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Network Model:

Problems with the model:

   - No Interference Effects: µab = µab(pab)

   - No Time Variation

   - Fluid Model of data flow

What does the model capture?

   - Nonlinear Power Allocation Problem

   - Complexity of scheduling optimal strategy
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2 ideas of this paper:

1. Capacity (100% thru-put) strategy obtained by
iteratively solving a min-clearance time problem.

2. Complexity/Delay tradeoff by solving the min
clearance problem over longer time intervals.
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Min Clearance Problem:
No arrivals.  Have backlog at time 0.

Uij = Unfinished bits in node i (to be delivered to node j).

Find routing and power controls pij(t) to clear in min time.
------------------------------------------------------------------
Observation: Optimal control can be restricted to constant
power allocation strategies.
Proof sketch:

  Given optimal pij(t) (clears in minimum time T).

  Let  represent the empirical avg. during [0, T].

                 (by concavity of µ() and Jensen’s inequality)
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From this, it is straightforward to form the min clearance
time solution as a convex optimization problem:

Problem πmin
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Dynamic Scheduling Using Iterative solution of πmin:

Iterative Minimum Emptying Time algorithm (IMET):

1. If the system is empty, wait for new data to enter.

2. Start iteration k by observing the current backlog Uij[k],
and solve πmin for this backlog, clearing it in time Tk.
Hold routing and scheduling fixed for duration Tk.

3. Repeat for iteration k+1.

Tk Tk+1

Uij[k] Uij[k+1]
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Let:
 Λ = set of data rates (λij) the network can stably support.

Can be shown that Λ is the set of all rates λij such that
there exists a constant power allocation pij* for which a
multi-commodity flow can be set up over the network
(with link capacities µij(pij*)) that satisfies the λij rates.

Traffic Assumptions -- Time varying leaky bucket:

Xij(t) = Bits arrived to node i destined for j during [0, t].

λij(t) = instantaneous data rate of Xij(t) stream
σ = traffic burst parameter
ε = distance the instantaneous data rate is from the

boundary of the capacity region

These above parameters are unknown to the
network controller.
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Theorem: The IMET Algorithm guarantees:

Proof:

Let λij represent the rate of traffic during interval Tk.
By assumption, there is a  such that .
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Complexity Constraint:

The IMET algorithm requires the solution to a convex
optimization to be computed instantaneously at the begin-
ning of a slot.

Idea:  Compute solution of Uij[k] problem during Tk+1.

Computational Processing Speed Constraint:
C = Processing Rate (floating point ops / second)

Let aN = # operations required to compute the solution
               of the convex optimization for a net. of size N.

Modified IMET:
-Shift computations by one interval Tk.
-Hold solutions fixed for max{emptying time, aN/C}

Tk Tk+1

Uij[k] Uij[k+1]
9



Proceedings of the 40th Annual Allerton Conference on Communication, Control, and Computing, Oct. 2002
Theorem (for modified IMET):

(compared to original IMET bound of 2σ/ε).

Conclusions:
   -Iterative Min Emptying Time algorithm IMET

   -Acts without knowledge of rate or burst
     parameters  (λij(t)), ε

   -100 % thruput, Worst Case Delay Bound

Future Work... Time varying systems
                         Fairness issues
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