
DCDIS CONFERENCE GUELPH, ONTARIO, CANADA, JULY 2005 1

Distributed and Secure Computation of Convex
Programs over a Network of Connected Processors

Michael J. Neely
University of Southern California
http://www-rcf.usc.edu/∼mjneely

Abstract— We consider the fundamental problem of
optimizing a convex function subject to a collection of
convex inequality constraints and set constraints. An
iterative algorithm is developed that solves the problem to
within any desired accuracy using a network of distributed
processors. The network is assumed to form a connected
graph. Each processing node of the graph takes charge
of a portion of the original constraints and solves a
correspondingly less complex problem, passing key values
to neighboring nodes. The constraints can be assigned to
nodes arbitrarily, and individual nodes do not require
knowledge of the network topology or the constraints
assigned to other nodes. Further, we assume that each node
has a set of private optimization variables that participate in
the global optimization problem but are unknown to other
nodes of the graph. This establishes a general framework
for computational load sharing and secure optimization
over a network.

Index Terms— Distributed Computing, Optimization,
Privacy, Network Security

I. INTRODUCTION

We consider the fundamental problem of finding the
minimum value of a multi-variable convex function sub-
ject to a set of convex inequality constraints. Such convex
programs have numerous applications, particularly in the
area of data networks, and a variety of computational
algorithms exist for solving them [1][2][3][4][5]. In this
paper, we develop a novel technique for distributing
the computation over a connected graph of network
processors. Each processing node takes charge of a
subset of the original problem constraints, and iteratively
solves a simplified problem involving only this subset.
Problem parameters are updated at every iteration based
on message passing between neighboring nodes. Further,
we assume each processing node has a set of private
optimization variables that participate in the global opti-
mization problem but must be kept hidden from other
nodes of the graph. The resulting algorithm yields a
solution that is arbitrarily close to the global optimal
solution, where proximity to optimality is controlled by
a parameter V that affects a tradeoff in the required
computation time.

These results contribute to the growing field of dis-
tributed computing. This field has received a consider-
able amount of attention in recent years due to the inher-
ent inter-networking capabilities of modern computers
and the numerous computationally intensive experiments
performed by the scientific community. Recent theoreti-
cal results consider sorting, ordering, and averaging over
graphs [6] [7], and distributed computation of matrix
eigenvalues is considered in [8]. Related work considers
implementation of parallel algorithms over mesh net-
works [9] [10] [11] and distributed computation with
asynchronous updates [12].

Algorithms for solving convex programs over multiple
parallel processors have been developed previously in
[5] [3] using a primal-dual methodology, and distributed
algorithms for solving linear programs on a network have
been recently considered in [2] in the case when each
linear inequality constraint involves only local variables.
Distributed nonlinear optimization for stochastic network
flow problems is considered in [13] [14] [15]. In this pa-
per, we develop distributed solutions to convex optimiza-
tion problems with any number of variables and with
general constraint sets. Our contributions are threefold:
First, we develop a distributed algorithm that operates
over any connected graph of processors. Inequality con-
straints can be assigned to processors arbitrarily to ensure
an equitable sharing of system resources, and individual
processors do not require knowledge of the constraints
of other processors. Second, we consider the issue of
secure optimization, where a global optimum is attained
without requiring individual processors to reveal their
private optimization variables. Third, we present our
results in terms of Lyapunov drift theory, which deviates
significantly from the traditional primal-dual approach to
convex optimization and simplifies the analysis.

The outline of this paper is as follows. In the next
section we introduce the optimization problem, and
in Section III we present the distributed optimization
algorithm. In Section IV we introduce Lyapunov drift
theory and prove the performance bounds.

