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Convexity in Queues with General Inputs

Michael J. Neely , Eytan Modiano

Abstract—In this paper we develop fundamental convexity o(t) (Uncontrollable
properties of unfinished work and packet waiting time in a queue background input)
serving general stochastic traffic. The queue input consists of Collection of Controllable
an uncontrollable background process and a rate-controllable  |ppyts{X ., X,,, WX
input stream. We show that any moment of unfinished work is roe
a convex function of the controllable input rate. The convexity 1
properties are then extended to address the problem of optimally 2 @4’
routing arbitrary input streams over a collection of K queues !
in parallel with different (possibly time-varying) server rates | X(t)
(pa(t), ..., px (t)). Our convexity results hold for stream-based M

routing (where individual packet streams must be routed to the . )

same queue) as well as for packet-based routing where eachFig. 1. A work conserving queue with server ratea general background
packet is routed to a queue by probabilistic splitting. Our analysis MPuté(¢), and rate-controllable inputX (¢) = {X1(t),. .., Xar(t)}.

uses a novel technique that combines sample path observations

with stochastic equivalence relationships. as input rates are increased, a precise formulation and proof
Index Terms— Stochastic Coupling, G/G/1 Queue of this result for general queueing systems has been a long-
standing open problem. This paper solves the problem using

|. INTRODUCTION a novel combination of sample path properties and stochastic

In this paper we examine a work conserving queue wittguivalence relationships. Our analysis also reveals situations
general stochastic inputs. We develop fundamental monotonidien the convexity property does not hold. Indeed, we show
ity and convexity properties of unfinished work and packehat the convexity property for unfinished work extends to
waiting time in the queue as a function of the packet arrivaystems with time varying server ratgét), but that waiting
rate A\. The arrival process consists of two sets of inputme moments are not necessarily convex in this context.
streams: an arbitrary and uncontrollable background streamAs a motivating example, below we present a simple and
6(t), and a rate-controllable input streaki(¢) (Fig. 1). well known result concerning convexity of unfinished work as
The rate-controllable streafi(¢) is composed of substreamsa function of the server rate. Let X (¢) be an input process
{X.;(t)}, and its rate is varied in discrete steps by adding ¢ a queue that is initially empty, whet®(¢) represents the
removing one or more of these substreams as inputs to thember of bits that arrived to the queue up to titneet U (t)
gueue. We show that any moment of unfinished work is rapresent the “unfinished work,” or number of unprocessed
convex function of this discrete input rate. Under the specibits, in the queue at time It is well known thatU (¢) can be
case of FIFO service, we show that waiting time momenéxpressed using a supremum operator:
are also convex. This convexity result is extended to treat

continuous rate parameteks where the rate is determined by U(t) = Sub {(X(t) = X(t =7) = p7}
probabilistically splitting packets from an arbitrary stochastic ) T . _
input stream according to a splitting probabilitye [0, 1]. By convexity of this supremum operator, it immediately fol-

We then apply these convexity results to address the problégs that the value ofJ(¢) at any timet is convex in the
of optimally routing input streams over a parallel collection of Parameter. This is a sample path result that holds for any
K queues with different server ratés, , ..., i1 ), with the goal input X(t), and it follows that averages ar_ld higher rr_10m_ents
of minimizing a cost function. In the symmetric case where tHff unfinished work are also convex jn This observation is
K queues are weighted equally in the cost function and hag¥tended to finite buffer systems in [4] and [5].
identical background processes, this convexity result impliesHowever, now consider the example problem of sequentially
that the uniform rate allocation minimizes cost. In the case 8PPIying input streams (¢), X (1), ..., X, (), and showing
an asymmetric collection o’ parallel queues, we present ghat average unfinished work at a particular titngrows con-
sequentially greedy routing algorithm that is optimal. vexly with the number of streams added. Specifically, assume
Convexity of queue backlog and waiting time momenthat X1 (¢) is any stochastic arrival process with arbitrarily
is an important structural property. For example, convexi rrelated interarrival and service times, and that all streams
is essential for establishing optimality of classical gradiedtX:(¢)} are independent but distributed identically Xq (¢).
based routing algorithms [2] [13], and is also needed to prov&€ unfinished work can again be expressed in terms of the
optimality of threshold-based admission control strategies [$UPremum operator:

While it is intuitive that queue backlog increases convexly n
U(t) =su Xi(t)— X;(t—71)] — pr
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no arrivals during the intervdD, ¢]). In this paper, we use an X H
alternate and novel technique to establish convexity when input

streams{X,(t)} are exchangeablgwhich includes the case X(t)

described above where all streams are independent). We first I3

introduce a new function of the superposition of two streams

that we call theblocking function Analysis is performed by

combining sample path properties of the blocking function t

with simple stochastic equivalence relationships, and all results B B2 s

follow directly from first-principles of queueing systems. Ux (© slope=—p
Previous work on stochastic monotonicity and convexity 4

in queues considers traffic with independence assumptions [\ S

on packet inter-arrival times, service times, or both [6]-[12]. t

Convexity properties of parallel “GI/G1/1” queues with packet-. ) )

based probabilistic routing are developed in [10]-{12], whetg; 2 . A WOrk conserving queue and typical sample paths of accumulated

it is shown under various independence assumptions that

backlog moments in each queue are convex functions of the

splitting probability, and hence uniform probabilistic splitting For a given queue with input process(t), we define

minimizes expected backlog in homogeneous systems amahg unfinished work procest’x (t) as the total amount of

the class of all probabilistic splittings. A related result founprocessed bits in the queueing system (buffer plus server) as

homogeneous systems in [14] shows that uniform splitting @sfunction of time. Note that for a system with a processor of

optimal for arbitrary arrivals in a system of parallel queuesrate s and an amount of unfinished wotky (¢), the quantity

with i.i.d. exponential servers. These results are largely badéd (¢)/1 represents the time required for the system to empty

on a theory of majorization and Schur-convex functions. Oifrno other packets were to arrive. It is clear tHak (t) is

approach is quite different and enables general analysis of bthie same for all work conserving service disciplines. It is

stream based routing and packet-based probabilistic splittiggmpletely determined by (¢) as well as the server raje

Independence assumptions are not required for the analyéig,example unfinished work functiolix () is shown in Fig.

and our convexity result is the first of its kind to treat genera. Notice the triangular structure and the fact that each new

stochastic inputs. triangle emerges at packet arrival times and has a downward
In the next section we define the blocking function. Islope of —p.

