UNIVERSITY OF SOUTHERN CALIFORNIA — CSI TECHNICAL REPORT CSI-04-02-01, FEB. 2004 1

Logarithmic Delay for N x N Packet Switches
Under the Crossbar Constraint

Michael J. Neely
http://www-rcf.usc.edu/ mjneely
mjneely @usc.edu

Abstract—We consider the fundamental delay bounds for
scheduling packets in an NV x N packet switch operating un-
der the crossbar constraint. Algorithms that make schedul-
ing decisions without considering queue backlog are shown
to incur an average delay of at least O(/N). We then prove
that O(log(N)) delay is achievable with a simple frame
based algorithm that uses queue backlog information. This
is the best known delay bound for packet switches, and is
the first analytical proof that sublinear delay is achievable
in a packet switch with random inputs. The algorithm can
be implemented with O(N!-%log(NV)) total operations per
timeslot. Similar results for switches with speedup are pro-
vided, and complexity and delay tradeoffs are considered.

Index Terms— stochastic queueing analysis, scheduling,
optimal control

I. INTRODUCTION

We consider an N x [N packet switch with N input ports
an NN output ports, shown in Fig. 1. The system oper-
ates in slotted time, and every timeslot packets randomly
arrive at the inputs to be switched to their destinations.
Scheduling is constrained so that each input can transfer
at most one packet per timeslot, and outputs can receive
at most one packet per timeslot. This constraint arises
from the physical limitations of the crossbar switch fabric
that is commonly used to transfer packets from inputs to
outputs, and gives rise to a very rich problem in combina-
torics and scheduling theory. This problem has been ex-
tensively studied over the past decade [1-17], and remains
an important topic of current research. This is due to both
its technological relevance to high speed switching sys-
tems and its pedagogical example as a network complex
enough to inspire interesting research yet simple enough
for an extensive network theory to be developed.

In this paper, we show that if the matrix of input rates
to the switch has a sufficient number of non-negligible en-
tries (to be made precise in Section III), then any schedul-
ing strategy which does not consider queue backlog in-
formation necessarily incurs an average delay of at least
O(N). Strategies that do not consider backlog have been
proposed in a variety of contexts, including work by

Eytan Modiano
http://web.mit.edu/modiano/www
modiano @mit.edu

Inputs

1 —

Outputs 1 2 3 N

Fig. 1. An N x N packet switch under the crossbar constraint.

Chang et al [2], [3], Leonardi et al [4], Koksal [5], and
Andrews and Vojnovic [6]. The basic idea is to construct a
randomized or periodic scheduling rule precisely matched
for known input rates. If these rates are indeed known a-
priori and do not change with time, then such scheduling
offers arbitrarily low per-timeslot computation complex-
ity, as any startup complexity associated with computing
the scheduling rule is mitigated as the same rule is repeat-
edly used for all time.

The O(NN) delay result introduces an intuitive tradeoff
between delay and implementation complexity, as algo-
rithms which do not consider backlog information may
have lower complexity yet necessarily incur delay that
grows linearly in the size of the switch. To improve delay,
we construct a simple algorithm called Fair-Frame that
uses queue backlog information when making schedul-
ing decisions. For independent Poisson inputs, we show
that the Fair-Frame algorithm stabilizes the system and
provides O(log(V)) delay whenever the input rates are
within the switch capacity region. This work for the first
time establishes that sub-linear delay is possible in an
N x N switch. Furthermore, the proof is simple and
provides the intuition that logarithmic delay is achievable
in any single-hop network with a capacity region that is
described by a polynomial number of constraints. Such
delay improvement is achieved by taking advantage of
statistical multiplexing gains, which is not possible for
backlog-unaware algorithms.

UNIVERSITY OF SOUTHERN CALIFORNIA — CSI TECHNICAL REPORT CSI-04-02-01, FEB. 2004 2

Previous work in scheduling is found in [1-17]. In [2]
it is shown that stable scheduling can be achieved with
a queue length-oblivious strategy by using a Birkhoff-Von
Neumann decomposition on the known arrival rate matrix.
In [7] and [8], it was shown that scheduling according
to an O(N3) Maximum Weighted Match (MWM) every
timeslot stabilizes the switch whenever possible without
requiring prior knowledge of the input rates. In [9] the de-
lay of the MWM algorithm was shown to be no more than
O(N). We note that MWM scheduling is queue length-
aware, and hence it may be possible to tighten the delay
bound to less than O(N), as is suggested in the simula-
tions of [9]. However, O(NV) delay is the tightest known
analytical bound for MWM scheduling, and was previ-
ously the best known delay bound for any algorithm for a
switch with random (Poisson) inputs.

In [10] it is shown that if a switch has an internal
speedup of 2 (allowing for two packet transfers from input
to output every timeslot), then exact output queue emula-
tion can be achieved via stable marriage matchings, yield-
ing optimal O(1) delay. To date, there are no known delay
optimal scheduling strategies for packet switches without
speedup. However, in the landmark paper [11], a loss-rate
optimal scheduling algorithm is constructed for a 2 x 2
switch with finite buffers. Finite buffer analysis of loss
rates for systems of parallel queues is addressed in [12]
[13].

Frame based approaches for stabilizing switches and
networks with deterministically constrained traffic are
considered in [14] [15] [16], and in [17] it was shown
that a frame based algorithm using ‘greedy’ maximum
size matches can be used to stabilize an N x N packet
switch with Poisson inputs. Complexity and delay trade-
offs are explored in [18], where an explicit complexity-
delay curve is established allowing for stable scheduling
at any arbitrarily low computation complexity with a cor-
responding tradeoff in average delay. Similar complex-
ity reductions were developed in [19]. In this paper, we
show that the (complezity, delay) operating point of the
Fair-Frame algorithm sits below the curve achieved by
the class of algorithms given in [18]. Indeed, Fair-Frame
offers logarithmic delay and can be implemented with
O(N'®1og(N)) total operations per timeslot. The combi-
nation of low complexity and low delay makes Fair-Frame
competitive even with output queue emulation strategies
in switches with a speedup of 2.

In the next section, we describe the capacity region of
the N x N packet switch and present a simple stabilizing
algorithm designed for known arrival rates that achieves
O(N) delay without considering queue backlog. In Sec-
tion III it is shown that O(N) delay is necessary for any

such backlog-independent algorithm. In Section IV, the
Fair-Frame Algorithm is developed and shown to enable
O(log(N)) delay. In Section V, switches with speedup are
considered and complexity-delay tradeoffs are addressed.

II. PACKET SWITCHES AND THE CROSSBAR
CONSTRAINT

Consider the N x N packet switch in Fig. 1. At each
input, memory is sectioned into distinct storage buffers
to form N virtual input queues, one for each destination.
Packets randomly arrive to each input every timeslot and
are placed in the virtual input queues according to their
destinations. These input queues are virtual because it is
actually only the pointers to the local memory location of
each packet that is buffered in the appropriate queue upon
packet arrival. Note that there are a total of N? virtual in-
put queues, indexed by (i, j) fori,j € {1,..., N}, where
queue (i, j) holds data at input ¢ destined for output j.

