then only with respect to modifi-
cations of the original variables p,, ..., p;-

Theorem 4 provides insight into how chang-
ing the input loading distribution will affect
the overall system of Fig. 10. In particular, the
theorem gives a statement of how determinis-
tic queues smooth the arrival process for
future stages. When most of the traffic goes
through only a few first stage queues, there is
more smoothing than when the traffic is
evenly spread over many first stage queues.
Our theorem is in terms of expected occupan-
cies, but note that these values are directly
related to the amount of buffer slots we
require for a given packet loss threshold €.
Smoothing properties of these networks are
further explored in [8].

VI. CONCLUSIONS

Packet occupancy in multi-stage tree net-
works of identical deterministic service time
queues can be tractably analyzed using the
equivalent model results of Theorems 1 and 2.
We have shown that if the exogenous inputs to
such networks are independent and stationary,
then multi-stage analysis can be reduced to
analysis of a simpler 2-stage system. The
inputs to the 2-stage system are simply super-
positions of the original exogenous input pro-
cesses.

Using this theory, we have developed an
expression for the mean occupancy in any
node of a multi-stage tree network in terms of
the mean occupancy of a single stage (one



queue) system with an arrival process consist-
ing of a superposition of the original exoge-
nous inputs. As examples, this expression was
written explicitly for the cases when the exog-
enous inputs are (i) memoryless, and (ii) peri-
odic.

Focusing our attention on 2-stage systems,
we have further explored convexity behavior
of expected node occupancies. We have cre-
ated a definition of a “distributable input,” and
have shown that simple, comparative observa-
tions about 2-stage systems and their equiva-
lent models lead to several convexity/
concavity results about expected packet occu-
pancy in the first and second stages of our sys-
tem. Specifically, we have shown that the
expected occupancy function Q(p) for a single
queue is a convex, monotonically increasing
function of the loading p. This implies that the
number of packets in the first stage is a convex
symmetric function of the exogenous input
rates. Likewise, the second stage occupancy is
a concave symmetric function of the exoge-
nous input rates. For the second stage, the
maximum of this concave symmetric function
is achieved by the uniform rate distribution.

Expanding the 2-stage result via Theorem 2
implies that expected occupancy is concave in
the rate assignment for any interior node of a
multi-stage tree system. Nodes on the edge of
the network have convex expected occupan-
cies. These results provide much insight into
tree systems and the smoothing properties of
deterministic service time queues. It is inter-
esting to pursue extensions of this theory
towards the development of buffer require-
ments and optimal loading assignments in
ATM networks with various types of data traf-
fic.

Notice that our results are stated in terms of
fixed length packets flowing through the net-
work, and these packets have identical deter-
ministic service times 7 in all network nodes.
The exact same results apply to deterministic
service time queues with monotonically
increasing service times 7T,<T7,<..<T, .
However, decreasing service times pose a for-
midable challenge. It would be interesting to
develop models to cover this type of network.
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	Abstract -- Tree networks of single server, deterministic service time queues are often used as models for packet flow in data com munication systems with Asynchronous Transfer Mode (ATM) traffic. In this paper, we present a method for analyz...
	I. Introduction

	In this paper we analyze the packet occu pancy in multi-input, single output tree sys tems of deterministic service time queues (Fig. 1). Such systems are often used as mod els for packet flow in networks with ATM traffic, where packets are b...
	Figure 1: A multi-stage tree network of queues.
	Much of the previous work in this area has concentrated on tandem chains of queues and memoryless inputs ([1]-[4]). In [5], an aver age queue length analysis was performed for a more general tree network using the proper ties of memoryless in...
	We first examine a simple case of such a system: a 2-stage, 2-queue system with arbi trary exogenous packet arrival processes at both the first and second stages. We develop a simpler, one-queue equivalent model of this system and prove that ...
	We extend the use of this idea to analyze multi-stage tree systems with arbitrary input processes. We decompose the large system into “atomic” blocks of 2-stage, 2-node sub- systems, and then use our equivalent model iteratively on each sub-s...
	These models considerably reduce the com plexity of the original network. They can be analyzed quite generally, and often occupancy characteristics such as means, variances, and aggregate distribution functions can be found (see [7, 8]).
	Here, we use this equivalent model to develop an expression for mean occupancy at any node in a multi-stage tree system in terms of the mean occupancy of a single-stage (one queue) system whose inputs are a superposi tion of the original exog...
	Finally, we explore a concavity phenome non of expected occupancy. For a general class of distributable inputs, we show that the average queue length of any interior node in a multi-stage, deterministic service time tree system is a concave f...
	II. The 2-stage, 2-node system