Section Il we establish convexity properties of unfinished We define thesuperpositionof two input streamsX; (¢),

work and packet waiting time in terms of a discrete set of2(t) as the sum procesX (t) + Xz(t). The following

input streams. Probabilistic splitting and continuous input ratég@mple path observation holds for any arbitrary sample paths

are treated in Section IV, and in Section V we considd@r processesX; (t), X (t):

applications to routing over parallel queues. Time varying Observation 1:For all timest, we have:

server rates are treated in Section VI. Ussoxa(t) > Us (8) + Us, (8) (1)

Thus, for any two inputsX; and X,, the amount of
unfinished work in a work conserving queueing system with
Consider a work conserving queue with a single server thiie superposition process; + X, is always greater than or
can process packets at a constant rate: dfits/second. The equal to the sum of the work in two identical queues with

queue is assumed to be initially empty at titne: 0. Variable these same process&s and X, entering them individually.
length packets from input streaXi flow into the queue and Note that a simple special case of this observation is the
are processed at the single server according to any woféiet that busy periods in a queue with inpkit (¢) alone are
conserving service discipline (such as FIFO, LIFO, Shortestibintervals of busy periods in a queue with the superposition
Packet First, GPS, etc.). The input stream is characterized byriput X; (¢) + X2 (t).

two random processesi) The sequencéay} of inter-arrival Proof: (Observation 1) We compare a queue with input
times, and(i¢) The sequencgl;} of packet lengths. X1 (t) alone to a queue witl; () + X (t). SinceUx, 4 x, (t)

The processe&uy, } and{l; } are assumed to be ergodic withis the same for all work conserving service disciplines, we
arrival rate) and average packet length{ L}, respectively. In can imagine that packets from tt& stream have preemptive
general, inter-arrival times may be correlated with each othgriority over X, packets. The queueing dynamics of tRe
as well as jointly correlated with the packet length process. \[gackets are therefore unaffected by any low priority packets
maintain this generality by describing the input to the queue fom the X, stream. Thus, thé/x, . x,(¢) function can be
the single random process(t), which represents the amountwritten asUx, (¢) plus an extra amountrirax, (t) due to the
of bits brought into the queue as a function of time. As showk, packets, as shown in Fig. 3. This extra amount (represented
in Fig. 2, a particular inpuf (¢) is a non-decreasing staircases the striped region in Fig. 3) can be viewed as the amount
function. Jumps in theX (¢) function occur at packet arrival of unfinished work remaining in a queue with t8&, input
epochs, and the amount of increase at these times is equatteam alone, where the server goes on idle “vacations” exactly
the length of the entering packet. at times wherUx, (t) is nonzero. Clearly, this unfinished work

Il. THE BLOCKING FUNCTION
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Fig. 3. An example sample path of the unfinished work function 4 x, (t)  Fig. 4. A queueing illustration of the monotonicity property of the blocking
in a system whereX; packets have preemptive priority. function.

is greater than or equal to the unfinished work there would béere extra_in_System_A(t) represents the amount of un-
if the server did not go on vacations—whichlis, (¢). Thus: finished work from X3 packets in a queue whose server
takes vacations during busy periods caused by Xheand
Uxi+x,(t) = Ux, (8) + extrax, () 2 Ux, (8) + Ux, (2) X, streams. Likewisegztra_in_System_B'(t) represents the
1 amount of unfinished work fronk'; packets when vacations
This simple observation motivates the following definitionare only duringX; busy periods. Since busy periods caused
Definition 1: The Blocking Function fx, x,(t) between by the X, stream are subintervals of busy periods caused by
two streamsX; and X, is the function: the combinedX; + X, stream, theX3 packets in Systemi
experience longer server vacations, and we have:
ﬁX1,X2 (t)éUXl-i-Xz (t) - UXI (t) - UX2 (t) (2)

Thus, the blocking function is a random process that repre- exztra-in_System_A(t) > extra-in_System_B'(t)  (6)
sents the extra amount of unfinished work in the system duedging (4)-(6) verifies (3) and concludes the proof. 0

the blocking incurred by packets from tt¥; stream mixing The three properties of Lemma 1 are sufficient to develop

with the X, stream. . .
. . ) some very general convexity results for stochastic queues.
Lemma 1:The blocking function has the following proper- Y4 ty q

ties for all timest:
Bx,,x,(t) >0 (Non-negativity)
Bx1,x: (t) = By x, () (Symmetry)

IIl. EXCHANGEABLE INPUTS AND CONVEXITY

In this section we use the blocking function to show that any
77 moment of unfinished work in a queue is a convex function
Bxy+X5,x, (1) > B, X5 (t)  (Monotonicity) q

