Multi-Dimensional Integration Theorem

Michael J. Neely http://web.mit.edu/mjneely/www mjneely@mit.edu

February 14, 2003

1 Time Average Integration

Let $\vec{\mu}(t)$ represent a vector function of time taking values in \mathbb{R}^N . The sample average of $\vec{\mu}(t)$ taken at times t_1, t_2, \ldots, t_m is written $\frac{1}{m} \sum_{i=1}^m \vec{\mu}(t_i)$. If $\vec{\mu}(t)$ takes values in a set A, then this average constitutes a convex combination of points in A, and hence is contained in the convex hull of A. Intuitively, the same result is true for time average integrals of $\vec{\mu}(t)$, because integrals can be represented as limits of finite sums. However, such a limiting argument cannot be used in general, as the set A may not contain all its limit points. The following theorem proves the result by using the *convex set separation theorem* [1], which states that a convex set and a point not in the set can be separated by a hyperplane.

Theorem 1. (Time Average Integration) If $\vec{\mu}(t)$ is integrable and is contained within a set A for all time, then the time average integral of $\vec{\mu}(t)$ over any finite interval of size T is within the convex hull of A, i.e.:

$$\frac{1}{T} \int_0^T \vec{\mu}(t) dt \in Conv(A)$$

Proof. Suppose the result is true when the affine hull¹ of A has dimension less than or equal to k-1. The result is trivially true when k-1=0, as this implies $\vec{\mu}(t)$ is a single point for all time. We proceed by induction on k.

Assume the affine hull of A has dimension k. By a simple change of coordinates, we can equivalently treat $\vec{\mu}(t)$ as a function taking values in \mathbb{R}^k . Let $\vec{p} = \frac{1}{T} \int_0^T \vec{\mu}(t) dt$. If the point \vec{p} is within the set Conv(A), we are done. If $\vec{p} \notin Conv(A)$, then by the convex set separation theorem there must exist a hyperplane H which separates \vec{p} from Conv(A), i.e., there exists a vector \vec{z} and a scalar b such that

$$\vec{z}'\vec{p} \leq b$$

 $\vec{z}'\vec{a} \geq b$ for all $\vec{a} \in Conv(A)$ (1)

¹The affine hull of a set A is the set $\vec{a} + X$, where \vec{a} is an arbitrary element of A, and X is the smallest linear space such that $\vec{a} + X$ contains set A [1]. For example, consider a set of points within \mathbb{R}^N which all lie on the same plane, or the same line. Then the affine hull is the 2-dimensional plane, or, respectively, the 1-dimensional line.

where the hyperplane H consists of all points $\vec{x} \in \mathbb{R}^k$ such that $\vec{z}'\vec{x} = b$. Thus, we have:

$$b \geq \vec{z}'\vec{p}$$

$$= \frac{1}{T} \int_0^T \vec{z}' \vec{\mu}(t) dt$$
 (2)

However, $\vec{\mu}(t) \in Conv(A)$ for all time, and hence by (1) the integrand in (2) is greater than or equal to b for all time. This implies that the set of all times $t \in [0,T]$ for which $\vec{z}'\vec{\mu}(t) > b$ must have measure zero. Hence:

$$\vec{p} = \frac{1}{T} \int_{0}^{T} \vec{\mu}(t)dt$$

$$= \frac{1}{T} \int_{\{t \in [0,T] | \vec{z}' \vec{\mu}(t) = b\}} \vec{\mu}(t)dt$$
(3)

The integral in (3) represents the time average of a function contained in the set $A \cap H$, a set of dimension at most k-1. It follows by the induction hypothesis that $\vec{p} \in Conv(A \cap H) \subset Conv(A)$, a contradiction.

Corollary 1. If the set A is closed, then $\lim_{T\to\infty} \frac{1}{T} \int_0^T \vec{\mu}(t) dt \in Conv(A)$, provided that the limit converges.

Proof. The limit can be approached arbitrarily closely by time average integrals over finite intervals. By Theorem 1, each such time average is contained within Conv(A). The limiting integral is thus a limit point of the closed set Conv(A), and hence is within Conv(A).

Example: The corollary does not hold if the set A is not closed. Indeed, consider the scalar valued function $\mu(t)=1-1/(t+1)$ contained within the non-closed interval [0,1) for all $t\geq 0$. Then the time average integral of $\mu(t)$ over any finite interval is within [0,1), but the limiting average as the interval size $T\to\infty$ is equal to 1, which is not in this interval.

References

[1] D. P. Bertsekas, A. Nedic, and A. E. Ozdaglar. *Convex Analysis and Optimization*. To be published: Athena Scientific, Feb. 2003.