
IEEE TRANSACTIONS ON INFORMATION THEORY — VOL. 51, NO. 2, PP. 706-714, FEBRUARY 2005 1

Convexity in Queues with General Inputs
Michael J. Neely , Eytan Modiano

Abstract— In this paper we develop fundamental convexity
properties of unfinished work and packet waiting time in a queue
serving general stochastic traffic. The queue input consists of
an uncontrollable background process and a rate-controllable
input stream. We show that any moment of unfinished work is
a convex function of the controllable input rate. The convexity
properties are then extended to address the problem of optimally
routing arbitrary input streams over a collection of K queues
in parallel with different (possibly time-varying) server rates
(µ1(t), ..., µK(t)). Our convexity results hold for stream-based
routing (where individual packet streams must be routed to the
same queue) as well as for packet-based routing where each
packet is routed to a queue by probabilistic splitting. Our analysis
uses a novel technique that combines sample path observations
with stochastic equivalence relationships.

Index Terms— Stochastic Coupling, G/G/1 Queue

I. I NTRODUCTION

In this paper we examine a work conserving queue with
general stochastic inputs. We develop fundamental monotonic-
ity and convexity properties of unfinished work and packet
waiting time in the queue as a function of the packet arrival
rate λ. The arrival process consists of two sets of input
streams: an arbitrary and uncontrollable background stream
θ(t), and a rate-controllable input streamX(t) (Fig. 1).
The rate-controllable streamX(t) is composed of substreams
{Xi(t)}, and its rate is varied in discrete steps by adding or
removing one or more of these substreams as inputs to the
queue. We show that any moment of unfinished work is a
convex function of this discrete input rate. Under the special
case of FIFO service, we show that waiting time moments
are also convex. This convexity result is extended to treat
continuous rate parametersλ, where the rate is determined by
probabilistically splitting packets from an arbitrary stochastic
input stream according to a splitting probabilityp ∈ [0, 1].

We then apply these convexity results to address the problem
of optimally routing input streams over a parallel collection of
K queues with different server rates(µ1, ..., µK), with the goal
of minimizing a cost function. In the symmetric case where the
K queues are weighted equally in the cost function and have
identical background processes, this convexity result implies
that the uniform rate allocation minimizes cost. In the case of
an asymmetric collection ofK parallel queues, we present a
sequentially greedy routing algorithm that is optimal.

Convexity of queue backlog and waiting time moments
is an important structural property. For example, convexity
is essential for establishing optimality of classical gradient
based routing algorithms [2] [13], and is also needed to prove
optimality of threshold-based admission control strategies [3].
While it is intuitive that queue backlog increases convexly

Michael J. Neely is with the Department of Electrical Engineering,
University of Southern California, Los Angeles, CA 90089 USA (email:
mjneely@usc.edu, web: http://www-rcf.usc.edu/∼mjneely).

E. Modiano is with the Laboratory for Information and Decision Systems,
Massachusetts Institute of Technology, Cambridge, MA 02139 USA (email:
modiano@mit.edu).

µ

(Uncontrollable
 background input)

X(t)

θ(t)

1
2

M

Collection of Controllable
Inputs {X , X , ..., X }M21

Fig. 1. A work conserving queue with server rateµ, a general background
input θ(t), and rate-controllable inputsX(t) = {X1(t), . . . , XM (t)}.

as input rates are increased, a precise formulation and proof
of this result for general queueing systems has been a long-
standing open problem. This paper solves the problem using
a novel combination of sample path properties and stochastic
equivalence relationships. Our analysis also reveals situations
when the convexity property does not hold. Indeed, we show
that the convexity property for unfinished work extends to
systems with time varying server ratesµ(t), but that waiting
time moments are not necessarily convex in this context.

As a motivating example, below we present a simple and
well known result concerning convexity of unfinished work as
a function of the server rateµ. Let X(t) be an input process
to a queue that is initially empty, whereX(t) represents the
number of bits that arrived to the queue up to timet. Let U(t)
represent the “unfinished work,” or number of unprocessed
bits, in the queue at timet. It is well known thatU(t) can be
expressed using a supremum operator:

U(t) = sup
τ≥0

{X(t) − X(t − τ) − µτ}

By convexity of this supremum operator, it immediately fol-
lows that the value ofU(t) at any timet is convex in the
µ parameter. This is a sample path result that holds for any
input X(t), and it follows that averages and higher moments
of unfinished work are also convex inµ. This observation is
extended to finite buffer systems in [4] and [5].

However, now consider the example problem of sequentially
applying input streamsX1(t), X2(t), . . . , Xn(t), and showing
that average unfinished work at a particular timet grows con-
vexly with the number of streams added. Specifically, assume
that X1(t) is any stochastic arrival process with arbitrarily
correlated interarrival and service times, and that all streams
{Xi(t)} are independent but distributed identically toX1(t).
The unfinished work can again be expressed in terms of the
supremum operator:

U(t) = sup
τ≥0

{
n∑

i=1

[Xi(t) − Xi(t − τ)] − µτ

}
However, in this case the supremum operator is not helpful,
as particular sample paths may not be convex inn (consider
the example where the next stream added happens to have

IEEE TRANSACTIONS ON INFORMATION THEORY — VOL. 51, NO. 2, PP. 706-714, FEBRUARY 2005 2

no arrivals during the interval[0, t]). In this paper, we use an
alternate and novel technique to establish convexity when input
streams{Xi(t)} are exchangeable(which includes the case
described above where all streams are independent). We first
introduce a new function of the superposition of two streams
that we call theblocking function. Analysis is performed by
combining sample path properties of the blocking function
with simple stochastic equivalence relationships, and all results
follow directly from first-principles of queueing systems.

Previous work on stochastic monotonicity and convexity
in queues considers traffic with independence assumptions
on packet inter-arrival times, service times, or both [6]-[12].
Convexity properties of parallel “GI/GI/1” queues with packet-
based probabilistic routing are developed in [10]-[12], where
it is shown under various independence assumptions that
backlog moments in each queue are convex functions of the
splitting probability, and hence uniform probabilistic splitting
minimizes expected backlog in homogeneous systems among
the class of all probabilistic splittings. A related result for
homogeneous systems in [14] shows that uniform splitting is
optimal for arbitrary arrivals in a system of parallel queues
with i.i.d. exponential servers. These results are largely based
on a theory of majorization and Schur-convex functions. Our
approach is quite different and enables general analysis of both
stream based routing and packet-based probabilistic splitting.
Independence assumptions are not required for the analysis,
and our convexity result is the first of its kind to treat general
stochastic inputs.

In the next section we define the blocking function. In
Section III we establish convexity properties of unfinished
work and packet waiting time in terms of a discrete set of
input streams. Probabilistic splitting and continuous input rates
are treated in Section IV, and in Section V we consider
applications to routing over parallel queues. Time varying
server rates are treated in Section VI.

II. T HE BLOCKING FUNCTION

Consider a work conserving queue with a single server that
can process packets at a constant rate ofµ bits/second. The
queue is assumed to be initially empty at timet = 0. Variable
length packets from input streamX flow into the queue and
are processed at the single server according to any work-
conserving service discipline (such as FIFO, LIFO, Shortest
Packet First, GPS, etc.). The input stream is characterized by to
two random processes:(i) The sequence{ak} of inter-arrival
times, and(ii) The sequence{lk} of packet lengths.

