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Abstract— This paper focuses on energy-efficient packet trans-
mission with individual packet delay constraints over a fading
channel. The problem of optimal offline scheduling (vis-a-vis total
transmission energy), assuming information of all packet arrivals
and channel states before scheduling, is formulated as a convex
optimization problem with linear constraints. The optimality
conditions are analyzed. From the analysis, a recursive algo-
rithm is developed to search for the optimal offline scheduling.
The optimal offline scheduler tries to equalize the energy-rate
derivative function as much as possible subject to the causality
and delay constraints. The properties of the optimal transmission
rates are analyzed, from which upper and lower bounds of
the average packet delay are derived. In addition, a heuristic
online scheduling algorithm, using causal traffic and channel
information, is proposed and shown via simulations to achieve
comparable energy and delay performance to the optimal offline
scheduler in a wide range of scenarios.

I. INTRODUCTION

The fundamental tradeoff between packet delay and trans-
mission power/energy has been extensively studied in the liter-
ature (for instance, see [1] and references therein). Two delay
models are often considered, namely, the single transmission
deadline model [19][17][8] where a set of packets are subject
to a common deadline, and the individual delay constraint
model [11][20][5] where each packet is subject to its own
delay constraint.

For dynamic packet arrivals under a time-invariant link,
the optimal energy-efficient schedule in minimizing the to-
tal transmission energy for the single transmission deadline
model was developed in [19]. This optimal algorithm assumed
knowledge of the total number of packets and the inter-arrival
times of these packets before packet scheduling. As a result,
it is an offline scheduling algorithm. An online algorithm,
which assumed information of the current scheduling backlog
and a maximum packet arrival rate, was also developed in
[19]. Online scheduling for the single deadline model was
also treated in [20] in which a stochastic optimal control
algorithm was developed. Since all packets observe a single
transmission deadline, the scheduling algorithm may result in
large per packet delays, especially when the total number of
packets to be transmitted is very large, as shown in [5]. The
individual delay constraint model provides a flexible tradeoff
between transmission energy and packet delay [11][20][6]. It
was proven in [11] that all online scheduling can be expressed
as a time-varying low-pass linear filter. Offline scheduling
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with general arrivals and QoS constraints was considered in
[20], where an optimal scheduling procedure was developed.
It was shown in [6] that the optimal offline scheduling yields
a symmetry property in the optimal packet transmission dura-
tions from which a simple and exact solution of the average
packet delay (including queuing and transmission delays) can
be obtained.

For fading channels without traffic variations, a lot of work
has been devoted to maximizing channel capacity under vari-
ous power constraints. This includes the delay-unconstrained
long-term capacity [9], and the delay-limited capacity [3][10].
For a finite coding delay with causal channel feedback, it was
shown that in the limit of high signal-to-noise ratio (SNR),
the optimal power control converges to a constant power
transmission [12], while in the low SNR region, threshold-
based power control appears to be optimal [14].

Power efficient scheduling utilizing both queue and channel
information has also been studied, for instance, under average
transmit power and average delay constraint [7][1][16][13] and
under the single deadline model [17][8]. In [17], the optimal
energy-efficient offline scheduling under a single deadline was
extended to a fading channel with dynamic packet arrivals.
A heuristic online scheduling algorithm named look-ahead
water-filling, which exploits both backlog information and
channel fading state, was studied and shown to be more energy
efficient than the water-filling scheme purely based on channel
states.

In this paper, we will focus on energy-efficient packet
transmission with individual packet delay constraints over a
fading channel. This can be viewed as an extension of the
work in [20] and [5][6] for a continuous-time arrival model
and time-invariant channels. The optimal offline scheduling
(vis-a-vis total transmission energy) over a fading channel
is analyzed. It is shown that the optimal scheduling tries to
equalize the derivatives of the energy-rate function as much
as possible, subject to the causality and delay constraints,
in contrast to the equalization of transmission rates in static
channels. From the analysis, a recursive algorithm called
‘Constrained FlowRight’, based on the ‘FlowRight’ algorithm
for the single deadline model in [17], is developed to search
for the optimal offline scheduling. The symmetry property
of the optimal transmission rate vector still holds under the
i.i.d. assumption of packet sizes and channel coefficients.



The average packet delay (including queuing and transmission
delays) is characterized, in consideration of the symmetry
property and potentially idling periods. Motivated by the
properties of optimal offline scheduling, a heuristic online
scheduling algorithm, which assumes both causal traffic and
channel information, is developed. Both offline and online
schedulers yield significant energy savings compared with
simply clearing the buffer, regardless of traffic and channel
states.

This paper is organized as follows. In Section II, the system
model is described. The optimal offline scheduling over a
fading channel and its properties are presented in Section III.
Online schedulers are investigated in Section IV. Numerical
results are given in Section V. Finally, some concluding
remarks are drawn in Section VI.

II. SYSTEM MODEL

We consider a slow-varying flat fading channel. Such a
channel is often modeled as a discrete-time block-fading
additive white Gaussian noise (BF-AWGN) channel [15]. In
the BF-AWGN model, the channel gain is fixed during a whole
block and varies independently from block to block, where the
block duration represents the channel’s coherence time. This is
illustrated in Figure 1, where the channel gains are represented
by gi,i € [1,--- ,M + D — 1], and M + D — 1 is the total
number of slots. Packets arrive only at slot boundaries, and can
be served immediately (i.e., the minimum possible queuing
delay is 0). Each packet is subject to an individual delay
constraint, which is assumed to be an integer D > 1 !(in units
of slots). The same individual delay constraint is assumed for
all packets, although it can be extended to distinct individual
delay constraints per packet. The total number of slots is fixed
to be M+ D—1, and the slot duration is denoted as 7,. Without
loss of generality, a single packet is assumed to arrive at each
slot with random packet sizes B; > 0,i € [1,---,M], and
B; =0 forie [M+1,M+ D — 1]. This one-packet-per-
slot assumption facilitates analysis, but is not restrictive, as the
solution when some slots 4, ¢ € [1,- -, M], do not receive any
packets can be obtained as a limiting case when the B; for
those slots are made arbitrarily small. Likewise, the case when
multiple packets arrive during the same slot can be treated by
viewing them as a single bulk packet with a size given by the
sum of the individual sizes. A fluid packet departure model
is assumed. That is, a transmitted packet is not necessarily
an integer number of arrived packets, but may be assembled
using fragmented arrival packets up to an arbitrary precision.