The non-negativity lemma is just a re-statement of (1), whifd the input rateA. To do this, we must first specify how
the symmetry property is obvious from the blocking functiof" arbitrary input process can be parameterized by a single
definition. The monotonicity property is the most interesting®t€ value. The parameterization should be such that an input
Intuitively interpreted, the monotonicity property means that€am of rateA can be viewed as being composed of two
the amount of blocking incurred by theX; + X») process _S|m|lar streams of ratg. Otherwise, |t.|s cIear_ that the convex-
intermixing with the X5 process is larger than the amounfy result may nothold. Indeed, consider an input strean)
incurred by theX, process alone mixing with th& process. delivering bursty data at rate and another stream(¢) also

Proof: (Monotonicity) From the definition of the blocking delivering data at rate according to some other, less bursty

function in (2), we find that the monotonicity statement i8"0C€SS- ItX, (t) and X,(t) are sequentially added as inputs
equivalent to the following inequality at every tine to a queue, the expected increment in unfinished work due to

the additional X (¢) input may not be as large as the initial
Ux,4x,+x5(t) = Uxy 1 x,(t) — Ux, (1) > increment due to thé, (¢) input. This happens if thé(,(t)
Usx,+x,(t) — Ux, (t) — Ux,(t) Process is much smoother tha (¢), or if it is constructed

. o ) to have packet arrivals precisely at idle periods of the queue
Cancelling and shifting terms, it follows that we must proveith the X, (¢) input alone.

Uxy Xt x: (1) + Ux, () > Ux, 1 x. () + Uxyaxs () ) Here, we consider. the input rate as a discrete quantity
. o that is varied by adding or removing substreams of the same
We have illustrated (3) in Fig. 4. We thus prove that thgype” from the overall input process. We begin by developing
sum of the unfinished work in Systemisand B of Fig. 4 is  the notion of exchangeable random variables [7].

greater than or equal to the sum #i and B'. _ Definition 2: A collection of M random variables arex-
In a manner similar to the proof of Observatibnwe give  changeablf:

packets from both th&; and X, streams preemptive priority

over X3 packets. The queues of Fig. 4 can thus be treated a®x1,Xz,....Xu (T1,.. 0 om) = DX, %o X (T1,.-- 2M)
having servers that take “vacations” from serviig packets - - (7)
during busy periods caused by the other streams. Comparffgevery (Xi, ..., Xas) permutation of(Xy, ..., Xar), where

the A and A’ systems, as well as thB and B’ systems, we PX,.X».... Xy (Z1,---, ) is the joint density function.
have: Thus, exchangeable random variables exhibit a simple form

_ of symmetry in their joint distribution functions. Definitions
Uxy+X2+X,5 (1) = Ux,+x,(t) + extra_in_System_A(t) (4) for random variables to beonditionally exchangeablgiven
Ux,+x,(t) = Ux, (t) + extra_in_System_B'(t) (5) some event can be similarly defined: The distributions in (7)
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are simply replaced by conditional distributions. It is clear thabuting where the probability of routing to streardepends on
any set of independent and identically distributed (i.i.d.) ramvhere the last packet was placed. The third example shows that
dom variables are exchangeable. Thus, exchangeable variablegxchangeable input assumption is a good a-priori model to
form a wider class than i.i.d. variables, and hence statemente when an engineer is given simply a “collection of wires”
that apply to exchangeable variables are more general. Unlfkem various sources, and has no a-priori way of distinguishing
i.i.d. variables, however, it can be seen that if random variablée process running over “wire 1" from the process running
(X1, ..., X ) are conditionally exchangeable given some othewer “wire 2.
random variable, then they are exchangeable. We now examine how the unfinished work in a queue
We can extend this notion of exchangeability to includehanges when a sequence of exchangeable inputs are added.
random processeghat represent packet arrival streams. Thieet 6(¢t) be an arbitrary background input process, and let
following definition captures the idea that for any sample patki; (¢) and X»(¢) be two processes which are exchangeable
realization of exchangeable proces$és (t), ..., Xar(t)), the given (). Let Ux(t) represent the unfinished work process
permuted sample patiX, (¢), ..., Xy (t)) is “equally likely”: as a function of time in a queue with an input process
Definition 3: Random processé§(1(t), .., Xp(t)) areex- X (t) running through it. Furthermore, Igt(u) represent any
changeableif for any permutation(X;(t),..., Xas(t)), we convex, non-decreasing function of the real numbefor
haveE {®(X1,...,Xm)} = E{@(Xl,...,XM) for every v > 0. We assume that the expected valuefotx(t)) is

measurable operatd¥(-) that maps the processes to a singl\é\’e" defined for allt. (Note that expectations over functions
real number. of the form f(u) = u* represent:’® moments of unfinished

Definition 4: Random processes (X (1), ..., Xas(t)) work). The following theorem shows that incremental values
are conditionally exchangeable ~given proces%(t) if of queue cost are non-decreasing with each additional input.
for every permutation (Xi(f),...,Xn(t), we have Theorem 1:For any particular time*, we have:
E{®(Xy,...,Xm,0)} = IE{(I)(Xl, . ,XM,G)} for Ef (Uosx,+x, ) —Ef (Upyx, (%)) >
every real valued operatdr(-) that acts on the processes. Ef (Ugyx, (t9) — Ef (Up(t*))

Hence, random processes are exchangeable if their joinProof: Define the following processes:
statistics are invariant under every permutation. Note that the A
®(-) operator maps a set sample pathgo a real number. Ay(t) = Upyx, (1) — Us(t) (8)

For example, it could correspond to the mapping of the Ao(t) £ Upix,ax,(t) —Ugix, ()

input processX(t) to its unfinished work at a particular
time t*. Exchangeable processes have the same properties
their random variable counterparts. In particular, if processes

B usmg the blocking function properties developed in the
Brewous section, we find that for any timeve have:

(X1,...,X ) are exchangeable given a procésshen: Aq(t) = Ux,(t) + Borx, x,(t)
o Processe$Xy, ..., X)) are exchangeable. > Ux,(t) + Bo.x,(t) 9)
« Processes(X,,..., X)) are exchangeable given pro- — Upix,(t) — Ue(wéAI(t) (10)

cessesXy,..., X,_1,0.