DCDIS CONFERENCE GUELPH, ONTARIO, CANADA, JULY 2005 2

II. PROBLEM FORMULATION

Consider an undirected graph with K nodes and
L links, where nodes represent processors and links
represent inter-processor communication channels. We
assume the graph is connected, so that there is a path
from any node to any other node. For each node k ∈
{1, . . . ,K}, let Nk represent the set of neighboring
nodes, that is, Nk consists of all nodes j such that there is
a link between nodes k and j. We desire to use this graph
of processors to compute the solution to the following
convex optimization problem:

Problem A:

Minimize:
∑K

k=1 gk(~x, ~pk)

Subject to: ~fk(~x, ~pk) ≤ ~bk for k ∈ {1, . . . ,K}
~x ∈ Ω ∩ Ω1 ∩ . . . ∩ ΩK (1)

~pk ∈ Θk for k ∈ {1, . . . ,K} (2)

where ~x is a vector of public variables in RM for
some integer M , ~pk is a vector of private variables
in RMk for some integer Mk for each k, gk(·), ~fk(·)
are convex functions of their multi-variable arguments
(where we define a vector valued function to be convex
if each component function is convex), Ω,Ω1, . . . ,ΩK

are convex subsets of RM , and Θ1, . . . ,ΘK are convex
subsets of RM1 , . . . , RMK , respectively.

To prevent infinite solutions to the above optimization,
we assume that all sets are compact and all functions are
bounded. Further, we make the following non-negativity
assumptions: We assume that ~bk > 0 and gk(·) ≥
0, ~fk(·) ≥ 0 for all k ∈ {1, . . . ,K} (where the inequal-
ities are taken entrywise), and that the set Ω restricts
the public variables ~x to having non-negative entries. It
is not difficult to show that general convex optimization
problems with bounded functions over compact sets can
be written as optimizations that conform to the non-
negativity assumptions.1

Note that we have defined K sets of inequalities so
that we can assign each set to a particular processor. In
the case when there are no private optimization variables,
the particular assignment of inequalities to processors is
arbitrary. However, the private optimization variables ~pk

and their constraint sets Θk represent decision variables
and constraints that participate in the global optimiza-
tion, but which must be kept hidden from all other
processors. Such a problem arises, for example, when the
private variables represent prices or consumption levels
that a particular individual does not wish to reveal. We

1Indeed, all that is required to modify the general problem to meet
the non-negativity assumptions is to add a sufficiently large positive
constant to both sides of every inequality and make an appropriate
change of variables.

now transform the optimization problem into a form that
is more conducive to distributed implementation.

We first designate node 1 as the root node of the graph,
and form the shortest path tree from all nodes to this root
node 1. Specifically, each node i ≥ 2 is assigned a parent
node Par(i) from its set of neighbors, and the sequence
of successive parents of a given node i terminates at the
root node 1 and forms a shortest hop path from node i
to node 1. Such trees always exist in connected graphs,
and simple distributed algorithms for constructing them
are given in [16]. We let Child(i) represent the set of
all “children” nodes of a given node i, that is, Child(i)
is the set of all nodes j such that Par(j) = i.

Problem B:

Minimize:
∑K

k=1 gk(~xk, ~pk)

Subject to: ~fk(~xk, ~pk) ≤ ~bk for k ∈ {1, . . . ,K} (3)

~xk ∈ Ω ∩ Ωk for k ∈ {1, . . . ,K}
~pk ∈ Θk for k ∈ {1, . . . ,K}

~xk ≥ ~xPar(k) for k ∈ {2, . . . ,K} (4)

~xk ≤ ~xPar(k) for k ∈ {2, . . . ,K} (5)

The constraints (4) and (5) imply that children and
parents have the same ~xk values. Because the graph
is connected, this implies that ~x1 = ~x2 = . . . = ~xK .
We thus have the following simple lemma, the proof of
which is straightforward and omitted for brevity.

Lemma 1: The vector (~x∗, ~p∗1, . . . , ~p
∗
K) is an

optimal solution to Problem A if and only if
(~x∗, . . . , ~x∗, ~p∗1, . . . , ~p

∗
K) is an optimal solution to

Problem B. �

A. The Interior Point Assumption

To facilitate analysis, it is useful to assume that
there exists a vector (~x, ~p1, . . . , ~pK) satisfying the set
constraints (1) and (2), and such that ~fk(~x, ~pk) < ~bk

for all k. That is, there exists a point that satisfies all
inequalities with strict inequality (note that we do not
require the optimal point to have this property). We
define εmax as the maximum value of ε such that there
exists a vector (~x, ~p1, . . . , ~pK) satisfying (1) and (2) and
additionally satisfying ~fk(~x, ~pk) ≤ ~bk−~ε for all k (where
~ε is a vector with all entries equal to ε). It is not difficult
to show that, given the existence of a positive value of
εmax, there must exist a sequence of vectors ~x(ε), ~p