Each packet transmission consumes some energy. The goal
of the optimal offline schedule is to choose the number of
transmitted bits x;, or equivalently, the optimal transmission
rate r;, for each slot such that the total transmission energy
of these M packets is minimized while the underlying delay
constraints are satisfied. The energy-rate function f(r,g) is
assumed to be strictly convex and monotonically increasing
in transmission rate r for each channel state g. For instance,

IThe case when D = 1 is trivial and hence not considered.
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Fig. 1. The slotted individual delay constraint model.

from Shannon capacity, the energy-rate function is given by
f(r,g) = No(22" — 1)/g, where Ny denotes thermal noise.

The offline schedule assumes perfect knowledge of packet
sizes and channel states for the entire duration [0,--- , M +
D—1] before scheduling. Online schedulers, on the other hand,
only assume information of the current scheduling backlog. As
in [19][6], all schedulers are assumed to follow the first-in-
first-out (FIFO) service rule and the causality constraint. The
FIFO rule implies that packets are transmitted in the same
order in which they arrive. The causality constraint ensures
that a packet cannot be transmitted before it arrives.

III. OPTIMAL OFFLINE SCHEDULING OVER A FADING
CHANNEL

Here we formulate the optimal offline schedule over a
fading channel as a convex optimization problem. We start by
analyzing the optimality conditions, and deriving a recursive
algorithm to search for the optimal schedule, before presenting
the symmetry property of the optimal transmission rate vector
and the resulting average packet delay performance.

The objective of the optimal offline scheduling is to solve
the following problem

M+D-—1
min Y f(rm, gm) ()

m=1

subject to

M+D-1 M+D-1
) Yo rmits=>.., B
2) 221 TiTs SZQ’; B;, m=1,---,M,
3) E:’;lri'ﬁs ZZZ_ID'F:LB,“TTL:D’.. ,M_’_D_2,
4) ’I“mZO, m:17""M+D—1’

where conditions 1 and 2 are due to the causality constraint,
i.e., the total number of delivered bits is no more than the
total number of arrived bits so far, while condition 3 is due
to the individual delay constraints, i.e., the total number of
delivered bits so far should be no less than the total number
of arrived bits accumulated up to D — 1 slots earlier. The non-
negative transmission rate constraint by condition 4 is natural.
Note that the causality condition 2) is also implicitly valid for
m=M+41,--- M+ D — 1. This can be easily checked by
comparing condition 1) and condition 2) when m = M, and
by realizing that B,, =0, m=M+1,--- M+ D — 1.

First, we have the uniqueness of optimal offline schedule:

Theorem 1: The optimal offline schedule for the individual
delay constraint model over a fading channel is unique.

In addition, the properties of the per-bit transmission dura-
tion with respect to slot boundaries can be characterized by the



following Lemma (A similar observation was also obtained in
[18] for a continuous-time model):

Lemma 1: Under the optimal offline schedule, all bits trans-
mitted over a slot have the same transmission duration. In other
words, the transmission rate is constant during any slot.

The above two results can be proved via contradiction, using
the strict convexity assumption of the energy-rate function, and
the proofs are omitted here (see [4] for details).

A. The Optimality Conditions

The problem in (1) is a convex problem with linear in-
equality constraints. Thus, the Karush-Kuhn-Tucker (KKT)
conditions are sufficient for optimality [2]. The Lagrangian
function is defined by

M+D-1
2

L(F /\hﬁv _') = Z2im=1 f(rmagm)
+Ar (ZM+D ! TiTs _ZM+D 1B) +Zm 1M1mh1m(_)
+ Z]V[+D 2 /J/Q mh2 m(F) + ZM+D ! M3,mh3,m(r) 2
(2
where A, (41 m, p2,m and us ., are Lagrange multipliers for
conditions 1, 2, 3, and 4, respectively, and

ha, m(f) (Zl 17iTs — Z:il B;) < 0 (causality),
hym(FA(ST P B — S 1i7,) <0 (delay),
h3.m(F)& — r,, < 0 (non-negativity).

Note that when the above three constraints are tight, slot m

will be empty-ending, delay-critical, and idle, respectively.

A slot is said to be delay-critical if, under a scheduling

algorithm, it ends with an active delay constraint condition,

i.e., ham(7) = 0. If the slot is non-idle, the last transmitted

packet in a delay-critical slot is called a delay-critical packet.
Denote

f (Tnugm)
as the derivative of f(r,, gm) with respect to r,,, then there
exist unique Lagrange multipliers Ay, uj,, > 0, p3,, > 0
and p3,, > 0, such that the following optimality conditions
hold:

f (T:;wgm) + )‘:TS - :u‘;,m, =

M+D-2
Ts[z 1z+2+ 2]

M M+D— 2
TS[ Z’L m M 11+Z ]
m = D+L~WM

m=M+1,--- M+D—2
m=M+D -1

=1,---,D

e ZM+D72

=m
0,

*
H2 45

3)

Note that the complementary slackness condition [2] holds

“4)
) <
0

PP (7) = 0,1 < 1 < 3, for all feasible m

That is, for each [ and m, whenever the constraint Ay, (7"
0 is slack, d.e., (™) < 0, we must have pj,, =
Similarly, when yj,,, > 0, we must have hy (™) = 0.
Under a time-invariant channel, the optimal offline schedul-
ing observes no idling periods [6]. This comes from the as-
sumption that the energy function is an increasing function of
the transmission rate, and subsequently, the total transmission

energy can always be reduced by increasing the transmission
duration (hence reducing the transmission rate) for one or more
packets. However, over a time-varying channel, even though
there is data in the queue, the optimal offline schedule may
choose to not transmit in a slot when future channel states
are more energy-efficient. Hence, idle slots may become nec-
essary. For instance, consider a simple example of scheduling
two packets of finite sizes with D = 2, such that there are three
slots. Assume the channel gains are given by [0, 00, 007},
i.e., the channel gain is arbitrarily small for the first slot, and
arbitrarily large for the second and the third slots. Also, assume
the energy-rate derivative function f l (r, g) is positive at r = 0.
Obviously, it is optimal not to transmit any data over the first
slot, which results in an idle slot.