Every timeslot, each input selects a packet from one
of its queues and sends the packet over its transmission
line. The transmission lines for the N inputs are shown
in Fig. 1. These lines are drawn horizontally and in-
tersect the vertical lines leading into the output queues.
The crosspoints of these wires form a matrix, and the
switch fabric allows individual crosspoints to be activated
or deactivated—physically establishing a connection or
disconnection between inputs and outputs. If two or more
crosspoints are simultaneously activated in the same col-
umn (corresponding to the same output line) then two dif-
ferent packets may collide at the same output port, result-
ing in a corrupted signal. Likewise, if two or more cross-
points in the same row are connected, a duplicate packet
is sent to the wrong destination.! Crosspoint connections
are hence limited to connections corresponding to the set
of N! permutation matrices: N x N matrices composed
of all 0’s and 1’s, with exactly one “1” in each row and
column.

Let A;;(t) represent the number of packets arriving to
queue (7, j) in slot ¢, and let L;;(t) represent the current
number of packets in queue (4, j). Define the control de-
cision variables S;;(t) as follows:

1 if crosspoint (7, j) is activated at slot ¢
0 else

5400 = {

The crossbar constraint limits (5;;(t)) to the set of permu-
tation matrices M = {Mj, My, ..., Mny}. The system
evolves according to the following dynamics:

Sij(t),0} + Ai; (1)

1Such a property can be considered a feature in multicast situations,
see [5].

L'ij (t + 1) = maX{Lij (t) —

UNIVERSITY OF SOUTHERN CALIFORNIA — CSI TECHNICAL REPORT CSI-04-02-01, FEB. 2004 3

The goal is to choose the (.5;;(¢)) matrices every times-
lot in order to maintain low backlog and ensure bounded
average delay.

A. Stability and Delay

Here we describe the switch capacity region and give an
example of a stabilizing algorithm that does not use queue
backlog information (but does use a-priori knowledge of
the input rates). The algorithm is a simple variation of the
well known Birkhoff-Von Neumann decomposition tech-
nique [2], and is presented to provide a representative ex-
ample of a queue length-independent policy which offers
O(N) delay.

Assume inputs are rate ergodic and define the input rate
to queue (4, §) as Aij2 limy oo T 30 Aij(7). The ca-
pacity region of the switch is defined as the closure of the
set of all rate matrices (\;;) which can be stabilized by
the switch by using some scheduling algorithm. It is well
known that the capacity region of the switch is the set of
rate matrices satisfying the following 2V inequalities:

N
Z Aij < 1for all inputs ¢
j=1
N
Z Aij < 1 for all outputs j
i=1

(1

2)

It is clear that the above inequalities are necessary for
stability. Indeed, note that the maximum rate out of any
input port is one packet per slot, and the maximum rate
into any output is one packet per slot. Hence, if any of
the above inequalities is violated, then some input port
or output port must be overloaded—Ieading to an infinite
buildup of packets in the system with probability 1.

Sufficiency is classically shown using a combination of
results due to both Birkhoff [20] and Von-Neumann [21].
Specifically, consider a subset of the capacity region con-
sisting of rate matrices (1) satisfying all inequalities (1)
and (2) with equality. A theorem of Birkhoff states that
this subset can be expressed as the convex combination of
permutation matrices:

Fact 1. (Birkhoff Decomposition [20])

Convex Hull{ My, Ms, ..., Mn} =
{(Mz‘j)\ Doty = 1,375 pij = 1} O

A related result of Von Neumann [21] shows that any
rate matrix (A;;) which satisfies the stability constraints
(1) and (2) with strict inequality in all entries can be
term-by-term dominated by a matrix (x;;) which satis-
fies all constraints with equality. By Fact 1, this dominat-

ing matrix (y;;) is within the convex hull of the permu-
tation matrices { M1, Mo, ..., Mn1}. This fact can im-
mediately be used to show that (\;;) being strictly inte-
rior to the capacity region is sufficient for stability. For
a simple way to see this, suppose (\;;) is strictly interior
to the capacity region, and choose a matrix (1;;) within
Convex Hull{ My, My, ..., My} such that \;; < p;; for
all (4,4). By the definition of a convex hull, we can find
probabilities {p1, p2, ..., pn1} such that:

(1ij) = prMy + p2Ma + ... + pyi M ?3)

This naturally leads to the scheduling policy of ran-
domly choosing a control matrix (.5;;(¢)) from among the
set of all permutation matrices, such that permutation M;
is independently chosen with probability p; every times-
lot. From (3) it follows that every timeslot a server con-
nection is established for input queue (7, j) with proba-
bility p;;. This effectively creates a geometric “service
time” for each packet, and hence each queue (4, 7) is trans-
formed into a slotted GI/GI/1 queue with arrival rate \;;
and service rate y;;. Because \;; < 5, each queue is sta-
ble. Note that this stabilizing policy chooses permutation
matrices independent of the current queue backlog. Be-
low we calculate the resulting average packet delay under
this algorithm for a simple example of Poisson inputs.

Example: Consider any rate matrix (1) satisfying all
inequalities (1) and (2) with equality, and suppose packet
arrivals are Poisson with rates \;; = pp;; for some load-
ing value p < 1. (Note that this includes the case of uni-
form traffic where y;; = 1/N and \;; = p/N for all
(1, 7).) Each input queue (4, j) is then equivalent to a slot-
ted M/G/1 queue with geometric service time and loading
p. The exact average delay W,; of such a queue can be
easily calculated (see [22]):

Wij = U;L{]f—pl/Q +1
W randomized = ﬁ 2 AiiWij = Nlilp/ 1@

The above delay is clearly O(N), and hence delay
scales linearly as the number of input ports /V is increased.
One might suspect that delay can be reduced if the ran-
domness of the service algorithm is replaced by a periodic
schedule which services each queue (i,j) a fraction of
time 1;5, as in [2] [6]. Indeed, for uniform traffic, consider
the periodic schedule that on timeslot ¢, each input port ¢ is
connected to output port (i+¢) mod N. This scheduling
algorithm provides a server to each queue every N times-
lots. The resulting system is similar to an M/D/1 queue,
and delay can be calculated using the techniques in [22]:

(&)

N
Wperiodic schedule = 2(1—p) +1

UNIVERSITY OF SOUTHERN CALIFORNIA — CSI TECHNICAL REPORT CSI-04-02-01, FEB. 2004 4

The above delay indeed is reduced from the delay of
the random control algorithm, although it still scales lin-
early with V. Intuitively, this is because each input port
can service at most one of its /N queues per timeslot, and
hence it takes an average of N/2 timeslots for an arriving
packet to see a server. In the next section we elaborate
on this intuition to show that O(NN) delay is incurred by
any scheduling algorithm that operates independently of
the input streams and current levels of queue backlog. We
note that the example algorithms described above are sim-
ilar to the general random and pseudo-random algorithms
described in [6] [2] [5] [3], all of which do not consider
queue backlog. Thus, while these algorithms have many
desirable properties and allow for explicit service guaran-
tees, the result of the next section implies that they cannot
improve upon O(N) delay.?