(ε)
k

parameterized by positive values ε ≤ εmax that satisfy
the set constraints (1) and (2) and such that:

~fk(~x(ε), ~p
(ε)
k) ≤ ~bk − ~ε for 0 < ε ≤ εmax (6)

while ~x(ε) → ~x∗, ~p
(ε)
k → ~p∗k as ε → 0, where ~x∗ and ~p∗k

represent the optimal solution vectors for Problem A.

DCDIS CONFERENCE GUELPH, ONTARIO, CANADA, JULY 2005 3

III. DISTRIBUTED AND SECURE OPTIMIZATION

We now present a distributed algorithm for computing
a solution that is arbitrarily close to the optimal solution
of Problem B (and hence, Problem A). In particular,
each network node k takes charge of the inequality
constraints ~fk(~xk, ~pk) ≤ ~bk and the set constraints ~xk ∈
Ω ∩ Ωk and ~pk ∈ Θk. A sequence of vector values
{~xk[0], ~xk[1], . . . , ~xk[t]} and {~pk[0], . . . , ~pk[t]} is com-
puted over t iterations, the average of which approaches
the desired solution. We note that the vector ~xk[t] can
be viewed as the estimate of the public variables at node
k at time t.

To define the algorithm, let V > 0 be a control
parameter that affects algorithm performance, and define
the sequence δ[t]M=1/

√
1 + t for t ∈ {0, 1, . . .}. Further-

more, we define violation sequences ~Uk[t], ~Yk[t], and
~Zk[t] as follows: Let ~Uk[0] = ~0 for k ∈ {1, . . . ,K}, and
let ~Yk[0] = ~Zk[0] = 0 for k ∈ {2, . . . ,K}. On every
iteration t we update the ~Uk[t] sequences for each node
k ∈ {1, . . . ,K} as follows:

~Uk[t + 1] = max[~Uk[t]−~bk, 0] + ~fk(~xk[t], ~pk[t]) (7)

Likewise, for nodes k ∈ {2, . . . ,K} we have:

~Yk[t + 1] = max[~Yk[t]− ~xk[t]− ~δ[t], 0] + ~xPar(k)[t] (8)
~Zk[t + 1] = max[~Zk[t]− ~xPar(k)[t]− ~δ[t], 0] + ~xk[t] (9)

where the values of ~pk[t] and ~xk[t] are computed as
defined below, and where ~δ[t] represents a vector with
all entries equal to δ[t]. The ~Uk[t], ~Yk[t], and ~Zk[t]
vectors are analogous to a sequence of slack variables
in a dual solution to the convex optimization problem of
interest, but can intuitively be viewed as queue backlogs
in a slotted queueing system with arrivals and departures
determined by the control decision variables ~xk[t], ~pk[t].
Indeed, our algorithm below is inspired by the stable
queue control policies of [17] [14] [18] [15]. Specifically,
if the ~Uk[t], ~Yk[t], and ~Zk[t] queue backlogs are kept
bounded, then it must be the case that the time average
“input rate” to each queue is less than or equal to the time
average “service rate,” so that inequality constraints (3),
(4), and (5) are satisfied. We note that the positive δ[t]
sequence is defined to allow the server rate of the ~Yk[t]
and ~Zk[t] queues of (8) and (9) to be slightly larger than
the input rate to allow for stability, although this margin
decreases to zero with increased iterations.