The processes{ak} and{lk} are assumed to be ergodic with
arrival rateλ and average packet lengthE {L}, respectively. In
general, inter-arrival times may be correlated with each other
as well as jointly correlated with the packet length process. We
maintain this generality by describing the input to the queue by
the single random processX(t), which represents the amount
of bits brought into the queue as a function of time. As shown
in Fig. 2, a particular inputX(t) is a non-decreasing staircase
function. Jumps in theX(t) function occur at packet arrival
epochs, and the amount of increase at these times is equal to
the length of the entering packet.

t

µX

t

X(t)

l2

l3

l1

a2a1 a3

slope = −µ
U (t)X

Fig. 2. A work conserving queue and typical sample paths of accumulated
and unfinished work.

For a given queue with input processX(t), we define
the unfinished work processUX(t) as the total amount of
unprocessed bits in the queueing system (buffer plus server) as
a function of time. Note that for a system with a processor of
rateµ and an amount of unfinished workUX(t), the quantity
UX(t)/µ represents the time required for the system to empty
if no other packets were to arrive. It is clear thatUX(t) is
the same for all work conserving service disciplines. It is
completely determined byX(t) as well as the server rateµ.
An example unfinished work functionUX(t) is shown in Fig.
2. Notice the triangular structure and the fact that each new
triangle emerges at packet arrival times and has a downward
slope of−µ.

We define thesuperpositionof two input streamsX1(t),
X2(t) as the sum processX1(t) + X2(t). The following
sample path observation holds for any arbitrary sample paths
for processesX1(t), X2(t):

Observation 1:For all timest, we have:

UX1+X2(t) ≥ UX1(t) + UX2(t) (1)

Thus, for any two inputsX1 and X2, the amount of
unfinished work in a work conserving queueing system with
the superposition processX1 + X2 is always greater than or
equal to the sum of the work in two identical queues with
these same processesX1 andX2 entering them individually.
Note that a simple special case of this observation is the
fact that busy periods in a queue with inputX1(t) alone are
subintervals of busy periods in a queue with the superposition
input X1(t) + X2(t).

Proof: (Observation 1) We compare a queue with input
X1(t) alone to a queue withX1(t)+X2(t). SinceUX1+X2(t)
is the same for all work conserving service disciplines, we
can imagine that packets from theX1 stream have preemptive
priority over X2 packets. The queueing dynamics of theX1

packets are therefore unaffected by any low priority packets
from the X2 stream. Thus, theUX1+X2(t) function can be
written asUX1(t) plus an extra amountextraX2(t) due to the
X2 packets, as shown in Fig. 3. This extra amount (represented
as the striped region in Fig. 3) can be viewed as the amount
of unfinished work remaining in a queue with theX2 input
stream alone, where the server goes on idle “vacations” exactly
at times whenUX1(t) is nonzero. Clearly, this unfinished work

IEEE TRANSACTIONS ON INFORMATION THEORY — VOL. 51, NO. 2, PP. 706-714, FEBRUARY 2005 3

t
���

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������

����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������

�
�
�

�
�
�

�
�
�

�
�
� 2X

1X

Fig. 3. An example sample path of the unfinished work functionUX1+X2 (t)
in a system whereX1 packets have preemptive priority.

is greater than or equal to the unfinished work there would be
if the server did not go on vacations—which isUX2(t). Thus:

UX1+X2(t) = UX1(t) + extraX2(t) ≥ UX1(t) + UX2(t)

This simple observation motivates the following definition:
Definition 1: The Blocking FunctionβX1,X2(t) between

two streamsX1 andX2 is the function:

βX1,X2(t)
M=UX1+X2(t) − UX1(t) − UX2(t) (2)

Thus, the blocking function is a random process that repre-
sents the extra amount of unfinished work in the system due to
the blocking incurred by packets from theX1 stream mixing
with the X2 stream.

Lemma 1:The blocking function has the following proper-
ties for all timest:

βX1,X2(t) ≥ 0 (Non-negativity)
βX1,X2(t) = βX2,X1(t) (Symmetry)
βX1+X2,X3(t) ≥ βX1,X3(t) (Monotonicity)

The non-negativity lemma is just a re-statement of (1), while
the symmetry property is obvious from the blocking function
definition. The monotonicity property is the most interesting.
Intuitively interpreted, the monotonicity property means that
the amount of blocking incurred by the(X1 + X2) process
intermixing with theX3 process is larger than the amount
incurred by theX1 process alone mixing with theX3 process.

Proof: (Monotonicity) From the definition of the blocking
function in (2), we find that the monotonicity statement is
equivalent to the following inequality at every timet:

UX1+X2+X3(t) − UX1+X2(t) − UX3(t) ≥
UX1+X3(t) − UX1(t) − UX3(t)

Cancelling and shifting terms, it follows that we must prove:

UX1+X2+X3(t) + UX1(t) ≥ UX1+X2(t) + UX1+X3(t) (3)

We have illustrated (3) in Fig. 4. We thus prove that the
sum of the unfinished work in SystemsA andB of Fig. 4 is
greater than or equal to the sum inA′ andB′.

In a manner similar to the proof of Observation1, we give
packets from both theX1 andX2 streams preemptive priority
over X3 packets. The queues of Fig. 4 can thus be treated as
having servers that take “vacations” from servingX3 packets
during busy periods caused by the other streams. Comparing
the A andA′ systems, as well as theB andB′ systems, we
have:

UX1+X2+X3(t) = UX1+X2(t) + extra in System A(t) (4)

UX1+X3(t) = UX1(t) + extra in System B′(t) (5)

2

X3

X1

X1+X2U (t) + U (t)X1+X2+X3 U (t) + U (t)X1 X1+X3

X
µ

µ
B

A
X1
X2
X3

X1

µ

µ

A’

B’

X1

Fig. 4. A queueing illustration of the monotonicity property of the blocking
function.

where extra in System A(t) represents the amount of un-
finished work from X3 packets in a queue whose server
takes vacations during busy periods caused by theX1 and
X2 streams. Likewise,extra in System B′(t) represents the
amount of unfinished work fromX3 packets when vacations
are only duringX1 busy periods. Since busy periods caused
by theX1 stream are subintervals of busy periods caused by
the combinedX1 + X2 stream, theX3 packets in SystemA
experience longer server vacations, and we have:

extra in System A(t) ≥ extra in System B′(t) (6)

Using (4)-(6) verifies (3) and concludes the proof.
The three properties of Lemma 1 are sufficient to develop

some very general convexity results for stochastic queues.

III. E XCHANGEABLE INPUTS AND CONVEXITY

In this section we use the blocking function to show that any
moment of unfinished work in a queue is a convex function
of the input rateλ. To do this, we must first specify how
an arbitrary input process can be parameterized by a single
rate value. The parameterization should be such that an input
stream of rate2λ can be viewed as being composed of two
similar streams of rateλ. Otherwise, it is clear that the convex-
ity result may not hold. Indeed, consider an input streamX1(t)
delivering bursty data at rateλ, and another streamX2(t) also
delivering data at rateλ according to some other, less bursty
process. IfX1(t) andX2(t) are sequentially added as inputs
to a queue, the expected increment in unfinished work due to
the additionalX2(t) input may not be as large as the initial
increment due to theX1(t) input. This happens if theX2(t)
process is much smoother thanX1(t), or if it is constructed
to have packet arrivals precisely at idle periods of the queue
with the X1(t) input alone.

Here, we consider the input rateλ as a discrete quantity
that is varied by adding or removing substreams of the same
“type” from the overall input process. We begin by developing
the notion of exchangeable random variables [7].