Output Queueing: It is useful to compare an N x N
packet switch to a corresponding output queued system
with the same inputs. An output queued system is equiv-
alent to a switch with a speedup of /N, where all input
queues are bypassed and packets are immediately trans-
fered to their appropriate destination queues upon arrival.
It is not difficult to show that the total number of pack-
ets and the total average delay in an output queued system
is less than or equal to the corresponding occupancy and
delay in an N x N switch with the same inputs that uses
any conceivable switching algorithm. To compare with
the above example of Poisson inputs, suppose inputs are
uniform so that \;; = p/N for all (¢, j). Then the average
delay in the output queued system is the same as that of a
slotted M/D/1 queue with loading p, and is given by:

_ 1
Woutput queue — 2(17_

+1
P)

(6)

The above delay is significantly smaller than the cor-
responding delay for both the randomized and periodic
switch scheduling algorithms in equations (4) and (5), and
demonstrates O(1) delay independent of the size of the
switch. Such performance improvement is due to the sta-
tistical multiplexing gains achieved by the output queue
configuration. This gap between O(1) delay and O(N)
delay suggests that dramatic improvements are possible
through queue length-aware scheduling, and motivates
our search for sublinear delay algorithms.

2We note that the Maximum Weight Matching algorithm (which
does not require a-priori rate information) was shown in [9] to also
offer an average delay of no more than O(NN). However, as the Maxi-
mum Weight Match policy is queue length-dependent, the actual delay
performance could be sublinear (as suggested by simulations) and a
tight delay bound for MWM scheduling remains an open question.

III. AN O(N) DELAY BOUND FOR
BACKLOG-INDEPENDENT SCHEDULING

Consider an N x N packet switch with general stochas-
tic inputs arriving to each of the N? input queues. All
inputs are assumed to be stationary and ergodic. As-
sume the system is initially empty and let X;;(¢) represent
the arrivals to input queue (i, j) during the interval [0, ¢]
(ie., Xij(t) = SF_; Aij(7)). Recall that L;;(t) repre-
sents the current number of packets queued at input (i, j),
and S;;(t) represents the server control decision at slot ¢
(where the matrix (S;;(t)) is a permutation matrix). Here
we show that if the control decisions (S;;(t)) are station-
ary and independent of the arrival streams, and if the rate
matrix has a sufficiently large set of positive rate entries,
then average delay in the switch is necessarily O(N). Be-
cause backlog is directly related to the arrival streams, it
follows that stationary switching schemes which operate
independently of queue backlog incur at least O(NN) de-
lay.

As a caveat, we note that periodic scheduling streams
such as those proposed for Birkhoff-Von Neumann
scheduling in [2] are by definition not stationary. How-
ever, randomizing the periodic schedule (.S;;(¢)) over the
phase of the period yields a stationary schedule. If inputs
are ergodic, stationary, and independent of the scheduling
decisions, then the resulting average packet delay is the
same under both the original periodic schedule and the
schedule with a randomized phase. Thus, the O(N) delay
result also holds for any scheduling algorithm which is in-
dependent of backlog and which can be made stationary
by phase randomization.

The following lemma is useful for obtaining lower
bounds on delay. The proof uses a technique similar to
that used in [23] to show that fixed length packets min-
imize delay over all packet length distributions with the
same mean, and is given in Appendix A.

Lemma 1. For a switch with general arrival processes,
any stationary scheduling algorithm which operates inde-
pendently of the input streams (and hence, independently
of the current queue backlog) yields a time average queue
occupancy Lij for each queue (i, j) satisfying:

Lij > Uy

where U represents the unfinished work (or “fractional
packets”) in a system with the same inputs but with con-
stant server rates of |i;; packets/slot, for at least one ex-
isting set of rates (p;;) such that 3 ; pi; < 1 for all i, and
> tig < 1forallj.

Proof. The proof is given in Appendix A. Intuitively, the
result holds because the congestion in a queue with a time

UNIVERSITY OF SOUTHERN CALIFORNIA — CSI TECHNICAL REPORT CSI-04-02-01, FEB. 2004 5

varying server is greater than or equal to the correspond-
ing congestion in a queue with a constant server with ser-
vice rate equal to the time average rate of the original pro-
cess. 0

The lemma above produces a lower bound on delay in
terms of a system of queues with the same inputs but with
constant server rates, and leads to the following theorem.

Theorem 1. If inputs X;; are Poisson with uniform rates
Xij = p/N (for p < 1 representing the loading on each
input), then average delay under any stationary schedul-
ing algorithm which does not consider backlog is greater
than or equal to 2(17]\110).

Proof. The unfinished work in an M/D/1 queue with ar-
rival rate \;; and service time 1/y;; is equal to U, (p1i5) =
m, which can be computed by adding p;;/2, the
average portion of a packet remaining in the server, to the
expresion for the average number of packets in the buffer
of an M/D/1 queue [22]. From Lemma 1, there exists a
rate matrix (f;;) with row and column sums bounded by
1, so that L;; > U, for all (i, j). Define A as the set of
all rate matrices (p1;5) satisfying >, pij < 1,37, pij < 1.
Using Little’s Theorem, and the fact that), j Aij = pN,
we have the following average delay WW:

—~ ZUU i)

However, because the Uij () functions are identical and
convex, the expression inside the infimum is a convex
symmetric function and attains its minimum at y;; = 1/N
for all (4, j), and the result follows. O

W:

inf

1 _
7 T >
pNiZj YT (wijen | p

Note that this lower bound differs by one timeslot from
the delay expression in (5) for the periodic scheduling al-
gorithm given in Section II. Because of the 1/(1 — p) fac-
tor, delay in the N x N packet switch with Poisson inputs
necessarily grows to infinity as the loading p approaches
1. For any fixed loading value, delay grows linearly in the
size of the switch. This O(N) result holds more gener-
ally. Indeed, consider general stationary, ergodic arrival
streams X;; with data rates);;, and define the average
rate into input ports of the switch to be A2+ N > j Aij-
(Note that in the uniform loading case, A\,, = p, and
Xij = p/N.) We assume that there are at least O(N?)
entries of the rate matrix which have rates greater than or
equal to O(Agy/N).

Theorem 2. For general stationary, ergodic inputs with
data rates N, if O(N?) of the rates are greater
than O(Aaw/N), then average delay under independent
scheduling is at least O(N).

Proof. As in the proof of Theorem 1, we have from
Lemma 1:

W > inf Ui (i 7
S NZ i (ki) (7

where U,;(p7) is the time average unfinished work in a
queue with a constant service rate f;;. This unfinished
work is at least as much as the average unfinished work
in the server of queue (7, j), which by Little’s Theorem
is equal to A;j/(2p;;). Furthermore, the infimum in (7)
is greater than or equal to the (less restricted) infimum
taken over all y;; such that 3, u;; < N. By a simple
Lagrange Multiplier argument, it can be shown that the
infimum of 3. Aij/(2p;5) over this larger set of rates is

achieved when p;; = N{/A\j; / ZZ] Aij -
2117 Vi)

that Delay > ~=4-Y—7—. Because O(N?) of the rates
are greater than O(\,,, /N), the numerator is greater than

2
or equal to (O(N I/ Aaw/N) , and the result follows.
O

It follows

A simple counter-example shows that delay can be
O(1) if the rate matrix does not have a sufficient number
of entries with large enough rate: Consider a rate matrix
equal to the identity matrix multiplied by the scalar A < 1.
Then, the switch can be configured to always transfer in-
put 1 to output 1, input 2 to output 2, etc., and average
delay is the same as the O(1) delay of an output queue.