« If U(.) is an operator that maps procességt), X»(t) where (9) follows by the monotonicity property of the block-
and #(t) to another procesg (t) = ¥(X;, X»,0), then ing function, and where we have defined a new process
W(X1,X,5,0) and U(X,, X;,6) are exchangeable pro-A;(t)2Uy, x,(t) — Us(t) in (10). BecauseX,(t) and X (t)
cesses giveld(t). are exchangeable give#ft), and because th& (t) and A (t)

The above properties are simple consequences of the deffipcesses are derived from the same operator mapping of
tions, where the last property follows by defining the operatétputs to differences in unfinished work (compare (8) and
(X1, X9, 0)20(V(X1, Xo,0), ¥(Xa, X1,6),60). Below we (10)), it follows that A;(t) and A,(t) are exchangeable
provide three examples of exchangeable input processes tHcesses givedi(t). Thus, for any timet*, inequality (10)

can act as input streams to a queueing System: states thaﬁg(f*) is a random variable that is alW&yS greater
Example 1 Any general arrival processést;(¢)} indepen- than or equal to another random variable which has the same
dent and identically distributed ovell input lines. distribution asA; (t*).

Example 2 Any general arrival procesX (¢) which is split We now use an incrgasing increments property of non-
into M streams by independently routing each packet to strel@creasing, convex function§u).

i€ {1,..., M} with equal probability. Fact: For non-negative real numbetsb, x, wherea > b,
Example 3 Any arbitrary collection of M processes We have:
(X1(t), ..., Xpsr(t)) which are randomly permuted (with each Fla+z)— fla)> f(b+z)— f(b) (11)

permutation equally likely).
Notice that Example 1 demonstrates the fact that i.i.blsing this fact and defining2Uy, x, (t*), z2A5(¢*), and
inputs are exchangeable. However, Example 2 illustrates tlbéUe(t*) we have:

exchangeable inputs form a more general class of proce o

by providing an important set of input streams which are no"l(e o+, (1) + Ba(t7) — fiU“Xl( 7)) .
independent yet are still exchangeable. Notice that this prob- > f(Us(t") + Az( ) — f(Ue(t")) (12)
abilistic routing can be extended to include “state-dependent” > f(Ua(t") + Ar(t")) — f(Up(t")) (13)
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Inequality (12) follows from from (11) and the fact thatstate moments (which are functions of the discrete set of

Ugsx, (t*) > Uy(t*) (from (1)). Inequality (13) follows be- input rates) € {0, \s,2)\s,..., MAs}):

causef(u) is non-decreasing, and because(t*) > A, (t*)

(from (10)). Taking expectations of the inequality above, we Ef (W(,(q) [)\]) JEf (Wp[\]) = Steady state waiting time

find: moment corresponding to the time a packet from background
Ef (Uppx, (t) + Ao (1)) — Ef (Upsx, (%)) > strean¥(t) spends in thgueueand in thesystemrespectively,

g when the controllable input rate s
Ef (Us(t) + A1 (1)) —Ef (Us(t"))  (29)
Ef (W)((") [A]) JEf (Wx[A]) = Steady state waiting

Using the fact thath, (¢) and A, (¢) are exchangeable 9VeNime moment corresponding to the time a packet from a

6(t), we can replace th& f (Ue(t*) +A1(t*)) term on the controllable input stream spends in tlgieueand in the
right hand side of (14) withEf (Us(t*) + A1(t*)), which systemrespectively, when the controllable input rate\is
yields the desired result. O

The theorem above can be used to immediately establish &f (N[)\]) = Steady state moment of the number of packets
convexity property of unfinished work in a work conservingn the system (from both the background and controllable
gueue with a collection of exchangeable inputs. Assume \irgput streams) when the controllable input rate\is
have such a collection aff streams( X1, ..., Xs) which are
exchangeable given another background stréam Assume  Formally, the steady state waiting time moments are defined:

that each of the stream&; has rate)\;. The total input )
process to the queue can then be viewed as a function of Ef (W)2 lim iZEf (W)
a discrete set of rates = n)\s for n € {0,1,...,M}. Let K—o0 -

Ef (UlnAs]) represent the expectation of a functigi) of o N
the unfinished work (at some particular tine, which is WhereW, represents the waiting time of the" packet of the

suppressed for notational simplicity) when the input proce&9Propriate input stream. Likewise, the steady state occupancy
consists of streami(¢) along with a selection of of the ;7 Moment is defined: )
exchangeable streams. IR

Hence: Ef (N):tlinolot 0 Ef (N(r))dr

Ef (UlnXs]) 2Ef (Ugsx,+..+x, (t°) (0<n < M) (15) Note that we have distinguish_ed between waiting times

e . of packets from the controllable input stream and from

~ Theorem 2:At any specific timet*, the functionEf (U[A])  the background inpu#. This distinction is important for
is monotonically increasing and convex in the discrete set giaplishing convexity, as described by the following corollary
ratesA (A = nAs, n € {0,1,..., M}). In particular, any 4nq the subsequent example. Assuming these steady state

moment of unfinished work is convex. ~_moments exist for the convex increasing functigtu) of
Proof: Convexity of a function on a discrete set of equidiSiyterest. we have:

tant points is equivalent to proving successive increments arecorollary 1: In FIFO queueing systems:

non-decreasing. Hence, the statement is equivalent to: (a)Ef (We(q) P\]) andEf (W;[\)) are non-decreasing and
Ef (Ul(n+2)Xs]) —Ef (U[(n+ 1)As]) > convex in the discrete set of ratas> 0 (i.e., A = n\s,n €
Ef (Ul(n+1)As)) — Ef (UlnAs)) (16) 10.1.....0M3).

