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Abstract— This paper focuses on energy-efficient packet trans-
mission with individual packet delay constraints. The optimal
offline scheduler (vis-à-vis total transmission energy), assuming
information of all packet arrivals before scheduling, was devel-
oped by Zafer, et al. (2005) and Chen et al. (2006). This paper
shows that when packet inter-arrival times are identically and in-
dependently distributed (i.i.d.), the resulting optimal transmission
durations of packets m and M −m+1, m ∈ [1, · · · , M ], M ≥ 1,
are identically distributed. This symmetry property leads to a
simple and exact solution of the average packet delay under
the optimal offline schedule. Two heuristic online scheduling
algorithms, which assume no future arrival information, are then
studied. These online schedulers are compared with the optimal
offline scheduler in terms of delay and energy performance
via analysis and simulations. While both online schedulers are
inherently inferior, one online scheduler is shown to achieve a
comparable energy performance to the optimal offline scheduler
in a wide range of scenarios.

I. INTRODUCTION

Future wireless applications are anticipated to require high-
speed data links in a limited frequency bandwidth. Various
quality-of-service (QoS) requirements, e.g., delay constraints
imposed by applications such as voice over Internet protocol
(VoIP), challenge current system designs. For many scenarios
of interest, the energy required for packet transmission is a
monotonically decreasing function of the transmission dura-
tion and often convex [1]. Thus, by tolerating more delay,
significantly less energy is required when other conditions,
such as target packet transmission quality, remain unchanged.
The fundamental tradeoff between packet delay and transmis-
sion rate has been extensively studied for various scenarios:
over a single link [1][2][3][4][5][6], in ad hoc networks
[7][8][9][10][11], and in cellular networks [12][13][14].

In [1], the optimal energy-efficient scheduling algorithm in
minimizing the total transmission energy was developed for
a group of packets subject to a single transmission deadline.
This optimal algorithm assumed knowledge of the total num-
ber of packets and the inter-arrival times of these packets
before packet scheduling. As a result, it is an offline scheduling
algorithm. An online algorithm, which assumed information
of the current scheduling backlog and a maximum packet
arrival rate, was also developed in [1]. Online scheduling for
the single deadline model was also treated in [6] in which a
stochastic optimal control algorithm was developed. Note that
since all packets observe a single transmission deadline, the

scheduling algorithm may result in large per packet delays,
especially when the total number of packets to be transmitted
is very large. In fact, it is shown in [15], that under a Poisson
arrival model, the average delay associated with the optimal
offline scheduler in [1] grows monotonically and at a rate close
to
√

M , where M is the total number of data packets. Such
potentially significant individual packet delay is not desirable
especially for delay-sensitive applications and for practical
implementation.

Energy-efficient transmission with individual packet delay
constraints were studied in [5][6][15][16]. Dynamic program-
ming was adopted in [16] to search for optimal online schedul-
ing under dynamic channels. It was proven in [5] that all online
scheduling can be expressed as a time-varying low-pass linear
filter. Upper and lower bounds on optimal online scheduling
were presented, and a ‘water-filling’ rule was proposed to
schedule packets in a slotted system. Offline scheduling with
general arrivals and QoS constraints was considered in [6],
where an optimal scheduling procedure was developed. A spe-
cial case of optimally flushing a static buffer with individual
delay constraints was also presented in [6]. A similar problem
was treated in [15] for optimal offline scheduling with dynamic
arrivals and individual delay constraints.

In this paper, we first analyze the properties of the optimal
offline scheduler for the individual delay constraint model. It
is shown that when packet inter-arrival times are identically
and independently (i.i.d.) distributed, the optimal transmis-
sion durations of packet m and packet M − m + 1, m ∈
[1, · · · ,M ],M ≥ 1 are also identically distributed. In other
words, the optimal transmission duration vector exhibits a
symmetric property. This important property makes it possible
to obtain a simple and exact solution of the average packet
delay (including queuing and transmission delays) for any
i.i.d. inter-arrival times under the optimal scheduling. In fact,
when M is large, the expression for the average packet
delay (including queuing and transmission delays) converges
to (T +E[min{d, T}])/2, where T is the delay constraint and
d is a random variable with the same distribution as the packet
inter-arrival time.

We then study two heuristic online schedulers for the
individual delay constraint model. The first online scheduler
generalizes the optimal static buffer flushing algorithm in [6]
to a system with dynamic packet arrivals and departures.



Fig. 1. The individual delay constraint model.

The conditions under which the optimal buffer flushing rate
needs to be updated are identified and characterized. The
second online scheduler is a simple frame-based iterative
buffering and scheduling scheme, loosely linked to the iterative
minimum emptying time (IMET) algorithm in [17]. For each
frame duration of T/2, where T is the individual delay
constraint, the scheduler transmits packets, if any, buffered
during the previous frame with the same transmission duration.
These two online schedulers are compared with the optimal
offline scheduling algorithms in terms of packet delay and
transmission energy performance via analysis and simulations.
While both online schedulers are inherently inferior, the first
online scheduler is shown to achieve a comparable energy
performance to the optimal offline scheduler in a wide range
of scenarios.

