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Optimal Backpressure Routing for Wireless
Networks with Multi-Receiver Diversity

Michael J. Neely , Rahul Urgaonkar

Abstract—We consider the problem of optimal scheduling
and routing in an ad-hoc wireless network with multiple traf-
fic streams and time varying channel reliability. Each packet
transmission can be overheard by a subset of receiver nodes,
with a transmission success probability that may vary from
receiver to receiver and may also vary with time. We develop a
simple backpressure routing algorithm that maximizes network
throughput and expends an average power that can be pushed
arbitrarily close to the minimum average power required for
network stability, with a corresponding tradeoff in network
delay. When channels are orthogonal, the algorithm can be
implemented in a distributed manner using only local link error
probability information, and supports a “blind transmission”
mode (where error probabilities are not required) in special
cases when the power metric is neglected and when there is
only a single destination for all traffic streams. For networks
with general inter-channel interference, we present a distributed
algorithm with constant-factor optimality guarantees.

Index Terms—Broadcast advantage, distributed algorithms,
dynamic control, mobility, queueing analysis, scheduling

I. INTRODUCTION

In this paper, we consider a multi-node, multi-hop wireless
network with “unreliable” channels. Each transmission link
has an associated error probability that may vary with time
due to external factors such as environment changes or user
mobility. Many previous studies assume that accurate channel
information is available so that error probabilities are relatively
small and can be neglected. However, in this work we consider
the opposite case where precise channel information is difficult
or impossible to obtain, but where simple estimates of channel
quality can be made based on limited channel feedback. A
motivating example is an underwater sensor network that uses
acoustic channels with large propagation delays. This is a
particularly challenging environment due to time varying wave
ripple, complex signal reflections between surface and ground,
and large delay spreads [2] [3]. While it may not be practical to
assume that an accurate channel quality can be determined at
the time of packet transmission, it is reasonable to estimate the
error probability based on past signal strength values and/or
ACK/NACK history from previous transmissions.

This work was presented in part as an invited paper at the Conference on
Information Sciences and Systems (CISS), Princeton University, March 2006
[1].
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Fig. 1. A multi-hop network with channel errors and multi-receiver diversity.
In this example there is a single destination indicated by the star node. Note
that a “closest-to-the-destination” heuristic might result in data being routed
from node 1 to 2 to 3, resulting in a deadlock.

The problem of unreliable channels is also important in
other contexts, such as mobile networks where knowledge
of which receivers are within transmission range may be
uncertain, or in dense ad-hoc networks where unpredictable
transmissions of other nodes can act as random inter-channel
interference. It is imperative to develop flexible mathematical
models of such networks, and to develop robust networking
strategies that exploit all system resources to operate efficiently
in these extreme environments.

In this paper, we design robust algorithms by exploiting
the broadcast advantage of wireless networks. Specifically,
our network model includes the fact that a single packet
transmission might be overheard by a subset of receiver nodes
within range of the transmitter. This creates a multi-receiver
diversity gain, where the probability of successful reception
by at least one node within a subset of receivers can be much
larger than the corresponding success probability of just one
receiver alone. Hence, it is desirable to design flexible routing
algorithms that do not require a single “next hop” receiver
to be specified in advance. Such algorithms can dynamically
adjust routing and scheduling decisions in response to the
random outcome of each transmission.

The wireless broadcast advantage has been used in vari-
ous contexts, for example, in [4] for the design of wireless
multi-cast algorithms, and in [5] for the design of minimum
energy disjoint paths. There is much recent interest in using
multi-receiver diversity for packet forwarding, and proposed
algorithms include Selection Diversity Forwarding (SDF) [6],
Geographic Random Forwarding (GeRaF) [7], Extremely Op-
portunistic Routing (ExOR) [8], Multiuser Diversity Forward-
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ing (MDF) [9], and related algorithms in [10] [11] [12]. We
note that such problems involve situations where the same
packet is redundantly distributed over different network nodes.
A fundamental decision is whether to allow the different
versions of the packet to simultaneously propagate throughout
the network, or to designate only a single copy that is allowed
to proceed. The work in [6] [7] considers the simple heuristic
that shifts packet forwarding responsibilities to the receiver
that is closest to the destination. While this scheme has many
desirable properties, especially for large ad-hoc networks, it
is clear that for a given network of fixed size, the “closest-
to-destination” heuristic neither maximizes throughput nor
minimizes average power expenditure. Further, this scheme
can lead to an undesirable deadlock mode if data is consistently
forwarded to a particular node for which there are no other
next-hop receivers that are closer to the destination (see Fig.
1). Thus, it is often better to route packets along paths that
temporarily take them further from the destination, especially
if these paths eventually lead to links that are more reliable
and/or that are not as heavily utilized by other traffic streams.
The work in [8] [9] [6] considers routing heuristics based on
an estimated delivery cost, such as an estimate of the expected
number of hops required to reach the destination along a
traditional shortest path. Work in [10] develops analytical
properties of related schemes, and energy-optimal routing for
transmission of a single packet is considered in [11] [12] via
dynamic programming. However, when a stream of packets are
to be transmitted, none of the above algorithms are throughput-
optimal or energy-optimal.

There are several difficulties associated with developing a
throughput optimal algorithm in this context. First, individ-
ual nodes might only know the error probabilities on their
own outgoing links, and may not know the error rates or
traffic loads on other portions of the network. Second, even
if centralized network knowledge were fully available, an
optimal algorithm would need to specify a contingency plan
for each possible random transmission outcome. For example,
suppose a given node transmits a packet for which there
are k potential receivers. There are 2k possible outcomes
of this single transmission (one for each possible subset of
successful receivers). An optimal algorithm would require a
decision for each possible outcome, perhaps also allowing for
redundant packet forwarding. Hence, the design of an optimal
algorithm must overcome these geometric complexity issues.
This is further complicated if there are multiple simultaneous
packet transmissions and multiple traffic streams sharing the
same network, and if the network topology and link error
probabilities are changing with time.