Besides the standard complementary slackness condition
given by (4), we also notice three additional complementary
slackness conditions for this particular problem:

1) 2 p3 b3 =0, m=1,---,M
2):N’>1k,mu’§,m :O’ m:D’ 7M
3):u§,mu§,m+1:03 m:Da7M+D72

4)
That is: 1) any slot m € [1,--- , M] can not be idle and end
with an empty buffer at the same time (as the slot will have
at least one packet, the one that arrived in that slot); 2) any
slot m € [D,---,M] can not be a delay-critical slot and
end with an empty buffer at the same time (due to the FIFO
constraint and the fact D > 2); 3) and if slot m + 1 is idle,
slot m can not be delay-critical (otherwise, a delay constraint
violation will occur). The detailed proof of (5) can be found in
Appendix A. It is worth emphasizing that since it is assumed
that data arrives at the beginning of each slot m € [1,--- , M],
an empty-ending slot means that all data is cleared at the end
of that slot (while new data will arrive immediately after, i.e.,
at the beginning of the next slot, except for slot M.).

We will now characterize the properties of these optimal
Lagrangian multipliers, which are crucial to developing a
recursive algorithm to obtain the optimal offline scheduling.
This is done via comparison of the derivatives of the energy-
rate function over adjacent slots. As we will see, the properties
of the optimal derivatives herein are similar to the properties
of the optimal transmission durations or optimal transmission
rates for the static channel case [20][5]. First, consider the
difference between the m-th equation and the (m + 1)-th

equation in (3), i.e., Af,’;lé (1 gm) — f,(’r:(n-i,-l’gnL-i-l)-
We have
A.f m,l — :u3 m :ug,m—i-l_‘_
—TsHT s m=1,---,D—1
_Tsuik,m—i_TSMS,m? m = Da aM
TsH3 s m=M+1,.--- M+D—2
(6)

Combining (4), (5), and (6), the following Lemma is
straightforward:

Lemma 2: When the optimal transmission rates during two
adjacent slots m and m+-1 are strictly positive, i.e., both slots
are non-idle, we have:



D) Afyiy = =Tt} <0, if m € [1,---, M —1] and slot
m ends with an empty buffer?;

2) Afyiy =Ty > 0,if me D, M+ D—2] and
slot mm ends with a delay critical packet;

3) Af;j:l =0,ifm=1,--- M+ D — 2, and slot m ends
neither with an empty buffer nor with a delay-critical
packet.

Proof: See Appendix B. ]
Thus, this Lemma completely characterizes the Lagrangian
multipliers i ,,, and p3 ,,, via A f;:;l when both slots m and
m + 1 are not idle.

Remarks: These properties in optimal transmission rates can
be interpreted as follows. While an active causality constraint
may result in a lower transmission rate than an otherwise
more energy-efficient rate (non-increasing derivatives between
two adjacent non-zero rate slots), an active individual delay
constraint may require a higher transmission rate than an
otherwise more energy-efficient one (non-decreasing deriva-
tives between two adjacent non-zero rate slots). When both
constraints are inactive, the optimal transmission rate is chosen
to achieve the best possible energy efficiency purely depending
on the channel states (zero derivative difference, and hence a
constant transmission rate in case of a time-invariant channel).

Now let us consider the case when only one slot in the pair
{m,m 4+ 1} is idle. The following Lemma characterizes the
properties of A f;,’;l in such scenarios:

Lemma 3: When one and only one of the two slots in the
pair {m, m-+1} is idle (i.e., zero transmission rate), we have:

D) Afyfy = s+ Tstts mlm—p > 0,if m € [1, M +D—2]
andl slot m is idle but slot m + 1 is not;

2) Afpri = —13 i1 — Tsi pdnr—m <0, if m € [L, M +
D — 2] and slot m + 1 is idle, but slot m is not.

Proof: See Appendix B. ]
where the indicator function 1,, is 1 when n > 0 and 0
otherwise. In other words, even with a zero transmission rate,
idle slots still have derivatives no less than those of the non-
idling neighboring slots.

In case of two or more consecutive idle slots, the com-
parison of the derivatives between two idle slots would no
longer provide much information, as A f;,f’l can be either
non-negative or negative. However, we can still compare any
idle slot with its two closest non-zero rate slots. Note that
the number of consecutive idle slots has to be no more than
D —1 to avoid delay violations. Define A f;’;lé " gm) —

’

J (i 9my1), D>1>1and m+1 < M + D. Note that

m-+l—1

Afyi= > Af.
Jj=m

Using this and (6), we obtain
/}‘i”t,'rn - :u;),erl

Afr:,l =
- TsXio P i L —m—i (7
-1 &
+ T Zi:o /'1’2,m+i1m+i—D?

