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Service Time = T, 

  
 

    T = 1 time unit.

Input Rate i = ρi .



Single Stage System:

Multi-Stage Tree System:

ServerQueue
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Inter-departure times
may be corellated.

ρ5

Non-Jacksonian System with Deterministic Service Time T.

ATM chops packets into fixed length “Cells,” creating a 

Thus:     Inter-departure times may be corellated.



“Theorem 2”:  Equivalence theorem*:
The 2 systems below are “equivalent.”

If all packets have deterministic service times T: 

1)  SA empty   iff    SB empty.   (Same busy/idle periods).

2)  Entire system A empty  iff   entire system B empty.

3)  Departures from systems A and B are the same, and
     hence the number of packets within the entire 
     systems A and B are equal at every instant of time.
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and previously by Shalmon

*A similar statement was
published independently

and Kaplan [1]. 



Caveat:  The ordering of packets may be shuffled, but the 
number of packets in both systems will always be the 
same.

Intuition:  Changing your oil...

The manner in which we pour oil from the bottle to the 
funnel does not affect the departure process from the 
funnel as long as the funnel is not empty.
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Use Theorem 2 iteratively on multi-stage systems.
Analyzing the last node, we find:

We thus can reduce analysis of multi-stage systems to 
analysis of 2-stage systems with a superposition of the 
exogenous inputs.
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If inputs are independent and stationary, time delays
don’t matter:



Fun Example:  Expected Occupancies...

Definition:  The function #(ρ) represents the expected
number of packets in a single stage system with loading ρ.

______________________________________________

T
“Distributable Input”
with loading ρ.

#(ρ) =
     E[Occupancy]
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E(Number in Second Stage)

= E(Number in Total System)  - E(Number in First Stage)

=     ρtot  +   #(ρtot)          -    [#(ρ1) + ... + #(ρG)].
 



Convexity/Concavity of Expected Occupancy functions:

For distributable inputs X:

1)  The #(ρ) function is convex and monotically increasing:

2) The expected second stage occupancy is a concave
     symmetric function in the input loadings (ρ1, ρ2, ..., ρG).
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Thus, Expected Occupancy in the Second Stage is 
Maximized at the Uniform Distribution.

Interestingly, this is also the Maximum Entropy Solution.



Definition : A  “distributable input” X is an input which can 
be written as the sum of  iid  component processes.
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Example:  Expected Occupancy in second stage:

E(Number in Second Stage)

  = E(Number in Total System)  - E(Number in First Stage)

     =     ρ  +   #(ρ)    -    G#(ρ/G).

(Thus, second stage looks like M/D/1 system as G
  gets large).
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Motivation:

We want to multiplex many users together and serve them one at a time.
Suppose that our single stage muxer does not physically have enough input ports to 
accomodate all of our users.  “Pre-stages” need to be installed.

Q:  How does the 2-stage system compare to the original 1-stage system?

Muli-Stage Multiplexing Conjecture:

Compare the two systems with identical inputs 1,...,G.  Suppose
we want to preserve a sufficiently low packet drop probability ε.

1)  The total number of buffer slots needed in the 2-stage system 
will be no less than the number needed in the 1-stage system.
(Hence:  multi-staging is “sub-optimal”).

2)  The total number of buffer slots needed in the final stage of 
the 2-stage system will be no more than the number needed in the 
1-stage system.
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Description of Observation Window
(Same as a  G/D/infinity   queue).
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Fig. 2.12:  An example timing diagram of inputs x and the corresponding outputs in both the
system A pre-stage queue and the system B observation window.