In this paper, we overcome these challenges with a simple
solution that uses the concept of backpressure routing and
Lyapunov drift. We first show that it is possible to restrict
attention to algorithms that do not allow redundant forwarding,
without loss of optimality. We then show that the optimal
packet commodity to transmit at each network node can
be determined by a backpressure index that compares the
current queue backlog of each commodity to the backlog
in the potential receivers. Once a packet from this optimal
commodity is transmitted, the responsibility of forwarding the

packet to its destination is shifted to the receiver node that
maximizes the differential backlog. Responsibility is retained
by the original transmitter if no suitable receivers are found
on a given transmission attempt.

Backpressure techniques of this type were first applied to
multi-hop wireless networks by Tassiulas and Ephremides in
[13], where throughput optimal algorithms were developed
using Lyapunov drift theory. Lyapunov theory has since been
a powerful mathematical tool for the development of stable
scheduling strategies for wireless networks and switching sys-
tems [13]-[25], including our own work in [22]-[25] that ap-
plies backpressure concepts to solve joint stability and perfor-
mance optimization problems, including energy efficiency and
fairness. Related work on energy efficient wireless scheduling
is developed in [26]-[29]. The work in [13]-[29] does not
consider the broadcast advantage of wireless networks, and
assumes that all transmissions are fully reliable. Work in
[30] [31] considers backpressure in combination with network
coding, and work in [32] considers backpressure strategies
for cooperative transmission (where multiple nodes transmit
redundant information simultaneously for a power enhance-
ment at the receiver). Heuristic algorithms that combine multi-
receiver diversity with network coding are developed in [33],
and complexity issues of cooperative transmission for line
networks are discussed in [34]. We do not consider network
coding or cooperative transmission in this paper, and restrict
attention to the multi-user diversity problem for networks with
errors, as described above. It is likely that our formulation can
be extended to consider more sophisticated control actions by
augmenting the set of decision options available to the network
controller, in which case redundant packet forwarding may be
required for optimality.

In the first part of this paper we assume each network
node transmits over an orthogonal channel, so that there
is no inter-channel interference. This highlights the routing
decision options, illuminates the main concepts, and facili-
tates construction of a simple distributed algorithm. Section
II formulates this model and Sections III-V construct the
dynamic algorithm and prove optimal performance in this
interference-free context. Section VI considers more general
networks with inter-channel interference and variable rate and
power options. An optimal centralized algorithm is provided
for this more general context. The centralized algorithm in-
cludes a complex decision about commodity selection that
is quite different from related backpressure algorithms that
do not involve multi-receiver diversity. Fortunately, we show
that a simple distributed modification yields constant-factor
performance guarantees. Simulations for both fixed-topology
networks and mobile networks are presented in Section VII.

II. THE BASIC NETWORK MODEL

We consider a timeslotted system with slots normalized
to integral units t ∈ {0, 1, 2, . . .}. There are N network
nodes, and links are labeled according to node pairs (a, b)
for a, b ∈ {1, . . . , N}. Data arrives randomly to the network
in packetized units, and we let A(c)

n (t) represent the number of
packets that exogenously arrive to network node n during slot
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t that are intended for delivery to network node c. All packets
destined for a particular node c are defined as commodity
c packets. Arrivals are assumed to be i.i.d. over timeslots,
and we let λ(c)

n = E{A(c)
n (t)} represent the arrival rate of

commodity c data into source node n (in units of packets/slot).
Internal queues at each node store packets according to their
commodities. Each packet is assumed to have an appropriate
header field with commodity and packet number identifiers.

We assume that at most one packet can be transmitted from
any given node during a single timeslot, and let µn(t) represent
the number of packets transmitted by node n during slot t
(where µn(t) ∈ {0, 1}). Each packet transmission is assumed
to expend a constant amount of power Ptran, and is success-
fully received by the other nodes of the network according
to reception probabilities qnk(t) (for n, k ∈ {1, . . . , N}).
These probabilities may be time-varying due to changing
environmental conditions and/or network mobility. However,
we assume channel orthogonality, so that these probabilities
do not depend on the transmission decisions made at other
nodes. To allow for the possibility of an underlying time
division (TDMA) or random access structure that enables
this orthogonality, we assume that transmission opportunities
at each node n are determined by a 0/1 process χn(t).
Specifically, χn(t) = 1 if and only if node n is allowed to
transmit during slot t, and is 0 else. The χn(t) process enables
the following network models:
• Unrestricted Scheduling: χn(t) = 1 for all n ∈
{1, . . . , N} and all t, so that each node can transmit on
any slot. Transmissions are assumed to be orthogonal.

• Restricted TDMA or Random Access: χn(t) = 1 only
at pre-scheduled (or random) times that ensure channel
orthogonality. This is useful as it is common to program a
fixed or pseudo-random schedule of transmission oppor-
tunities into each node of an ad-hoc wireless network.

We treat χn(t) as a background MAC process that is chosen
in advance and given to the higher network layers as a fixed
or pseudo-random time schedule. Hence, design of χn(t) is
not part of our control plane, and the χn(t) processes are not
influenced by our routing and scheduling decisions. Optimality
is thus measured with respect to the given χn(t) processes,
and different processes may lead to different overall network
performance. Section VI treats a more general (and complex)
network model with inter-channel interference. There, no
χn(t) process is given, rather, transmission opportunities are
optimally chosen with respect to the interference model.