Definition 2: A collection of M random variables areex-
changeableif:

pX1,X2,...,XM
(x1, . . . , xM) = pX̃1,X̃2,...,X̃M

(x1, . . . , xM)
(7)

for every(X̃1, . . . , X̃M) permutation of(X1, ..., XM), where
pX1,X2,...,XM

(x1, . . . , xM) is the joint density function.
Thus, exchangeable random variables exhibit a simple form

of symmetry in their joint distribution functions. Definitions
for random variables to beconditionally exchangeablegiven
some eventω can be similarly defined: The distributions in (7)

IEEE TRANSACTIONS ON INFORMATION THEORY — VOL. 51, NO. 2, PP. 706-714, FEBRUARY 2005 4

are simply replaced by conditional distributions. It is clear that
any set of independent and identically distributed (i.i.d.) ran-
dom variables are exchangeable. Thus, exchangeable variables
form a wider class than i.i.d. variables, and hence statements
that apply to exchangeable variables are more general. Unlike
i.i.d. variables, however, it can be seen that if random variables
(X1, ..., XM) are conditionally exchangeable given some other
random variableθ, then they are exchangeable.

We can extend this notion of exchangeability to include
randomprocessesthat represent packet arrival streams. The
following definition captures the idea that for any sample path
realization of exchangeable processes(X1(t), ..., XM (t)), the
permuted sample path(X̃1(t), . . . , X̃M (t)) is “equally likely”:

Definition 3: Random processes(X1(t), ..., XM (t)) areex-
changeableif for any permutation(X̃1(t), ..., X̃M (t)), we

haveE {Φ(X1, . . . , XM)} = E
{

Φ(X̃1, . . . , X̃M)
}

for every

measurable operatorΦ(·) that maps the processes to a single
real number.

Definition 4: Random processes (X1(t), ..., XM (t))
are conditionally exchangeable given processθ(t) if
for every permutation (X̃1(t), ..., X̃M (t)), we have

E {Φ(X1, . . . , XM , θ)} = E
{

Φ(X̃1, . . . , X̃M , θ)
}

for

every real valued operatorΦ(·) that acts on the processes.
Hence, random processes are exchangeable if their joint

statistics are invariant under every permutation. Note that the
Φ(·) operator maps a set ofsample pathsto a real number.
For example, it could correspond to the mapping of the
input processX(t) to its unfinished work at a particular
time t∗. Exchangeable processes have the same properties as
their random variable counterparts. In particular, if processes
(X1, ..., XM) are exchangeable given a processθ, then:

• Processes(X1, ..., XM) are exchangeable.
• Processes(Xn, ..., XM) are exchangeable given pro-

cessesX1, ..., Xn−1, θ.
• If Ψ(·) is an operator that maps processesX1(t), X2(t)

and θ(t) to another processZ(t) = Ψ(X1, X2, θ), then
Ψ(X1, X2, θ) and Ψ(X2, X1, θ) are exchangeable pro-
cesses givenθ(t).

The above properties are simple consequences of the defini-
tions, where the last property follows by defining the operator
Φ̃(X1, X2, θ)M=Φ(Ψ(X1, X2, θ),Ψ(X2, X1, θ), θ). Below we
provide three examples of exchangeable input processes that
can act as input streams to a queueing system:

Example 1: Any general arrival processes{Xi(t)} indepen-
dent and identically distributed overM input lines.

Example 2: Any general arrival processX(t) which is split
into M streams by independently routing each packet to stream
i ∈ {1, . . . ,M} with equal probability.

Example 3: Any arbitrary collection of M processes
(X1(t), ..., XM (t)) which are randomly permuted (with each
permutation equally likely).

Notice that Example 1 demonstrates the fact that i.i.d.
inputs are exchangeable. However, Example 2 illustrates that
exchangeable inputs form a more general class of processes
by providing an important set of input streams which are not
independent yet are still exchangeable. Notice that this prob-
abilistic routing can be extended to include “state-dependent”

routing where the probability of routing to streami depends on
where the last packet was placed. The third example shows that
an exchangeable input assumption is a good a-priori model to
use when an engineer is given simply a “collection of wires”
from various sources, and has no a-priori way of distinguishing
the process running over “wire 1” from the process running
over “wire 2.”

We now examine how the unfinished work in a queue
changes when a sequence of exchangeable inputs are added.
Let θ(t) be an arbitrary background input process, and let
X1(t) and X2(t) be two processes which are exchangeable
given θ(t). Let UX(t) represent the unfinished work process
as a function of time in a queue with an input process
X(t) running through it. Furthermore, letf(u) represent any
convex, non-decreasing function of the real numberu for
u ≥ 0. We assume that the expected value off(UX(t)) is
well defined for allt. (Note that expectations over functions
of the form f(u) = uk representkth moments of unfinished
work). The following theorem shows that incremental values
of queue cost are non-decreasing with each additional input.

Theorem 1:For any particular timet∗, we have:

Ef (Uθ+X1+X2(t
∗)) − Ef (Uθ+X1(t

∗)) ≥
Ef (Uθ+X1(t

∗)) − Ef (Uθ(t∗))
Proof: Define the following processes:

∆1(t) M= Uθ+X1(t) − Uθ(t) (8)

∆2(t) M= Uθ+X1+X2(t) − Uθ+X1(t)

By using the blocking function properties developed in the
previous section, we find that for any timet we have:

∆2(t) = UX2(t) + βθ+X1,X2(t)
≥ UX2(t) + βθ,X2(t) (9)

= Uθ+X2(t) − Uθ(t)M=∆̃1(t) (10)

where (9) follows by the monotonicity property of the block-
ing function, and where we have defined a new process
∆̃1(t)M=Uθ+X2(t) − Uθ(t) in (10). BecauseX2(t) andX1(t)
are exchangeable givenθ(t), and because thẽ∆1(t) and∆1(t)
processes are derived from the same operator mapping of
inputs to differences in unfinished work (compare (8) and
(10)), it follows that ∆̃1(t) and ∆1(t) are exchangeable
processes givenθ(t). Thus, for any timet∗, inequality (10)
states that∆2(t∗) is a random variable that is always greater
than or equal to another random variable which has the same
distribution as∆1(t∗).

We now use an increasing increments property of non-
decreasing, convex functionsf(u).

Fact: For non-negative real numbersa, b, x, wherea ≥ b,
we have:

f(a + x) − f(a) ≥ f(b + x) − f(b) (11)

Using this fact and definingaM=Uθ+X1(t
∗), xM=∆2(t∗), and

bM=Uθ(t∗), we have:

f(Uθ+X1(t
∗) + ∆2(t∗)) − f(Uθ+X1(t

∗))
≥ f(Uθ(t∗) + ∆2(t∗)) − f(Uθ(t∗)) (12)

≥ f(Uθ(t∗) + ∆̃1(t∗)) − f(Uθ(t∗)) (13)

IEEE TRANSACTIONS ON INFORMATION THEORY — VOL. 51, NO. 2, PP. 706-714, FEBRUARY 2005 5

Inequality (12) follows from from (11) and the fact that
Uθ+X1(t

∗) ≥ Uθ(t∗) (from (1)). Inequality (13) follows be-
causef(u) is non-decreasing, and because∆2(t∗) ≥ ∆̃1(t∗)
(from (10)). Taking expectations of the inequality above, we
find:

Ef (Uθ+X1(t
∗) + ∆2(t∗)) − Ef (Uθ+X1(t

∗)) ≥
Ef

(
Uθ(t∗) + ∆̃1(t∗)

)
− Ef (Uθ(t∗)) (14)

Using the fact that̃∆1(t) and ∆1(t) are exchangeable given

θ(t), we can replace theEf
(
Uθ(t∗) + ∆̃1(t∗)

)
term on the

right hand side of (14) withEf (Uθ(t∗) + ∆1(t∗)), which
yields the desired result.