2Note that if slot m > M ends with an empty buffer, all the subsequent
slots will be idle since no arrivals are assumed after slot M.

form =1,--- ,M + D — 2, where we have assumed slots
m+1tom+1—1 are idle. Now we can have results similar
to Lemma 3:

Lemma 4: When there are two or more consecutive idle
slots (i.e., [ > 2), we have:

1) Af;;,l =[5, T Yiso W m+idmti—p = 0, if m €
[1,---,M+D-3]and slots mym+1,--- ,m+1—1
are idle but slot m + [ is not;

2) Afr/rt,l = _Ng,mﬂ — Ts Zi;é ﬂierilM—m—i < 0, if
mée[l,--- ,M+D-3]and slots m+1,m+2,--- ,m+l
are idle, but slot m is not.

Proof: See Appendix B. [ ]
That is, the comparison of an idle slot to its closest non-zero
rate slots provides the same information as in the case of
{m,m + 1} when one of them is idle.

We can now generalize Lemma 2 to any pair of slots
{m,m + 1}, | > 2, which are separated by one or more idle
slots:

Lemma 5: When the optimal transmission rates during two
slots m and m+1,1 > 2, m+1 < M + D, are strictly positive
(i.e., r5, > 0 and r; ;> 0), but all slots in between are idle
(te,rr . =0fort=1,---,l—1), we have:

m-+1
DA ;rt,l = T Zi;(l) :U’T,m—i-ilM*m*i < 0, if m €
[1,--+,M —1] and slot m +1 —1 is not a delay-critical
slot;
2) Af;;k,l = Ts Zé;(l) M;,m+i1m+i—D > 0, if m €

[D,---,M + D — 3] and slot m does not end with an

empty buffer;

3) Af;;{l =0,if m=1,---,M + D — 3, and slot m does
not end with an empty buffer and slot m 41 — 1 is not a
delay-critical slot.

Proof: See Appendix B. [ ]
That is, it is as if all the idle slots in between can be ignored
when determining the difference of the derivatives of two non-
idle slots.

Remarks: Lemma 5 has a constrained ‘water-filling’ inter-
pretation. The optimal offline scheduling tries to equalize the
derivative f/ (Pmy Gm) as much as possible (i.e., Af;,’:,l =
0), subject to the causality and individual delay constraints.
In slots where equalization is not justified from an energy-
efficiency perspective, these slots should be idle instead. Thus,
the derivative f (rm,gm) can be viewed as a measure of
relative cost of choosing a transmission rate r, given a
channel state g,,,. In static channels, the energy-rate derivative
function degenerates to f/ (rm), in which case a constant
relative cost translates into a constant transmission rate. This is
consistent with the efforts of equalizing transmission rates or
transmission durations by the optimal offline scheduling over
time-invariant channels in [5][6][20]. This important observa-
tion, indeed, motivates a simple online scheduler design, as
will be discussed in Section IV.

Lemmas 2, 3, 4, and 5 provide us with a complete char-
acterization of the optimal Lagrangian multipliers A%, i}, i3,
and /5 in all possible scenarios. Next, we will exploit these
optimality conditions to develop a recursive optimal offline
scheduling search algorithm.



B. A Recursive Search Algorithm

We will first briefly review the FlowRight algorithm devel-
oped in [17] for the optimal offline scheduling algorithm under
a single transmission deadline model, before presenting the
recursive algorithm for the individual delay constraint model.
The FlowRight algorithm in [17] is based on optimizing rates
over two adjacent slots {m, m+1}. The per-pair optimization
is done for all pairs m = 1,--- , M 4+ D —2, from left to right,
and a pass is completed when m = M + D — 2. The recursive
algorithm is performed with as many passes as needed until
a desirable accuracy has been reached. It was proven that
such an algorithm converges, and it converges to the optimal
offline scheduler [17]. The name of ‘FlowRight’ comes from
the fact that the derivatives of two neighboring non-zero rate
slots are monotonically non-decreasing, as can be seen from
Lemma 2 and Lemma 5 when the impact of individual delay
constraints is eliminated (i.e., no delay critical packets in any
slot m € [1,--+, M+ D —2]). This means that in the per-pair
optimization, the bits are always moved from left to right such
that the transmission of earlier arrived bits can be postponed
for better channel states. This information flow is limited by
channel states and the causality constraint, but never from right
to left.

Here we develop a recursive algorithm for the optimal
offline schedule for the individual delay constraint model. The
algorithm is referred as a Constrained FlowRight algorithm
and it differs from the original FlowRight algorithm by incor-
porating:

« Idling slots (which was not explicitly addressed in [17]),

and

« Individual delay constraints.

To achieve this, we can re-write the delay constraint condition

in (1) (Condition 3) as: i) r,, > 0 form =1,---,D — 1,
and (ii)
m—D+1 m—1
T'm > ( Z Bi/Ts_ Z 7‘7',)+, for m = D, s 7]\44—1)—1
i=1 i=1
®)

where (7)T2max{0,z}. Now the Constrained FlowRight
algorithm can be developed as follows:
1) Initialize the rates for each slot as
2) In increasing order, for each m € [1,
do the following:
i) Minimize f(r)+ f(rigt! 1= T) subject to the following
constraints: a) rﬁ,ﬁ’%H =7k +7rk ;b)) r >0 (non-
negativity); c) r is upper—bounded by some value that can
be computed by the causality constraint (see Condition
2 in (1)) using the rate vector [r¥ r5 --. 7% 13 and
d) r is lower-bounded by some value that can be com-
puted by the delay constraint (8) using the rate vector

B/TS Set k = 0.
M+ D -2,

[r’f, rh oo ek 1] Denote the above optimal solution as
total * kok :
. and let rm L 2riotal | —px  Update {rk, 7% ,,} in
tO {rm’ m+1

3Effectively, r < rk,
in [17].

, since the information always flows right as shown

ii) If vy, 1 = 0, repeat the same per-pair rate optimization

for slots {m,m + 1}*, | > 2, which yields {r},, 7" .},

where 77, Erk + ok — % untl 7% > 0, or until

| = D—1 (no more than D — 1 consecutive idle slots), or

until m+1 = M + D —1 is reached. Update {rk,,r¥ }
1o {ry,,rh )

3) After one pass (i.e., when m = M + D — 2 in the above
step), set 7+ = 7#* and k = k 4 1. Repeat the same
procedure until k = K, such that max [FK 1 — 7K | < ¢,
where € < 1 is arbitrarily small.