For convenience, we define the network topology state
process S(t) as the collective process of all node transmission
capabilities and link conditions at time t, so that transmission
opportunities and link probabilities can be determined as
functionals of S(t). That is, we have:

χn(t) = χ̂n(S(t))
qnk(t) = q̂nk(S(t))

Let Kn(t) represent the set consisting of all potential
receivers for node n during slot t (which can potentially
change from slot to slot if the network is mobile). The set
Kn(t) can generally contain all N − 1 other network nodes,

t t+1

sender
node n

receiver
node k

Control
Information Packet Transmission

ACK/NACK
Control
Information

Final
Instructions

Fig. 2. A timing diagram illustrating the events within a single timeslot.

although it typically has a much smaller size and consists only
of those nodes within realistic transmission range of node n.1

Error events for a single packet transmission can be correlated
over various links, and hence a more complete characterization
of each transmitter n is given by probabilities qn,Ωn

(t), where
Ωn is a subset of nodes within the receiver set Kn(t), and
qn,Ωn(t) represents the probability that the set of all nodes
that successfully receive the packet transmitted by node n
is exactly given by the subset Ωn. This probability is also
determined as a functional of the topology state process:2

qn,Ωn(t) = q̂n,Ωn(S(t))

The above probabilities only concern error events on links
from the same outgoing node n. The error events of different
packet transmissions from different nodes may also be cor-
related, and such additional correlations in principle are also
determined by the topology state process S(t). However, we
shall find that error correlations between different nodes are
irrelevant to network capacity and optimal control. For ana-
lytical purposes, the network topology state S(t) is assumed
to take values in a finite (but arbitrarily large) state space S.
For each state s ∈ S , packet successes are independent with
probabilities q̂n,Ωn(s) over all slots t in which S(t) = s. For
convenience, a table of notation is given in Table I.

A. A Timing Diagram for One Timeslot

The timing diagram of Fig. 2 illustrates our model of infor-
mation exchange between a sender node n and an example
receiver node k during a single timeslot. We assume that
χn(t) = 1 so that node n has the opportunity to transmit and
must decide if it should take this opportunity and, if so, which
packet should be transmitted. The beginning of the slot is
used to exchange necessary control signals, possibly including
channel probability information. A single fixed length packet is
then transmitted from node n, expending Ptran units of power.
Every potential receiver then provides immediate ACK/NACK
feedback to the transmitter, informing the transmitter if the
packet was successfully received. The absence of an ACK
signal is considered to be equivalent to a NACK (this treats the
case when the receiver node did not detect any transmission).
The transmitter node accumulates all of the ACK responses
and then transmits a final message that provides instructions
for future packet forwarding.

1We assume that Kn(t) does not contain node n.
2Note that the individual link success probability qnk(t) can be obtained

by summing qn,Ωn (t) over all subsets Ωn that contain node k.
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TABLE I
TABLE OF NOTATION

Notation Definition
S(t) Network topology state process
χn(t) Determines transmission opportunities for node n in slot t
Kn(t) Set of all potential receivers for node n during slot t
Ωn A subset of nodes within the potential receiver set Kn(t)
qnk(t) Packet reception probability on link (n, k) in slot t
qn,Ωn (t) Probability the reception set is Ωn given that n transmits

B. Discussion of Model

The 3-part handshake of the timing diagram (transmission,
ACK/NACK, and final instructions) is designed to cleanly de-
scribe a system where transmission outcomes are known to all
relevant nodes at the end of a single timeslot. This facilitates
mathematical analysis. However, in practice the last two steps
of the handshake may take place by appending this information
to the packet header of future packet transmissions. This
creates a system with delayed feedback information, which
in principle does not affect throughput optimality (provided
some regularity assumptions hold concerning the timeliness
of the feedback) but may affect end-to-end network delay,
as discussed in more detail in Section VI-E. Throughout this
paper, we make the idealistic assumption of perfect control
information, so that the control signals themselves are not
subject to errors. In particular, for the timing diagram of Fig.
2, it is assumed that if a packet transmitted at node n was
successfully received at node k, then the channel from k to n
and from n to k is good enough for the remaining parts of the
handshake to be successful. This is a reasonable assumption if
forward and backward channels are relatively similar for the
duration of a timeslot, or if the dedicated control channel is
reliable. The possibility of control channel errors can create
another situation of delayed feedback information, and this is
also briefly discussed in more detail in Section VI-E.

The amount of control information required at the beginning
of the timeslot depends on the network model. In the case of
single-commodity networks when energy minimization is ne-
glected, we shall show an important channel-blind scheduling
property where no control information is required. However,
for more general networks, control information that describes
the current channel probability of neighbor nodes is needed.
This can possibly take place via a short pilot signal (possibly
sent over a dedicated control channel) and/or through channel
estimation based on feedback of previous transmissions.

C. Network Objective

The goal is to design a control algorithm that supports all
traffic (whenever possible) while maintaining average power
cost as small as possible. Specifically, we require that the
network be rate stable, so that the long term average rate
of delivering packets to their destinations is equal to the
input rate of exogenous sources (a more precise definition
of rate stability is given in the next section). The aver-
age power cost is defined as follows: For a power vector
P = (P1, . . . , PN ), we define the separable cost function
h(P ) = h1(P1) + . . . + hN (PN ), where each component

hn(Pn) is non-negative, continuous, and has the property that
hn(0) = 0. The power expended on each timeslot t is given
by the vector P (t)M=Ptran · (µ1(t), . . . , µN (t)), and the time
average power cost h is defined:

hM= limt→∞
1
t

∑t−1
τ=0 E {h(P (τ))}

Note that choosing h(P ) =
∑N
n=1 Pn coincides with the

objective of minimizing the time average expected power ex-
penditure. Under our simple network model, we have Pn(t) ∈
{0, Ptran} for all t, so that hn(Pn(t)) ∈ {0, hn(Ptran)}.
In this case, the hn(·) function plays only a limited role in
generalizing the minimum average power objective, although
it shall be more meaningful in the extended formulation of
Section VI that considers a continuum of power options.

III. NETWORK CAPACITY AND MINIMUM POWER

Here we characterize the optimal throughput and average
power cost operating points, considering all possible control
algorithms that conform to the network structure specified in
previous sections. We allow each network node to have infinite
buffer space for storing packets, so that it can replicate any
packet that it has successfully received in the past. Every
timeslot t, each network node n observes χn(t). If χn(t) = 1,
then node n can transmit any packet that it has successfully
received in the past (regardless of whether or not it has al-
ready transmitted this packet). The packet is then successfully
received at the neighbor nodes according to the probabilities
qn,Ωn

(t). We say that a packet is successfully delivered to its
destination when the first replica of that packet is successfully
received by the destination node. These assumptions are quite
general and allow for any routing or scheduling algorithm,
possibly one that uses packet replication. However, the option
of network coding or cooperative power enhancement is not
part of the control options considered here.