The theorem above can be used to immediately establish a
convexity property of unfinished work in a work conserving
queue with a collection of exchangeable inputs. Assume we
have such a collection ofM streams(X1, ..., XM) which are
exchangeable given another background streamθ(t). Assume
that each of the streamsXi has rateλδ. The total input
process to the queue can then be viewed as a function of
a discrete set of ratesλ = nλδ for n ∈ {0, 1, . . . ,M}. Let
Ef (U [nλδ]) represent the expectation of a functionf(·) of
the unfinished work (at some particular timet∗, which is
suppressed for notational simplicity) when the input process
consists of streamθ(t) along with a selection ofn of the M
exchangeable streams.

Hence:

Ef (U [nλδ]) M=Ef (Uθ+X1+...+Xn(t∗)) (0 ≤ n ≤ M) (15)

Theorem 2:At any specific timet∗, the functionEf (U [λ])
is monotonically increasing and convex in the discrete set of
rates λ (λ = nλδ, n ∈ {0, 1, . . . ,M}). In particular, any
moment of unfinished work is convex.

Proof: Convexity of a function on a discrete set of equidis-
tant points is equivalent to proving successive increments are
non-decreasing. Hence, the statement is equivalent to:

Ef (U [(n + 2)λδ]) − Ef (U [(n + 1)λδ]) ≥
Ef (U [(n + 1)λδ]) − Ef (U [nλδ]) (16)

Defining the ‘background stream’φ(t) = θ(t)+X1(t)+ . . .+
Xn(t), we find that inequality (16) follows immediately from
Theorem 1.

A. Waiting Times

Notice that in Theorems 1 and 2, expectations were taken
at any particular timet∗. It is not difficult to show that this
property implies steady state unfinished work is convex,
whenever such steady state limits exist. Moreover, we can
allow t∗ to be a time of special interest, such as the time
when a packet from theX1 stream enters the system. In FIFO
queues, the unfinished work in the system at this special time
represents the amount of waiting timeW that the entering
packet spends in the queue before receiving service. In this
way, we show that waiting time increments are convex after
the first stream is added. Specifically, for a system with a
background inputθ(t) and M inputs {X1, ..., XM} which
are exchangeable givenθ(t), we define the following steady

state moments (which are functions of the discrete set of
input ratesλ ∈ {0, λδ, 2λδ, . . . ,Mλδ}):

Ef
(
W

(q)
θ [λ]

)
, Ef (Wθ[λ]) = Steady state waiting time

moment corresponding to the time a packet from background
streamθ(t) spends in thequeueand in thesystem, respectively,
when the controllable input rate isλ

Ef
(
W

(q)
X [λ]

)
, Ef (WX [λ]) = Steady state waiting

time moment corresponding to the time a packet from a
controllable input stream spends in thequeue and in the
system, respectively, when the controllable input rate isλ

Ef (N [λ]) = Steady state moment of the number of packets
in the system (from both the background and controllable
input streams) when the controllable input rate isλ

Formally, the steady state waiting time moments are defined:

Ef (W) M= lim
K→∞

1
K

K∑
k=1

Ef (Wk)

whereWk represents the waiting time of thekth packet of the
appropriate input stream. Likewise, the steady state occupancy
moment is defined:

Ef (N) M= lim
t→∞

1
t

∫ t

0

Ef (N(τ)) dτ

Note that we have distinguished between waiting times
of packets from the controllable input streamX and from
the background inputθ. This distinction is important for
establishing convexity, as described by the following corollary
and the subsequent example. Assuming these steady state
moments exist for the convex increasing functionf(u) of
interest, we have:

Corollary 1: In FIFO queueing systems:
(a) Ef

(
W

(q)
θ [λ]

)
andEf (Wθ[λ]) are non-decreasing and

convex in the discrete set of ratesλ ≥ 0 (i.e., λ = nλδ, n ∈
{0, 1, . . . ,M}).

(b) Ef
(
W

(q)
X [λ]

)
andEf (WX [λ]) are non-decreasing and

convex in the discrete set of ratesλ > 0.
(c) E {N [λ]} is non-decreasing and convex in the discrete

set of ratesλ ≥ 0.
Caveat: Note that in (b), waiting times for packets from

the controllable input streams are not defined whenλ = 0.
Thus, convexity in this case is defined only forλ > 0. Further
note that in (c), the functionf(·) is intentionally absent from
the expectation, as we can only establish convexity of the
first moment of packet occupancy in this general setting with
variable length packets.

Proof: To prove (a), letp be a certain packet from
the θ input stream which arrives to the system at timetp.
Whenn of the controllable inputs are applied to the system,
Uθ+X1+...+Xn

(t−p)/µ represents the amount of time packetp
is buffered in the queue, andUθ+X1+...+Xn(t+p)/µ is the total
system time for packetp. From Theorem 2,Ef (U [λ]) is a
non-decreasing, convex function ofλ ≥ 0 when unfinished
work is evaluated at any timet∗, including timest∗ = t−p and

IEEE TRANSACTIONS ON INFORMATION THEORY — VOL. 51, NO. 2, PP. 706-714, FEBRUARY 2005 6

t∗ = t+p . Hence, the expected waiting time of packetp in the
queue and in the system is a non-decreasing convex function
of the controllable input rate. Because this holds for any packet
p from theθ stream, the expected waiting time averaged over
all θ packets is also convex, completing the proof.

To prove (b), now let packetp represent a packet from
the first controllable input streamX1. Considering the sum
processθ(t) + X1(t) as a combined background stream with
respect to inputs{X2, ..., Xn} (and noting that{X2, ..., Xn}
remain exchangeable givenθ(t) + X1(t)), from (a) we know
that the expected queueing time and system time of packetp is
a non-decreasing convex function ofλ ≥ λδ. Because inputs
{X1, ..., XM} are exchangeable, the expected waiting time of
a packet from streamX1 is not different from the expected
waiting time of a packet from streamXk (provided that stream
Xk is also applied to the system), and the result follows.

To prove (c), let f(x) = x. From (b) we know that
E {WX [λ]} is non-decreasing and convex forλ > 0. It
is straightforward to verify that for any such function, the
functionλE {WX [λ]} is non-decreasing and convex forλ ≥ 0,
where λE {WX [λ]} is defined to be0 at λ = 0. Let λθ

represent the rate of theθ(t) stream. By Little’s Theorem,
it follows that E {N [λ]} = λE {WX(λ)} + λθE {Wθ[λ]} is
non-decreasing and convex inλ, as this is the sum of non-
decreasing convex functions.

One might expect the waiting timeW av averaged over
packets from both the controllable and uncontrollable in-
put streams to be convex. However, note thatW av[λ] =(

λθ

λ+λθ

)
E {Wθ[λ]} +

(
λ

λ+λθ

)
E {WX [λ]} is not necessarily

convex even though bothE {Wθ[λ]} and E {WX [λ]} are.
Indeed, the following simple example shows thatW av[λ] may
evendecreaseasλ increases:

Example: Let background inputθ(t) periodically produce a
new packet of service time10 at timest = {0, 100, 200, . . .}.
Let inputX1(t) consist of packets of service time2 occurring
periodically at timest = {50, 150, 250, . . .}. Hence, packets
from θ(t) andX1(t) never interfere with each other. We thus
haveW av(0) = 10 andW av[λδ] = (10 + 2)/2 = 6.

IV. CONVEXITY OVER A CONTINUOUS RATE PARAMETER

In the previous section we dealt with streams of inputs and
demonstrated convexity of unfinished work and waiting time
moments as streams are removed or added. Here, we extend
the theory to include input processes that are parameterized
by a continuous rate variableλ. The example to keep in
mind in this section is packet-by-packet probabilistic splitting,
where individual packets from an arbitrary packet stream are
independently sent to the queue with some probabilityp.
However, the results apply to any general “infinitely splittable”
input, which are inputs that can be split intosubstreams
according to some splitting method, as described below:

Definition 5: A packet input processX(t) together with a
splitting method is said to beinfinitely splittableif:

(1) There exists a method of splittingX(t) into substreams.
(2) X(t) or any of its substreams can be split into disjoint

substreams of arbitrarily small rate. Any superposition of
disjoint substreams ofX(t) is considered to be a substream.