Similar results can be obtained for N x N packet
switches with a speedup of R, where R is an integer
greater than or equal to 1. In this situation, the statement
of Theorems 1 and 2 can be repeated to prove that delay
in the input queues is greater than or equal to the delay in
a system with constant input rates y;; such that the sum of
any row or column of the the (1;;) rate matrix is less than
or equal to R. Using reasoning similar to the arguments in
Theorems 1 and 2, it follows that average delay is at least
O(N/R) for a switch with speedup R that makes schedul-
ing decisions independent of queue backlog. Thus, con-
stant speedups (typically on the order of 2, 4, or 8), cannot
change the O(N) characteristic for backlog-independent
scheduling.

IV. AN O(log(N)) DELAY BOUND FOR
BACKLOG-AWARE SCHEDULING

Here we show that O(log(V)) delay is possible by us-
ing a backlog-aware scheduling strategy. This result for
the first time establishes that sublinear delay is possible
in an N x N packet switch without speedup. The algo-
rithm is similar to the frame based schemes considered in

UNIVERSITY OF SOUTHERN CALIFORNIA — CSI TECHNICAL REPORT CSI-04-02-01, FEB. 2004 6

[14] [17], and is based on the principle of iteratively clear-
ing backlog in minimum time. Minimum clearance time
policies have recently been applied to stabilize networks
in [24], [16]. We begin by outlining several known results
about clearing backlog from a switch in minimum time.

A. Minimum Clearance Time and Maximum Matchings

Consider a single batch of packets present in the switch
at time zero. We represent the initial backlog as an
occupancy matrix (L;;), where entry L;; represents the
number of packets at input port ¢ destined for output port
j. Suppose that no new packets enter, and the goal is
simply to clear all packets in minimum time by switching
according to permutation matrices. The following funda-
mental result from combinatorial mathematics provides
the solution to this problem [25]:

Fact 2. Let T represent the minimum time required to
clear backlog associated with occupancy matrix (L;j).
Then T is exactly given by the maximum sum over any
row or column of the matrix (L;;).

It is clear that the minimum time to clear all backlog
can be no smaller than the total number of packets in any
row or column, because the corresponding input or output
can only serve 1 packet at a time. This minimum time can
be achieved by an algorithm similar to the Birkhoff-Von
Nuemann algorithm described in [2]. Indeed, The matrix
is first augmented with null packets so that every row and
column has line sum 7. Using Hall’s Theorem [25], it
can be shown that the augmented backlog matrix can be
cleared by a sequence of T™ perfect matches of size N.

Such matchings can be found sequentially using any
Maximum Size Matching algorithm, where each match
requires at most O(N??) operations (see [2] [26] [27]
[14]). Note that the preliminary matrix augmentation
procedure can be accomplished with O(/N') computations
each timeslot by updating a set of vectors row_sum and
column_sum each timeslot, and then augmenting the ma-
trix at the beginning of each frame by using these row and
column sum vectors to sequentially update each row in the
next column which does not have a full sum.

It is useful to also consider scheduling according to
maximal matches, which are matches where no new
edges can be added without sharing a node with an
already matched edge. Maximal matchings can be found
with O(N?) operations and the computation is easily
parallelizable to O(/N) complexity [14]. Given a backlog
matrix (L;;) with minimum clearance time 7%, the
following well known result establishes an upper bound
on the time required for backlog to be cleared by maximal

matches.

Fact 3. If the minimum clearance time of a backlog ma-
trix is T*, then arbitrary maximal matchings will clear all
backlog in time less than or equal to 21T — 1.

A one-sentence proof of this result is given in [14].

B. Fair Frame Scheduling for Logarithmic Delay

We now present a frame based scheduling algorithm
which iteratively clears backlog associated with succes-
sive batches of packets. Packets which are not cleared dur-
ing a frame are marked and handled separately in future
frames. The algorithm is “fair” in that when the empirical
input rates averaged over a frame are outside of the capac-
ity region of the switch, decisions about which packets to
serve are made fairly. We show that if inputs are Poisson
and rates are strictly within the capacity region, the switch
is stable and yields O(log(/N)) delay.

The Fair-Frame Scheduling Algorithm: Timeslots are
grouped into frames of size 1" slots.

1) On the first frame, switching matrices (S;;(t)) are

chosen randomly so that the probability of serving
any particular queue is uniformly 1/N.

2) Onthe (k+1)™ frame, the backlog matrix (L;;(kT))
consisting of packets that arrived during the previous
frame is augmented with null packets so that all row
and column sums are equal to 7'. If this cannot be
done, an overflow occurs. A new matrix (L;;(kT))
with row and column sums equal to 1" which cov-
ers a subset of the backlog of the previous frame
is formed. The packets covered by this new matrix
will be scheduled on the next frame, and the remain-
ing packets are marked as overflow packets. Choice
of which (L;;(kT)) to use is based upon some type
of utility function, such as the maximum throughput
utility or max-min fair utility described in [2].

3) All non-overflow packets are scheduled during frame
(k + 1) by performing maximum matches every
timeslot to strip off permutations from the aug-
mented backlog matrix.

4) If all packets of the augmented backlog matrix are
cleared in less than 7' slots, uniform and random
scheduling is performed on the remaining slots to
serve the overflow packets remaining in the system
from previous overflow frames. Note that the prob-
ability of serving a particular overflow packet at the
head of its queue (4, 7) during such a slotis 1/N.

5) Repeat from step 2.

If any packet arriving during a frame k is not cleared
within the next frame, at least one of the following in-

UNIVERSITY OF SOUTHERN CALIFORNIA — CSI TECHNICAL REPORT CSI-04-02-01, FEB. 2004 7

equalities must have been violated:

> 1X((k+1)T) — Xy(KT)] < T foralli (8)
J
D [Xij((k+1)T) = Xij(kT)] < T forallj (9)
7
Traffic that satisfies the above inequalities during a frame
is said to be conforming traffic. Packets remaining in the
switch because of a violation of these inequalities are de-
fined as non-conforming packets and are served on a best
effort basis in future frames. Note that, by definition, the
Fair-Frame algorithm clears all conforming traffic within
2T timeslots.
Here we describe the performance of the Fair-Frame al-
gorithm with random inputs. Suppose inputs are Poisson
with rates \;; satisfying:

Z)‘ij <p foralli ,

> Ay <pforallj (10)
7 7

where p represents the maximum loading on any input
port or output port. Note that if the sum rate to any in-
put or output exceeds the value 1, the switch is necessarily
unstable. In the following, we show that if p < 1, the Fair-
Frame algorithm can be designed to ensure stability with
delay that grows logarithmically in the size of the switch.
We start by presenting a lemma that guarantees that the
overflow probability decreases exponentially in the frame
length T'.

Lemma 2. For an arbitrarily small overflow probability
6, choose an integer frame size T such that:

log(2N/96)
log(1/7)

where v2pe'=P. Then a switch operating under the Fair-
Frame algorithm with a frame size T' ensures the proba-
bility of a frame overflow is less than J. All conforming
packets have a delay less than 2T, and if T Zl ; Aij > 1,
the fraction of packets which are non-conforming is less
than 2.