Theorem 2: The following statements hold:

1) For each step in the above Constrained FlowRight algo-

rithm, information always flows right (i.e., >/ _ 7k <

fw T rk=1¥j > 1) without violating the individual
delay constralnts,

2) The Constrained FlowRight algorithm converges to 7*

Proof: To prove the first statement, we need to look at
the per-pair rate optimization in the above recursive algorithm.
Following a procedure similar to that in [17] for the single
deadline model, we can prove that the information always
flows right in the per-pair rate optimization. The satisfaction
of the delay constraints comes from the explicit rate constraint
condition of (8).

Now for the second statement, the convergence part is due
to the always right-flow of information, as also shown in
[17] for the single deadline model. The optimality part can
be easily verified by checking the properties of the optimal
Lagrangian multipliers for various scenarios as characterized
by Lemmas 2, 3, 4, and 5. |

Note that the convergence speed of this recursive Con-
strained FlowRight algorithm depends on the energy-rate
function f(r,g), the packet sizes B;, the channel gains g;,
i € [1,---,M + D — 1], and the delay constraint D. In
Section V, this algorithm will be used to search for the
optimal offline scheduling to investigate its performance and
properties.

C. Symmetry Property and Packet Delay Performance

Similar to the static channel case, we also have the symme-
try property of the optimal transmission rates 7. This important
property not only provides an insight to the optimal scheduling
algorithm, but also makes it possible to analyze the average
packet delay performance into a very compact closed form
for continuous-time static channels [6]. For time-slotted fading
channels, due to the potential existence of idling slots, we can
no longer obtain a closed form solution of the average packet
delay performance. However, as we will show, the symmetry
property leads to a lower bound and an upper bound of the
average packet delay performance.

Theorem 3: For any M > 1, when the joint probability dis-
tribution for the random packet vector [By, - - , Bys] is iden-
tically distributed to the reversed packet vector [Byys, - - , B1]

“Note that the delay constraint has to updated by replacing m by m+1—1

in (8). In addition, 7* = 0 (idle slots).

j— *
m+1 = T T



(such a property clearly holds, e.g., when B; are i.i.d.), inde-
pendent of the i.i.d channel gains g,,,1 < m < M —1 >, then
under the optimal offline scheduling, the optimal transmission
rates 7., and s, 41 are identically distributed. In particular,
E{T'm} = E{TM—m—&-l}-

Proof: Here we provide a sketch of the proof. The
detailed proof follows the same procedure as in [6] for the
continuous-time arrival model over a static channel, compared
with a time-slotted fading channel discussed herein. The proof
essentially relies on a time reversal argument, where a sample
path trajectory of the forward running system, characterized
by

BY) = [By,--- ,Bul,

and,

()

g = [917"' ngJerl];

is compared to a corresponding time reversed system, charac-
terized by

é(r) = [BM7 7Bl]>

and,

=(r) — [

g IgM+D—1," " ,91]-

The unique optimal transmission rate vector for the forward

running system can be shown also feasible and uniquely

optimal for the corresponding time reversed system. ]
We define the average packet delay as:

1 M
AODLE{3; > an)

where ¢, is the delay (including queuing delay and trans-
mission delay®) experienced by packet m under the optimal
offline schedule with a particular realization of the channel
gain vector and the packet size vector, and the expectation
is taken over all channel and packet size realizations. By
exploiting the symmetry property, the following bounds can
be obtained:

Theorem 4: For any M > 1, when the joint probability dis-
tribution for the random packet vector [By, - - , Bys] is iden-
tically distributed to the reversed packet vector [Byy, - - - , Bi],
independent of the i.i.d channel gains g,,,, 1 <m < M+D—-1,
then under the optimal offline scheduling, the average packet
delay is bounded by

M+1
2M

7 {D+1} < q(M) <, {H D-1| ©

2 2D

When M — oo, 7,(D +1/D)/2 < G(oo) < 75(D +1)/2. In
the case of static channels where the channel gains are fixed

5The result also holds for any channel gains when the joint probability
distribution for the random packet vector [g1,- -, gnm+p—1] is identically
distributed to the reversed packet vector [gar4+p—1,--- ,9g1]. However, for
practical interest, we will only focus on the i.i.d. channel gains in this paper.

0That is, the time interval from when packet B,, arrives till when its last
bit’s transmission is completed, which is not necessarily aligned with slot
boundaries.

gm = ¢, Ym, where c is a constant, the average packet delay
is given by
M+1

—Mstatic: ; 1
q(M) Ts |14+ 57

(D—-1), (10)
and converges to ¢(c0)*t*¢ = 7,(D +1)/2.

Proof: See Appendix C. [ ]
Note that the upper and the lower bounds differ only by the
value 75[(1—1/D)+(D—1)/M]/2, which converges to 7,(1—
1/D)/2 as M approaches infinity. In addition, the average
packet delay performance bounds are not a function of the
packet size vector. Indeed, as shown in Appendix C, due to
the symmetry property, the delay performance bounds only
depend on the total transmission duration of these M packets
(i.e., M + D — 1 slots), and the total number of potentially
idling slots.

IV. ONLINE SCHEDULING OVER A FADING CHANNEL

Here we describe a heuristic online scheduler motivated by
the optimality conditions for the optimal offline scheduling
discussed in Section III. This online scheduler, referred as the
Derivative Directed or DD online scheduler, tries to keep a
constant derivative value as much as possible. The derivative
variations come from traffic and channel variations.