(3) Any two (potentially non-disjoint) substreams that have
the same rate are conditionally exchangeable given the rest of
the process.

We emphasize that the above definition incorporates both
the input processX(t) and the method of splitting. Notice
that any stochastic arrival processX(t) is infinitely splittable
when using the probabilistic splitting method of independently
including packets in a new substreami with some probability
pi. Likewise, probabilistic splitting of the lead packet in
systems where blocks ofK sequential packets must be routed
together can be shown to satisfy the conditions of infinite
splittability.

However, not all splitting methods satisfy the above defini-
tion. Consider for example a ‘divide by2’ splitting method,
where an input stream is split into two substreams by alter-
nately routing packets to the first stream and then the second.
Suppose the base input streamX(t) has rateλ and consists of
fixed length packets of unit size. Under this splitting method,
any substream of rateλ k

2n can be formed by collecting
superpositions of disjoint substreams of rateλ/2n (wherek
andn are any integers such thatk ≤ 2n). Thus, the first two
conditions of infinite splittability are satisfied. However, it is
not clear how a substream̃X(t) of rate λ/2 is distributed.
For example, the original streamX(t) could be split into two
substreams, one of which is randomly chosen asX̃(t) and
consists of every other packet arrival fromX(t). Alternately,
the ‘divide by2’ splitting method might be used to form̃X(t)
by iteratively splittingX(t) into eight substreams of rateλ/8,
a random four of which are grouped together to form the rate
λ/2 substream. Clearly the two approaches to building a rate
λ/2 substream do not generally lead to identically distributed
processes, as the first approach leads to a rateλ/2 substream
that never contains two successive packets from the original
stream, while the second approach leads to aλ/2 substream
that might contain two successive packets. Thus, the divide-
by-2 splitting method satisfies the first two conditions of the
above definition but not the third.

With the above definition, it can be seen that an infinitely
splittable input processX(t) can be written as the sum of a
large number of exchangeable substreams. Specifically, it has
the property that for anyε > 0, there exists a large integerM
such that:

X(t) =
M∑
i=1

xi(t) + x̃(t)

where (x1(t), ..., xM (t)) are exchangeable substreams, each
with rateλδ, x̃(t) has ratẽλδ, and λ̃δ < λδ < ε.

We now use the blocking function to establish continuity
of expected moments of unfinished work as a function of
the continuous rate parameterλ. As before, these results also
apply to waiting times in FIFO systems.

Again we assume thatf(u) is a non-decreasing convex
function overu ≥ 0. SupposeX(t) is an infinitely splittable
input process with total rateλtot. Suppose also that all
exchangeable component processes ofX(t) are also exchange-
able given the background input processθ(t). Let Ef (U [λtot])
represent the expectation of a function of unfinished work at
a particular timet∗ in a queue with this input and background

IEEE TRANSACTIONS ON INFORMATION THEORY — VOL. 51, NO. 2, PP. 706-714, FEBRUARY 2005 7

process. We assume here thatEf (U [λtot]) is finite.
Theorem 3:Ef (U [λ]) can be written as a pure function of

the continuous rate parameterλ, whereλ ∈ [0, λtot] is a rate
achieved by some substream of the infinitely splittableX(t)
input. Furthermore,Ef (U [λ]) is a monotonically increasing
and continuous function ofλ.

Proof: The proof uses the machinery of the blocking
function, and is given in Appendix A.

The continuity property of Theorem 3 allows us to easily
establish the convexity of any moment of unfinished work
(and packet waiting time) in a general queue as a function
of the continuous input rateλ. Let X(t) be an infinitely
splittable input process, and suppose that every collection of
exchangeable components ofX(t) are also exchangeable given
the background processθ(t). Then:

Theorem 4:At any particular time t∗, the function
Ef (U [λ]) is convex over the continuous variableλ ∈ [0, λtot].
Likewise, if service is FIFO, thenEf (W [λ]) is also convex.

Proof: We wish to show that the functionEf (U [λ]) always
lies below its chords. Thus, for any three ratesλ1 < λ2 < λ3,
we must verify that:

Ef (U [λ2]) ≤
Ef (U [λ1]) + (λ2 − λ1)

(Ef(U [λ3])−Ef(U [λ1]))
(λ3−λ1)

(17)

We know from Theorem 2 in Section III that the unfinished
work function is convex over a discrete set of rates when
the input process is characterized by a finite set ofM
exchangeable streams(x1, ..., xM). We therefore consider a
discretization of the rate axis by considering the sub-processes
(x1, ..., xM) of the infinitely splittable processX(t), where
eachxi has a small rateδ. In this discretization, we have
rates:

λ̃1 = k1δ, λ̃2 = k2δ, λ̃3 = k3δ (18)

where the rates(λ̃1, λ̃2, λ̃3) can be made arbitrarily close to
their counterparts(λ1, λ2, λ3) by choosing an appropriately
small value ofδ. Now, from the discrete convexity result, we
know:

Ef
(
U [λ̃2]

)
≤

Ef
(
U [λ̃1]

)
+ (λ̃2 − λ̃1)

Ef(U [λ̃1])−Ef(U [λ̃1])
(λ̃3−λ̃1)

(19)

By continuity of the Ef (U [λ]) function, we can choose
the discretization unitδ to be small enough so that the right
hand side of (19) is arbitrarily close to the right hand side
of the (currently unproven) inequality (17). Simultaneously,
we can ensure that the left hand sides of the two inequalities
are arbitrarily close. Thus, the known inequality (19) for the
discretized inputs implies inequality (17) for the infinitely
splittable input. We thus have convexity of unfinished work
at any point in time, which also implies convexity of waiting
time in FIFO systems.

V. M ULTIPLE QUEUES IN PARALLEL

We now consider the system ofK queues in parallel as
shown in Fig. 5. The server for each queuek has rateµk

and arbitrary background packet input processesθk(t). An

MICHAEL J. NEELY—SOME EXTRA DETAILS RELATED TO A PROOF IN “CAPACITY AND DELAY TRADEOFFS” 1

On Taking Infimums Over Sets

Michael J. Neely

University of Southern California

http://www-rcf.usc.edu/∼mjneely/

θ1(t)

θ2(t)

θK(t)

µ1

µ2

µK

n× n block code (2d parity check)

Y = erX

(note: p also equals
∑n−1

i=1 ri mod 2)

Can show that if α ≤ k, then:

e−α
(αe

k

)k

Xi =

 1 if bit i is in error

0 else

Pr[X ≥ k] ≤ E
{
erX

}
e−rk

= E
{

er(X1+...+Xm)
}

e−rk

=
[
E

{
erX1

}]m
e−rk

= [per + (1− p)]m e−rk

September 7, 2004 DRAFT

MICHAEL J. NEELY—SOME EXTRA DETAILS RELATED TO A PROOF IN “CAPACITY AND DELAY TRADEOFFS” 1

On Taking Infimums Over Sets

Michael J. Neely

University of Southern California

http://www-rcf.usc.edu/∼mjneely/

θ1(t)

θ2(t)

θK(t)

µ1

µ2

µK

n× n block code (2d parity check)

Y = erX

(note: p also equals
∑n−1

i=1 ri mod 2)