T> 1D

Proof. Packets are lost during frame k only if one of the
2N inequalities of (8), (9) is violated during the previous
frame. Let X (7) represent the number of packets arriving
from a Poisson stream of rate p during an interval of T'
timeslots. Then any individual inequality of (8) and (9) is
violated with probability less than or equal to Pr|{X (T") >
T]. By the Chernov bound, we have for any r > 0:
PriX(T)>T] <

< E {erX(T)} =T
= exp(pT(e"—1)—7rT) (12)

where the identity E {e"X(T)} = exp(pT'(e" — 1)) was
used for the Poisson variable X (7).

To form the tightest bound, define the exponent in (12)
as the function g(r) = pT'(e"—1)—rT. Taking derivatives
reveals that the optimal exponent for the Chernov bound
is achieved when e” = 1/p. Using this in (12), we have:

PrIX(T) > T] < [pe'~*]"

We define v2pe!~P. The « parameter is an increasing
function of p for 0 < p < 1, being strictly less than 1
whenever p < 1. By the union bound, the probability that
any one of the 2N inequalities in (8) and (9) is violated is
less than or equal to 2N fyT. Hence, if we ensure that:

IN~AT <6 (13)
then each frame successfully delivers all of its packets
with probability greater than 1 — §. Taking the logarithm
of both sides of (13), we obtain the requirement:

log(2N/9)
= Tog(1/7)

Now let AT Zij Aij represent the expected number
of packet arrivals during a frame. In Appendix B, we
show that for Poisson arrivals, the extra amount of packets
that arrive given that the number of arrivals is greater than
some value 7' is stochastically less than the original Pois-
son variable plus 1. It follows that the expected number of
extra arrivals to a frame in which one of the inequalities
(8), (9) is violated is less than or equal to 1 + . Thus, the
ratio of non-conforming packets to total packet arrivals is
no more that §(1 4 6)/6. Assuming 6 > 1, it follows that
this ratio is less than 24. O]

The log(2N) delay bound in (11) arises because of the
2N constraints describing the switch capacity region. In a
switch with Bernoulli traffic rather than Poisson traffic, no
more than one packet can enter any input port. In this case,
the constraints in (8) are necessarily satisfied and can be
removed from the union bound expression in (13), which
reduces the delay bound. Intuitively, a similar argument
can be used to prove that logarithmic delay is achievable
in any single-hop switching network with a capacity re-
gion described by a polynomial number of constraints, as
the logarithm of N* remains O(log(N)).

It is useful to understand how the frame size grows for
a fixed overflow probability ¢ as the loading p approaches
1. The formula for the frame size 7" contains a log(1/7)
term in the denominator. Using the definition of + and
taking a Taylor series expansion about p = 1 shows that

log(1/7) = % + O(1 — p)3. Thus, the denominator

UNIVERSITY OF SOUTHERN CALIFORNIA — CSI TECHNICAL REPORT CSI-04-02-01, FEB. 2004 8

is O((1 — p)?). This suggests that the cost of achieving
O(log(N)) delay is to have a delay which is more sensi-
tive to the loading parameter p (confer with eqgs. (4)- (6)).

We note that the Poisson assumption is not essential to
the proof—a similar proof can be constructed for any in-
dependent input streams X;; such that Pr(}_, X;;(T) >
T) and Pr)_, X;;(T) > T|] decreases geometrically
with 7T'. It is necessary that the streams be independent
for this property to hold. Indeed, consider a situation
where all inputs experience the same processes, so that
X;;(t) = X(t) for all (i,7). Whenever a packet arrives
to input 1 destined for output 1, all other inputs receive
a packet destined for output 1, and the minimum average
delay is O(N/2).

To provide a true delay bound, the delay of non-
conforming packets must be accounted for, as accom-
plished in the theorem below.

Theorem 3. For Poisson inputs strictly interior to the ca-
pacity region with loading no more than p, a frame size T’
can be selected so that the Fair-Frame algorithm ensures
logarithmic average delay.

Proof. For an overflow probability § (to be chosen later),
log(2N/6)
log(1/7)
flows occur with probability less than or equal to . The

backlog associated with non-conforming packets for any
queue (7,) can be viewed as entering a virtual GI/GI/1
queue with random service opportunities every frame. Let
q represent the probability of frame ‘underflow’: the prob-
ability that there is at least one random service opportunity
for non-conforming packets during a frame. This is the
probability that all backlog of the previous frame can be
cleared in less than 7" slots. Using a Chernov bound argu-
ment similar to the one given in the proof of Lemma 2, it
can be shown that Pr[X (T) > T —1] < %fyT, and hence:

we choose the frame size T = [-‘ so that over-

2N
¢=1-"" (14)
p
Expressed in terms of J, this means that:
2N log(2N/4§)
q > 1— — log(1/7)
p
= p = 2N g, (6/28)
p
= 1-4/p (15)

The average delay for non-conforming packets in queue
(i,7) is thus less than or equal to 7" (the size of the frame
in which they arrived) plus the average delay associated
with a slotted GI/GI/1 queue where a service opportunity
arises with probability ¢/N. Every slot, with probability

1 — § no new packets arrive to this virtual queue (as all
packets are conforming), and with probability ¢ there are
1 + X packets that arrive, where X is a Poisson variable
with mean pI' (where we again use the result in Appendix
B which shows that excess arrivals are stochastically less
than the original). Note that this is a very large overbound,
as all overflow packets arriving to an input ¢ are treated as
if they arrived to queue (i, j). Conforming packets consist
of at least a fraction 1 — 2§ of the total data and have a
delay bounded by 27'. Thus, the resulting average delay
satisfies:

W < 2T(1—26) +26(T + T Delay(GI/GI/1))
< 2T + 20T Delay(GI/GI/1) (16)
where Delay(GI/GI/1) represents the average delay of
non-conforming packets in the virtual GI/GI/1 queue (nor-
malized to units of frames).

The average delay of a stable, slotted GI/GI/1 queue
with independent arrival and service opportunities can be
solved exactly. However, we simplify the exact expression
by providing the following upper bound, which is easily
calculated using standard queueing theoretic techniques:

1+ E{A%} /A

Delay(GI/GI/1) < 2(u— A

(for > X) (17)

where, in this context, we have:

A=6(1+ pT) (18)
p=q/N (19)
E{A?} =6E{(1+ X)%} =& [1+3pT + p*T?] (20)

The virtual queue is stable provided that . > A. This
is ensured whenever the parameter § is suitably small. In-
deed, we have:

p=X = - —8(1+pT)
)
> § = on ~0U+eT) @
e
N

- (Cenamr)] e

where inequality (21) follows from (15). Hence, we have
1 > A whenever the following condition is satisfied:

1
5<p—l—N—|—NpT> <1 (23)

Choose 6 = O(1/N?) and note that T = [kl’fg(?f\/fg‘;)} =

O(log(N3)) = O(log(N)). It follows that the left hand
side of (23) can be made arbitrarily small for suitably