Let (λ(c)
n ) represent the matrix of exogenous input rates

to the system, where λ
(c)
n is the rate of commodity c data

entering source node n, in units of packets/slot. It is assumed
throughout that λ(n)

n = 0 for all n ∈ {1, . . . , N}. Let X(c)
n (t)

represent the total number of commodity c packets that arrived
from source node n up to slot t, and let Y (c)

n (t) represent the
number of these packets that have been successfully delivered
to the destination up to slot t (so that Y (c)

n (t) ≤ X
(c)
n (t) for

all t). A control algorithm is defined to be rate stable if:3

lim
t→∞

Y
(c)
n (t)
t

= λ(c)
n with prob. 1 for all (n, c)

The network layer capacity region Λ is defined as the closure
of all input rate matrices (λ(c)

n ) that can be stabilized by the
network according to some control algorithm that conforms to
the above structure, perhaps an algorithm that uses redundant
packet forwarding.

Suppose that the network topology state process S(t) takes
values on a finite state space S, and has well defined time
average probabilities πs for each s ∈ S. For each node n,
let Hn denote the set of all subsets Ωn of {1, . . . , N} − {n}.

3We shall use the simplified term stable throughout this paper when
referring to rate stability.
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For each subset Ωn, recall that q̂n,Ωn
(s) is the probability that

Ωn is exactly the set of all successful receivers of a packet
transmitted by node n, given such a packet is transmitted when
the topology state is S(t) = s.

Theorem 1: (Network Capacity and Minimum Cost) The
network capacity region Λ consists of all rate matrices (λ(c)

n )
for which there exist multi-commodity flow variables {f (c)

nk }
together with probabilities α(c)

n (s), θ(c)
nk (Ωn) for all n, k, c, all

topology states s ∈ S, and all subsets Ωn ∈ Hn, such that:

f
(c)
ab ≥ 0 , f (c)

cb = 0 , f (c)
aa = 0 (1)∑

a

f (c)
an + λ(c)

n ≤
∑
b

f
(c)
nb for all n 6= c (2)

∑
c

f
(c)
nk ≤

∑
c

∑
s∈S

πsα
(c)
n (s)

[ ∑
Ωn∈Hn

q̂n,Ωn
(s)θ(c)

nk (Ωn)

]
(3)

where (1) holds for all a, b, c ∈ {1, . . . , N}, (3) holds for all
links (n, k), and where the probabilities θ(c)

nk (Ωn) satisfy for
all Ωn ∈ Hn:

θ
(c)
nk (Ωn) = 0 if k /∈ Ωn ,

∑N
k=1 θ

(c)
nk (Ωn) ≤ 1

and for all s ∈ S the α(c)
n (s) probabilities satisfy:∑N

c=1 α
(c)
n (s) ≤ 1 , α

(c)
n (s) = 0 if χ̂n(s) = 0

Furthermore, the minimum average power cost required for
network stability is given by the value h

∗
that minimizes the

following metric:

h
∗

=
∑
s∈S πs

[∑N
n=1

∑N
c=1 α

(c)
n (s)hn(Ptran)

]
(4)

over all {f (c)
nk }, α

(c)
n (s), θ(c)

nk (Ωn) variables that satisfy (1)-(3).
Proof: The theorem is proven by first showing that the

given constraints are necessary for network stability, and that
the constant h

∗
is less than or equal to the time average

power expenditure of any stabilizing policy. This is shown
in Appendix A, and is related to similar proofs of capacity
and minimum energy in [21] [35]. The proof of sufficiency is
proven in the next section by constructing a stabilizing policy
for any rate matrix (λ(c)

n ) that is interior to the capacity region,
and showing that average power can be pushed arbitrarily close
to h

∗
.

Note that the θ(c)
nk (Ωn) probabilities are defined for each link

(n, k), each commodity c, and each of the 2N−1 subsets Ωn. In
particular, the above theorem describes an optimization prob-
lem with geometric complexity. The theorem is similar in spirit
to the capacity theorem of [21] [25], where the constraints
(1) represent non-negativity and flow efficiency constraints for
the flow variables {f (c)

ab }, the constraints (2) represent flow
conservation constraints, and the constraints (3) represent link
constraints for each link (n, k). Each α

(c)
n (s) value can be

interpreted as the conditional probability that node n transmits
a commodity c packet given that S(t) = s. Each θ

(c)
nk (Ωn)

value can be interpreted as the conditional probability that
node n shifts packet forwarding responsibilities to node k,
given that node n transmits a commodity c packet that is heard
exactly by the subset Ωn of receivers.

With this interpretation, Theorem 1 says that network ca-
pacity and minimum average power can be defined in terms
of an optimization over the class of all stationary randomized
policies for routing and scheduling that use only single-copy
routing (so that redundant packet transfers are not used). Thus,
for any rate matrix (λ(c)

n ) ∈ Λ, there exists a stationary
randomized algorithm (with probabilities precisely matched
to the network traffic rates and topology state probabilities)
that can achieve a multi-commodity flow that supports the
input rate matrix by routing all data to its proper destination,
and that incurs an average power cost exactly given by h

∗
.

However, even if all topology state probabilities πs were fully
known, the geometric complexity of the optimization problem
in Theorem 1 demonstrates the extreme difficulty of directly
solving for the parameters required to implement such a policy.
We overcome this difficulty in the next section with a simple
online algorithm that yields performance that is arbitrarily
close to optimal, with a corresponding delay tradeoff.