Can show that if α ≤ k, then:

e−α
(αe

k

)k

Xi =

 1 if bit i is in error

0 else

Pr[X ≥ k] ≤ E
{
erX

}
e−rk

= E
{

er(X1+...+Xm)
}

e−rk

=
[
E

{
erX1

}]m
e−rk

= [per + (1− p)]m e−rk

September 7, 2004 DRAFT

MICHAEL J. NEELY—SOME EXTRA DETAILS RELATED TO A PROOF IN “CAPACITY AND DELAY TRADEOFFS” 1

On Taking Infimums Over Sets

Michael J. Neely

University of Southern California

http://www-rcf.usc.edu/∼mjneely/

θ1(t)

θ2(t)

θK(t)

µ1

µ2

µK

n× n block code (2d parity check)

Y = erX

(note: p also equals
∑n−1

i=1 ri mod 2)

Can show that if α ≤ k, then:

e−α
(αe

k

)k

Xi =

 1 if bit i is in error

0 else

Pr[X ≥ k] ≤ E
{
erX

}
e−rk

= E
{

er(X1+...+Xm)
}

e−rk

=
[
E

{
erX1

}]m
e−rk

= [per + (1− p)]m e−rk

September 7, 2004 DRAFT

MICHAEL J. NEELY—SOME EXTRA DETAILS RELATED TO A PROOF IN “CAPACITY AND DELAY TRADEOFFS” 1

On Taking Infimums Over Sets

Michael J. Neely

University of Southern California

http://www-rcf.usc.edu/∼mjneely/

θ1(t)

θ2(t)

θK(t)

λ1

λ2

λK

n× n block code (2d parity check)

Y = erX

(note: p also equals
∑n−1

i=1 ri mod 2)

Can show that if α ≤ k, then:

e−α
(αe

k

)k

Xi =

 1 if bit i is in error

0 else

Pr[X ≥ k] ≤ E
{
erX

}
e−rk

= E
{

er(X1+...+Xm)
}

e−rk

=
[
E

{
erX1

}]m
e−rk

= [per + (1− p)]m e−rk

September 7, 2004 DRAFT

MICHAEL J. NEELY—SOME EXTRA DETAILS RELATED TO A PROOF IN “CAPACITY AND DELAY TRADEOFFS” 1

On Taking Infimums Over Sets

Michael J. Neely

University of Southern California

http://www-rcf.usc.edu/∼mjneely/

θ1(t)

θ2(t)

θK(t)

λ1

λ2

λK

n× n block code (2d parity check)

Y = erX

(note: p also equals
∑n−1

i=1 ri mod 2)

Can show that if α ≤ k, then:

e−α
(αe

k

)k

Xi =

 1 if bit i is in error

0 else

Pr[X ≥ k] ≤ E
{
erX

}
e−rk

= E
{

er(X1+...+Xm)
}

e−rk

=
[
E

{
erX1

}]m
e−rk

= [per + (1− p)]m e−rk

September 7, 2004 DRAFT

MICHAEL J. NEELY—SOME EXTRA DETAILS RELATED TO A PROOF IN “CAPACITY AND DELAY TRADEOFFS” 1

On Taking Infimums Over Sets

Michael J. Neely

University of Southern California

http://www-rcf.usc.edu/∼mjneely/

θ1(t)

θ2(t)

θK(t)

λ1

λ2

λK

n× n block code (2d parity check)

Y = erX

(note: p also equals
∑n−1

i=1 ri mod 2)

Can show that if α ≤ k, then:

e−α
(αe

k

)k

Xi =

 1 if bit i is in error

0 else

Pr[X ≥ k] ≤ E
{
erX

}
e−rk

= E
{

er(X1+...+Xm)
}

e−rk

=
[
E

{
erX1

}]m
e−rk

= [per + (1− p)]m e−rk

September 7, 2004 DRAFT

MICHAEL J. NEELY—SOME EXTRA DETAILS RELATED TO A PROOF IN “CAPACITY AND DELAY TRADEOFFS” 1

On Taking Infimums Over Sets

Michael J. Neely

University of Southern California

http://www-rcf.usc.edu/∼mjneely/

θ1(t)

θ2(t)

θK(t)

µ1

µ2

µK

n× n block code (2d parity check)

Y = erX

(note: p also equals
∑n−1

i=1 ri mod 2)

Can show that if α ≤ k, then:

e−α
(αe

k

)k

Xi =

 1 if bit i is in error

0 else

Pr[X ≥ k] ≤ E
{
erX

}
e−rk

= E
{

er(X1+...+Xm)
}

e−rk

=
[
E

{
erX1

}]m
e−rk

= [per + (1− p)]m e−rk

September 7, 2004 DRAFT

MICHAEL J. NEELY—SOME EXTRA DETAILS RELATED TO A PROOF IN “CAPACITY AND DELAY TRADEOFFS” 1

On Taking Infimums Over Sets

Michael J. Neely

University of Southern California

http://www-rcf.usc.edu/∼mjneely/

θ1(t)

θ2(t)

θK(t)

µ1

µ2

µK

n× n block code (2d parity check)

Y = erX

(note: p also equals
∑n−1

i=1 ri mod 2)

Can show that if α ≤ k, then:

e−α
(αe

k

)k

Xi =

 1 if bit i is in error

0 else

Pr[X ≥ k] ≤ E
{
erX

}
e−rk

= E
{

er(X1+...+Xm)
}

e−rk

=
[
E

{
erX1

}]m
e−rk

= [per + (1− p)]m e−rk

September 7, 2004 DRAFT

MICHAEL J. NEELY—SOME EXTRA DETAILS RELATED TO A PROOF IN “CAPACITY AND DELAY TRADEOFFS” 1

On Taking Infimums Over Sets

Michael J. Neely

University of Southern California

http://www-rcf.usc.edu/∼mjneely/

θ1(t)

θ2(t)

θK(t)

µ1

µ2

µK

n× n block code (2d parity check)

Y = erX

(note: p also equals
∑n−1

i=1 ri mod 2)

Can show that if α ≤ k, then:

e−α
(αe

k

)k

Xi =

 1 if bit i is in error

0 else

Pr[X ≥ k] ≤ E
{
erX

}
e−rk

= E
{

er(X1+...+Xm)
}

e−rk

=
[
E

{
erX1

}]m
e−rk

= [per + (1− p)]m e−rk

September 7, 2004 DRAFT

1

K

2Router

MICHAEL J. NEELY—SOME EXTRA DETAILS RELATED TO A PROOF IN “CAPACITY AND DELAY TRADEOFFS” 1

On Taking Infimums Over Sets

Michael J. Neely

University of Southern California

http://www-rcf.usc.edu/∼mjneely/

θ1(t)

θ2(t)

θK(t)

λ1

λ2

X(t)

n× n block code (2d parity check)

Y = erX

(note: p also equals
∑n−1

i=1 ri mod 2)

Can show that if α ≤ k, then:

e−α
(αe

k

)k

Xi =

 1 if bit i is in error

0 else

Pr[X ≥ k] ≤ E
{
erX

}
e−rk

= E
{

er(X1+...+Xm)
}

e−rk

=
[
E

{
erX1

}]m
e−rk

= [per + (1− p)]m e−rk

September 7, 2004 DRAFT

Fig. 5. Multiple queues in parallel with different background processesθi(t)
and server ratesµi.

arbitrary input processX(t) also enters the system, andX(t)
is rate-controllable in that a router can splitX(t) into sub-
streams of smaller rate. These substreams can be distributed
according to anK-tuple rate vector(λ1, ..., λK) over the
multiple queues.

