Packet Routing over Parallel Time-Varying Queues with Application to Satellite and Wireless Networks

Michael Neely MIT - LIDS mjneely@mit.edu

Eytan Modiano (LIDS) Charlie Rohrs (LIDS)

M.J. Neely, E.Modiano, and C.E.Rohrs, "Dynamic Routing to Parallel Time-Varying Queues with Applications to Satellite and Wireless Networks," Conference on Information Sciences and Systems, Princeton University: March 2002. Consider a constant service rate routing problem: (heterogeneous service rates $\{\mu_1, \mu_2, ..., \mu_n\}$)

2 Natural Routing Strategies:

Greedy: π_{greedy}

Choose queue k such that
$$k = \underset{j \in \{1, ..., n\}}{argmin} \left\{ \frac{L_i + U_j(t)}{\mu_j} \right\}$$

Work Conserving: π_{WC}

Choose queue k such that
$$k = \underset{j \in \{1, ..., n\}}{argmin} \left\{ \frac{U_j(t)}{\mu_j} \right\}.$$

 $U_{greedy}(t)$ can be arbitrarily larger than $U_{WC}(t)$. However, $U_{WC}(t)$ stays within a fixed upper bound from any other strategy.

Multiplexing Inequality:

$$U_{single}(t) \le U_{multi}(t)$$
 (For any routing strategy
over the parallel queues)

However, for the work conserving strategy π_{WC} , we also have an upper bound:

$$U_{\text{single}}(t) \le U_{WC}(t) \le U_{\text{single}}(t) + (n-1)L_{max}$$

Comparing π_{WC} to any other routing strategy π :

$$U_{WC}(t) \le U_{\pi}(t) + (n-1)L_{max}$$

...and it can be shown that $(n-1)L_{max}$ is the best bound possible for non-predictive, non-preemptive routing schemes, hence π_{WC} is *minimax optimal*. The π_{WC} routing algorithm uses a pre-queue to achieve work conservation in systems with time-varying server speeds (route to a server immediately when it empties).

How do we route when <u>no pre-queue</u> is available? (Ex: Queues are in different physical locations)

Input process X(t) --- rate ergodic, rate λ .

Processing rates $\{\mu_i(t)\}$ --- ergodic, time average rates $\{\mu_i^{av}\}$.

How do we stabilize the system without knowing the input stream, and without knowing future processing rates?

Consider Join-the-Shortest-Queue strategy: π_{JSQ} (JSQ = Route the incoming packet to the queue j with the smallest unfinished work $U_i(t)$). New notion of stability useful for understanding stability issues in systems with general ergodic inputs:

Consider a single server queue with a <u>finite buffer</u> of size *M*:

Define DR(M) = Packet drop rate when buffer size is M bits. (clearly DR(M) is a non-increasing function of M).

Definition: A system is *loss rate stable* if $DR(M) \rightarrow 0$ as $M \rightarrow \infty$.

This definition is closely related to the existing notion of stability defined in terms of a vanishing complementary occupancy distribution $Pr[U > m] \rightarrow 0$ as $m \rightarrow \infty$. It can be shown:

 $\lambda \le \mu_{av}$: <u>necessary condition</u> for stability. $\lambda < \mu_{av}$: <u>sufficient condition</u> if inputs and linespeeds are Markov Modulated.

Compare drop rate under *JSQ* policy to a single-server queue:

Let $DR_{JSQ}(M)$ represent the packet drop rate in the multi-queue system under the JSQ routing policy when all queues have buffer size M.

Theorem:

$$DR_{JSQ}(M+nL_{max}) \leq DR_{single-queue}(M)$$

Thus, the system under π_{JSQ} is loss rate stable <u>iff</u> the single queue system is loss rate stable.

(Hence, it is stable whenever the system is stabilizable). Joint routing and Power Allocation:

<u>Power Allocation</u>--Processing rates depend on power allocation $p_i(t)$ and time varying channel state $c_i(t)$: $\mu_i(p_i(t), c_i(t))$.

Each satellite s has multiple beams and a fixed power resource $P_{tot}^{(s)}$.

Must jointly route packets and allocate power to the different queues subject to a fixed power resource $\sum p_i(t) \le P_{tot}$.

Decoupled Policy: -Routing: JSQ -Power Allocation: Maximize $\sum \mu_i(p_i, c_i(t))$ subject to $\sum p_i = P_{tot}$ Example: Poisson arrival process, fixed length packets (size *L*).

Assume, for the simplicity of the example, that the time varying linespeeds $\mu_i(t)$ are arbitrary but sum to a constant rate μ .

Let $N_i(t)$ = Number of packets in queue *i* at time *t*.

Translate unfinished work into number of packets: $N = \lceil U/L \rceil$ $DR_{JSQ}(M) \le DR_{Single}(M-k) \le Pr[N_{M/D/l} > n]$

Theorem:

 $DR_{JSQ}(M+nL_{max}) \leq DR_{single-queue}(M)$

Proof outline: Let G(t) represent packet drops during [0, t].

We show $G_{JSQ}(t) \le G_{single}(t)$ for all time *t*. Prove claim over "completely busy periods":

Let: $a = arrivals during [t_B, t].$ $d = departures during [t_B, t].$

1. Packet Conservation equalities:

$$U_{JSQ}(\tau) = U_{JSQ}(t_{\bar{B}}) + a - d_{JSQ} - g_{JSQ}$$
$$U_{single}(\tau) = U_{single}(t_{\bar{B}}) + a - d_{single} - g_{single}$$

2. $d_{JSQ} \ge d_{single}$.

3. Just before c.b.p., at least one queue of multi-server system is empty:

$$U_{JSQ}(t_B) \leq (n-1)[M + nL_{max}]$$

4. JSQ Strategy: When a packet is dropped at time τ , all queues must have more than $[M+(n-1)L_{max}]$ unfinished work:

$$U_{JSQ}(\tau) > n[M + (n-1)L_{max}]$$

These facts plus algebra yield the result. \Box