This paper is organized as follows. In Section II, the system
model is described. The optimal offline scheduling algorithm
for the individual delay constraint model is described in
Section III. The symmetry property of the optimal offline
scheduling and the resulting delay performance are analyzed in
Section IV. The online schedulers and the corresponding delay
performance are investigated in Section V. Numerical results
are given in Section VI. Finally, some concluding remarks
are drawn in Section VII. The Appendix extends the optimal
offline scheduling to the scenario of unequal packet sizes and
unequal individual delay constraints.

II. SYSTEM MODEL

Suppose there are M packets to be transmitted through an
additive white Gaussian noise (AWGN) channel, with packet
arrival times ti, i = 1, · · · ,M . Without loss of generality, the
arrival time of the first packet is assumed to be 0, i.e., t1 = 0.
The packet arrivals are assumed to be random, following a
known distribution function. Each packet has its own total
delay constraint, denoted by Ti, such that by the deadline
ti + Ti, the packet has to be completely delivered. This is
illustrated in Fig. 1. The packet size is assumed to have Bi

bits, i = 1, · · · ,M . Note that the individual delay constraints
Ti are not necessarily the same for all packets. Similarly,
different packets may have different sizes. The packet inter-
arrival times, denoted by di = ti+1 − ti, i = 1, · · · ,M 1 , are
random variables.

1Although there is no so-called inter-arrival time for the last packet, for
convenience of presentation, we still call dM = TM the inter-arrival time of
packet M .

Each packet will be delivered over the channel with the
transmission duration denoted by τi. Obviously, τi has to
satisfy 0 < τi ≤ Ti. The transmission durations of the M
packets are denoted by a vector ~τ = [τ1, τ2, · · · , τM ]. Let w(τ)
be the energy required to transmit a packet with a transmission
duration τ . The goal is to find the optimal transmission vector
~τ such that the total transmission energy of the M packets
w(~τ) =

∑M
i=1 w(τi), or equivalently, the average transmission

energy w(~τ)/M , is minimized subject to the satisfaction of
individual packet delay constraints. Similar to [1], we assume
the following:
• w(τ) is non-negative
• w(τ) is monotonically decreasing in τ
• w(τ) is strictly convex in τ .

The above assumptions hold over a wireless link for many
scenarios of interest, as shown in [1].

The offline scheduling algorithm for ~τ is assumed to have
knowledge of the inter-arrival time di (hence the packet arrival
times), and the individual packet delay constraint Ti, i ∈
[1, · · · ,M ]. The online schedulers, on the other hand, only
assume information of the current scheduling backlog. As in
[1], all schedulers are assumed to follow the first-in-first-out
(FIFO) service rule, the causality constraint, and the non-
idling condition whenever feasible. The FIFO rule means that
packets are transmitted in the same order they arrive. The
causality constraint ensures that a packet cannot be transmitted
before it arrives. The non-idling condition comes from the
assumption that the energy function is a decreasing function
of the transmission duration τ , and subsequently, the total
transmission energy w(~τ) can always be reduced by increasing
the transmission duration for one or more packets. Note
that, however, different from the single transmission deadline
model, idling periods may be inevitable for any feasible
schedulers for the individual delay constraint model. That is,
when the inter-arrival time di > Ti, i ∈ [1, · · · ,M ], the
amount of di−Ti > 0 time resource can not be utilized and an
idling period becomes necessary. This issue will be discussed
in more detail in the next section.

In the sequel, unless explicitly specified, we will focus on
equal individual delay constraints, i.e., T = T1 = · · · = TM ,
and equal packet sizes, i.e., B = B1 = · · · = BM . Most of
the results presented herein can be extended to the unequal
scenarios.

III. OPTIMAL OFFLINE SCHEDULE

We now summarize the optimal offline scheduling algorithm
for the individual delay constraint model [15][6].

First, as discussed in Section II, an idle period is inevitable
when di > T , as the amount di − T > 0 of time resource
can not be utilized by the scheduler. These inevitable idlings
can be eliminated if di is upper bounded by T , i.e., by using
~̂
d = min{~d, T}. On the other hand, when di ≥ T , the i-th
packet has to be delivered before (if di > T ) or at (if di = T )
the time when the next packet i + 1 arrives. As a result, the
scheduling of packets with indices ≤ i and the scheduling



packets with indices ≥ i+1 are independent. Note that packets
≤ i are not affected by replacing the inter-arrival time of the
last packet, i.e., di, by T = d̂i. Packets ≥ i+1 are not affected
by the replacement as well because the (i + 1)-th packet is
treated as if it were the first arrival anyway. Thus, the optimal
schedule with inter-arrival time vector ~̂

d would yield exactly
the same transmission duration vector ~τ as with ~d. In addition,
the resulting packet delay performance would not change if ~̂

d
replaces ~d in the optimal scheduling.

