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Consider a constant service rate routing problem:
(heterogeneous service rates { Uy, Mo, ...y Up} )

X(t)

S

2 Natural Routing Strategies.

Greedy: Tiyreedy

. DLi+Uj(t)D
Choose queue k suchthat k= argmin(} []

joflL...a0 H;i O

Work Conserving: Tiyc

: J
Choose queue k suchthat k= argmin[——1].

JO{1, ... n] “j ]

Ugreeay(t) can bearbitrarily larger than Uyc(t). However, Uyc(t)
stays within afixed upper bound from any other strategy.
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Multiplexing Inequality:

/ Ul(t)—ui(t)
X0 [y | MO = XY |
N a2
H(E) = pa(6)+...+HR(D)

(For any routing strategy

U . 1)U (1
smgle( ) multil?) over the paralel queues)

However, for the work conserving strategy gy c, we also
have an upper bound:

Usingle(t) <Upc) s Usingle(t) =1L,y

Comparing Tgc to any other routing strategy Tt

UWC(t) < UT[(t) +(n— 1)Lmax
...and it can be shown that (n-1)L ., IS the best bound possible
for non-predictive, non-preemptive routing schemes, hence g
IS minimax optimal.
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The T, routing algorithm uses a pre-queue to achieve work

conservation in systems with time-varying server speeds (route
to a server immediately when it empties).

How do we route when no pre-queue is available?
(Ex: Queues arein different physical |ocations)

arbitrary packet U (t) ——H1 ()
stream X(t) ,

make routing decisions

immediately upon packet arrival Un(t) = Hn(t)

Input process X(t) --- rate ergodic, rate A.
Processing rates{ ;(t)} --- ergodic, time average rates { ;?"}.

How do we stabilize the system without knowing the input
stream, and without knowing future processing rates?

Consider Join-the-Shortest-Queue strategy: T,

(JQ = Route the incoming packet to the queue j with the
smallest unfinished work U;(t) ).



Conference on Information Sciences and Systems, Princeton University: March 2002.

New notion of stability useful for understanding stability issues
in systems with general ergodic inputs:

Consider asingle server queue with afinite buffer of size M:

Finite Buffer size
of M hits

X(t)~rateA | u(t)

—>

Define DR(M) = Packet drop rate when buffer size is M hits.
(clearly DR(M) is a non-increasing function of M).

Definition:
A systemislossrate stableif DR(M) - 0as M — .

Thisdefinitionis closely related to the existing notion of stability
defined in terms of a vanishing complementary occupancy distri-

bution Pr[U >m] — 0 asm — o. It can be shown:

A< . necessary condition for stability.

A< U, : sufficient condition if inputs and
linespeeds are Markov Modul ated.
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Compare drop rate under JSQ policy to a single-server queue:

M+nNL 0

.Y ())

X(t) NS

DRjgo(M+NL ) ()
M
X(t) (D) = Ha(t)+ o)
DRsi nglequeue(M)

Let DR;350(M) represent the packet drop rate in the multi-queue

system under the JSQ routing policy when all queues have buffer
size M.

Theorem:

DRysp(M+nLa) = DRgngle-queuetM)

Thus, the system under Tg; Is loss rate stable iff the single

gueue system is loss rate stable.
(Hence, it is stable whenever the system is stabilizable).
Joint routing and Power Allocation:
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Power Allocation--Processing rates depend on power allocation
pi(t) and time varying channel state ¢;(t): Wi(pj(t), ci(t)).

, C
rate | HP Arimproving
- | channel con-
H(p, ) | ditions

(P, C1)

power p~

Each satellite s has multiple beams and a fixed power resource

IDtot(s)-

Must jointly route packets and allocate power to the different
queues subject to a fixed power resource y pl.(t) <P, .

H1(P1(1), c1(1))
Ui —>

Ha(p2(t), Co(1))
Uy()—>

UN(PN(D), Cn(D))

Decoupled Policy:
-Routing: JQ
-Power Allocation:

Maximize zui(pl-, Ci(t)) SUbJeCt tozpi = PtOf
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Example: Poisson arrival process, fixed length packets (sizeL).

Assume, for the smplicity of the example, that the time varying
linespeeds ;(t) are arbitrary but sum to a constant rate L.

Let Ni(t) = Number of packetsin queuei at timet.

N1 (t) —— Hy (1)

X(t) (POISSOH) Nz(t) | . uz(t)

H1()
<

-

Trandate unfinished work into number of packets: N = [ U/ L |

DR ;go(M)SDRg;, .1, (M = k) < Pr[Nyypj1 > 1l
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Theorem:

DRysp(M+nLay) < DRyngie-queuetM)
Proof outline: Let G(t) represent packet drops during [0, t].

We show GJSQ(t) < Gsingle(t) for al timet.

Prove claim over “completely busy periods’:

————————————————————

Let: a=arrivalsduring [tg, t].
d = departures during [tg, t].

1. Packet Conservation equalities:
_ 0
Ussol) = UJSQ%BD ta—d;sn=8 50

U 1) =U

[]
Single( Single%BD+a_dsingle_gsingle

2. dJSQ 2 dsingle'
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X(t) NS

DRjgo(M+NL ) ()
M
X(t) (D) = Ha(t)+ o)
DRsi nglequeue(M)

3. Just before c.b.p., at least one queue of multi-server systemis
empty:

<(n-1)[M+nL ]

Uso als

4. JQ Srategy: When apacket is dropped at time T, all queues
must have more than [M+(n-1)L 5] unfinished work:

UJSQ(T) >n[M+ (n— 1')Lmax]

These facts plus algebra yield the result. [
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