For the following iterative algorithm, it is useful to
define the vector ~Hk[t] for each node k ≥ 2 as follows:

~Hk[t] = ~Yk[t]− ~Zk[t] (10)

The Iterative Algorithm: On iteration t, every node
k ≥ 2 transmits its ~Hk[t] vector to its parent. Each

node k ∈ {1, . . . ,K} then computes ~xk[t] and ~pk[t] as
solutions to the following optimization:

Minimize: V gk(~xk, ~pk) + 2~Uk[t] · ~fk(~xk, ~pk)

−2~xk ·
(

~Hk[t]−
∑

j∈Child(k)
~Hj [t]

)
Subject to: ~pk ∈ Θk

~xk ∈ Ω ∩ Ωk

where the vector multiplication represents the standard
dot product (i.e., a sum of the products of each entry
of the two vectors being multiplied). Each node k then
transmits its vector ~xk[t] to all of its children (defined
as the set Child(k)). Note that Child(k) is defined as
the empty set if a node has no children. The violation
sequences ~Uk[t], ~Yk[t], ~Zk[t] are then updated according
to (7)-(9).

Note that each node only requires knowledge of its
own constraints and constraint sets, and that the private
variables ~pk[t] are known only to their corresponding
nodes k. It is not difficult to show that these private
variables cannot be inferred by other nodes if these
nodes do not have exact knowledge of the individual
~fk(~xk, ~pk) functions. Indeed, if a particular node j

replaces ~fj(~xj , ~pj) and Θj by a new function ~fj(~xj ,
~pj

2)
and a new constraint set 2Θj , the resulting message
passing between neighbors will be exactly the same,
although the magnitudes of the private variables ~pj [t]
will be doubled.

It is interesting to note that the above iterative al-
gorithm is similar to a classical subgradient search
algorithm on the dual optimization of Problem B (see,
for example, [1]), where the stepsize is normalized to
1 unit and the cost function is scaled by the control
parameter V . However, the algorithm is inspired by
minimizing the drift of a quadratic Lyapunov function
of the violation sequences ~Uk[t], ~Yk[t], ~Zk[t], rather than
by the classical primal-dual methodology. One advantage
of the Lyapunov approach is that it yields a sequence of
improving solution estimates obtained by time averages
of the ~xk[t], ~pk[t] variables, and does not require a global
evaluation of the cost function.

Specifically, we define empirical averages of the ~xk[t]
and ~pk[t] sequences as follows:

~xav
k [t]M=

1
t

t−1∑
τ=0

~xk[τ] , ~pav
k [t]M=

1
t

t−1∑
τ=0

~pk[τ] (11)

Define (~x∗, ~p∗1, . . . , ~p
∗
K) as the optimal solution vector

of Problem A, and define g∗ as the corresponding
optimal cost. Let Gmax represent the maximum value
of

∑K
k=1 gk(~x, ~pk) over the feasible vectors satisfying

the constraints of Problem A. Further define Fmax as

DCDIS CONFERENCE GUELPH, ONTARIO, CANADA, JULY 2005 4

the maximum value of ||~fk(~xk, ~pk)||2 over all k ∈
{1, . . . ,K} and over all vectors (~xk, ~pk) satisfying ~xk ∈
Ω ∩ Ωk, ~pk ∈ Θk. Define Bmax

M=maxk ||~bk||2.
Theorem 1: (Algorithm Performance) If the optimiza-

tion Problem A satisfies the interior point assumption of
Section II-A, then for all iterations t, the above iterative
algorithm yields vectors (~xav

k [t], ~pav
k [t]) with a cost that

satisfies:
K∑

k=1

gk(~xav
k [t], ~pav

k [t]) ≤ g∗ +
C

V
(12)

Further, ~xav
k [t] ∈ Ω∩Ωk and ~pav

k [t] ∈ Θk for all k and all
t, and the following inequality constraints are satisfied:

~fk(~xav
k [t], ~pav

k [t]) ≤ ~bk + C+V KGmax

2εmaxt + εmax

t (13)∣∣∣~xav
k [t]− ~xav

Par(k)[t]
∣∣∣ ≤ 2√

t
+ (C+V KGmax)

√
t+1

2t (14)

where C is defined:

C M=K

(
2 max

~x∈Ω
||~1 + ~x||2 + 2 max

~x∈Ω
||~x||2 + Bmax + Fmax

)
Hence, a value of V can be selected so that the vectors

~xav
k [t], ~pav

k [t] have a resulting cost that is arbitrarily close
to the minimizing cost g∗. The algorithm can be run for
a number of iterations t until the constraints (13) and
(14) are arbitrarily close to the constraints (3)-(5). The
proof of this theorem is provided in the next section.