We consider both the case whenX(t) is an infinitely
splittable process (as in packet-based probabilistic splitting),
and the case whenX(t) is composed of a finite collection
of M exchangeable streams. The problem in both cases is
to route the substreams by forming an optimal rate vector
that minimizes some network cost function. We assume the
cost function is a weighted summation of unfinished work
and/or waiting time moments in the queues. Specifically,
we let {fk(u)} be a collection of convex, non-decreasing
functions onu ≥ 0. Suppose that the queues reach a steady
state behavior, and letEf (Uk[λk]) represent the steady state
moment of unfinished work in queuek when an input stream
of rate λk is applied. LetEf (Wk[λk]) represent the steady
state moment of waiting time for queuek.

Theorem 5:If queues are work conserving andX(t) is
either a finitely1 or infinitely rate splittable process given
{θk(t)}, then:

(a) Cost functions of the form

C(λ1, . . . , λK) =
K∑

k=1

Efk(Uk[λk]) (20)

are convex in the multivariable rate vector(λ1, . . . , λK).
(b) If service is FIFO, then cost functions of the form

C(λ1, . . . , λK) =
K∑

k=1

λkEfk(Wk[λk]) (21)

are convex (where theWk[λk] values represent waiting times
of packets from the controllable inputs).

(c) If service is FIFO andNk(λk) represents the number of
packets in queuek in steady state, then cost functions of the

1We note that convexity on a discrete set of points is equivalent to convexity
of the piecewise linear interpolation.

IEEE TRANSACTIONS ON INFORMATION THEORY — VOL. 51, NO. 2, PP. 706-714, FEBRUARY 2005 8

following form are convex:

C(λ1, . . . , λK) =
K∑

k=1

λkckE {Nk[λk]} ({ck} ≥ 0) (22)

Proof: SinceEfk(Wk[λk]) is convex and non-decreasing
for λk > 0, the functionλkEfk(Wk[λk]) is convex onλk ≥
0. Thus, the cost functions in (a) and (b) are summations of
convex functions, so they are convex. Part (c) follows from
(b) by noting that, from Little’s Theorem,E {N} = λE {W}.

Convexity of the cost functionC(λ1, . . . , λK) can be used
to develop optimal rate distributions(λ∗1, . . . , λ

∗
K) over the

simplex constraintλ1 + . . . + λK = λtot. For symmetric cost
functions, which arise when the background processes{θk(t)}
and the server rates{µk} are the same for all queuesk ∈
{1, . . . ,K}, the optimal solution is particularly simple. Indeed,
for the case of packet based routing with continuous splitting
rates, the uniform splitting(λ/M, . . . , λ/M) is optimal for
symmetric systems. In the case of routing a discrete set of
M streams over the queues, the optimal routing is the load
balanced assignment ofdM/Ke streams to(M) mod (K)
of the queues, andbM/Kc streams to the remaining queues.

In the non-symmetric case with continuous splitting, con-
vexity implies that optimal routing splits can be determined by
a simple Lagrange multipliers calculation [2]. In the case of
stream based routing, the optimal assignment is given by the
following greedy algorithm. LetC(M1, . . . ,MK) represent
the cost function for the routing assignment(M1, . . . ,MK).
AssumeC(·) is either fully known, or that it can be estimated.

Lemma 2:Given a convex cost functionC(M1, . . . ,MK)
of the form specified in Theorem 5, the optimal allocation
vector can be obtained by sequentially adding streams, greed-
ily choosing at each iteration the queue that increases the
total costC(·) the least. This yields a cost-minimizing vector
(M∗

1 , . . . ,M∗
K) after M + K − 1 evaluations/estimations of

the cost function.
Proof: This lemma follows as a special case of a theory

of integer optimization over separable convex functions (see
[15]). A simplified and independent proof is given in [16].

VI. T IME-VARYING SERVER RATES

Here we consider the system of Fig. 1 when the constant
server of rateµ is replaced by a time varying server of rate
µ(t). Sample path characteristics of the unfinished workUX(t)
for time varying servers are similar to those illustrated in Fig. 2
for constant server systems, with the exception that theUX(t)
function decreases with a time varying slope−µ(t).

Convexity analysis ofUX(t) in this context is similar to the
analysis for constant server rate systems. Indeed, defining the
unfinished work blocking functionβX1,X2(t) as before and
literally repeating the same arguments of Section II, we can
establish that the non-negativity, symmetry, and monotonicity
properties still hold forβX1,X2(t) in this time-varying context.

Likewise, we can defineNX(t) as the (integer) number of
packets in the system at timet, and define theoccupancy
blocking functionαX1,X2(t) as follows:

αX1,X2(t)
M=NX1+X2(t) − NX1(t) − NX2(t)

While the occupancy blocking function may not satisfy
the monotonicity property for general variable length packets,
it can be shown to satisfy non-negativity, symmetry, and
monotonicity in the special case when all packets have fixed
lengths ofL bits and service is non-preemptive (see [16]).

Consequently, given a collection ofK queues with back-
ground input processes{θk(t)} and server rate processes
{µk(t)}, together with a (finitely or infinitely distributable)
input X(t), we can establish:

Theorem 6:If the exchangeable components ofX(t) are
exchangeable given{θk(t)} and{µk(t)}, then

∑
Efk(Uk[λi])

is convex in the rate vector(λ1, . . . , λK). If all packets have
a fixed length ofL bits and service is non-preemptive, then∑

Efk(Nk[λk]) is convex in the rate vector.
Recall from Little’s Theorem that if the expected waiting

time E {W (λ)} is convex inλ, then so is the expected packet
occupancyE {N(λ)}. However, the converse implication does
not follow. Indeed, below we provide a (counter) example
which illustrates that—even for fixed length packets under
FIFO service—waiting times are not necessarily convex for
time varying servers.

(Counter) Example: Consider identical input processes
X1, X2, X3 which produce a single packet of lengthL = 1
periodically at times{0, 3, 6, 9, ...}. Let the server rate be
periodic of period3 with µ(t) = 1 for t ∈ [0, 2] and µ(t) =
100 for t ∈ (2, 3). Then E {WX1} = 1, E {WX1+X2} =
1.5, and E {WX1+X2+X3} = 1.67. Clearly the increment in
average waiting time when streamX2 is added is larger than
the successive increment when streamX3 is added. Hence,
waiting time is not convex in this time-varying server setting.
�

Although waiting times are not necessarily convex, no-
tice that minimizingW tot in a parallel queue configuration
(Fig. 5) is accomplished by minimizingN tot (sinceN tot =
λtotW tot). For fixed length packets, Theorem 6 ensures this is
a convex optimization even for time varying servers. Indeed,
notice that expected occupanciesE {NX1}, E {NX1+X2}, and
E {NX1+X2+X3} for the above example can be obtained by
multiplying E {WX1}, E {WX1+X2}, and E {WX1+X2+X3}
by λ = 1/3, 2/3, and3/3 respectively, and the resulting values
are convex. Indeed, the non-convex values1, 1.5, 1.67 become
1
3 , 1, and1.67, which have increasing increments.

VII. C ONCLUSIONS

We have developed general convexity results for queues
with arbitrary stochastic inputs. These convexity results es-
tablish important structural properties of queueing systems
and lead to simple algorithms for optimal routing over par-
allel queues. Analysis was performed by introducing a new
function of two input streams that we call the blocking func-
tion. Non-negativity, symmetry, and monotonicity properties
of the blocking function were established. These properties
are valuable tools for proving convexity of unfinished work
and waiting time moments in queues with both discrete and
continuous input ratesλ, and can likely be used to establish
convexity in other contexts.