Traffic variations can be smoothed out by lower-bounding
the transmission rate by

i—1

D «
i Um —1
rPD  — max <ZZ—1, D > ) (11

AT e, -, D) 1Ts

an extension of the optimal static buffer flushing algorithm
discussed in [20] and [6], where o« > 0, U,/n =Uno+Uni+
Una2+ -+ Up,p_1 is the total buffered bits, and U,, ; is
the buffered bits with a delay constraint of D — 3.

Channel variations can be accommodated by choosing a
transmission rate as a function of the latest derivative value
f;n_l and current channel state g,,, i.e.,

DD

’
Tm,channel = U(fm—la gm)'

where r = v(f,g) as the inverse of f (r,g). Finally, the
transmission rate at slot m given by:

DD
m

DD

! DD
m,channel> Um/TS s T

r = max{min{r momin )} s (12)
where U, /7, is due to the causality constraint. The derivative

can be updated by, e.g.,

fv,n = ﬁf;vq—1+(1_ﬂ)f,(rrlr)LDvger)7 if TﬁD >0,
13)
where 0 < B < 1 is the forgetting factor, and remains
unchanged in case of idling slots. This is because an idling
slot is due to a bad channel state and its energy-rate derivative
value may be too large.

Without loss of generality, assume the average channel gain
is 1. The following summarizes the online DD scheduling
algorithm:



1) Initialize f(l) = f/ (Tavgs 1), Where 74,4 is the known or

estimated average arrival rate.

2) For eachslot m=1,--- ;M + D — 1, do the following:

i) Determine 2P by (12).

i) Update f,, by (13).

We have the following Lemma:

Lemma 6: The above DD online scheduler guarantees the
satisfaction of the causality and the individual delay con-
straints.

Proof: The causality constraint is explicitly guaranteed
by rm max- D€ satisfaction of the individual delay constraints
1s guaranteed by the FIFO assumption and the fact that
rm min = Um,p—1 in (11) for o > 0, where U,, p_1 denotes
the buffered packets that must be delivered by the end of slot
m. |

Note that zero-rate transmissions occur  when
U(fro1:9m) < 0 and rDP. = 0. For instance, if
f(r,g) = No(22" — 1)In 2/g, the channel threshold under
or at which an idle slot occurs is proportional to 1/ f .
Generally, we expect f, o 22ravsTs Therefore, when the
average transmission rate is small, f/ is close to 1. Thus the
channel threshold is relatively high and we may choose to
transmit only in good channel conditions. On the other hand,
when high transmission rates are necessary, f " becomes very
large, and the channel threshold is close to 0. In this case,
the DD online scheduler tends to transmit over all channel
states. Such a phenomenon is similar to that of the optimal
offline scheduler, as will be shown via simulations.

V. NUMERICAL RESULTS

The energy-rate function is assumed to be f(r) = (22" —
1)/g [17], resulting from Shannon capacity. The packet sizes
are normalized based on frequency bandwidth and slot dura-
tion and can be interpreted as the number of bits per channel
use. The channel coefficients are assumed to be Rayleigh
distributed.

Figure 2 illustrates one example run of the optimal offline
schedule for the individual delay constraint model. The nor-
malized packet size is very small and fixed at B = 0.1 such
that the energy-rate function approaches a linear relationship.
It can be observed that the optimal schedule chooses to
transmit only in good channel conditions, and stays idle in
bad channels. Indeed, it is not difficult to see that, under a
strict linear energy-rate function, the optimal schedule would
choose to transmit packet m only in the best slot m,; €
[m, -+ ,m+ D —1] which has the largest channel gain. Such
a threshold-like scheduling was also observed in other different
delay/power tradeoff settings, e.g., [7],[8]. The derivatives
of the energy-rate function for the non-idling slots are also
shown. The derivatives under the optimal offline scheduling
exhibit a stair-case property, which tends to remain unchanged
while in response to active causality and delay constraints. The
idling slots have larger derivatives (not shown), such that the
‘water-filling’ rule prohibits transmissions in these slots.

In contrast, when the normalized packet size is very large
(fixed at B = 5), the optimal offline scheduling tends to
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Fig. 2. An example run of the optimal offline scheduling for the individual
delay constraint model, M = 100, D = 10, and B = 0.1.

transmit over all slots (with rates proportional to channel
gains), and approaches a constant transmission rate in the limit.
This is illustrated in Figure 3. This is not surprising as when
B increases, the energy-rate function f(r) = (22" — 1)/g is
increasingly dominant by 7, while the channel gain has an
decreasing impact. Thus, the idling constraint becomes more
slack, and it is more justified to transmit packets over all slots,
with transmission rates proportional to the channel gains. In
this particular example, the optimal derivatives of the energy-
rate function are the same for all slots, except the last one,
which has a smaller value due to an active delay constraint at
slot M + D — 2 (the second slot to the last).

Fig. 4 demonstrates the symmetry property of the aver-
age (over independent runs) optimal transmission rates. The
single transmission deadline model, which assumes the same
transmission duration, packet sizes and channel gains as the
individual delay constraint model, is shown for comparison.
For the single deadline model, the optimal transmission rate
increases, on average, with packet indices, as earlier packets
can exploit more future arrivals and potentially postpone some
transmissions for better channel states. However, this may lead
to significant individual packet delays, as analytically shown in
[5] for static channels. In contrast, the individual delay model
always yields finite individual packet delays, and its average
delay performance is governed by Theorem 4 in Section III.

Fig. 5 and Fig. 6 show the average transmission energy
and packet delay performance, respectively, for the offline and
online schedulers when M = 100 and B = 1. It can be seen
that both the offline and the online schedulers require signif-
icantly less energy than the greedy buffer clearing scheduler.
As the individual delay constraint D increases, the energy
required by the schedulers for the individual delay constraint
model approaches that of the single deadline model’. The DD
online scheduler achieves comparable energy performance to
the optimal offline scheduler, which demonstrates an effective
exploitation of the properties of the optimal offline scheduling
for online scheduling design. The average packet delay of the

"Note that for fair comparison, the total transmission duration for the single
deadline model is equal to (M + D — 1) slots as well.
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Fig. 4. Average transmission rates under optimal offline scheduling, M =
100, D = 5.