A. Discussion

Note that the above algorithm is inherently distributed,
where each processor communicates only with its neigh-
boring processor, as specified by the underlying graph
structure. Indeed, each node k maintains its own “es-
timate” ~xk[t] of the public variables ~x, and the set
constraint ~x ∈ Ω∩Ω1 ∩ . . .∩ΩK is enforced locally by
restricting each estimate ~xk[t] to the local set constraint
Ω ∩ Ωk without requiring knowledge of the other set
constraints. The algorithm yields a sequence of solu-
tions ~xav

k [t], ~pav
k [t] with improved error bounds at each

timestep t. This is an important feature for distributed
applications, and a significant departure from the primal-
dual optimization results of [1] which involve maintain-
ing a running “best” solution for the global problem
as computations proceed. Evaluating the “best” solution
computed so far is not always possible in distributed
settings, as it involves complete knowledge of the global
problem and usually requires all processors to share all
of their state variables and constraint sets with all other
processors. In our algorithm, each node passes vectors
~Hk[t] only to neighboring nodes, and this information
is sufficient to ensure that local estimates of the public
variables get progressively closer and closer to satisfying
the global constraints.

We note that the interior point assumption leads to
an inequality constraint (13) that converges to (3) like
O(1/t). In the case when no interior point exists, the
update equation (7) can be modified by the sequence
~δ[t] as in (8) and (9). However, this would yield a
convergence of O(1/

√
t).

IV. PERFORMANCE ANALYSIS

To prove the theorem, we first present a fundamental
result concerning Lyapunov drift. Lyapunov drift theory
has been useful in developing stable control policies for
queueing systems [17] [19] [20] [21] [14], and the theory
has recently been extended to allow for performance
optimization of stochastic networks [15] [18]. Here,
we consider a deterministic variant of the Lyapunov
result in [15] applied to the violation sequences of
the previous section. Specifically, let ~U [t] represent a
vector sequence of non-negative variables indexed by
time t ∈ {0, 1, 2, . . .}. Define the Lyapunov function
L(~U [t]) = ||~U [t]||2. Here we use the Euclidean norm, so
that ||~U ||2 represents the sum of squares of the individual
entries of vector ~U . Define the single-step Lyapunov drift
as follows:

∆(~U [t]) = L(~U [t + 1])− L(~U [t])

At any time t, the ~U [t] vector can be viewed as the
“current state” of a dynamic system. Let ~x[t], ~p[t] be
vector sequences representing control decision variables
that effect the evolution of ~U [t]. Let g(~x, ~p) be a non-
negative cost function, assumed to be convex in the
composite vector (~x, ~p). We assume the cost function
is bounded and define Gmax as an upper bound on
the maximum cost over all possible vectors ~x and ~p.
Consider any particular target vectors ~x∗, ~p∗ that yield a
desired cost.

Theorem 2: (Optimization via Lyapunov Drift) If
~U [0] = ~0 and if there are positive constants V , ε, C
such that for all timeslots t and all sequences ~U [t] we
have:

∆(~U [t]) ≤ C − ~ε · ~U [t] + V g(~x∗, ~p∗)− V g(~x[t], ~p[t])

then for all t ∈ {1, 2, . . .} we have:
(a) g(~xav[t], ~pav[t]) ≤ g(~x∗, ~p∗) + C/V
(b) ||~U [t]|| ≤ C+V Gmax

ε + ε
2

where ~xav[t] and ~pav[t] are empirical averages of the
control variables, defined as in (11).

Proof: To prove part (a), note that the drift condition
of the theorem together with non-negativity of the ~U [t]
values imply that for all t:

∆(~U [t]) + V g(~x[t], ~p[t]) ≤ C + V g(~x∗, ~p∗)

DCDIS CONFERENCE GUELPH, ONTARIO, CANADA, JULY 2005 5

Summing over all times τ ∈ {0, . . . , t − 1} and
dividing by t, we have:

L(~U [t])
t

+ V
1
t

t−1∑
τ=0

g(~x[τ], ~p[τ]) ≤ C + V g(~x∗, ~p∗) (15)

Because g(~x, ~p) is convex in (~x, ~p), by Jensen’s inequal-
ity we have 1

t

∑t−1
τ=0 g(~x[τ], ~p[τ]) ≥ g(~xav[t], ~pav[t]).