Therefore, in the following, we will focus on using ~̂
d for the

optimal schedule. Note that, in contrast to ~d, scheduling with
~̂
d for the individual delay constraint model strictly satisfies the
non-idling condition as in the single deadline model [1]. Thus,
we obtain the following feasible scheduling constraints:

(i) :

{ ∑k
i=1 τi ≥

∑k
i=1 d̂i, k ∈ [1, · · · ,M − 1], and∑M

i=1 τi =
∑M

i=1 d̂i,

(ii) : qk =
∑k

i=1 τi −
∑k−1

i=1 d̂i ≤ T, k ∈ [1, · · · ,M ],
(1)

where
∑k

i=1 τi is the departure time of packet k, while∑k
i=1 d̂i is the arrival time of packet k + 1 (recall the

assumption that the first packet arrives at time 0). The first
inequality in (i) indicates that when packet k + 1 arrives,
packet k either is still in transmission or just finished its
transmission. The expression

∑M
i=1 τi =

∑M
i=1 d̂i means

back-to-back transmissions with no idling in between. The
variable qk in (ii) denotes the delay for packet k, defined as
the difference between the packet departure time (completed
packet delivery) and the packet arrival time.

From the recursive optimal offline scheduling algorithms
[15][6] and using ~̂

d, we can obtain a closed form expression
of the optimal transmission duration of the first packet as

τ1 = max
1≤i≤M

τ1[i], (2)

where τ1[i], i ≥ 1 is given by

τ1[i] = min
{Pi

m=1 d̂m

i , T, d̂1+T
2 , · · · ,

Pi−2
m=1 d̂m+T

i−1

}
. (3)

The nested min and max structure in τ1 reflects the optimal
exploitation of both future arrivals and individual delay con-
straints.

The same criterion in (2) can be used to obtain the transmis-
sion durations of any subsequent packets m > 1, based on the
inter-arrival times of the remaining packets and the queuing
delay experienced by packet m before being scheduled for
transmission, denoted by q̃m ≥ 0, which is given by

q̃m =
{

0 if m = 1,∑m−1
i=1 (τi − d̂i) ≥ 0 if m ∈ [2, · · · ,M ].

(4)

Note that the delay-constraint factor for packets m > 1 now
has to be modified by considering the queuing delay q̃m. That

is, instead of T , T − q̃m should be used in (3), which yields

τ1[i] = min
{
−q̃m+

Pi
j=m d̂j

i−m+1 , (T − q̃m), (T−q̃m)+d̂m

2 , · · · ,

(T−q̃m)+
Pi−2

j=m d̂j

i−m

}
.

(5)
Note that, given a realization of inter-arrival times, the

optimal offline scheduling algorithm is unique [6][15].
The extension of the optimal scheduling algorithm to the

scenarios of unequal packet sizes and unequal individual delay
constraints can be found in the Appendix.

IV. PROPERTIES OF THE OPTIMAL OFFLINE SCHEDULING

It would be desirable to be able to analytically show the total
transmission energy resulting from the optimal offline schedule
given a specific set of arrivals and an energy-rate function.
However, this appears to be intractable. Thus, we will rely on
numerical results to show the transmission energy performance
of the optimal offline schedule. However, we are able to ana-
lytically derive the average packet delay performance. Herein,
we will first analyze the properties of the optimal transmission
duration vector by presenting the symmetry property, followed
by a subsequent simple and exact solution of the average
packet delay performance of the optimal offline scheduling.

A. The Symmetry Property

The following theorem summarizes the symmetry property.
Theorem 4.1: For any M ≥ 1, when the inter-arrival

times dm, 1 ≤ m ≤ M − 1, are i.i.d.2, under the optimal
offline scheduling, the optimal transmission durations τm and
τM−m+1 are identically distributed. In particular, E{τm} =
E{τM−m+1}, where E{.} denotes expectation.

The proof essentially relies on a time reversal argument,
where we compare a sample path trajectory of the forward
running system to a corresponding time reversed system.
Consider the original forward system with the individual delay
constraint T and a realization of the inter-arrival time vector

~d(f) = [d1, · · · , dM−1], (6)

where the superscript f denotes the forward system. The
absolute arrival times and packet deadlines are thus given by:

~t
(f)
arrival = [0, d1, d1 + d2, · · · , d1 + d2 + . . . + dM−1],

~t
(f)
deadline = ~t

(f)
arrival + [T, T, · · · , T ].

Now define the reversed system as a system with the inter-
arrival time vector:

~d(r) = [dM−1, dM−2, · · · , d2, d1], (7)

where the superscript r denotes the reversed system. This
system can be visualized by relating the arrival time of packet
k in the reversed system to the deadline of packet M + 1− k
in the forward system. Likewise, the deadline of packet k in

2The result also holds for any inter-arrival times where [d1, · · · , dM ] and
[dM , · · · , d1] are identically distributed. However, for practical interest, we
will only focus on the i.i.d. inter-arrivals in this paper.



the reversed system corresponds to the arrival time of packet
M + 1 − k in the forward system. Specifically, the reversed
system has arrival and deadline times given by:

t
(r)
arrival,k = V − t

(f)
deadline,M+1−k,∀k ∈ [1, · · · ,M ],(8)

t
(r)
deadline,k = V − t

(f)
arrival,M+1−k,∀k ∈ [1, · · · ,M ], (9)

where V M=d1 +d2 + . . .+dM−1 +T is the total time duration
of the scheduling algorithm in the forward running system.
Thus, the first arrival of the reversed system is indeed at time
0 (corresponding to time V on the time axis of the forward
system).

