Multi-Dimensional Integration Theorem Michael J. Neely http://web.mit.edu/mjneely/www mjneely@mit.edu February 14, 2003 ## 1 Time Average Integration Let $\vec{\mu}(t)$ represent a vector function of time taking values in \mathbb{R}^N . The sample average of $\vec{\mu}(t)$ taken at times t_1, t_2, \ldots, t_m is written $\frac{1}{m} \sum_{i=1}^m \vec{\mu}(t_i)$. If $\vec{\mu}(t)$ takes values in a set A, then this average constitutes a convex combination of points in A, and hence is contained in the convex hull of A. Intuitively, the same result is true for time average integrals of $\vec{\mu}(t)$, because integrals can be represented as limits of finite sums. However, such a limiting argument cannot be used in general, as the set A may not contain all its limit points. The following theorem proves the result by using the *convex set separation theorem* [1], which states that a convex set and a point not in the set can be separated by a hyperplane. **Theorem 1.** (Time Average Integration) If $\vec{\mu}(t)$ is integrable and is contained within a set A for all time, then the time average integral of $\vec{\mu}(t)$ over any finite interval of size T is within the convex hull of A, i.e.: $$\frac{1}{T} \int_0^T \vec{\mu}(t) dt \in Conv(A)$$ *Proof.* Suppose the result is true when the affine hull¹ of A has dimension less than or equal to k-1. The result is trivially true when k-1=0, as this implies $\vec{\mu}(t)$ is a single point for all time. We proceed by induction on k. Assume the affine hull of A has dimension k. By a simple change of coordinates, we can equivalently treat $\vec{\mu}(t)$ as a function taking values in \mathbb{R}^k . Let $\vec{p} = \frac{1}{T} \int_0^T \vec{\mu}(t) dt$. If the point \vec{p} is within the set Conv(A), we are done. If $\vec{p} \notin Conv(A)$, then by the convex set separation theorem there must exist a hyperplane H which separates \vec{p} from Conv(A), i.e., there exists a vector \vec{z} and a scalar b such that $$\vec{z}'\vec{p} \leq b$$ $\vec{z}'\vec{a} \geq b$ for all $\vec{a} \in Conv(A)$ (1) ¹The affine hull of a set A is the set $\vec{a} + X$, where \vec{a} is an arbitrary element of A, and X is the smallest linear space such that $\vec{a} + X$ contains set A [1]. For example, consider a set of points within \mathbb{R}^N which all lie on the same plane, or the same line. Then the affine hull is the 2-dimensional plane, or, respectively, the 1-dimensional line. where the hyperplane H consists of all points $\vec{x} \in \mathbb{R}^k$ such that $\vec{z}'\vec{x} = b$. Thus, we have: $$b \geq \vec{z}'\vec{p}$$ $$= \frac{1}{T} \int_0^T \vec{z}' \vec{\mu}(t) dt$$ (2) However, $\vec{\mu}(t) \in Conv(A)$ for all time, and hence by (1) the integrand in (2) is greater than or equal to b for all time. This implies that the set of all times $t \in [0,T]$ for which $\vec{z}'\vec{\mu}(t) > b$ must have measure zero. Hence: $$\vec{p} = \frac{1}{T} \int_{0}^{T} \vec{\mu}(t)dt$$ $$= \frac{1}{T} \int_{\{t \in [0,T] | \vec{z}' \vec{\mu}(t) = b\}} \vec{\mu}(t)dt$$ (3) The integral in (3) represents the time average of a function contained in the set $A \cap H$, a set of dimension at most k-1. It follows by the induction hypothesis that $\vec{p} \in Conv(A \cap H) \subset Conv(A)$, a contradiction. **Corollary 1.** If the set A is closed, then $\lim_{T\to\infty} \frac{1}{T} \int_0^T \vec{\mu}(t) dt \in Conv(A)$, provided that the limit converges. *Proof.* The limit can be approached arbitrarily closely by time average integrals over finite intervals. By Theorem 1, each such time average is contained within Conv(A). The limiting integral is thus a limit point of the closed set Conv(A), and hence is within Conv(A). Example: The corollary does not hold if the set A is not closed. Indeed, consider the scalar valued function $\mu(t)=1-1/(t+1)$ contained within the non-closed interval [0,1) for all $t\geq 0$. Then the time average integral of $\mu(t)$ over any finite interval is within [0,1), but the limiting average as the interval size $T\to\infty$ is equal to 1, which is not in this interval. ## References [1] D. P. Bertsekas, A. Nedic, and A. E. Ozdaglar. *Convex Analysis and Optimization*. To be published: Athena Scientific, Feb. 2003.