Using this bound together with non-negativity of the
Lyapunov function in the inequality (15) yields part (a)
of the theorem.

To prove (b), note that the drift condition implies:

∆(~U [t]) ≤ C + V Gmax − ~ε · ~U [t]

Because the ~U [t] vectors have non-negative entries, it
follows that the maximum increment in L(~U [t]) is C +
V Gmax. Further, L(~U [t]) cannot increase if ~ε · ~Uk[t] ≥
C + V Gmax. Therefore, we have for all times t:

L(~U [t]) ≤ L∗ + C + V Gmax (16)

where the value of L∗ is the maximum value of ||~U ||2
subject to ~ε·~U ≤ C+V Gmax. The maximum is achieved
when all weight is placed on a single entry of ~U , and
hence L∗ = (C + V Gmax)2/ε2. It follows from (16)

that ||~U [t]|| ≤
√

(C+V Gmax)2

ε2 + C + V Gmax. It is not

difficult to show that
√

A2

ε2 + A ≤ A
ε + ε

2 for all positive
values A, ε, and the result of part (b) follows.

A. Proof of Theorem 1

We now compute the Lyapunov drift associated with
the iterative algorithm of the previous section. First, let
~U [t], ~Y [t], and ~Z[t] represent composite vectors con-
sisting of concatenated ~Uk[t], ~Yk[t], and ~Zk[t] vectors
for k ∈ {1, . . . ,K}. We define the Lyapunov function
L(~U, ~Y , ~Z)M=

∑
k ||~Uk||2 +

∑
k ||~Yk||2 +

∑
k ||~Zk||2. The

one-step Lyapunov drift is thus:

∆(~U [t], ~Y [t], ~Z[t])M=L(~U [t + 1], ~Y [t + 1], ~Z[t + 1])

−L(~U [t], ~Y [t], ~Z[t])) (17)

Consider the update equations (7)-(9) for the violation
sequences. Taking the squared norm of both sides of (7)
yields:

||~Uk[t + 1]||2 ≤ ||~Uk[t]||2 + ||~bk||2 + Fmax

−2~Uk[t] · (~bk − ~fk(~xk[t], ~pk[t]))

Likewise, taking the squared norm of both sides of (8)
yields:

||~Yk[t + 1]||2 ≤ ||~Yk[t]||2

+||~xk[t] + ~δ[t]||2 + ||~xPar(k)[t]||2

−2
∑

k
~Yk[t] · (~xk[t] + ~δ[t]− ~xPar(k)[t])

Similarly, squaring (9) yields:

||~Zk[t + 1]||2 ≤ ||~Zk[t]||2

+||~xPar(k)[t] + ~δ[t]||2 + ||~xk[t]||2

−2
∑

k
~Zk[t] · (~xPar(k)[t] + ~δ[t]− ~xk[t])

Using the abbreviated notation ∆ to represent the Lya-
punov drift defined in (17), it follows that the drift
satisfies:

∆ ≤ C − 2
∑

k
~Uk[t] · (~bk − ~fk(~xk[t], ~pk[t]))

−2
∑

k
~Yk[t] ·

(
~xk[t] + ~δ[t]− ~xPar(k)[t]

)
−2

∑
k

~Zk[t] ·
(
~xPar(k)[t] + ~δ[t]− ~xk[t]

)
+V

∑
k gk(~xk[t], ~pk[t])− V

∑
k gk(~xk[t], ~pk[t]) (18)

where C is defined in Theorem 1, and where we have
added and subtracted the optimization metric. By shifting
the sums, using the definition ~Hk[t]M=~Yk[t] − ~Zk[t], and
recalling that Child(k) is the set of all nodes j such that
Par(j) = k, we have:

∆ ≤ C − 2
∑

k
~Uk[t] · (~bk − ~fk(~xk[t], ~pk[t]))

−2
∑

k ~xk[t] · (~Hk[t]−
∑

j∈Child(k)
~Hj [t])

−2
∑

k
~δ[t] · (~Yk[t] + ~Zk[t])

+V
∑

k gk(~xk[t], ~pk[t])− V
∑

k gk(~xk[t], ~pk[t]) (19)

The right hand sides of (18) and (19) are identical.
However, from the latter expression it is clear that the
iterative algorithm defined in the previous section is
precisely designed to minimize the sum of the second,
third, fourth, and fifth terms on the right hand side
of the above inequality (19) over all feasible control
vectors ~xk, ~pk. Hence, the drift is less than or equal
to the resulting right hand side if a particular set of
feasible control vectors are plugged into the second,
third, fourth, and fifth terms. Now recall from the interior
point assumption of Section II-A that feasible vectors
~x(ε), ~p

(ε)
k exist and satisfy ~fk(~x(ε), ~p

(ε)
k) ≤ ~bk − ~ε for all

k and for all ε such that 0 < ε ≤ εmax. Hence, using the
right hand side as expressed in (18), we have:

∆ ≤ C − 2
∑

k
~Uk[t] · ~ε− 2

∑
k
~δ[t] · (~Yk[t] + ~Zk[t])

+V
∑

k gk(~x(ε), ~p
(ε)
k)− V

∑
k gk(~xk[t], ~pk[t])

The above drift expression is in the form specified
by the Lyapunov drift theorem (Theorem 2). Hence, we
have the following for all times t:∑

k gk(~xav
k [t], ~pav

k [t]) ≤
∑

k gk(~x(ε), ~p
(ε)
k) + C/V (20)

||~U [t]|| ≤ C+V KGmax

2ε + ε (21)

||~Y [t] + ~Z[t]|| ≤ C+V KGmax

2δ[t] + δ[t] (22)

DCDIS CONFERENCE GUELPH, ONTARIO, CANADA, JULY 2005 6

where we have used the fact that δ[t] decreases with t,
and where the norm of the composite vectors ~U [t] and
~Y [t] + ~Z[t] is given by:

||~U [t]|| =

√√√√ K∑
k=1

||~Uk[t]||2

||~Y [t] + ~Z[t]|| =

√√√√ K∑
k=2

||~Yk[t] + ~Zk[t]||2

The inequalities (20)-(22) hold for any value ε such
that 0 < ε ≤ εmax. Hence, they can be optimized
separately by choosing the best ε value. Recall that
~x(ε) and ~p

(ε)
k converge to the optimal operating point as

ε → 0. Hence, taking a limit in (20) as ε → 0 proves the
performance bound (12). Conversely, the bound in (21)
is minimized by setting ε = εmax, proving that:

||~U [t]|| ≤ C + V KGmax

2εmax
+ εmax (23)

Recall that the ~Uk[t] values represent queue backlogs
(see (7)). It follows that the accumulated “arrivals” to
the queue during the first t slots are less than or equal
to the maximum possible “departures” plus the backlog
at time t− 1:

t−1∑
τ=0

~fk(~xk[τ], ~pk[τ]) ≤ t~bk + ~Uk[t− 1]

Dividing the above inequality by t and using Jensen’s
inequality to push the time average summation inside
the convex function ~fk(·) yields:

~fk(~xav
k [t], ~pav

k [t]) ≤ ~bk +
~Uk[t− 1]

t
(24)

Combining (24) and (23) proves the performance
bound (13). Similarly, the performance bound (14)
can be proven directly from (22), using the fact that
1
t

∑t−1
τ=0 δ[τ] ≤ 2/

√
t − 1/t for t ≥ 1, as well as the

fact that the accumulated “arrivals” to the ~Yk[t] queues
over the first t slots are bounded by the total service
opportunities over this interval plus the backlog at time
t− 1. This proves Theorem 1.