UNIVERSITY OF SOUTHERN CALIFORNIA — CSI TECHNICAL REPORT CSI-04-02-01, FEB. 2004 9

small §. In particular, we can find a value § such that
B (% + N+ NpT) < 1/2, so that (22) implies (11— \) >
1/(2N). In this case, we have from (16) and (17) that:

_ 14+ E {42} /A
W < oT425T7— -\ J/A (24)
2(p =)

22

< 2T+25TN<1+1+3PT+pT>
14 pT

14 pT)? + pT

_ 2T+25TN<1+(+oT) +p)
14 pT

< 2T +20TN (2 + 2pT)

Because § = O(1/N?) and T = O(log(N)), it follows
that the resulting average delay is O(T), that is, Delay <
O(log(N)). O

An explicit delay bound can be obtained for a given
loading value p as follows: Again define v£pe!=?, and

define the frame size as a function of §: Tgé(%]

Using the definitions for A, , and E {A2} given in (18)-
(22), the average delay bound of (24) can be expressed as
a pure function of the parameter J (as well as the param-
eter p). This bound can be minimized as a function of §,

subject to the constraint that ¢ (% + N+ N pTg) < 1

The resulting value d,,;, defines a suitable frame size
Ts,.., and gives the tightest bound achievable from the
above analysis.

In Fig. 2 we plot the resulting delay bound as a func-
tion of N for the fixed loading value p = 0.7. The de-
lay bound for the Fair-Frame algorithm follows a loga-
rithmic profile exactly (the plot is linear when a logarith-
mic scale is used for the horizontal axis). The bound is
plotted next to the exact average delay expressed in (4)
for the queue length-independent randomized algorithm.?
Note the rapid growth in delay as a function of the switch
size for the randomized algorithm, as compared to the rel-
atively slow growth for the Fair-Frame algorithm. From
the plot, the curves cross when the switch size is approx-
imately 200. However, note that the curve for the Fair-
Frame algorithm represents only a simple upper bound,
and we conjecture that tighter delay analysis will reveal
that the Fair-Frame algorithm is preferable even for much
smaller switch sizes.

We note that although only average delay is compared,
the Fair-Frame algorithm has the property that all con-
forming packets have a worst case delay that is less than

3The delay expression (4) for the randomized algorithm is almost
identical to the bound obtained for the MWM algorithm in [9], and
hence the plot in Fig. 2 can also be viewed as a comparison between
the MWM bound and the Fair-Frame bound.

Average Delay vs. Switch Size N (loadingp = 0.7)
3500

T T T T T T T
Exact Delay--Randomized Algorithm (Queue Length-Independent)
— Delay Upper Bound--Fair Frame Algorithm (Queue Length-Aware)

3000

2500

2000

Average Delay

1500+

1000

0 Il Il Il Il Il Il Il Il Il
0 100 200 300 400 500 600 700 800 900 1000
Switch Size N

Fig. 2. The logarithmic delay bound for the Fair-Frame algorithm as
a function of the switch size N, as compared to the O(N) delay of the
randomized algorithm.

or equal to 27" (where T’ is logarithmic in V), and the frac-
tion of conforming packets is at least 1 — O(1/N?). That
is, worst case delay is logarithmic for all but a negligible
fraction of all packets served.

C. Robustness to Changing Input Rates

Note that the Fair-Frame algorithm requires a loading
bound p on each input but otherwise does not require
knowledge of the exact input rates. For this reason, it
can be shown that the Fair-Frame algorithm is robust to
time varying input rates. Indeed, it is not difficult to show
that the Chernov bound of (12) applies even when rates
are arbitrarily changing every timeslot, provided that on
each timeslot the new rates always satisfy the constraints
in (10).

In the case when input rates are outside of the capacity
region, it is not possible to stabilize the switch. However,
the Fair-Frame algorithm makes fair scheduling decisions
leading to fair long-term average throughputs in this situ-
ation. Indeed, the utility function of the Fair-Frame algo-
rithm can be adjusted to select empirical rates every frame
in order to either maximize throughput, allow max-min
fairness, or to satisfy some other fairness criteria (see [2]).
It is not difficult to show that optimizing over any of these
criteria every timeslot leads to a near-optimal long-term
througput, where nearness is determined as a function of
the frame size.

V. IMPLEMENTATION COMPLEXITY

There are two steps in the Fair-Frame algorithm that
require non-negligible computation time: Steps 2 and 3.

UNIVERSITY OF SOUTHERN CALIFORNIA — CSI TECHNICAL REPORT CSI-04-02-01, FEB. 2004 10

A. Step 2

In this step of the Fair-Frame algorithm, the backlog
matrix of the previous frame is modified by adding null
packets and/or by removing some packets that are non-
conforming. The complexity of this procedure depends
on the fairness criterion used for marking overflow pack-
ets. The simplest procedure is the “First-Come-First-
Served Fairness Rule” (FCFS), where vectors row_sum
and col_sum are updated every timeslot, and any set of
packets arriving to a particular input port are marked as
overflow packets if they cause the corresponding row_sum
or col_sum entries to exceed the frame size T'. It is not dif-
ficult to implement such a scheme with O (V) operations
per timeslot.

Such low complexity makes the FCFS algorithm nat-
urally suited for situations where more sophisticated no-
tions of fairness are not needed, such as when input rates
are already within the capacity region. Alternative fair-
ness objectives, such as scheduling for max-min fair-
ness or maximum throughput, require more complex al-
gorithms. However, in most cases of practical interest, the
complexity of such fair packet markings is lower than or
equal to the complexity of Step 3 of the Fair-Frame algo-
rithm, and hence Step 3 is the complexity bottleneck.*

B. Step 3

The Fair-Frame algorithm relies on Maximum Size
Matchings every timeslot. Such matchings can be
performed using the algorithm in [27] which requires
O(MN'?) operations, where M is the number of
nonzero entries of the backlog matrix. For backlog ma-
trices with many nonzero entries, M can be as large as
N?2. However, the Fair-Frame algorithm by definition per-
forms maximum matchings on a backlog matrix for which
the total number of packets at any input is no more than
T, where T is O(log(IN)). It follows that the number of
nonzero entries is less than or equal to NT, i.e., M is
O(N log(N)). Thus, the Fair-Frame algorithm achieves
logarithmic delay and requires O(N'-? log(V)) total op-
erations every timeslot. This (delay, complexity) oper-
ating point lies below the delay-complexity curve estab-
lished for the class of stable algorithms given in [18]. In-
deed, in [18] it is shown that for any parameter choice
a such that 0 < o < 3, a stable scheduling algorithm
can be developed requiring O(N?) per-timeslot compu-
tation complexity and ensuring O(N4~%) average delay.

“In particular, the max-min fair scheduling algorithm can be imple-
mented in O (N log(N)) operations for switches with Bernoulli inputs
(where no more than 1 packet can arrive from an input during a sin-
gle timeslot). This is because there are no more than O(N log(N))
packets to schedule on any given frame.

Thus, the Fair-Frame algorithm reduces delay by approxi-
mately O(N%5) at the O(N'log(N)) complexity level.
We conjecture that a new complexity-delay tradeoff curve
can be established using the techniques given in [18].

