Delay and Complexity Tradeoffs for Dynamic Routing and Power Allocation in a Wireless Network

MIT -- Laboratory for Information and Decision Systems (LIDS)

Michael J. Neely Jun Sun Eytan Modiano

{mjneely@mit.edu, junsun@mit.edu, modiano@mit.edu}

Network Model:

Problems with the model:

- No Interference Effects: $\mu_{ab} = \mu_{ab}(p_{ab})$
- No Time Variation
- Fluid Model of data flow

What does the model capture?

- Nonlinear Power Allocation Problem
- Complexity of scheduling optimal strategy

2 ideas of this paper:

- 1. Capacity (100% thru-put) strategy obtained by iteratively solving a min-clearance time problem.
- 2. Complexity/Delay tradeoff by solving the min clearance problem over longer time intervals.

Min Clearance Problem:

No arrivals. Have backlog at time 0.

 U_{ij} = Unfinished bits in node i (to be delivered to node j).

Find routing and power controls $p_{ij}(t)$ to clear in min time.

Observation: Optimal control can be restricted to constant power allocation strategies.

Proof sketch:

Given optimal $p_{ij}(t)$ (clears in minimum time T). Let \bar{p}_{ij} represent the empirical avg. during [0, T].

$$\frac{1}{T} \int_0^T \mu_{ij}(p_{ij}(\tau)) d\tau \le \mu_{ij}(\bar{p}_{ij}) \qquad \Box$$

(by concavity of μ () and Jensen's inequality)

From this, it is straightforward to form the min clearance time solution as a convex optimization problem:

Problem π_{\min}

Maximize
$$\gamma$$

Subject to: $f_{ij}^{(c)} \ge 0$

$$\sum_{a=1}^{N} f_{ai}^{(c)} - \sum_{b=1}^{N} f_{ib}^{(c)} = -\gamma U_{ic} + \delta_{i-c} \sum_{j=1}^{N} \gamma U_{jc}$$

$$\sum_{c=1}^{N} f_{ij}^{(c)} \le \mu_{ij}(\bar{p}_{ij})$$

$$\sum_{i=1}^{N} \bar{p}_{ij} \le P_{i}^{tot}$$

Dynamic Scheduling Using Iterative solution of π_{min} :

Iterative Minimum Emptying Time algorithm (IMET):

- 1. If the system is empty, wait for new data to enter.
- 2. Start iteration k by observing the current backlog $U_{ij}[k]$, and solve π_{min} for this backlog, clearing it in time T_k . Hold routing and scheduling fixed for duration T_k .
- 3. Repeat for iteration k+1.

Let:

 $\Lambda = \text{set of data rates } (\lambda_{ij})$ the network can stably support.

Can be shown that Λ is the set of all rates λ_{ij} such that there exists a constant power allocation p_{ij}^* for which a multi-commodity flow can be set up over the network (with link capacities $\mu_{ij}(p_{ij}^*)$) that satisfies the λ_{ij} rates.

<u>Traffic Assumptions</u> -- Time varying leaky bucket:

 $X_{ij}(t)$ = Bits arrived to node *i* destined for *j* during [0, *t*].

$$X_{ij}(t+T) - X_{ij}(t) \le \sigma + \int_{t}^{t+T} \lambda_{ij}(\tau) d\tau$$
where $(\lambda_{ij}(t) + \varepsilon) \in \Lambda$ for all t

 $\lambda_{ij}(t)$ = instantaneous data rate of $X_{ij}(t)$ stream

 σ = traffic burst parameter

 ε = distance the instantaneous data rate is from the boundary of the capacity region

These above parameters are unknown to the network controller.

Theorem: The IMET Algorithm guarantees:

$$T_{worst-case} \le 2\sigma/\epsilon$$

Proof:

Let λ_{ij} represent the rate of traffic during interval T_k . By assumption, there is a $\lambda_{ij}^* \in \Lambda$ such that $\lambda_{ij}^* + \varepsilon \leq \lambda_{ij}^*$.

$$T_{k+1} = \min \text{ time to clear}$$

$$\leq \max_{(i,j)} \frac{U_{ij}}{\lambda_{ij}^{*}}$$

$$\leq \max_{(i,j)} \frac{\sigma + \lambda_{ij} T_{k}}{\lambda_{ij}^{*}}$$

$$\leq \max_{(i,j)} \frac{\sigma + (\lambda_{ij}^{*} - \varepsilon) T_{k}}{\lambda_{ij}^{*}}$$

$$\leq \frac{\sigma}{\varepsilon}$$

Complexity Constraint:

The IMET algorithm requires the solution to a convex optimization to be computed instantaneously at the beginning of a slot.

<u>Idea</u>: Compute solution of $U_{ij}[k]$ problem during T_{k+1} .

Computational Processing Speed Constraint: C = Processing Rate (floating point ops / second)

Let a_N = # operations required to compute the solution of the convex optimization for a net. of size N.

Modified IMET:

- -Shift computations by one interval T_k .
- -Hold solutions fixed for $max\{emptying\ time,\ a_N/C\}$

Theorem (for modified IMET):

$$T_{worst-case} \le 3max \left[\frac{\sigma}{\varepsilon}, \frac{a_N}{C} \right]$$

(compared to original IMET bound of $2\sigma/\epsilon$).

Conclusions:

- -Iterative Min Emptying Time algorithm IMET
- -Acts without knowledge of rate or burst parameters $(\lambda_{ij}(t))$, ε
- -100 % thruput, Worst Case Delay Bound

Future Work... Time varying systems Fairness issues