(b)Ef (W)(f) [)\]) andEf (Wx|[)\]) are non-decreasing and
convex in the discrete set of ratas> 0.

(c) E{N[A]} is non-decreasing and convex in the discrete
set of rates\ > 0.
N ] Caveat: Note that in (b), waiting times for packets from
A. Waiting Times the controllable input streams are not defined whegs- 0.

Notice that in Theorems 1 and 2, expectations were tak&hus, convexity in this case is defined only for- 0. Further
at any particular time*. It is not difficult to show that this note that in (c), the functiorf(-) is intentionally absent from
property implies steady state unfinished work is convetie expectation, as we can only establish convexity of the
whenever such steady state limits exist. Moreover, we cfirst moment of packet occupancy in this general setting with
allow t* to be a time of special interest, such as the timeariable length packets.
when a packet from th&'; stream enters the system. In FIFO Proof: To prove (a), letp be a certain packet from
gueues, the unfinished work in the system at this special tirtne 6 input stream which arrives to the system at time
represents the amount of waiting timi& that the entering Whenn of the controllable inputs are applied to the system,
packet spends in the queue before receiving service. In thig, x, . 4 x, (t,)/p represents the amount of time packet
way, we show that waiting time increments are convex aftes buffered in the queue, arié, x, ... x, (t;)/p is the total
the first stream is added. Specifically, for a system with system time for packep. From Theorem 2Ef (U[)]) is a
background inputd(¢) and M inputs {X;,..., X)s} which non-decreasing, convex function af > 0 when unfinished
are exchangeable gived(t), we define the following steady work is evaluated at any time, including timest* = ¢, and

Defining the ‘background streard(t) = 0(¢) + X, (¢) +...+
X, (t), we find that inequality (16) follows immediately from
Theorem 1. 0
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t* = t;;. Hence, the expected waiting time of packein the (3) Any two (potentially non-disjoint) substreams that have
queue and in the system is a non-decreasing convex functtba same rate are conditionally exchangeable given the rest of
of the controllable input rate. Because this holds for any packée process.
p from thed stream, the expected waiting time averaged over We emphasize that the above definition incorporates both
all # packets is also convex, completing the proof. the input processX (t) and the method of splitting. Notice
To prove (b), now let packep represent a packet fromthat any stochastic arrival proce3s¢) is infinitely splittable
the first controllable input streanX;. Considering the sum when using the probabilistic splitting method of independently
process(t) + X1(t) as a combined background stream witincluding packets in a new substredamwith some probability
respect to input{ Xs, ..., X,,} (and noting that{ X, ..., X,} p;. Likewise, probabilistic splitting of the lead packet in
remain exchangeable giveitit) + X (¢)), from (a) we know systems where blocks df sequential packets must be routed
that the expected queueing time and system time of paciket together can be shown to satisfy the conditions of infinite
a non-decreasing convex function ®f> )\s;. Because inputs splittability.
{X1,..., Xy} are exchangeable, the expected waiting time of However, not all splitting methods satisfy the above defini-
a packet from streanX; is not different from the expectedtion. Consider for example a ‘divide b¥ splitting method,
waiting time of a packet from streaiXi,, (provided that stream where an input stream is split into two substreams by alter-
X}, is also applied to the system), and the result follows. nately routing packets to the first stream and then the second.
To prove (c), letf(z) = z. From (b) we know that Suppose the base input stredfft) has rate\ and consists of
E{Wx[\]} is non-decreasing and convex for > 0. It fixed length packets of unit size. Under this splitting method,
is straightforward to verify that for any such function, theany substream of rate\% can be formed by collecting
function \E {Wx[A]} is non-decreasing and convex for> 0,  superpositions of disjoint substreams of rat2™ (where k
where AE {Wx[A]} is defined to be0 at A = 0. Let Ay andn are any integers such that< 2"). Thus, the first two
represent the rate of thé(t) stream. By Little’s Theorem, conditions of infinite splittability are satisfied. However, it is
it follows that E {N[\]} = AE{Wx(\)} 4+ M\gE{Wy[\]} is not clear how a substrea¥ (¢) of rate \/2 is distributed.
non-decreasing and convex Iy as this is the sum of non- For example, the original streai(¢) could be split into two
decreasing convex functions. O substreams, one of which is randomly chosenXs$) and
One might expect the waiting timé&/,, averaged over consists of every other packet arrival froi(t). Alternately,
packets from both the controllable and uncontrollable irkhe ‘divide by2’ splitting method might be used to ford ()
put streams to be convex. However, note thHt,[\] = by iteratively splittingX (¢) into eight substreams of rate’s,
(%) E{Ws[\]} + (ﬁ) E {Wx[A]} is not necessarily & random four of which are grouped together to form the rate
6 6 1A
convex even though bot {IW,[\]} and E {Wx[\]} are. A/2 substream. Clearly the two approac'hes t'o bwld'lng.a rate
Indeed, the following simple example shows th&t,,[\] may A/2 substream do not generally lead to identically distributed
evendecreases \ increases: processes, as the first approach leads to ax#esubstream
Example Let background inpuf(t) periodically produce a that never f:ontains two successive packets from the original
new packet of service time0 at timest = {0, 100, 200,...}. Stream, while the second approach leads /2 substream
Let input X, (¢) consist of packets of service tingeoccurring that mlg_h'F contain two successive packets. Thu's., the divide-
periodically at times = {50, 150,250, . ..}. Hence, packets by-2 splitting method satisfies the first two conditions of the

from 6(t) and X, (¢) never interfere with each other. We thu&ove definition but not the third. o
have W ., (0) = 10 and Wy [As] = (10 + 2)/2 = 6. With the above definition, it can be seen that an infinitely

splittable input procesX (t) can be written as the sum of a
large number of exchangeable substreams. Specifically, it has
the property that for any > 0, there exists a large integér