The complexity of maximal matchings is also reduced
when using the backlog matrices of the Fair-Frame al-
gorithm. Indeed, it can be seen that maximal matchings
can be performed using only O(N log(N)) operations,
and can be parallelized to O(log(/N)) operations. From
Fact 3, it is not difficult to show that implementing the
Fair-Frame algorithm with these low complexity maximal
matches yields stability and logarithmic delay whenever
the switch is at most half-loaded (i.e, p < 1/2), or when-
ever the switch has a speedup of at least 2.

C. Extra Speedup

Modern switches often use speedups of 4 or 8 in or-
der to improve performance by ‘brute force.” Below we
present a systematic way of using this extra speedup to
decompose the switches into independent switches op-
erating efficiently with speedups of 1 or 2. Consider a
4N x 4N switch with a speedup of 4. Such a switch can
be implemented as a set of 16 decoupled N x N switches,
each operating with a speedup of 1, as shown in Fig. 3.
Each N x N switch corresponds to a block of N inputs
and another block of N outputs, where there are 4 input
blocks and 4 output blocks. Each timeslot is broken up
into 4 phases, each with a single packet transfer possi-
ble. On phase z € {1,...,4}, block 7 inputs consider
switching to only block (i + z) mod 4 outputs, and can
implement any switching algorithm designed for N x N
switches without speedup. Note that the given periodic
scheduling of blocks ensures that no more than 1 input is
ever activated in a given phase, and no more than 1 output
is activated in a given phase.

N—/—=
N—F
N —/ I
" =

N N N N

Fig. 3. A 4N x 4N packet switch with a speedup of 4 implemented
as a set of 16 N x N switches without speedup. Four of the ‘sub-
switches’ are activated at a time during each of four phases of a times-
lot.

UNIVERSITY OF SOUTHERN CALIFORNIA — CSI TECHNICAL REPORT CSI-04-02-01, FEB. 2004 11

We compare this scheme for the Fair-Frame algo-
rithm on a 4N X 4N switch without speedup, which
operates with a delay of O(log(4N)) with a complex-
ity of O((4N)!®log(4N)). Using the speedup of 4
and the decomposition outlined above to operate each
of the 16 switching blocks in parallel reduces delay to
O(log(N)) and reduces complexity for each sub-block to
O(N*3log(N)).

Similarly, the 4N x 4N switch with a speedup of 4 can
be configured to operate as 4 parallel switches defined on
input and output blocks of size 2/N and operating with a
speedup of 2.

VI. CONCLUSIONS

We have considered scheduling in N x N packet
switches with random traffic. It was shown that queue
length-independent algorithms, such as those using ran-
domized or periodic schedules designed for known input
rates, necessarily incur delay of at least O(N'). However, a
simple queue length-aware algorithm was constructed and
shown to provide delay of O(log(V)). This is the first an-
alytical demonstration that sublinear delay is possible in a
packet switch, and proves that high quality packet switch-
ing with the crossbar architecture is feasible even for very
large switches of size N > 1000. The Fair-Frame al-
gorithm provided here is based on well established fram-
ing techniques and is simple to implement, requiring only
O(N*3log(N)) computations every timeslot. We believe
that similar results apply to networks of switches, and that
logarithmic delay can be achieved in any single-hop net-
work whose capacity region is described by a polynomial
number of constraints.

Performance of Fair-Frame can likely be improved by
enabling dynamic frame sizing and alternative matching
assignments. An important question for future research
is that of developing delay-optimal scheduling. Such
scheduling would yield delay which is upper bounded
by O(log(NN)) and lower bounded by O(1), which now
serve as the tightest known bounds on optimal delay. A
more general open question is the characterization of the
optimal complexity-delay tradeoff curve. We conjecture
that the Fair-Frame algorithm can be modified to allow
for lower complexity implementations with correspond-
ing tradeoffs in average delay, and it is interesting to dis-
cover other algorithms which meet or beat this perfor-
mance.

APPENDIX A

Here we prove Lemma 1: For a switch with gen-
eral arrival processes, any stationary scheduling algorithm

which operates independently of the input streams yields
fij > ﬁij, where U;; represents the unfinished work (or
“fractional packets”) in a system with the same inputs but
with constant server rates of p;; packets/slot, for some
rates pu;; satisfying 3 pu;; < 1forall i, and), pij; <1
for all j.

Proof. For the course of this proof, it is useful to consider
queueing analysis in continuous time, so that S;;(¢) is de-
fined for all time ¢ > 0, but is constant on unit intervals (so
that S;;(t) = S;;([t])). Consider a queue occupancy pro-
cess L;;(t) representing the unfinished work (or fractional
packets) in a queue with the same input and server pro-
cesses X;;(t) and S;;(t), but operating without the times-
lot structure. In this way, if S;;(t) = 1 for ¢ € [0,2] and
a single packet arrives to an empty system at time 0.5, the
packet will start service immediately in the new system,
but will wait until the start of the next slot in the original
(slotted) system. Thus, L;;(1) = 0.5 and L;;(1.5) = 0,
while L;;(1) = L;;(1.5) = 1. Because the original sys-
tem delays service until the next slot and holds packet
occupancy L;;(t) at a fixed integer value until a service
completion, it is not difficult to show that:

Lij(t) > Lij(t) for all t (25)

The continuous time process L-j (t) can be written:

t
Lij(t) = sup | (Xi() — Xuj(t — 7)) — / Sij(v)dv]
>0 t—1
(26)
The above expression is a well known queueing result that
is easily verified: L;;(t) is at least as large as the differ-
ence between the number of packet arrivals and service
opportunities over any interval, and the bound is met with
equality on the interval defined by the starting time of the
current busy period.
Taking expectations of the queue occupancy L;;(t) over
the stochastic arrival and server processes X;;(t) and

S;i;(t) and using (25) and (26), we have:
E{Ly(t)}

= ExEgx {Slilg[Xij(t) — Xii(t—71)

- s, | x}

> Ex {sup[Xij(t) - Xij(t—7)

72>0

E{L;(t)} >

_ /t: Egpx {S(v)]| X}dv} }(27)

= EX {Slifo) [le(t) — Xij(t — ’7') — T/Lij]} (28)

UNIVERSITY OF SOUTHERN CALIFORNIA — CSI TECHNICAL REPORT CSI-04-02-01, FEB. 2004 12

where 1;;2E {S;;(0)} is the expected rate of service to
queue (7,7). Inequality (27) follows from convexity of
the sup{} function together with Jensen’s inequality, and
(28) follows because S;j(v) = Si;(|v]), and the server
process S;;(|v]) is stationary and independent of the ar-
rival process (so that Egx{S;;(v)|X} = pu;). Notice
that at any time v, the sum of any row or column of the
matrix (.5j;(v)) is less than or equal to 1. Hence, from its
definition, the (14;;) matrix inherits this same property.
The expression on the right hand side of inequality (28)
represents the expected unfinished work U ;; in a contin-
uous time queue with input X;;(¢) and fixed service rate
fi; (compare with (26)), and the proof is complete. 0

APPENDIX B

Here we show that the excess packets from a Poisson
stream of rate A are stochastically less than the original
Poisson stream.