The optimal offline scheduling algorithm can be viewed as a
function of an M−1 dimensional inter-arrival time vector ~d =
[d1, d2, · · · , dM−1] to a unique M dimensional service time
vector ~τ = [τ1, τ2, · · · , τM ]. Let ~Φ(~d) represent this function
(for a given individual deadline constraint T ). Thus, ~τ = ~Φ(~d)
is the unique optimal transmission duration vector for a given
inter-arrival vector ~d, where τk = Φk(~d) for k ∈ [1, · · · ,M ].
Note that ~Φ(~d) is measurable, as the optimal algorithm in
Section III involves only simple summation, multiplication,
and max/min operations on the ~d vector.

Now, we are ready to prove Theorem 4.1:
Proof: (Theorem 4.1) The theorem follows from the

following two claims:
Claim 1: ~Φ(~d(f)) and ~Φ(~d(r)) are identically distributed.

Consequently, if ~τ (f) = ~Φ(~d(f)) and ~τ (r) = ~Φ(~d(r)), then τ
(f)
k

and τ
(r)
k are identically distributed for any k ∈ [1, · · · ,M ].

Claim 2: For any particular inter-arrival time vector ~d(f),
if ~τ (f) = [τ1, · · · , τM ] is the unique optimal transmission
time vector for the forward system, ~τ (r) = [τM , · · · , τ1] is
the unique optimal transmission time vector for the reversed
system.

The proof of Claim 1 follows directly from the fact that
since ~d(f) and ~d(r) are identically distributed, any function of
them are identically distributed as well.

To prove Claim 2, let ~τ (f) = [τ1, · · · , τM ] be the optimal
transmission duration vector for the forward system, yielding
total energy expenditure e

(f)
opt =

∑M
k=1 w(τk). For each packet

k ∈ [1, · · · ,M ], let t
(f)
arrive,k, t

(f)
start,k, t

(f)
end,k, and t

(f)
deadline,k

represent the time packet k arrives, begins its transmission,
ends its transmission, and reaches its deadline, respectively,
under the optimal scheduling of the forward system. Clearly,
we have:

t
(f)
arrive,k ≤ t

(f)
start,k ≤ t

(f)
end,k ≤ t

(f)
deadline,k.

Note that the reversed system can emulate the same trans-
mission durations of the forward system, in the following
sense: For each packet k in the forward running system,
schedule packet M + 1 − k in the backward running system
according to times t

(r)
arrive,M+1−k, t

(r)
start,M+1−k, t

(r)
end,M+1−k,

Fig. 2. Illustration of the forward system and the reversed system. The
packet departure curve in the forward system, due to the optimal transmission
duration vector ~τ , is also feasible and optimal in the reversed system.

and t
(r)
deadline,M+1−k, where:

t
(r)
arrive,M+1−k

M=V − t
(f)
deadline,k,

t
(r)
start,M+1−k

M=V − t
(f)
end,k,

t
(r)
end,M+1−k

M=V − t
(f)
start,k,

t
(r)
deadline,M+1−k

M=V − t
(f)
arrive,k.

(10)

Note that this scheduling policy transmits no more than
one packet at any time, and that it satisfies the feasibility
constraints of the reversed system. Specifically, the causality
constraint of the forward running system implies packet k

cannot begin its service until it has arrived, so that t
(f)
arrive,k ≤

t
(f)
start,k. It follows that:

V − t
(f)
arrive,k ≥ V − t

(f)
start,k. (11)

Applying the definitions of t
(r)
end,M+1−k and t

(r)
deadline,M+1−k

in (10) to the inequality by (11) yields

t
(r)
deadline,M+1−k ≥ t

(r)
end,M+1−k.

This ensures that packet M +1−k of the reversed system ends
its service time on or before its deadline constraint. Likewise,
the deadline constraint t

(f)
end,k ≤ t

(f)
deadline,k for packet k under

the forward system implies the causality constraint for packet
M+1−k in the reversed system. This is illustrated in Figure 2.

Further note that this policy schedules packet M + 1 − k
in the reversed system for a service time exactly equal to
τk, the service time of packet k in the forward system. It
follows that this emulation achieves exactly the same energy
expenditure e

(f)
opt as the forward system. Therefore, the optimal

energy expenditure of the reversed system is less than or
equal to that of the forward system. However, because the
forward system can be viewed as a ‘reversed’ reversed system,
it likewise follows that the optimal energy expenditure of the
forward system is less than or equal to that of the reversed
system. Hence, both the forward and reversed systems have
exactly the same optimal energy expenditure, with (unique)
optimal transmission duration vectors given by [τ1, · · · , τM ]
and [τM , · · · , τ1], respectively.

The two claims above immediately imply the theorem be-
cause, for any k ∈ [1, · · · ,M ], we have that τ

(f)
k is identically



distributed to τ
(r)
k (Claim 1), and τ

(r)
k = τ

(f)
M+1−k (Claim 2).

Thus, τ
(f)
k and τ

(f)
M+1−k are identically distributed.

Note that for the single transmission deadline model [1], the
optimal transmission duration vector exhibits a monotonically
non-increasing property for each realization of inter-arrival
times. This is different from the statistically symmetric prop-
erty for the individual delay constraint model discussed here.