	Here we analyze the simplest non-trivial example of a multi-stage tree system: the 2- stage, 2-node system of Fig. 2a. Exogenous input streams with arbitrary arrival patterns enter the system both at node 1 and at node 2.
	In the sequel, we show that if service times of all packets in nodes 1 and 2 are determinis tic with length T, then the system can be mod eled as a much simpler 1-queue system in tandem with a pure delay or observation win dow. Under identica...
	Consider the system in Fig. 2a where inputs x are sent through an initial queuing stage with deterministic service time T. The depar tures from this first stage are then added to the external inputs y, and the superposition is sent through th...
	Consider the same sequences of packets, x and y, as inputs to System B as shown in Fig. 2b. The queueing nodes SA2 and SB2 are iden tical. However, the first stage node that x packets pass through in System A is now replaced in System B by an...
	Description of Observation Window: Note that the “observation window” is a passive device that simply observes the number of customers which travel through it during a time interval T. Inputs x enter this window, pass through it, and exit aft...
	The theorem below describes the equiva lence of Systems A and B, assuming that both start out completely empty at time t=0.
	Theorem 1 (Equivalence Theorem): If the service times within SA2 and SB2 of customers entering from the x input line are greater than or equal to T, then:
	i) The final stage systems SA2 and SB2 have identical busy and idle periods.
	ii) The entire system A (SA2 plus the first stage) is empty if and only if the entire system B is empty (SB2 plus the observation window).
	These two statements are true even if pack ets from y have arbitrary service times. If, in addition, the service times within SA2 and SB2 of packets from both input lines x and y are deterministically , where , then:
	iii) The accumulated number of departures from System A and System B is the same at every instant of time, and hence the entire 2- stage System A always has exactly the same number of customers within it as the entire 2- stage System B.
	“Observation
	Window”
	Caveat: Note here that the actual ordering of the packets served may be shuffled in the equivalent model--it is only the departure time epochs that must remain the same for both systems.
	Proof of Theorem 1: We start out at time t1, and suppose that at this time:
	1. The first stages of both systems are empty.
	2. Up to this point, all time epochs marking the busy and idle periods of the second stage systems SA2 and SB2 have been identical,
	3. The amount of unfinished work left in the final stages of both systems is identical.
	We call the event that these three conditions are satisfied simultaneously a simultaneous renewal event. Such an event occurs at time 0 when there have been no outputs and both systems are empty. Whether or not another renewal occurs is irrel...
	Proof of (i): We start out at a simultaneous renewal time t1, assuming that SA2 and SB2 have had identical busy/idle periods up to and including this time. Tracing the timeline of events shown in Fig. 4, we show the busy/idle periods remain s...
	Figure 4: Events between renewal times t1 and t3.
	output from pre- stage queue
	Since the service time of x packets in system SA2 is at least as long as the service time T in the front end system that feeds into it, system SA2 cannot empty before time t3.
	Notice now that because there is no queue ing in the observation window, the work delivered to SB2 during the interval is greater than or equal to the work delivered to SA2 for all . Thus, after time t2+T, SB2 cannot empty before SA2, and hen...
	Proof of (ii): Suppose System B is empty. Thus, SB2 is empty, and hence SA2 must be empty by statement (i). Since the observation window of System B is empty, no packets have entered from the x input line for at least T seconds. Therefore, no...
	The converse implication follows from a similar argument, and (ii) is proved. q
	Notice that up to this point, we have only assumed that packets from the x input stream have a deterministic service time T within the first queuing stage of System A, and that their service times within the second stage systems SA2 and SB2 a...
	Proof of (iii): If the service times of all pack ets in SA2 and SB2 are identically seconds, then all packets are homogeneous and any rearrangement of packet orderings is irrele vant to the output processes of SA2 and SB2. Since the final sta...
	III. Multi-stage tree reduction