IV. THE DYNAMIC CONTROL ALGORITHM

To construct a dynamic policy that achieves the bound
specified in Theorem 1, we first define decision variables that
specify a specific structure for packet routing, scheduling, and
queueing. Without loss of optimality, the structure considers
only single-copy routing, so that there is no packet replication.

A. Decision Variables and Queueing

For each node n, let µn(t) represent the number of packets
node n decides to transmit on slot t. For each commodity c,
let µ(c)

n (t) represent the number of commodity c packets that
node n decides to transmit. For all slots t, the µn(t) and µ(c)

n (t)
decision variables are subject to the following constraints:

µn(t) ∈ {0, 1} , µn(t) ≤ χn(t) (5)
µ(c)
n (t) ∈ {0, 1} , µ(c)

c (t) = 0 (6)
N∑
c=1

µ(c)
n (t) ≤ µn(t) (7)

That is, µn(t) = 1 only if χn(t) = 1, and µ(c)
n (t) = 1 only for

a single commodity c, and only when µn(t) = 1 (because at
most one packet can be transmitted on any slot). The constraint
µ

(c)
c (t) = 0 ensures we do not retransmit a packet that has

already reached its destination. We note that node n spends
Ptran units of power on any slot for which µn(t) = 1. It
is clear that a practical algorithm should only set µn(t) = 1
if there is a packet available for transmission. However, the
analysis of our practical algorithm will be performed by
comparing to a queue-length independent algorithm. Hence, it
is useful to view the transmission decisions µn(t) and µ(c)

n (t)
as being constrained only by (5)-(7), and in particular they can
potentially be chosen independently of queue backlog. Thus,
µ

(c)
n (t) can be 1 even if there is no commodity c data available

in node n. In this case, node n actually sends nothing, but is
viewed as still expending Ptran units of power (equivalently,
the node can send a dummy packet with idle fill bits).

We let Hnk(t) represent the random variable that is 1 if a
packet transmitted from node n was successfully received by
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receiver k, and zero otherwise. After receiving ACK/NACK
feedback that reveals the Hnk(t) variables, node n selects a
new node to take responsibility for the packet (possibly choos-
ing itself), and informs its receivers of the choice. This is done
according to control decision variables β(c)

nk (t), representing
the number of commodity c packets whose responsibility can
be shifted from node n to node k during slot t. The β(c)

nk (t)
variables must satisfy the following constraints:

β
(c)
nk (t) ∈ {0, 1} , β

(c)
nk (t) ≤ µ(c)

n (t)Hnk(t) (8)

β
(c)
nn(t) = 0 ,

∑N
k=1 β

(c)
nk (t) ≤ 1 (9)

That is, the β(c)
nk (t) variables are either 0 or 1, can be 1 only

if a commodity c transmission opportunity occurs on slot t
and Hnk(t) = 1, and can be 1 for at most one receiver node
k (where such a node k is necessarily in the set of potential
receivers Kn(t)). If β(c)

nk (t) = 0 for all k ∈ Kn(t), then node
n retains responsibility for the packet. It shall be convenient
to have the β(c)

nk (t) decision variables constrained only by (8)-
(9). In particular, they can also be chosen independently of
queue backlog, so that β(c)

nk (t) can potentially equal 1 even if
node n does not have a commodity c packet that it actually
transmitted. In this case, the Hnk(t) value is viewed as a
random variable that is distributed the same as if a packet
had actually been transmitted. The decision variable β

(c)
nk (t)

in this case does not affect the system queue states.
Packets are stored at every node according to their commod-

ity, and we define U (c)
n (t) as the current number of commodity

c packets in node n at the beginning of slot t. The U (c)
n (t)

process takes values in the set of non-negative integers, and
evolves according to the following queueing dynamics:

U
(c)
n (t+ 1) ≤ max

[
U

(c)
n (t)−

∑N
k=1 β

(c)
nk (t), 0

]
+
∑N
a=1 β

(c)
an (t) +A

(c)
n (t) (10)

The expression above is an inequality rather than an equality
because the actual endogenous arrivals to node n may be less
than

∑N
a=1 β

(c)
an (t) if there are no actual commodity c packets

transmitted from the other nodes a 6= n. Note also that the
max[·, 0] operation ensures that (10) is correct even when
U

(c)
n (t) = 0 but β(c)

nk (t) = 1. We formally define U (n)
n (t) to be

zero for all n and all t. We emphasize that the β(c)
nk (t) values

are determined after transmission decisions µ(c)
n (t) have been

made and ACK/NACK feedback (in the form of the random
Hnk(t) variables) have been received. Note also that the above
queueing model assumes a single-copy routing framework, as
any packet that has its responsibility shifted to another node
is erased from the queue buffer at the previous node.

B. The DIVBAR Algorithm

We have the following dynamic control algorithm, defined
in terms of a non-negative control parameter V that determines
the degree to which we emphasize power cost minimization.

Diversity Backpressure Routing (DIVBAR): Every timeslot
t, each network node n observes the queue backlogs in each
of its potential receiver nodes k ∈ Kn(t), and observes the
current link channel probabilities associated with its receivers.

Each node n determines if χn(t) = 1 (i.e., it determines if
a transmission opportunity is available on the current slot). If
so, node n performs the following operations:

1) For each commodity c and each receiver k ∈ Kn(t),
the differential backlog weights W (c)

nk (t) are computed as
follows:

W
(c)
nk (t) = max[U (c)

n (t)− U (c)
k (t), 0] (11)

That is, the weight W (c)
nk (t) is equal to the difference

between the commodity c backlog in node n and the
commodity c backlog in node k (maxed with zero).

2) For each commodity c, the potential receivers k ∈ Kn(t)
are priority ranked at node n according to the W (c)

nk (t)
weights, so that receivers with larger weights are ordered
with higher priority (breaking ties arbitrarily). We define
R(c)
nk(t) as the set of all receivers b ∈ Kn(t) with higher

priority rank than receiver k. Thus:

W
(c)
nb (t) ≥W (c)

nk (t) for all b ∈ R(c)
nk(t)

3) Define φ
(c)
nk(t) as the probability that a packet trans-

mission from node n is correctly received by node k,
but is not received by any other nodes within R(c)

nk(t).
That is, the packet is not received by any nodes that are
ranked with higher priority than node k according to the
commodity c rank ordering of the previous step.