IEEE TRANSACTIONS ON INFORMATION THEORY — VOL. 51, NO. 2, PP. 706-714, FEBRUARY 2005 9

APPENDIX A — CONTINUITY OF UNFINISHED WORK

Here we show that for any particular timet∗, Ef (U [λ]) is a
continuous, monotonically increasing function ofλ (Theorem
3 of Section IV). We utilize the following facts about convex,
non-decreasing functions:

Fact 1: If f(u) is non-decreasing and convex, then for any
fixed a ≥ 0 there is a functiong(a, x) such thatf(a + x) =
f(a) + g(a, x), where g(a, x) is a convex, non-decreasing
function of x for x ≥ 0.

Fact 2: Any convex, non-decreasing functiong(x) with
g(0) = 0 has the property thatg(x1 + x2) ≥ g(x1) + g(x2)
for any x1, x2 ≥ 0.

Let X(t) represent the base input of the controllable stream,
which is infinitely splittable and has total rateλmax. Note
thatEf (U [λ]) M=Ef (Uθ+Xλ

(t∗)), whereθ(t) is a background
input andXλ(t) is any substream ofX(t) with rate λ. This
is a well defined function ofλ because, by the properties
of infinitely splittable inputs, all substreams with the same
rate are identically distributed. The fact thatEf (U [λ]) is
monotonically increasing inλ follows as a simple consequence
of the non-negativity property of the blocking function. Indeed,
consider a substreamXδ(t) of rateδ. We have:

Ef (U [λ + δ]) M= Ef (Uθ+Xλ+Xδ
(t∗))

≥ Ef (Uθ+Xλ
(t∗)) M=Ef (U [λ])

proving monotonicity. Below we prove the continuity property.
Proof: (Continuity) Here we prove that the function

Ef (U [λ]) is continuous from the right with respect to theλ
parameter. Left continuity can be proven in a similar manner.

Take anyλ in the set of achievable rates. We show that:

lim
δ→0

Ef (U [λ + δ]) = Ef (U [λ]) (23)

whereδ is the rate of a component process ofX(t) that we
make arbitrarily small. By monotonicity, ifδ decreases to zero,
thenEf (U [λ + δ])− Ef (U [λ]) decreases toward some limit
ε, whereε ≥ 0. Suppose now that this inequality is strict, so
that ε > 0. We reach a contradiction by showing that there
is a collection ofM substreams with total rateMδ such that
λ + Mδ < λmax but Ef (U [λ + Mδ]) > Ef (U [λmax]).

Consider disjoint component streams{x1, . . . , xM}, eachxi

of rateδ, for some yet-to-be-determinedδ andM . We assume
that theseM sub-streams are disjoint from another substream
Xλ of rateλ, all of which are components of the entire process
X(t). Letφ(t) = θ(t)+Xλ(t), and letUφ+x1+...+xM

represent
the unfinished work in the system at some particular timet∗,
with input processes{θ, Xλ, x1, . . . , xM}. From the definition
of the blocking function, we have:

Uφ+x1+...+xM
= Uφ+x1+...,+xM−1+UxM

+βφ+x1+...+xM−1,xM

≥ Uφ+x1+...,+xM−1 + UxM
+ βφ,xM

(24)

where (24) follows by the monotonicity property of the
blocking function. By recursively iterating (24), we find:

Uφ+x1+...+xM
≥ Uφ +

M∑
i=1

[Uxi
+ βφ,xi

] (25)

Now applying the monotonically increasing, convex func-
tion f(u) to both sides of (25) and writingf(Uφ + x) =
f(Uφ) + g(Uφ, x) (from Fact1), we have:

f(Uφ+x1+...+xM
) ≥ f(Uφ) + g (Uφ,

∑m
i=1[Uxi + βφ,xi])

≥ f(Uφ) +
∑M

i=1 g (Uφ, [Uxi
+ βφ,xi

]) (26)

Inequality (26) holds by application of Fact2, as g(U, x)
is a convex function ofx that is zero atx = 0. Now notice
that Ef (U [λ + δ]) − Ef (U [λ]) M=Ef (Uφ+xi

) − Ef (Uφ) =
Ef (Uφ + Uxi

+ βφ,xi
) − Ef (Uφ) = E {g(Uφ, Uxi

+ βφ,xi
)}

for any substreamxi of rate δ, wherexi and φ are disjoint.
Hence, by assumption:

E {g(Uφ, Uxi
+ βφ,xi

)} ≥ ε > 0 (27)

Taking expectations of (26) and using (27), we find:

Ef (Uφ+x1+...+xM
) ≥ Ef (Uφ) + Mε (28)

Inequality (28) above holds wheneverXλ + x1 + . . . + xM

is a substream of the entire, infinitely splittable processX(t).
We now chooseM large enough so thatMε is greater than the
expectation off(Uθ+X) when the entire inputX(t) is applied,
i.e., Mε > Ef (Uθ+X). However, we choose a rateδ for each
of thexi substreams that is small enough to ensureXλ +x1 +
. . .+xM is a component process ofX(t). By monotonicity of
Ef (U [λ]), we have thatEf (Uφ+x1+...+xM

) ≤ Ef (Uθ+X) <
Mε. But this contradicts (28), proving the theorem.

REFERENCES

[1] M. J. Neely and E. Modiano. Convexity and optimal load distributions
in work conserving∗/ ∗ /1 queues.IEEE Proc. of INFOCOM, 2001.

[2] D. P. Bertsekas and R. Gallager.Data Networks. New Jersey: Prentice-
Hall, Inc., 1992.

[3] S. L. Spitler and D. C. Lee. Optimization of call admission control for
a statistical multiplexer allocating link bandwidth.To appear in IEEE
Trans. on Automatic Control, 2003.

[4] K. Kumaran and M. Mandjes. The buffer-bandwidth trade-off curve is
convex. Queueing Systems, Vol. 38, pp. 471-483, 2001.

[5] K. Kumaran, M. Mandjes, and A. Stolyar. Convexity properties of loss
and overflow functions.Operations Research Letters, Vol. 31, pp. 95-
100, 2003.

[6] D. Stoyan. Comparison Methods for Queues and other Stochastic
Models. John Wiley & Sons: Chichester, 1983.

[7] S. Ross. Stochastic Processes. John Wiley & Sons, Inc., New York,
1996.

[8] C-S. Chang, X.L. Chao, and M. Pinedo. Monotonicity results for queues
with doubly stochastic poisson arrivals: Ross’s conjecture.Adv. Appl.
Prob., Vol. 23, pp.210-228, 1991.

[9] F. Baccelli and P. Bŕemaud. Elements of Queueing Theory. Berlin:
Springer, 2nd Edition, 2003.

[10] L. Gün, A. Jean-Marie, A. M. Makowski, and Tedijanto. Convexity
results for parallel queues with bernoulli routing.ISR Tech. Report,
University of Maryland, 1990.

[11] C. S. Chang, X. Chao, and M. Pinedo. A note on queues with bernoulli
routing. IEEE Proc. of 29th Conference on Decision and Control, 1990.

[12] A. Jean-Marie and L. G̈un. Parallel queues with resequencing.Journal
of the ACM, Vol.40,no.5, Nov. 1993.

[13] F. Bonomi and A. Kumar. Adaptive optimal load balancing in a
nonhomogeneous multiserver system with a central job scheduler.IEEE
Transactions on Computers, Vol. 39, no.10, Oct. 1990.

[14] G. Koole. On the pathwise optimal bernoulli routing policy for
homogeneous parallel servers.Mathematics of Operations Research,
Vol. 21:469-476, 1996.

[15] B. Fox. Discrete optimization via marginal analysis.Management
Science, 13, 1966.

[16] M. J. Neely. Dynamic Power Allocation and Routing for Satellite
and Wireless Networks with Time Varying Channels. PhD thesis,
Massachusetts Institute of Technology, LIDS, 2003.

