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Delay and Complexity Tradeoffs for Dynamic
Routing and Power Allocation
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Network Model:
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Problems with the mode!:
- No Interference Effects. Mgy = Hap(Pap)

- No Time Variation

- Fluid Model of data flow

What does the model capture?
- Nonlinear Power Allocation Problem

- Complexity of scheduling optimal strategy
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2 ideas of this paper:

1. Capacity (100% thru-put) strategy obtained by
Iteratively solving a min-clearance time problem.

2. Complexity/Delay tradeoff by solving the min
clearance problem over longer time intervals.
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Min Clearance Problem:
No arrivals. Have backlog at time O.

Uj;; = Unfinisned bitsin node i (to be delivered to node ).

Find routing and power controls pj;(t) to clear in min time.
Observation: Optimal control can be restricted to constant
power allocation strategies.

Proof sketch:

Given optimal pj;(t) (clearsin minimum time T).
Let p represent the empirical avg. during [0, T].

Tjou(p())dT_p(p) ]

(by concavity of () and Jensen’s inequality)
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From this, it is straightforward to form the min clearance
time solution as a convex optimization problem:

Problem 11,
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Dynamic Scheduling Using Iterative solution of Tty
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|terative Minimum Emptying Time algorithm (IMET):
1. If the system is empty, wait for new data to enter.

2. Start iteration k by observing the current backlog Uj;[K],
and solve T, for this backlog, clearing it in time T,.
Hold routing and scheduling fixed for duration T,.

3. Repeat for iteration k+1.
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Let:
N\ = set of datarates (A;;) the network can stably support.

Can be shown that A isthe set of all rates A;; such that
there exists a constant power allocation p;;* for which a

multi-commodity flow can be set up over the network
(with link capacities p;;(p;;*)) that satisfies the A;; rates.

Traffic Assumptions -- Time varying leaky bucket:

X;j(t) = Bitsarrived to node i destined for j during [0, t].
X (t+T)=-X (<o w7 T)\l.j(r)dr

where ()\l.j(t) +e) 0N fordlt

Ajj(t) = Instantaneous data rate of X;;(t) stream
o = traffic burst parameter

¢ = distance the instantaneous data rate is from the
boundary of the capacity region

These above parameters are unknown to the
network controller.
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Theorem: The IMET Algorithm guarantees:

<20/¢
worst —case
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Let Aj; represent the rate of traffic during interval Ty.
By assumption, thereisax, 0o suchthaty , +e<x, 0.
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Uj; K] Uj;[k+1]
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Complexity Constraint:

The IMET algorithm requires the solution to a convex
optimization to be computed instantaneously at the begin-
ning of adlot.

ldea: Compute solution of U;;[K] problem during Ty, 1.

Computational Processing Speed Constraint:
C = Processing Rate (floating point ops / second)

Let a\ = # operations required to compute the solution
of the convex optimization for a net. of size N.

Modified IMET:
-Shift computations by one interval T.

-Hold solutions fixed for max{ emptying time, ay/C}
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Theorem (for modified IMET):

O dy
worst—case

s3max[—, —
E

C
(compared to original IMET bound of 20/¢).

A
Delay
Computational Processing Rate C
Conclusions:

-Iterative Min Emptying Time algorithm IMET

-Acts without knowledge of rate or burst
parameters (A;(t)), €

-100 % thruput, Worst Case Delay Bound

Future Work... Time varying systems
Fairness issues
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