In the previous section we dealt with streams of inputs argich that:
demonstrated convexity of unfinished work and waiting time M _
moments as streams are removed or added. Here, we extend X@) = in(t) +2(t)
the theory to include input processes that are parameterized =1
by a continuous rate variablg. The example to keep in where (z1(t),...,zx(t)) are exchangeable substreams, each
mind in this section is packet-by-packet probabilistic splittingyith rate A5, Z(¢) has rate\s, and \s < \s < e.
where individual packets from an arbitrary packet stream areWe now use the blocking function to establish continuity
independently sent to the queue with some probability of expected moments of unfinished work as a function of
However, the results apply to any general “infinitely splittablethe continuous rate parameter As before, these results also
input, which are inputs that can be split inBubstreams apply to waiting times in FIFO systems.

IV. CONVEXITY OVER A CONTINUOUS RATE PARAMETER

according to some splitting method, as described below: Again we assume thaf(u) is a non-decreasing convex
Definition 5: A packet input procesX (¢) together with a function overu > 0. SupposeX (¢) is an infinitely splittable
splitting method is said to bmfinitely splittableif: input process with total rate\;,;. Suppose also that all

(1) There exists a method of splitting(¢) into substreams exchangeable component processeX ¢f) are also exchange-

(2) X (t) or any of its substreams can be split into disjoinable given the background input procéss). LetE f (U[A¢ot])
substreams of arbitrarily small rate. Any superposition aépresent the expectation of a function of unfinished work at
disjoint substreams aK (¢) is considered to be a substreama particular time* in a queue with this input and background
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process. We assume here thigt (U[)::]) is finite. 6 (1)
Theorem 3:Ef (U[A]) can be written as a pure function of QAN U1
the continuous rate parameter where € [0, \¢] IS a rate 1

achieved by some substream of the infinitely splittalilg)
input. FurthermoreEf (U[\]) is a monotonically increasing

and continuous function of. X(t) 2
Proof: The proof uses the machinery of the blocking ——>( Router }- 2
function, and is given in Appendix A. OJ :
The continuity property of Theorem 3 allows us to easily
establish the convexity of any moment of unfinished work
(and packet waiting time) in a general queue as a function KK
K H——»

of the continuous input raté\. Let X (¢) be an infinitely
splittable input process, and suppose that every collection of
exchangeable componentsXft) are also exchangeable given
the background procegt). Then: . . Fig. 5. Multiple queues in parallel with different background proceésgs
Theorem 4:At any particular time ¢*, the function and server rateg;.
Ef (U[A]) is convex over the continuous variables [0, Azot].
Likewise, if service is FIFO, thefif (W [\]) is also convex.
Proof: We wish to show that the functidiif (U[)\]) always arbitrary input proces< (¢) also enters the system, and(t)
lies below its chords. Thus, for any three ratgs< A2 < A3, is rate-controllable in that a router can spht(¢) into sub-
we must verify that: streams of smaller rate. These substreams can be distributed
according to anK-tuple rate vector(\q,...,A\x) over the
Ef (U]) < multiple gueues. P ( )
Ef (U[/\ﬂ)+(>\2—A1)(Ef(U[A(§]§:I§{)(UWD) (17)  We consider both the case wheXi(¢) is an infinitely
We know from Theorem 2 in Section Il that the unfinishe&p"ttable process (as in_ packet-based probgb_ilistic spli_tting),
work function is convex over a discrete set of rates wh d the case whei((t) is composed of a f”.“te collection .
the input process is characterized by a finite set Adf o M exchangeable streams. Th? problem n both cases is
exchangeable streanis,...,z5). We therefore consider at0 rout_e.th_e substreams by forming an'optlmal rate vector
discretization of the rate axis by considering the sub-procesyé%t minimizes some petwork cost fqnctlon. W? assume the
(1, ..., 231) of the infinitely splittable proces(¢), where cost function is a weighted summation of unfinished work

eachz; has a small rate). In this discretization, we have andjor waiting time mOmGUtS in the queues. Specmc_ally,
rates: we let {fx(u)} be a collection of convex, non-decreasing

functions onu > 0. Suppose that the queues reach a steady
state behavior, and I& f (U[A\x]) represent the steady state
where the rateg);, A2, As) can be made arbitrarily close tomoment of unfinished work in queuewhen an input stream
their counterpartg\;, A2, \3) by choosing an appropriately of rate ;. is applied. LetEf (W,[\:]) represent the steady
small value ofs. Now, from the discrete convexity result, westate moment of waiting time for queue

A = k16, Ao = ko8, A3 = k30 (18)

know: Theorem 5:1f queues are work conserving anli(t) is
- either a finitely or infinitely rate splittable process given
Ef (U M) = {6,(1)}, then:
< T 1 (EF(UM])-EF(U a) Cost functions of the form
Ef (UW]) + (o — Ay LRI (4q) @)
K
By continuity of theEf (U[\]) function, we can choose CA1y- - Ak) = Y Efiu(UiMe]) (20)
the discretization unit to be small enough so that the right =1
hand side of (19) is arbitrarily close to the right hand side ] o
of the (currently unproven) inequality (17). Simultaneousl2ré convex in the multivariable rate vector, . . ., Ax).
we can ensure that the left hand sides of the two inequalities(t) If service is FIFO, then cost functions of the form
are arbitrarily close. Thus, the known inequality (19) for the K
discretized inputs implies inequality (17) for the infinitely COM, - ) =S MEF (Wi (21)
splittable input. We thus have convexity of unfinished work . x) ,; B (WalAel)
at any point in time, which also implies convexity of waiting o
time in FIFO systems.  are convex (where th#@/;[\;] values represent waiting times

of packets from the controllable inputs).
(c) If service is FIFO andVy(\) represents the number of