DD online scheduler is slightly less than that of the optimal
offline scheduler for the individual delay constraint model 8
but significantly less than that of the single deadline model.

VI. CONCLUSIONS

This paper focuses on energy-efficient packet transmission
with individual packet delay constraints over a fading channel.
This can be viewed as an extension of the work by in [20]
and [5][6] for a continuous-time arrival model and static
channels. The problem of optimal offline scheduling (vis-a-vis
total transmission energy), assuming information of all packet
arrivals and channel states before scheduling, is formulated
as a convex optimization problem with linear constraints. The
optimality conditions are analyzed, from which a recursive
search algorithm is developed. The symmetry property of the
optimal transmission rate vector (or, equivalently, the transmis-
sion duration vector) still holds under the i.i.d. assumption of
packet sizes and channel coefficients. Combining the symme-
try property with the potential idling periods, upper and lower
bounds of the average packet delay (including queuing and

81t is worth noting that our goal is to optimize transmission energy instead
of delay. Thus, it is not surprising that the DD online scheduler consumes
more energy than the optimal offline scheduler, but yields less packet delay.

Transmission Energy

: : : : Buffer Clearing

10 : ; ; ; —&— DD Online m
............................ Opt Offine

Single Deadline | ]
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Fig. 5. Average transmission energy for the offline and online schedulers
vs. D, M =100, B = 1.
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Fig. 6. Average packet delay (right) for the offline and online schedulers vs.
D, M =100, B=1.

transmission delays) are derived. The properties of the optimal
offline scheduling and the impact of packet sizes, individual
delay constraints, and channel variations are demonstrated via
simulations. A heuristic online scheduling algorithm, which
assumes both causal traffic and channel information, is also
proposed and compared with the optimal offline schedule via
simulations.
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APPENDIX A
ADDITIONAL COMPLEMENTARY SLACKNESS CONDITIONS

This is to prove the additional complementary slackness
conditions in (5) for the optimal offline schedule. Recall that:

1) hym(7) < 0 implies that p; = 0;

2) pf,y, > 0 implies that fy,, (7) = 0,
for any [ and m, due to the conventional complementary slack
condition by (4).



The first condition, uj ,,u3,, = 0,m =1,---, M, is due

to the fact that given B, > 0,m = 1,--- , M, if p3,, >0
(hence hg (™) = —r} = 0 and so slot m is an idle slot),
we have

hl,nL ('F*) = Z:il T;'kTS - Z:il Bi

Sy T = ity By
Sy - L By
0

IN A

Thus, 47 ,,, = 0 or slot m does not end with an empty buffer.
Similarly, the reverse case, i.e., uj ,,, > 0 implying p3 ,, = 0,
can also be derived. In other words, any slot m € [1,--- , M]
can not be idle and end with an empty buffer at the same time.
The second condition, i ,, 15, =0,m =D, -, M, is due
to the fact that if 7, > 0, slot m must satisfy ha,m (7*) =0,
i.e., it must end with an empty buffer,

hom () = Sp PN B = 3 i
m
= - Zﬁm-D-ﬂ B; — hlﬂn(fﬂ
= = 2i—m-py2 Bi
< 0

Hence, y5 ,,, = 0. Similarly, if x5 ,, > 0, we have uj,, = 0.
In other words, any slot m € [D,--- , M] can not be a delay-
critical slot and ends with an empty buffer at the same time.

For the third condition, first note that an idle slot ma%/ pos-
sibly be a delay-critical slot, i.e., ha , (7) = ZZ’;DJr B, —
o, riTs and r, = 0 may be satisfied simultaneously, such
that

3 13,y > 0.

However, if slot m+1 is idle, slot m can not be delay-critical,
and vice versa, as indicated by condition 3 (43 ,, (3 41 =
0,m=2D,---,M+ D — 2). Consider if y3,, > 0, we have
h3 ,, = 0 and hence slot m is delay-critical. That is, slot m
ends with completing transmission of packets arrived at slot
m—D+1. Since B,,_p4+1 >0, form=D,--- M+D-—1,
slot m—1 has to at least serve packets arrived at slot m—D+2
and thus can not be idle, or 3, ; = 0. Similarly, one can
also show that if 3,1, > 0, we must have 53, = 0.

APPENDIX B
PROOF OF LEMMAS 2, 3, 4, AND 5

For Lemma 2, since r;, > O and 7y, ; > 0, we have 3, =
M3 i1 = 0. Case 1 is further due to an empty buffer at the
end of slot m, and hence a non delay-critical slot such that
K3 = 0 in (6). Case 2 is further due to uj,, = 0 as slot
m is delay-critical and hence non-empty ending. Case 3 is
further due to uj,, = 0 and p3,, = 0 as slot m is neither
empty-ending nor delay-critical.

For Lemma 3, Case 1 is due to u3,,,; = 0 (non-idling
slot) and 47 ,, = 0 (non-empty ending slot) in (6). Case 2 is
due to H’;,m = 0 (non-idling slot) and the last condition in (5),
i.e., slot m can not be delay-critical if slot m + 1 is idle.

For Lemma 4, Case 1 is due to 3 ,,, ., = 0 (non-idling slot)
and py; = 0,i =m,---,m+1—1 (idling slots can not be
empty-ending), while Case 2 is due to p3,, = 0 (non-idling

slot) and 35, = 0,5 =m,--- ,m + 1 —1 (an idling slot can
not be preceded by a delay-critical slot) in (7).