4) Define the optimal commodity c∗n(t) as the commodity
c ∈ {1, . . . , N} that maximizes (breaking ties arbitrarily):∑

k∈Kn(t)

W
(c)
nk (t)φ(c)

nk(t) (12)

Define W ∗n(t) as the resulting maximum value:

W ∗n(t) =
∑

k∈Kn(t)

W
(c∗n(t))
nk (t)φ(c∗n(t))

nk (t)

5) If W ∗n(t) − V hn(Ptran) > 0, node n transmits a packet
of commodity c∗n(t). Else, node n remains idle for slot t.

6) After receiving ACK/NACK feedback about the success-
ful recipients of the transmission, node n shifts respon-
sibility of packet forwarding to the successful receiver k
with the largest positive differential backlog W (c∗n(t))

nk (t).
If no successful receivers have positive differential back-
log, node n retains responsibility of the packet.

The above algorithm is fully distributed, in that each node
only requires queue backlog and link probability values for
each of its neighboring nodes (i.e., each node within Kn(t)).
The queue backlogs can be passed during the control infor-
mation phase of the timeslot, or can be based on backlog
updates received in the headers of previous packets.4 The
link error probabilities can be obtained based on control
information exchanged at the beginning of the timeslot (such
as a pilot signal and a corresponding SINR measurement, as
in [21]), or can be estimated based on previous ACK/NACK
history. The above algorithm considers the general case where

4We note that, as in all backpressure policies, the algorithm can be
implemented without loss of throughput optimality by using out of date
backlog information, provided that some regularity conditions hold [25].
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link error events can be correlated. However, computation of
the φ

(c)
nk(t) probabilities can be greatly simplified under the

assumption that error events are independent over each link.
In this case, φ(c)

nk(t) is obtained from a simple multiplication
of the appropriate success or error probabilities of the cor-
responding links. Specifically, independent link errors would
yield φ(c)

nk(t) values given by:

φ
(c)
nk(t) = qnk(t) ·

∏
b∈R(c)

nk (t)

[1− qnb(t)]

C. A Simple Example of Optimal Commodity Selection

Consider the example scenario shown in Fig. 3 with one
transmitter and two potential receivers. The transmitter has
packets of two commodities to transmit and the figure shows
the values of the queue backlogs in all the nodes in a given slot
t. The success probabilities on the two links are also shown
and are assumed to be independent for this example. We now
carry out the first 4 steps of the DIVBAR algorithm to illustrate
the optimal commodity selection procedure.

1) The differential backlog weights W (c)
nk (t) are given by:

W
(1)
TR1

(t) = max[5− 1, 0] = 4

W
(1)
TR2

(t) = max[5− 4, 0] = 1

W
(2)
TR1

(t) = max[2− 3, 0] = 0

W
(2)
TR2

(t) = max[2− 0, 0] = 2

2) The rank orderings for the commodities at the transmitter
are given by:

commodity 1 : R1 > R2

commodity 2 : R2 > R1

3) Using the rank ordering and independence of success
probabilities on the two links, we get:

φ
(1)
TR1

(t) = p

φ
(1)
TR2

(t) = (1− p)q

φ
(2)
TR1

(t) = (1− q)p

φ
(2)
TR2

(t) = q

4) The weighted sum for each commodity can now be
evaluated:

commodity 1 : 4p+ (1− p)q
commodity 2 : 2q

Thus, the DIVBAR algorithm would select a packet of
commodity 1 to transmit if 4p + (1 − p)q > 2q. Else, it
would select a packet of commodity 2.

D. Intuition on the Backpressure Metric

The above algorithm uses the backpressure concept of [13]
[25] to route data in the direction of maximum differential
backlog. To understand how the φ(c)

nk(t) probabilities arise in
the metric (12), suppose that a particular node n transmits a
packet of commodity c, so that µ(c)

n (t) = 1. The node then

Transmitter

5
Receiver 1

Receiver 2

2

1

3

4

0

p

q

Fig. 3. An example to illustrate the optimal commodity selection in DIVBAR

receives ACK/NACK feedback. Step 6 of DIVBAR implies
that node n must find the successful receiver k ∈ Kn(t) that
maximizes the differential backlog metric W (c)

nk (t). Thus, each
node n must compute:

max
k∈Kn(t)

{
Hnk(t)W (c)

nk (t)
}

This value is a backpressure index that measures the effec-
tiveness of transmitting a packet of commodity c, and can be
written according to the rank ordering:

max
k∈Kn(t)

{
Hnk(t)W (c)

nk (t)
}

=
∑

k∈Kn(t)

W
(c)
nk (t)1(c)

nk(t)

where 1(c)
nk(t) is an indicator function that is 1 if and only if

Hnk(t) = 1 and Hnb(t) = 0 for all receivers b ∈ R(c)
nk(t)

(i.e., all receivers with a rank ordering that is higher than the
rank of receiver k). This indicator function can be one for at
most one term in the sum on the right hand side, and is 1 only
for the term with the largest Hnk(t)W (c)

nk (t) value. This value
cannot be known before transmission, as it depends on the
random success/failure events on each of the outgoing links.
Its conditional expectation given the current queue backlog is:

E
{

max
k∈Kn(t)

{
Hnk(t)W (c)

nk (t)
}
| U(t), µ(c)

n (t) = 1
}

=
∑

k∈Kn(t)

W
(c)
nk (t)φ(c)

nk(t) ≤W ∗n(t) (13)

where U(t) = (U (c)
n (t)) represents the matrix of current queue

backlogs during slot t. Step 4 of the DIVBAR algorithm
thus selects the commodity c∗n(t) with the largest expected
backpressure index. The inequality (13) shall also be important
in the analysis of DIVBAR presented in Section V.