	Here we use Theorem 1 to show that all multi-stage tree systems with deterministic service times can be reduced to two-stage equivalent models. Our method is to decom pose the complex tree system into its “atomic” 2-stage, 2-node sub-systems,...
	Consider the multi-stage system of Fig. 5, which consists of nodes {1, 2, 3, 6} on the edge of the network, and nodes {4, 5, 7, 8} in the interior. Each node has an exogenous input source. Interior nodes additionally have endogenous inputs co...
	We represent the exogenous source inputs by their normalized rates where is the arrival rate at node i and T is the service time common to all queues. By Little’s Theo rem can be thought of as the loading con tribution from source i. For stab...
	Construction of an Equivalent System: Sup pose we wish to understand the packet dynamics in node 8 of Fig. 5. We can reduce the complexity of the problem by applying Theorem 1 to all nodes on the edge of the net work. For example, consider ed...
	Theorem 2 (Multi-Stage Tree Reduction): Suppose all queues in a multi-stage tree have deterministic service time T, and all exoge nous input lines are stationary and indepen dent of one another. Then, the steady-state queue length distributio...
	The equivalent model is formed by remov ing all nodes more than 1-stage beyond the node in question, and placing their corre sponding exogenous inputs directly into the remaining queues.
	Figure 5: A 4-layer tree network.
	Example: Consider node 7 of Fig. 5. The equivalent 2-stage system model is given in Fig. 7.
	Figure 6: Using Theorem 1 iterativley to obtain an equivalent system for node 8 of Fig. 5.
	Proof of Theorem 2: Consider a single node within a multi-stage tree. In order to ensure equivalent representation of this node in our simpler model, we isolate this node and keep the input processes on each line feeding into it the same. The...
	Theorem 2 demonstrates that solving for the occupancy statistics in a general 2-stage sys tem (shown in Fig. 8a) provides a solution that characterizes arbitrary multi-stage config urations. For this reason, it suffices to restrict our attent...
	Note that our Theorem 1 is general enough to cover the case when the deterministic ser vice times in the downstream nodes are not identical, but are the monotonically increasing (i.e., ). Considering this case, we find that all of our analysi...
	Figure 7: An equivalent model for node 7 of Fig. 5.
	IV. Expected Occupancy

	Theorems 1 and 2 enable exact analysis of tree networks with general types of input sources, and can be used to find queueing means, variances, and smoothing properties (see [7,8]). Here, we illustrate a simple method of calculating the expec...
	Let li be the arrival rate from process xi, and let be the normalized rate. Let us suppose that the mean occupancy for a single stage queue with a superposition of these inputs can be determined. Specifically, let represent the expected numbe...
	Figure 8: The general 2-stage network and its equivalent model.
	Also define to be the total normalized rate into the final stage queue. By Little’s Theorem, r also represents the total loading on the final queue, i.e., the probability that the server in the final node is busy. We make the stability assumption .
	Using Theorem 1 iteratively on System A of Fig. 8a, we obtain its equivalent model. This model is illustrated as System B in Fig. 8b. Observing the diagrams, we have:
	E(# packets in System A)
	=+ E(# in SA2) (1)

	E(# packets System B)
	= E(# in window) +
	(2)

	Statement (iii) of Theorem 1 indicates that the total number of packets in both Systems A and B will be the same at every instant of time. We can thus equate (1) and (2), which leads to:
	E(# in SA2)
	- (3)

	Equation (3) expresses the formula for expected occupancy at any node of a multi- stage tree network (with deterministic service times T) in terms of expected occupancies of single stage systems. The inputs to these sin gle stage systems are ...
	Example--Memoryless Inputs: The Q(r) func tion for memoryless inputs simply becomes the expected occupancy of an M/D/1 queue. This can be obtained using the well known P- K formula (see [9, 11]), and the result is:
	(4)

	Hence, for the system of Fig. 8a, we use (4) in (3) to find:
	E(# in SA2) (5)

	Notice that if identical loadings are used on each input line and the number of first stage queues G is increased to infinity, then the expected occupancy in the second stage converges to Q(r). This illustrates the intuitive notion that the s...
	Example--Periodic (CBR) Inputs: Here we consider continuous bit rate input streams with periodic arrivals and independent phases. This type of traffic model is often used for voice data or for fixed bit rate video. There are M total flows, an...
	For this type of input process, the exact complementary distribution function CM[n] for single stage systems with M independent, periodic inputs of period P (r=MT/P < 1) is obtained in [10]. We state their expression: For , =
	Using this, the expected occupancy for a single stage system can be written as:
	where we use the QP/T[M] notation as a more convenient way to express Q(r) for this type of input process. From (3) we have:
	E(# in SA2)
	These examples demonstrate the power that Theorems 1 and 2 provide for exactly analyz ing complex networks: By these theorems, we find that node occupancy in multi-stage sys tems can be understood in terms of node occupancy of simpler systems.
	V. A Concavity Result