For Lemma 5, since r;, > 0 and 77, o> 0, we have
K3 = M3y = 0. Case 1 is further due to p3, = 0,7 =
m,--- m+Il—2(@sslotst=m+1,---,m+1—1 are
idle), and uz,mHA = 0 (non delay-critical) in (7). Case 2 is
further due to 417 ,,, = 0 (non empty-ending), and pj ; = 0,7 =
m+1,--- ;m+Il—1(asslotsi =m+1,--- ,m+I1—1 are idle)
in (7). The last case is further due to the combination of Case 1
and Case 2 (i.e., uy ; = O0and p3 ; = 0,9 =m,--- ,m+I-1).

APPENDIX C
PACKET DELAY LOWER AND UPPER BOUNDS

First, denote t4¢qr¢,m as the time when the first bit of packet
m is transmitted. Specially, let t54q,;,1 = 0 because from
a delay perspective, if there are any idling periods before
the first packet transmission, the first packet is effectively
delayed starting from time 0. Similarly, denote tcyq,m as the
departure time of the last bit of packet m’s transmission.
Note that both #444.¢,m and teyq,m are not necessarily aligned
with slot boundaries. Also, tstqrtm = tend,m—1, and the
equality holds only if there is no idling period between the
departure time of packet m—1 and the start time of packet m’s
transmission. By defining the inter-departure time of packet
m,m & [17 T 7M]7 as ¢mét6nd,m_tend,m—l, with te'rtd,OéO’
the delay for packet m can thus be computed as

dm = Zd)l - (m - 1)7—57
=1

where >°;" | ¢ = tend,m and (m—1)7, are the departure time
and the arrival time of packet m, respectively.

Now, define the virtual start time of packet m € [1,--- , M]
as t;’mmmé(tendm,l +tstart,m)/2, and the virtual departure
time of packet m € [1,---, M — 1] as t%, 4, 2(tend,m +
tstart,m+1)/2. Let t2 1, 2(M + D — 1)1, regardless of any
potential idling slots after tend,m- Subsequently, define the
virtual inter-departure time of packet m as

d)v A v — Y
m—"end,m start,m-*

Note that if there are no idling slots between t.,q(m — 1)
and tgqr¢(m), and between teng(m) and tspqre(m + 1), &2,
corresponds to ¢,,. Otherwise, ¢;, also incorporates half of
the idling period between te,q(m—1) and tsq.¢(m), and half
of the idling period between t.,q(m) and tszq.¢(m + 1), for
2 <m < M — 1. For the first packet, ¢7 includes the entire
idling period, if any, before its transmission, while for the last
packet, ¢}, includes the entire remaining idling period after
tena(M), if any. Denote

m
G =Y 8 — (m—1)r,.
=1

Note that since &, .,
have q;, > qm.

Due to the symmetry property of B and hence 7, as in
Theorem 3, it is not difficult to show that, using a sample path

— v v
- tstart,m+1 and tend,m Z tend,m’ we



trajectory of the forward running system and the corresponding
time reversed system, the same symmetry property holds for
the virtual inter-departure time vector ¢¥ as well, i.e.,

E{¢Um} = E{¢UM+1,m}, Ym.

Therefore,
q( ) M Zm_ E{qm}
= [ 1 E{¢p} = (m = 1)7]
@ ﬁ (M —m+ D)E{¢} — =M (m—1)
2 i Xy B0 - 3y M iy
© m it (M—|—D— 17 — —M2 Lr
=71, + (D - 1)r,,
(14)

where (a) holds by counting the number of occurrences of each
item, the first term of (b) comes from the symmetry property
E{¢v} = E{¢%,_ m+1} Ym € [1,---, M], and equivalently,
there are (M +1)/2 copies of each E{d)” }, and the first term
of (c) is due to the fact that Zm_ E{¢?} = (M+D—1)7s.

On the other hand, re-writing the average delay computation
as

q(M)

Il

ﬁ Zi\r{=1 E {Qm}

E{ﬁ ZyAr/L[:l 27;1 ¢l} - ﬁ Zi\r{:l(m
we can see that Z;L @1 = tend,m 1S used only once for each
m € [1,---, M] before taking the average (1/M) and the
expectation. Similar statement also holds true for Y ;" ¢} =
end,m s in (14). To quantify the difference between ¢
and tepd,m, denote

Atv At - tend7m = (tstart(m + 1) - tend<m))/2 > 0.

First note that any idling periods between time 0 and ¢szq.+(1),
and in between a packet transmission have no impact on
AtY . Vm. For a particular m € [1,---, M — 1], if there is
one or more idle slot between tenq(m) and tgqre(m + 1),
At? > 0 and it equals to half of the idling period. However,
any other idling periods between te,q(7) and tsiare(7 + 1),
j # m, have no impact on At} . In the special case of
m = M, if there are idling slots after packet M transmission,
we have At = (M + D — 1)75 — tena,m. However, due to
the symmetry property, there must exist a realization of the
same length of an idling period between time O and tgzq,4(1)
(which does not impact At}). Effectively, the idling period
after tenq,nr, if any, only contributes half of its duration to
At5,. Therefore, we have:

Lemma 7: Any idling period effectively at most contributes
once to the difference in the average delay computation using
q;” and 5, and the contribution is at most half of its duration.

This leaves us to count the total idling duration within M +
D — 1 slots. Due to the delay constraint D, there are at least
|[(M +D—1)/D| > M/D non-idling slots between slots 1
and M + D — 1. Therefore, we have,

M m
SIS 6r— ) b < ml(M+D—1-M/D)2]

i=1

— )7y

end,m

end,m

m=1

Defining

§ £ 7[(M+D-1-M/D)/2]/M
= 7[(1-1/D)+ (D —1)/M]/2,

we finally have

gM) > 75 |1+

M+1
2M

o] sen[2e 2]

Note that § converges to 0.575(1 —1/D) when M approaches
infinity.
In case of static channels, there will be no idling periods

under the optimal offline schedule. Thus, ¢, = ¢;,,

and the

equality holds in (14).
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