It is interesting to note a qualitative connection between this
DIVBAR policy and the backpressure-based network coding
policies of [30] [31]. These policies act to minimize the drift
of a queue-based Lyapunov function, but the physical actions
required for this are quite different from traditional link-based
networks. The actions of [30] [31] include network coding
operations that can produce desirable queue states on the next
slot, while the DIVBAR policy considers the probabilistic
structure of the wireless broadcast and includes ACK/NACK
and final instruction signaling in its set of control actions.
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E. Algorithm Performance

To facilitate mathematical analysis, we assume the network
topology state S(t) is i.i.d. over timeslots.5 Note that this also
includes the case when the topology state does not change
over time. Define the constant µinmax to be the largest number
of endogenous packet arrivals that any single node can receive
during a timeslot. Further, define A2

max as an upper bound on
the second moment of the total exogenous arrivals to any node
during a timeslot, so that:√

maxn E
{(∑N

c=1A
(c)
n (t)

)2
}
≤ Amax

We assume the input rate matrix is interior to the capacity
region Λ (so that stability is possible), and define εmax as the
largest scalar such that (λ(c)

n + εmax1(c)
n ) ∈ Λ, where 1(c)

n is
an indicator function that is 1 whenever n 6= c and zero else.

Theorem 2: (Algorithm Performance) If topology state
variations S(t) are i.i.d. over timeslots, and if the input
rate matrix is strictly interior to the capacity region Λ, then
the DIVBAR algorithm yields the following average network
congestion and average power cost:

lim sup
t→∞

1
t

t−1∑
τ=0

∑
n,c

E
{
U (c)
n (τ)

}
≤ NB + V hmax

εmax

lim sup
t→∞

1
t

t−1∑
τ=0

∑
n

E {hn(µn(τ)Ptran)} ≤ h
∗

+NB/V

where h
∗

is the minimum power cost (defined in (4)),
hmax

M=
∑
n hn(Ptran), and where B is defined:

B M=
1
2
[
(µinmax +Amax)2 + 1

]
(14)

The finite bound on expected queue length in the above
theorem implies that limt→∞ E

{
Y

(c)
n (t)/t

}
= λ

(c)
n for all

(n, c) (see [24]), so that the network is mean rate stable.
Further, because the system evolves according to an irreducible
Markov chain with a countably infinite state space, the finite
queue averages imply that time average probabilities and limits
are well defined, so that the network is also rate stable (and
hence yields maximum throughput).

Note that choosing the control parameter V to be zero leads
to the best congestion bound but does not lead to any power
efficiency guarantees. The parameter V can be increased to
drive average power cost arbitrarily close to the minimum cost
h
∗

required for network stability, with a corresponding linear
increase in average network congestion (and hence, by Little’s
Theorem, average delay). We prove Theorem 2 in Section V.

F. Channel Blind Packet Transmission

In the special case when power optimization is neglected (so
that V = 0) and there is a single destination for all packets, the
DIVBAR algorithm can be significantly simplified to allow for
blind packet transmissions. Specifically, because there is just a

5The same algorithm can be shown to be throughput optimal for non-i.i.d.
topology state variations using a similar T -slot Lyapunov drift argument, see
[21][25] for such an analysis for a related algorithm.

single commodity, the steps 1 - 5 of DIVBAR can be avoided.
The algorithm thus reduces to having node n transmit a packet
whenever possible (i.e., whenever χn(t) = 1). It then receives
ACK/NACK feedback from the various receivers, and chooses
the receiver k with the largest positive differential backlog
Un(t)−Uk(t), breaking ties arbitrarily and retaining the packet
if no receiver has a positive differential backlog. Note that
the backlog of each receiver can simply be included in the
ACK/NACK signal. The algorithm thus achieves throughput
optimality without requiring channel probability information.
This is a remarkable property, and enables perfect throughput
optimality to be achieved even when channel probabilities are
rapidly changing due to dramatic node mobility. No effort is
needed to estimate or track these success probabilities.

Note that this single commodity scenario also applies in
cases when the data can be delivered to any one of a set of sink
nodes, as these sinks can be viewed collectively as a single
virtual destination. This is important, for example, in a sensor
network with multiple data recovery points, or in a wireless
network with multiple base stations that provide access to a
larger wireline system.

If there are K commodities (where K ≥ 1), the decision of
which commodity to transmit can be trivialized by the (sub-
optimal) strategy of randomly choosing a commodity every
transmission opportunity, independently and uniformly over
all commodities c ∈ {1, . . . ,K}. When V = 0, this random
commodity selection can be implemented without knowledge
of channel probabilities, and stabilizes the network whenever
input rates are within Λ/K (the capacity region that is reduced
by a factor of K). This fact is proven in Section VI-C for a
generalized version of DIVBAR that supports multiple rate
and power options.

V. PERFORMANCE ANALYSIS

Here we prove Theorem 2. The proof uses our previous
result from [24] [25] [22] concerning performance optimal
Lyapunov scheduling, which is a simple but important ex-
tension of classical Lyapunov stability results of [13]-[21].
Let U(t) = (U (c)

n (t)) represent the matrix of queue backlog
values, and assume these backlogs evolve according to a
given probability law and are affected by a control process
P (t) = (P1(t), . . . , PN (t)). Let h(P ) be any function of P
that satisfies h(P ) ≥ hmin for all P , for some finite lower
bound hmin (possibly zero or negative). Let h∗ represent a
target value for the time average of h(P (t)). Let L(U) =
1
2

∑
n,c(U

(c)
n )2 represent a quadratic Lyapunov function, and

define the one step Lyapunov drift ∆(U(t)) as follows:

∆(U(t))M=E {L(U(t+ 1))− L(U(t)) | U(t)}

Theorem 3: (Lyapunov Optimization [24] [25] [22]) If there
exist constants B > 0, ε > 0, V ≥ 0 such that for all timeslots
t and for all queue backlogs U(t), the Lyapunov drift satisfies:

∆(U(t)) + V E {h(P (t)) | U(t)} ≤ B − ε
∑
n,c

U (c)
n (t) + V h∗
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then time average congestion and network cost satisfy:∑
n,c

U
(c)
n ≤ B + V (h∗ − hmin)

ε

h ≤ h∗ +B/V

where ∑
n,c

U
(c)
n

M= lim sup
t→∞

1
t

t−1∑
τ=0

∑
n,c

E
{
U (c)
n (τ)

}
h M= lim sup

t→∞

1
t

t−1∑
τ=0

E {h(P (τ))}

The above theorem suggests the strategy of minimizing the
expression ∆(U(t)) + V E {h(P (t)) | U(t)} every timeslot t,
which is the motivation behind DIVBAR.