V. MULTIPLE QUEUES IN PARALLEL . . .
packets in queué in steady state, then cost functions of the

We now consider the system df queues in parallel as

shown ”.1 Fig. 5. The server for e_aCh quekiehas ratejuy, 1we note that convexity on a discrete set of points is equivalent to convexity
and arbitrary background packet input procesgg@). An of the piecewise linear interpolation.
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following form are convex: While the occupancy blocking function may not satisfy
K the monotonicity property for general variable length packets,
C(M,.. . A k) ZZAkaE{NkP\k]} ({cx} >0) (22) it can be shown to satisfy non-negativity, symmetry, and
e monotonicity in the special case when all packets have fixed
Proof: SinceEf,(W[\g]) is convex and non-decreasingengths ofL bits and service is non-preemptive (see [16]).
for A\x > 0, the function\,E f,(Wy[Ax]) is convex on\; > Consequently, given a collection df queues with back-

0. Thus, the cost functions in (a) and (b) are summations gfound input processe$fy(t)} and server rate processes
convex functions, so they are convex. Part (c) follows frofy,, (¢)}, together with a (finitely or infinitely distributable)
(b) by noting that, from Little’s TheorenE {N} = AE{W}. input X(¢), we can establish:
U Theorem 6:1f the exchangeable components &f(t) are
Convexity of the cost functio® (A, ..., \x) can be used exchangeable givefd, (t)} and{ux(t)}, then> Efi(Ur[\i])
to develop optimal rate distribution§\i, ..., A\j) over the s convex in the rate vectdt\y, ..., \x). If all packets have
simplex constrainf\; + ...+ Ax = Aio. FOr symmetric cost 3 fixed length ofL bits and service is non-preemptive, then
functions, which arise when the background proce$8e&)} ST Efix(Ni[Ax]) is convex in the rate vector.
and the server ratefu,} are the same for all queuds e Recall from Little’s Theorem that if the expected waiting
{1,..., K}, the optimal solution is particularly simple. |ndeedtime]E{W()\)} is convex in), then so is the expected packet
for the case of packet based routing with continuous splittir&cupanCyE {N(\)}. However, the converse implication does
rates, the uniform spliting /M. ..., A/M) is optimal for not follow. Indeed, below we provide a (counter) example
symmetric systems. In the case of routing a discrete set\ghich illustrates that—even for fixed length packets under
M streams over the queues, the optimal routing is the 10af=0 service—waiting times are not necessarily convex for
balanced assignment ¢f\//K'| streams to(M) mod (K) time varying servers.
of the queues, andM/K| streams to the remaining qUeUes. (coynter) Exampte Consider identical input processes
In the non-symmetric case with continuous splitting, CO']X17X2,X3 which produce a single packet of length= 1
vexity implies that optimal routing splits can be determined bﬁferiodically at times{0,3,6,9,...}. Let the server rate be
a simple Lagrange multipliers calculation [2]. In the case ‘Heriodic of period3 with () = 1 for ¢ € [0,2] and u(t) =
stream based routing, the optimal assignment is given by the) tor ¢ € (2,3). ThenE{Wy,} = 1, E{Wx, x,} =
following greedy algorithm. LetC(M,, ..., M) represent | 5 and® {Wy. , x, .} — 1.67. Clearly the increment in

the cost function for the routing assignme(ts, . .., Mx).  ayerage waiting time when streaiy, is added is larger than
AssumeC(-) is either fully known, or that it can be estimatedi,o sy ccessive increment when streafy is added. Hence,

Lemma 2:Given a convex cost functiot’(Ms,. .., Mx)  \ajting time is not convex in this time-varying server setting.
of the form specified in Theorem 5, the optimal allocatiop,

vector can be obtained by sequentially adding streams, greedA
ily choosing at each iteration the queue that increases che
total costC(-) the least. This yields a cost-minimizing vecto

(MF,..., M) after M + K — 1 evaluations/estimations of Mot Wiot). FOr fixed length packets, Theorem 6 ensures this is

thiCOSft. flfrnhgtloln. foll il fath a convex optimization even for time varying servers. Indeed,
_root: IS lemma Tollows as a Special case of a NeOW.i-q that expected occupancié§Nx, }, E{Nx,+x,}, and
of integer optimization over separable convex functions (s

LN : o . ﬁe{NX1+X2+X3} for the above example can be obtained by
[15]). A simplified and independent proof is given in [16]] multiplying E {Wx,}, E{Wx,+x,}, and E {Wx,+x,+x, }
by A = 1/3,2/3, and3/3 respectively, and the resulting values
VI. TIME-VARYING SERVER RATES are convex. Indeed, the non-convex vallies.5, 1.67 become
Here we consider the system of Fig. 1 when the constaéq,tl, and1.67, which have increasing increments.
server of rateu is replaced by a time varying server of rate
w(t). Sample path characteristics of the unfinished wWiogk(¢)
for time varying servers are similar to those illustrated in Fig. 2 VII. CONCLUSIONS
for constant server systems, with the exception thattkét)
function decreases with a time varying slopg/(t).
Convexity analysis ot/x (¢) in this context is similar to the
analysis for constant server rate systems. Indeed, defining
unfinished work blocking functiorfx, x,(t) as before and
literally repeating the same arguments of Section I, we c?’