B. Packet Delay Performance

Now we will utilize the symmetry property of the optimal
~τ to obtain a simple and exact solution of the average packet
delay performance for the optimal offline scheduler. First,
define the average packet delay as:

q̄ M=E{ 1
M

M∑
m=1

qm}

where qm is the delay experienced by packet m under the
optimal offline schedule with a particular realization of the
inter-arrival time vector (see (1)), and the expectation is taken
over all realizations of packet inter-arrival times. We have:

Lemma 4.2: For any M ≥ 1, when the inter-arrival times
dm, 1 ≤ m ≤ M − 1, are i.i.d., under the optimal offline
schedule, the average packet delay is given by

q̄ = ¯̂
d +

M + 1
2M

(T − ¯̂
d). (12)

where ¯̂
d = E{d̂m} and d̂m = min{dm, T}. When M → ∞,

q̄ → (T + ¯̂
d)/2.

Proof: First, from Section III, we know ~̂
d yields the same

optimal transmission duration vector ~τ as ~d, and subsequently,
the same packet delay performance. From (1), the delay for
packet m is qm =

∑m
l=1 τl −

∑m−1
l=1 d̂l. Thus,

q̄ M= 1
M

∑M
m=1 E{qm}

= 1
M

∑M
m=1

[∑m
l=1 E{τl} −

∑m−1
l=1 E{d̂l}

]
(a)
= 1

M

∑M
m=1(M −m + 1)E{τm} − 1

M

∑M
m=1(m− 1) ¯̂

d
(b)
= 1

M

∑M
m=1

M+1
2 E{τm} − 1

M
M(M−1)

2
¯̂
d

(c)
= M+1

2M [(M − 1) ¯̂
d + T ]− M−1

2
¯̂
d

= ¯̂
d + M+1

2M (T − ¯̂
d),

where (a) holds by counting the number of occurrences of each
item, the first term of (b) comes from the symmetry property
E{τm} = E{τM−m+1},∀m ∈ [1, · · · ,M ], and equivalently,
there are (M +1)/2 copies of each E{τm}, and the first term
of (c) is due to the fact that

∑M
m=1 E{τm} = (M − 1) ¯̂

d + T ,
i.e., the non-idling scheduling.

Corollary 4.2.1: The average queuing delay (excluding the
transmission time), i.e., q̄ − 1

M

∑M
m=1 E{τm}, is given by

¯̃q =
M − 1
2M

(T − ¯̂
d).

When M →∞, ¯̃q → (T − ¯̂
d)/2.

Proof: This comes directly from Lemma 4.2 and the fact
that

∑M
m=1 E{τm} = (M − 1) ¯̂

d + T .

Fig. 3. The average packet delay vs. M for the individual delay constraint
model, λ = 1.

Lemma 4.2 indicates that under the i.i.d. assumption of
~̂
d, the average packet delay is roughly half of the delay
constraint when M is sufficiently large and T � ¯̂

d. This is
illustrated in Figure 3 for different individual delay constraints,
under a Poisson arrival model of rate λ (thus, ¯̂

d is equal
to (1 − e−λT )/λ). As can be seen, when M increases, the
average packet delay decreases and converges to a fixed value.
Under typical scenarios, ¯̂

d is roughly equal to d̄ (without
being upper-bounded by T ), and hence 1/λ. From Little’s
Theorem [18], the average number of packets is approximately
(λT + 1)/2 under the optimal scheduling for the individual
delay constraint model.

This delay performance is in contrast to the potentially
unbounded average packet delay performance of the optimal
offline scheduling algorithm for the single deadline model
[15]. In fact, assuming a Poisson packet arrival of rate λ, the
average packet delay q̄single

M for a total number of M packets
was approximated by [15]

q̄single
M ≈ 1

λ

(√
2π

6

√
M + 1

)
. (13)

V. ONLINE SCHEDULERS AND THEIR PROPERTIES

In this section, we will investigate two online schedulers.
The online schedulers only assume information of the current
scheduling backlog. The first scheduler extends the optimal
static buffer flushing algorithm in [6] to a system with dynamic
packet arrivals and departures. The second scheduler is an
IMET-like algorithm [17] in which packets are buffered and
scheduled on a fixed duration basis.

A. Optimal Buffer Flushing Based Online Scheduling

The optimal algorithm of flushing a static buffer with a
finite number of packets of various discrete individual delay
constraints was investigated in [6], a re-formulation of the
scheduling issue in [5]. Assume at a time instant, there are
a finite number (e.g., K ≥ 13) of discrete individual delay
constraints in the buffer, i.e., T1 ≤ T2 ≤ · · · ≤ TK , with

3The case when K = 0 is trivial.



packet sizes of B1, B2, · · · , BK , respectively. It is shown in
[6] that the optimal transmission duration of the head packet,
i.e., the packet with the smallest delay constraint, can be
written as:

τ1 = B1 min
k∈[1,··· ,K]

Tk∑k
i=1 Bi

. (14)

Here we extend this static optimal buffer-flushing algorithm
to a continuous time system with dynamic packet arrivals
and departures. However, the transmission duration of the
head packet by (14) may no longer hold when a new packet
arrives. In other words, the optimal transmission rate inherent
in (14) may be kept until upon a new packet arrival, at which
point a new optimal transmission rate may become necessary.
Therefore, we can re-write (14) in terms of the optimal buffer
flushing rate as

ropt = max
k∈[1,··· ,K]

∑k
i=1 Bi

Tk
. (15)

It is worth noting that although we assume equal packet sizes
and equal delay constraints, at a particular time instant, the
pending packets in the buffer do not necessarily have the same
packet sizes and delay constraints. This is because packets may
arrive at different times, and the head packet in the buffer may
already in the process of transmission4.