	Theorem 2 indicates that multi-stage sys tems can be reduced to simpler 2-stage equiv alent models. We thus keep our attention on 2- stage systems and explore an interesting con cavity result for expected occupancy. This result provides a sta...
	Recall that represents the expected occupancy in a single stage queueing system with input process and loading . We wish to show a result about the convexity of as a function of . In order for this type of statement to make sense, we must par...
	Definition: A process with loading is M- distributable iff:
	where each of the component processes is iid with loading .
	A process is infinitely distributable if it is M-distributable for all M.
	The Poisson process is the canonical exam ple an infinitely distributable process although it is not the only one.
	For an M-distributable input process we can now consider the function for and . Note that such a function is monotonically increasing in k as adding another subflow to the input flow can only increase the number in the queueing system. Finall...
	Definition: The function is convex in k iff:
	for
	This definition of convexity preserves the usual notions of convexity generally known for functions of a continuous variable or con tinuous multivariables.
	Theorem 3 (Convexity of average queue length): For an M-distributable input process entering a deterministic service time queue, the function giving the expected number of packets in the queueing system, , is convex.
	Proof of Theorem 3: Consider the determinis tic service time queues represented in Fig. 9. A switch has been added to the top input as we will compare the situation in system when the top input is present and when it is not. Let () be the ave...
	Figure 9: The queueing system used for the convexity proof, with an ON/OFF switch.
	which lead to eqs. (12, 13) below:
	Consider the queueing system when the top source is ON. While the expected number in the system is , the expected number in the server alone is equal to the loading of the system, . The left side of (12) represents the expected number in the ...
	So,
	q
	This theorem also holds for infinitely-dis tributable inputs. Analysis shows that as , the curve becomes a continu ous, monotonically increasing convex func tion of a continuous variable. Memoryless inputs are infinitely-distributable, and we...
	Two Stage Systems: We now consider the two stage system with distributable inputs shown in Fig. 10. We are interested in finding an “optimal” distribution for the input loadings. Should all loadings be distributed over the pre-stage units equ...
	Theorem 4 (Convexity and concavity of two stage systems): Assume the input process (r1,..., rG) in Fig. 10 is distributable with fixed total loading r = r1 + ... + rG. Then:
	(i) The expected occupancy in the first stage system of Fig. 10 is a convex symmetric func tion of the input loadings r1, ..., rG. The occu pancy at this stage is minimized when all loadings are distributed uniformly.
	(ii) The expected occupancy in the final stage of the system in Fig. 10 is a concave symmetric function of the input loadings r1,..., rG. The occupancy at this stage is max imized when all loadings are distributed uni formly.
	Proof of Theorem 4:
	Proof of (i): The expected occupancy at the first stage is just the sum of the expected occupancies in the individual first stage queues: . Each of the individual terms of the sum are convex functions by Theorem 3. Hence, the sum will also be...
	Figure 10: A 2-stage system with distrib utable inputs.
	Proof of (ii): Using Theorem 1, we can use an equivalent model of the system in Fig. 10 to find that the expected occupancy in the whole system is r + Q(r), where . Note that this value depends only on the total loading, not on the particular...
	E(Occupancy at second stage)
	For a fixed total loading r, the above is just a constant minus a convex symmetric func tion. Hence, the expected second stage occu pancy is a concave symmetric function, whose maximum is achieved when all individual loadings ri are equal (ri = r/G). q
	Notice that adding an exogenous input r0 to the second stage in Fig. 10 (and redefining the total loading to be ) does not change the concavity property of the expected occupancy in this node as a function of . However, it is clear that the s...
	Theorem 4 provides insight into how chang ing the input loading distribution will affect the overall system of Fig. 10. In particular, the theorem gives a statement of how determinis tic queues smooth the arrival process for future stages. Wh...
	VI. Conclusions

	Packet occupancy in multi-stage tree net works of identical deterministic service time queues can be tractably analyzed using the equivalent model results of Theorems 1 and 2. We have shown that if the exogenous inputs to such networks are in...
	Using this theory, we have developed an expression for the mean occupancy in any node of a multi-stage tree network in terms of the mean occupancy of a single stage (one queue) system with an arrival process consist ing of a superposition of ...
	Focusing our attention on 2-stage systems, we have further explored convexity behavior of expected node occupancies. We have cre ated a definition of a “distributable input,” and have shown that simple, comparative observa tions about 2-stage...
	Expanding the 2-stage result via Theorem 2 implies that expected occupancy is concave in the rate assignment for any interior node of a multi-stage tree system. Nodes on the edge of the network have convex expected occupan cies. These results...
	Notice that our results are stated in terms of fixed length packets flowing through the net work, and these packets have identical deter ministic service times T in all network nodes. The exact same results apply to deterministic service time...
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