establish that the non-negativity, symmetry, and monotonicityncuﬁn . twotl_n_[i ut streamf that \(/jve call tthe.blltockmg fu?c-
properties still hold foBx, x, (¢) in this time-varying context. on. Non-negativity, Symmetry, and monotonicity properties

Likewise, we can definévVx (¢) as the (integer) number Ofof the blocking function were established. These properties

packets in the system at time and define theoccupancy are valuable tools for proving convexity of unfinished work
blocking functionax, x, (t) as follows: and waiting time moments in queues with both discrete and
1,42 "

continuous input rateg, and can likely be used to establish
ax, x,()2Nx,+x,(t) — Nx,(t) — Nx, (t) convexity in other contexts.

lthough waiting times are not necessarily convex, no-
that minimizingW,,; in a parallelﬂueue coniguration
r(Fig. 5) is accomplished by minimizing/;.; (since Ny,; =

We have developed general convexity results for queues
with arbitrary stochastic inputs. These convexity results es-
Eﬂ%lish important structural properties of queueing systems
and lead to simple algorithms for optimal routing over par-
el queues. Analysis was performed by introducing a new
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APPENDIXA — CONTINUITY OF UNFINISHED WORK Now applying the monotonically increasing, convex func-

Here we show that for any particular timg Ef (U[A]) isa ton f(u) to both sides of (25) and writingf(U(b + )
continuous, monotonically increasing function o{Theorem /(Us) +9(Us, ) (from Factl), we have:
3 of Section V). We utilize the following facts about convexy (17, ..+ 1..,) > f(Us) + 9 U, Sor  [Usi + Boozi])

non-decreasing functions:
9 > f(Us) + XM, 9 (Us, [Us, + o)) (26)

Fact 1: If f(u) is non-decreasing and convex, then for any
fixed a > 0 there is a functioy(a, z) such thatf(a + z) Inequality (26) holds by application of Faef as g(U, z)

f(a) + g(a,x), where g(a,x) is a convex, non-decreasingis a convex function ofr that is zero atr = 0. Now notice
function of z for = > 0. that Ef (U[A +6]) — Ef (U[N) 2Ef (Up+a,) — Ef (Us) =
Fact 2: Any convex, non-decreasing functionz) with Ef (Us+ U, + Bs.2,) — Ef (Uy) = E{g(Us, Uz, + Bo,z.)}
g(0) = 0 has the property thaj(x; + x2) > g(z1) + g(x2) for any substreamx; of rate d, wherez; and ¢ are disjoint.
for any z1,zo > 0. Hence, by assumption:
Let X (t) represent the base input of the controllable stream,

E{9(Us, Us, 2)} = €>0 27
which is infinitely splittable and has total rate,,,.. Note _ {.g( 9 Uzi + B, ‘)}_ ¢ _ 27)
thatEf (U[N]) 2Ef (Up1x, (t*)), whered(t) is a background Taking expectations of (26) and using (27), we find:
input and X, (¢) is any substream oK (¢) with rate A. This Ef (Upsars. +on) > Ef (Uy) + Me (28)

is a well defined function of\ because, by the properties
of infinitely splittable inputs, all substreams with the same Inequality (28) above holds whenevai, +x; + ...+ zy
rate are identically distributed. The fact th&tf (U[\]) is IS a substream of the entire, infinitely splittable procasg).
monotonically increasing in follows as a simple consequencé/Ve now choosé!/ large enough so thalt/ is greater than the
of the non-negativity property of the blocking function. Indeecxpectation off (Up, x ) when the entire inpuX (¢) is applied,
consider a substrearis(¢) of rated. We have: i.e, Me>Ef (Upyx). However, we choose a rafefor each
of the x; substreams that is small enough to enskiset x1 +
Ef(UN+9]) £ Ef(Upsx,+x,(t")) ...+x; is a component process &f(¢). By monotonicity of
Ef (Up+x, () £Ef (U[A]) Ef (U[A]), we have thaB f (Us+a, +...405 ) < Ef (Ussx) <

v

Me. But this contradicts (28), proving the theorem.

proving monotonicity. Below we prove the continuity property.
Proof: (Continuity) Here we prove that the function

Ef (U[A]) is continuous from the right with respect to the 1]

parameter. Left continuity can be proven in a similar manner.
Take any)\ in the set of achievable rates. We show that: [2]

23 P

lim Ef (UA +3]) = Ef (U]N)
where§ is the rate of a component process ¥ft) that we 4]
make arbitrarily small. By monotonicity, if decreases to zero, [g)
thenEf (U[A + d]) —Ef (U[)\]) decreases toward some limit

e, wheree > 0. Suppose now that this inequality is strict, so[G]
thate > 0. We reach a contradiction by showing that there
is a collection of M substreams with total rat®/ § such that [7]
A+ M8 < Az BULES (UIA + M3]) > Ef (UAmas]). -

Consider disjoint component streafus,, . ..,z }, eache;

of rated, for some yet-to-be-determinédand M. We assume
that theseM sub-streams are disjoint from another substreart?)
X of rate), all of which are components of the entire procesgo
X(t). Leto(t) = 0(t)+Xa(t), and letUp 45, +...12,, rEpresent
the unfinished work in the system at some particular tifme

L I 11
with input processe$d, X, x1, ...,z }. From the definition [
of the blocking function, we have: [12]
U¢+$1+..~+$M = U¢+$1+~~~7+$1\/f—1+U1AI+/6¢+$1+~'~+$M—1;$A4 [13]

2 U¢+Tl+-~7+$hf—1 + UIM + ﬁ¢7l'M (24) [14]

where (24) follows by the monotonicity property of the
blocking function. By recursively iterating (24), we find: [15]

M [16]
Ud>+ﬂc1+...+xM > U¢ + Z [sz + ﬂ¢,x,;]

i=1

(25)

O
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