V. CONCLUSIONS

We have developed a framework for distributed and se-
cure computation of convex programs using an arbitrary
connected graph of processors. Each node of the graph
participates in the optimization by solving a simplified
problem involving both public and private variables, and
the resulting algorithm maintains privacy while achieving
global optimality. Our analysis uses a Lyapunov drift

technique that transforms the optimization into a corre-
sponding queue control strategy. The technique is quite
general and can be extended to treat stochastic versions
of this problem.

REFERENCES

[1] D. P. Bertsekas, A. Nedic, and A. E. Ozdaglar. Convex Analysis
and Optimization. Boston: Athena Scientific, 2003.

[2] Y. Bartal, J. W. Byers, and D. Raz. Fast, distributed ap-
proximation algorithms for positive linear programming with
applications to flow control. Siam Journal of Computing, vol.
33, no. 6, pp. 1261-1279, 2004.

[3] D. P. Bertsekas and P. Tseng. Partial proximal minimization
algorithms for convex programming. Massachusetts Institute of
Technology Technical Report, 1995.

[4] D. P. Bertsekas and J. N. Tsitsiklis. Parallel and Distributed
Computation: Numerical Methods. Prentice-Hall, Englewood
Cliffs, NJ, 1989.

[5] M. C. Ferris and O. L. Mangasarian. Parallel constraint
distribution. SIAM Journal on Optimization, vol. 1, pp. 487-
500, 1991.

[6] D. Kempe, A. Dobra, and J. Gehrke. Gossip-based computation
of aggregate information. Proceedings of FOCS, 2003.

[7] J. K. Bordim, K. Nakano, and H. Shen. Sorting on single-
channel wireless sensor networks. International Symposium on
Parallel Architectures, Algorithms, and Networks, May 2002.

[8] D. Kempe and F. McSherry. A decentralized algorithm for
spectral analysis. Proc. of STOC, 2004.

[9] M. Singh, V. K. Prasanna, and J. D. P. Rolim. Collaborative
and distributed computation in mesh-like wireless sensor arrays.
Personal Wireless Communications, Sept. 2003.

[10] R. Miller and Q. F. Stout. Parallel algorithms for regular
architectures: Meshes and pyramids. MIT Press, 1996.

[11] D. Nassimi and S. Sahni. Bitonic sort on mesh-connected
computers. IEEE Trans. on Computers, vol. c-27, Jan. 1979.

[12] J. N. Tsitsiklis, D. P. Bertsekas, and M. Athens. Distributed
asynchronous deterministic and stochastic gradient optimization
algorithms. IEEE Transactions on Automatic Control, Vol. AC-
31, no. 9, September 1986.

[13] M. J. Neely. Dynamic Power Allocation and Routing for
Satellite and Wireless Networks with Time Varying Channels.
PhD thesis, Massachusetts Institute of Technology, LIDS, 2003.

[14] M. J. Neely, E. Modiano, and C. E Rohrs. Dynamic power
allocation and routing for time varying wireless networks. IEEE
Journal on Selected Areas in Communications, January 2005.

[15] M. J. Neely, E. Modiano, and C. Li. Fairness and optimal
stochastic control for heterogeneous networks. Proceedings of
IEEE INFOCOM, March 2005.

[16] D. P. Bertsekas and R. Gallager. Data Networks. New Jersey:
Prentice-Hall, Inc., 1992.

[17] L. Tassiulas and A. Ephremides. Stability properties of con-
strained queueing systems and scheduling policies for maximum
throughput in multihop radio networks. IEEE Transacations on
Automatic Control, Vol. 37, no. 12, Dec. 1992.

[18] M. J. Neely. Energy optimal control for time varying wireless
networks. Proceedings of IEEE INFOCOM, March 2005.

[19] L. Tassiulas and A. Ephremides. Dynamic server allocation
to parallel queues with randomly varying connectivity. IEEE
Trans. on Inform. Theory, vol. 39, pp. 466-478, March 1993.

[20] N. McKeown, V. Anantharam, and J. Walrand. Achieving 100%
throughput in an input-queued switch. Proc. INFOCOM, 1996.

[21] E. Leonardi, M. Melia, F. Neri, and M. Ajmone Marson. Bounds
on average delays and queue size averages and variances in
input-queued cell-based switches. Proc. INFOCOM, 2001.