When a new packet arrives, the new optimal flushing rate
is no less than the original rate before the new packet arrival.
This is obvious as a new term is added to the right hand side
of (15). On the other hand, the optimal rate in (15) may also
need to be updated upon a packet departure, as the first entry
on the right hand of (15) disappears. If the departed packet
has a delay less than T , the optimal flushing rate remains
unchanged. However, if its delay is exactly equal to T , the
optimal flushing rate may be decreased. This is due to the
fact that the departed head packet satisfies B1/T1 = ropt. To
sum up, at any time, the scheduler chooses a transmission rate
based on (15), and may
• Increase the rate upon a new packet arrival, or
• Decrease the rate upon a packet departure with a delay

exactly equal to T ,
where Bi and Ti in (15) are the current residual packet size
and the remaining time to the deadline for packet i.

Lemma 5.1: The online scheduler by (15) guarantees that
all packets meet their own delay constraints.

Proof: This can be easily checked by noting the FIFO
assumption and the fact that at any time t ≥ 0, we have ropt ≥
B1/T1.

For convenience, we will denote the above online scheduler
as the online flush scheduler. It is worth emphasizing that no
future arrival information, completely or partially, is assumed
in the design of the above online scheduling algorithm. At any
given time instant, the online flush scheduler yields the optimal

4Note that here a fluid packet departure model is assumed. That is, a
transmitted packet is not necessarily an integer number of arrived packets,
but may be assembled using fragmented arrival packets up to an arbitrary
precision.

transmission rate when there are no future packet arrivals.
In a system of dynamic arrivals, the above online scheduler
may no longer be optimal when additional future arrival
information is anticipated and incorporated. For instance, a
stochastic optimal control algorithm, which anticipates future
arrivals, was investigated in [6] for packets subject to a single
transmission deadline.

Obviously, the online flush scheduler results in a transmis-
sion energy no less than that of the optimal offline scheduler.
The following Lemma characterizes its delay performance:

Lemma 5.2: Given M ≥ 1 and any particular inter-arrival
time vector ~d, for each packet m ∈ [1, · · · ,M ], the packet
delay under the online flush scheduler by (15), qflush

m , is no
less than that of the optimal offline scheduler by (2), qoffline

m .
In particular, if qoffline

m = T , then qflush
m = T . In addition,

E{qflush} ≥ E{qoffline}.
Proof: Note that due to the FIFO constraint, when both

schedulers have the same queue length, they must have the
same buffered packets. Now consider at any time t ≥ 0,
whenever the two schedulers have the same buffered packet
sizes, reflected by B1, B2, · · · , BK corresponding to delay
constraints T1 ≤ T2 ≤ · · · ≤ TK , respectively. This certainly
holds true at time 0 when the first packet arrives, where
B1 = B and T1 = T . At time t+, the flush scheduler chooses
a transmission rate rflush(t+) by (15), using only current
backlog information Bi and Ti, i ∈ [1, · · · ,K]. The optimal
offline scheduler, however, in addition to current backlog
information, also exploits future arrival information. Thus, at
time t+, the optimal offline scheduler always chooses a rate
roffline(t+) no less than that of the flush scheduler, i.e.,
roffline(t+) ≥ rflush(t+). Thus, the unfinished amount of
work in the flush scheduler is never less than that of the offline
scheduler.

More delay performance comparisons between the optimal
offline scheduler and the online flush scheduler will be inves-
tigated via simulations in Section VI.

B. The IMET-like Online Scheduler

This online scheduler is loosely linked to the iterative
minimum emptying time (IMET) algorithm in [17] and thus is
termed as the IMET-like scheduler. The IMET algorithm [17]
is a frame-based iterative scheduling algorithm which, given
a certain traffic model and channel conditions, determines the
minimum required frame duration such that all the packets
buffered in the preceding frame can be fully scheduled (with-
out packet dropping) in the current frame. This design idea
leads to a simple online scheduler for the individual delay
constraint model. In this case, the goal is not to find the
minimum frame duration. Instead, given the individual delay
constraint T , we can just choose a frame duration of T/2, and
iteratively buffer and schedule packets on a per T/2 basis. In
doing this, we can guarantee that all packets will experience
a delay no more than T . To be more specific, the IMET-like
online scheduler is as follows:

1) Choose the frame duration as Tf = T/2.
2) During the first frame, do nothing.



3) For each subsequent frames, ignore all new arrivals dur-
ing this frame but clear the backlog due to the preceding
frame such that each buffered packet is transmitted with
the same duration of Tf/Nf , where Nf ≥ 1 is the number
of buffered packets during the previous frame. If Nf = 0,
do nothing.