Theorem 4. For a Poisson random variable X and for all
integers n,r > 0, we have:

PriX>n+r|X >r] < Pr[X >n] (29)

We prove this result by means of the following two lem-
mas.
Lemma 3. Let a,b,c,d > 0. If § > 3, then § > 752

[

g
Proof Define v12¢/a, v22d/b. Then & = zl ¢ Because
g 2 we know that vv; < 7. It follows that:

a+c_a(1+’yl)_a<1+'yl><a

b+d b(l+v) b\l4+vwn/) " 0b

and
a—l—c_c(1+1/m)_c<1+1/71)>c
b+d d(1+1/y) d\1+1/y) —d

O]

Lemma 4. Let {a;} > 0,{by} > 0, and assume that
Yo par < 00,2 52 gby < oo. Suppose that Z—: is de-
creasing in k. Then:

Zzozo ak Zk =r @
oo o0
Dm0 bk Zk =r bk
Proof Choose an arbitrary positive integer K. Because
b is decreasing in k, we have that aK < aK L. By the
precedlng lemma, we thus know that
K _ 0K +aK-1 aK—1 aK—2
bk = bx +bxk_1 ~ bx_1 ~ br_2

where the last inequality follows because we again use the
fact that Z—’I: is decreasing in k. Applying the lemma to the
last and third to last inequalities in the chain above, we
have:

OK _ OK T OaKg-1 _ OK +GK-1 1 aK-2 AK—2
bk — bk +bxk-1 T bx +brx_1+bg_2 br—2
< K-8

b3

Proceeding recursively, it follows that for any K and any

r< K:

ZkK r @ Zk: 0%

ke e iy
Taking limits as K — oo and using the fact that each of
the individual sums converge yields the result. O

We can now prove the theorem. Note that the desired
result (29) is equivalent to:

)\k:-HL >\k+'n
Zk’ r k-l—n)' Zk 0 (k+n)!
oo)k — oo)k
Db T D k=0 4T
. . A
To prove the above inequality, define a;, = ==) and

k .
b, = % From Lemma 4, it suffices to show that % .
decreasing in k. We have:

a A" (k)
by n! n
which indeed decreases with k, proving the theorem.

REFERENCES

[1] M.J. Neely and E. Modiano. Logarithmic delay for n x n packet
switches. IEEE Workshop on High Performance Switching and
Routing (HPSR), pp. 3-9, April 2004.

[2] C-S Chang, W-J Chen, and H-Y Huang. Birkhoff-von neumann
input buffered crossbar switches. Proc. IEEE INFOCOM, 2000.

[3] C-S Chang, D-S Lee, and C-Y Yue. Providing guaranteed rate
services in the load balanced birkhoff-von neumann switchies.
Proc. IEEE INFOCOM, April 2003.

[4] E. Leonardi, M. Mellia, F. Neri, and M. A. Marsan. On the sta-
bility of input-queued switches with speedup. IEEE/ACM Trans-
actions on Networking, vol. 9, no.1, pp. 104-118, Feb. 2001.

[5] C.E. Koksal. Providing Quality of Service over Electronic
and Optical Switches. PhD thesis, Massachusetts Institute of
Technology, Laboratory for Information and Decision Systems
(LIDS), Sept. 2002.

[6] M. Andrews and M. Vojnovi¢. Scheduling reserved traffic in
input-queued switches: New delay bounds via probabilistic tech-
niques. Proc. IEEE INFOCOM, April 2003.

[7]1 N.McKeown, V. Anantharam, and J. Walrand. Achieving 100%
throughput in an input-queued switch. Proc. IEEE INFOCOM,
1996.

[8] L. Tassiulas and A. Ephremides. Stability properties of con-
strained queueing systems and scheduling policies for maximum
throughput in multihop radio networks. IEEE Transacations on
Automatic Control, vol. 37, no. 12, pp. 1936-1949, Dec. 1992.

UNIVERSITY OF SOUTHERN CALIFORNIA — CSI TECHNICAL REPORT CSI-04-02-01, FEB. 2004

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

(20]

[21]

(22]

(23]

[24]

[25]

(26]

(27]

E. Leonardi, M. Mellia, F. Neri, and M. Ajmone Marsan. Bounds
on average delays and queue size averages and variances in input-
queued cell-based switches. Proc. IEEE INFOCOM, 2001.

S-T Chuang, A. Goel, N. McKeown, and B. Prabhakar. Matching
output queueing with a combined input output queued swtich.
Proc. IEEE INFOCOM, 1998.

S. Sarkar. Optimum scheduling and memory management in in-
put queued switches with finite buffer space. Proc. IEEE INFO-
COM, April 2003.

M. J. Neely, E. Modiano, and C. E. Rohrs. Dynamic routing
to parallel time-varying queues with applications to satellite and
wireless networks. Proc. of Conf. on Information Sciences and
Systems (CISS), Princeton: March 2002.

M. J. Neely. Dynamic Power Allocation and Routing for Satellite
and Wireless Networks with Time Varying Channels. PhD thesis,
Massachusetts Institute of Technology, LIDS, 2003.

T. Weller and B. Hajek. Scheduling nonuniform traffic in a packet
switching system with small propagation delay. [EEE/ACM
Transactions on Networking, vol. 5, no. 6, pp. 813-823, Dec.
1997.

M. Andrews and L. Zhang. Achieving stability in networks of
input-queued switches. Proc. IEEE INFOCOM, 2001.

M. J. Neely, J. Sun, and E. Modiano. Delay and complexity
tradeoffs for routing and power allocation in a wireless network.
Proc. of Allerton Conf. on Communication, Control, and Com-
puting, Oct. 2002.

S. Iyer and N. McKeown. Maximum size matchings and input
queued switches. Proc. of 40th Annual Allerton Conf. on Com-
munication, Control, and Computing, October 2002.

M. J. Neely, E. Modiano, and C. E. Rohrs. Tradeoffs in de-
lay guarantees and computation complexity for n x n packet
switches. Proc. of Conf. on Information Sciences and Systems
(CISS), Princeton, March 2002.

D. Shah and M. Kopikare. Delay bounds for the approximate
maximum weight matching algorithm for input queued switches.
Proc. IEEE INFOCOM, 2002.

G. Birkhoff. Tres observaciones sobre el algebra lineal. Univ.
Nac. Tucumdn Rev. Ser. A, vol. 5, pp. 147-151, 1946.

J. von Neumann. A certain zero-sum two-person game equivalent
to the optimal assignment problem. Contributions to the Theory
of Games, vol. 2, pp. 5-12, 1953.

D. P. Bertsekas and R. Gallager. Data Networks. New Jersey:
Prentice-Hall, Inc., 1992.

P. Humblet. Determinism minimizes waiting time. Mas-
sachusetts Institute of Technology, LIDS Tech. Report P-1207,
May 1982.

D. Gamarnik. Stability of adaptive and non-adaptive packet rout-
ing policies in adversarial queueing networks. Proc. of 31st ACM
Symposium on the Theory of Computing, 1999.

M. Hall Jr. Combinatorial Theory. Waltham, MA: Blaisedell,
1969.

C.H. Papadimitriou and K. Steiglitz. Combinatorial Optimiza-
tion: Algorithm and Complexity. New Jersey: Prentice Hall,
1982.

J. Hopcroft and R. Karp. An n5/? algorithm for maximum
matchings in bipartite graphs. SIAM J. Comput., pp. 225-231,
Dec. 1973.