Note that unlike the optimal offline scheduler and the online
flush scheduler, the IMET-like online scheduler with inter-
arrival times di ≤ T , i ∈ [1, . . . ,M ], may still yield idling
periods, especially when di > T/2. These potential idling
periods, along with the inefficiency of potentially not fully
utilizing the individual delay constraints, makes this simple
scheduler inferior to both the optimal offline scheduler and the
online flush scheduler, as will be demonstrated in Section VI.

Now let us study the packet delay performance for the
IMET-like scheduler. Similar to [1][15], we will focus on a
Poisson arrival model such that inter-arrival times follow an
exponential distribution. Under the Poisson arrival model, the
arrival times of these Nf ≥ 1 packets in the preceding frame
follow a uniform distribution. Under the scheduling scheme,
these packets will depart in the current frame with a Tf/Nf

increment. Thus, the average delay for these Nf packets is

Tf

2
+

1
Nf

Nf (Nf + 1)
2

Tf

Nf
= Tf +

Tf

2Nf
, Nf ≥ 1, (16)

where the first term on the left hand side is due to the average
packet arrival time in the preceding frame to the boundary of
the current frame, while the second term is due to the Tf/Nf

increment for a total of Nf packets. Note that when Nf = 0,
the average delay is zero.

Now, the number of packets arrived in a frame, Nf , follows
a Poisson distribution, i.e., P{Nf = n} = e−λTf (λTf )n/n!,
where λTf is the average number of packets arrived in a
frame. Using (16), the average delay of these (on average)
λTf packets can be obtained as

q̄IMET = 1
λTf

∑∞
n=1 ne−λTf

(λTf )n

n! (Tf + Tf

2n )

= e−λTf /λ[
∑∞

n=1
(λTf )n

(n−1)! + 1
2

∑∞
n=1

(λTf )n

n! ]
= e−λTf /λ[λTfeλTf + 1

2 (eλTf − 1)]
= Tf + 1

2λ (1− e−λTf )
= T

2 + 1
2λ (1− e−λT/2)

(17)
where we have used q̄IMET = E{nTf +Tf/2|n ≥ 1}/(λTf ),
resulting from renewal theory and the law of large numbers,
where the numerator is the average sum of delays of all
packets (n ≥ 1) scheduled over a frame (from (16)), and the
denominator is the average number of packets scheduled over
a frame duration.

Due to the Poisson arrival assumption in a frame, q̄IMET

(see (17)) is not a function of the total number of packets
M . However, for a given M , the number of packet arrivals
in a frame is finite and upper bounded by M . Thus, the
actual average delay for the IMET-like online scheduler is
approximately given by (17), and converges to (17) when M
approaches infinity.

Note from (12) that, when M is large, the average packet
delay of the optimal offline scheduler, q̄offline, converges to
q̄offline → T/2+ ¯̂

d/2, where under the Poisson arrival model,
¯̂
d = (1− e−λT )/λ. Compared q̄IMET in (17), it can be seen
that when T is reasonably large,

q̄IMET ≈ q̄offline, when M →∞.

That is, the IMET-like online scheduler achieves almost the
same delay performance as the optimal offline scheduler,
while its transmission energy performance may be significantly
worse than that of the optimal offline scheduler, as will be
shown in the next Section.

VI. NUMERICAL RESULTS

We assume a Poisson arrival rate of λ = 1 packet/second.
The inter-arrival time dM is fixed at T for both models. The
energy function is assumed to be w(τ) = τ(22B/τ − 1) [1],
where B is normalized to be the number of bits per channel
use. It is worth noting the optimal transmission duration
vector ~τ and the corresponding average packet delay are not
a function of B. We will first illustrate the properties of the
optimal transmission durations and packet delays, followed by
the performance comparison of the optimal offline scheduler
and the online schedulers.

A. Properties of the Optimal Offline Scheduling

Figure 4 shows the average optimal transmission durations
when M = 100. The results were averaged over 10,000
independent simulations. The single transmission deadline
model is shown for comparison. As can be seen, the optimal
transmission duration vector for the individual delay constraint
model exhibits the symmetry property. The minimum trans-
mission duration occurs in the middle of the packets. The
single transmission deadline model, on the other hand, exhibits
a different property. Its average optimal transmission durations
are monotonically decreasing. Note that the average optimal
transmission durations of the individual delay constraint model
are lower bounded by the average inter-arrival time d̂ =
(1− e−λT )/λ (not shown).

Figure 5 shows the average packet delay associated with the
optimal transmission durations. It can be seen that the average
delay for the individual delay constraint model increases with
packet index m, and maximizes at T when m = M . The
average packet delay, including the transmission delay, is close
to (T + d̂)/2 when m is approximately M/2. The delay for
the single transmission deadline model, however, peaks in the
middle of the packets, and is much higher than that of the
individual delay constraint model.

B. Comparison Between the Offline and Online Schedulers

Figure 6 shows the normalized transmission energy per-
formance for the two online schedulers when M = 1000.
The energy normalization is performed with respect to that of
the optimal offline scheduler. The results were averaged over
1,000 independent simulations. It can be seen that the online
flush scheduler achieves a comparable energy performance



Fig. 4. Average optimal offline transmission durations, M = 100.

Fig. 5. Average packet delay vs packet indices under the optimal offline
schedule, M = 100.

to the optimal offline scheduler when the normalized packet
size is small and/or the individual delay constraint is large.
The simple IMET-like online scheduler, however, performs
significantly worse than both the optimal offline and the online
flush schedulers, especially for small delay constraints and
large packet sizes.

Figure 7 and Figure 8 show the average packet delay
performance for the offline and the online schedulers when
M = 1000. The online flush scheduler, on average, achieves a
larger delay performance than both the two other schedulers,
which yields almost the same delay performance. The above
delay performance gap grows as the individual delay constraint
increases. The average delay for all the three schedulers
increases rapidly at the beginning and the end of the set of M
packets, and remains flat in the middle. The analytical delay
performance results for the optimal offline scheduler in (12)
and the IMET-like online scheduler in (17) are also shown
in Figure 8 for comparison, and agree very well with the
simulations.

VII. CONCLUSIONS

In this paper, we investigated the properties of the optimal
offline scheduling for packets subject to individual delay
constraints. It was shown that when packet inter-arrival times

Fig. 6. Average normalized transmission energy for the online schedulers,
M = 1000.

Fig. 7. Average packet delay vs packet indices for the offline and online
schedulers, M = 1000.

Fig. 8. Average packet delay vs T for the offline and online schedulers,
M = 1000.



are identically and independently distributed, the resulting
optimal transmission durations exhibit a symmetry property.
This important property makes it possible to obtain a simple
and exact solution of the average packet delay. Two online
schedulers were then studied and compared with the optimal
offline scheduling algorithm in terms of packet delay and
transmission energy performance via analysis and simulations.
While both online schedulers are inherently inferior, the online
flush scheduler is shown to achieve a comparable energy
performance to the optimal offline scheduler in a wide range
of scenarios.
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APPENDIX A
OPTIMAL OFFLINE SCHEDULING FOR UNEQUAL PACKET
SIZES AND UNEQUAL INDIVIDUAL DELAY CONSTRAINTS

Here we extend the optimal offline schedule for the individ-
ual delay constraint model to unequal packet sizes and unequal
individual delay constraints. We first start with unequal packet
sizes but equal individual delay constraints. The optimal offline
schedule for the single deadline model with unequal packet
sizes was discussed in [1]. Similar to [1], we should now
try to equalize per bit packet transmission duration instead
of per packet transmission duration. However, we will adopt
a derivation approach different from the one in [1]. Indeed,
this approach can also be used as an alternative to derive the
optimal offline scheduler under unequal packet sizes for the
single deadline model [1].

Note that the optimal offline scheduler with equal packet
sizes and equal individual delay constraints discussed in Sec-
tion III is valid for any packet inter-arrival times. Now, in case
of unequal packet sizes, we can view each bit in a packet as
a virtual packet, and the inter-arrival times between all bits
in the same packet are essentially zero. In other words, a
packet of Bi bits is treated as if there were Bi equal-size (i.e.,
one bit) virtual packet arrivals, with virtual inter-arrival times
ei,j = 0, j ∈ [1, · · · , Bi − 1], and ei,Bi

= d̂i. Applying these
virtual packet arrivals to (2) and (5), after some derivations, it
can be shown the optimal transmission duration for any packet
m, under a queuing delay of q̃m, is given by

τm = Bm max
m≤i≤M

τ1[i], (18)

where τ1[i], i ∈ [m, · · · ,M ], given by

τ1[i] = min
{
−q̃m+

Pi
l=m d̂lPi

l=m Bl
, (T−q̃m)

Bm
, (T−q̃m)+d̂m

Bm+Bm+1
, · · · ,

(T−q̃m)+
Pi−2

l=m d̂lPi−1
l=m Bl

}
.

(19)
Now when packets have different delay constraints Ti, i =

1, · · · ,M , it is natural to assume that the transmission deadline
is monotonically non-decreasing, i.e., ti + Ti ≤ ti+1 + Ti+1,
such that the packets still follow the FIFO rule. Similar
scheduling feasibility constraints in (1) still hold, with d̂i =
min(di, Ti), for 1 ≤ i ≤ M . In addition, the check of packet
delay constraints should be based on the different individual
packet delay constraints Ti, instead of the same constraint T .
The optimal offline schedule still follows the exact procedure
as discussed in Section III. The optimal transmission duration
for packet m ∈ [1, · · · ,M ] can be obtained as

τm = Bm max
m≤i≤M

τ1[i], (20)



where τ1[i], i ∈ [m, · · · ,M ], given by

τ1[i] = min
{
−q̃m+

Pi
l=m d̂lPi

l=m Bl
, (Tm−q̃m)

Bm
, (Tm+1−q̃m)+d̂m

Bm+Bm+1
,

· · · ,
(Ti−1−q̃m)+

Pi−2
l=m d̂lPi−1

l=m Bl

}
.

(21)
where q̃m ≥ 0 again is the queuing delay of packet m.