A. Proof of the DIVBAR Performance Theorem (Theorem 2)

The conditional Lyapunov drift can be computed from the
queue backlog expression (10) according to standard drift
techniques (see [25]), and is given by:

∆(U(t)) ≤ NB
−
∑
n,c U

(c)
n (t)E

{∑
b β

(c)
nb (t)−

∑
a β

(c)
an (t)− λ(c)

n | U(t)
}

where B is defined in (14). Adding the cost metric to both
sides (where P (t) = Ptran · (µ1(t), . . . , µN (t))), we have:

∆(U(t)) + V E {h(P (t)) | U(t)} ≤
NB + V E {h(P (t)) | U(t)}

−
∑
n,c

U (c)
n (t)E

{∑
b

β
(c)
nb (t)−

∑
a

β(c)
an (t)− λ(c)

n | U(t)

}
(15)

The DIVBAR algorithm is designed to choose control actions
that greedily minimize the right hand side of the above in-
equality. Specifically, we have the following important lemma:

Lemma 1: Given the current queue backlogs U(t), the
algorithm DIVBAR chooses control variables µn(t), µ(c)

n (t),
and β(c)

nk (t) that minimize the right hand side of (15) over all
feasible control choices that satisfy the constraints (5)-(9).

Proof: (Lemma 1) See Appendix B.
Lemma 1 implies that the right hand side of (15) under the

DIVBAR algorithm is less than or equal to the corresponding
expression when the control decisions µn(t), µ(c)

n (t), and
β

(c)
nk (t) are replaced by any other decision variables µ∗n(t),
µ
∗(c)
n (t), and β∗(c)nk (t) that satisfy (5)-(9).
We now present an important corollary to the capacity theo-

rem (Theorem 1). For each input rate matrix λ = (λ(c)
n ) ∈ Λ,

we define Φ(λ) as the minimum power cost h
∗

required to
stabilize the system, defined in Theorem 1. It is not difficult
to show that Φ(λ) is continuous and convex in the rate vector
λ [24]. Suppose that the input rate matrix is interior to the
capacity region, so that there exists a positive value ε such
that (λ(c)

n + ε1(c)
n ) ∈ Λ.

Corollary 1: If the topology state S(t) is i.i.d. over times-
lots, then a rate matrix (λ(c)

n + ε1(c)
n ) is in the capacity region

Λ if and only if there exists a stationary randomized algorithm

that chooses control decision variables µ∗n(t), µ∗(c)n (t) and
β
∗(c)
nk (t) subject to the constraints (5)-(9) and based only on the

current topology state S(t) (and hence independent of current
queue backlog), to yield:

E

{∑
b

β
∗(c)
nb (t)−

∑
a

β∗(c)an (t)− λ(c)
n

}
≥ ε ∀n 6= c (16)

E {h(P ∗(t))} = Φ(λ+ ε) (17)

where ε = (ε1(c)
n ) and P (t) = Ptran ·(µ1(t), . . . , µN (t)). The

expectations in (16) and (17) are taken with respect to the
random topology state S(t) and the random control decisions
based on this topology state.

Proof: (Corollary 1) The result is an immediate conse-
quence of Theorem 1, and the proof is omitted for brevity.
Intuitively, one can understand the E{β∗(c)nb } values as repre-
senting the f (c)

nb variables of Theorem 1.
The expectations in (16) and (17) are the same when con-

ditioned on the current queue backlog U(t) (as the topology
state S(t) is i.i.d. over slots and the control variables µ∗n(t),
µ
∗(c)
n (t) and β∗(c)nk (t) are backlog-independent). Plugging (16)

and (17) directly into the right hand side of (15) thus preserves
the inequality and yields:

∆(U(t)) + V E {h(P (t)) | U(t)} ≤
NB + V Φ(λ+ ε)− ε

∑
n,c U

(c)
n (t)

The above inequality is in the exact form for application of
the Lyapunov Optimization Theorem (Theorem 3), and we
thus have (noting that hmin = 0 and Φ(λ+ ε) ≤ hmax):∑

n,c

U
(c)
n ≤ (NB + V hmax)/ε (18)

h ≤ Φ(λ+ ε) +NB/V (19)

The above performance bounds hold for any value ε > 0 such
that (λ(c)

n +ε1(c)
n ) ∈ Λ, and hence the bounds can be optimized

separately over all such ε. Letting ε→ εmax in (18) yields the
congestion bound of Theorem 2. Letting ε → 0 in (19) and
noting that continuity of the Φ(λ) function implies Φ(λ+ε)→
Φ(λ)M=h

∗
yields the power cost bound of Theorem 2.

VI. GENERAL INTERFERENCE MODELS WITH VARIABLE
RATE AND POWER CONTROL

Consider now a system with variable rate and power con-
trol options, so that every timeslot the transmission rates
µ(t) = (µ1(t), . . . , µN (t)) can be chosen such that µn(t) ∈
{0, 1, . . . , µoutmax} for all t (for some pre-specified integer
µoutmax), and transmission power to support these rates is chosen
according a power vector P (t) = (P1(t), . . . , PN (t)), where
0 ≤ Pn(t) ≤ Ppeak for all t and all n (for some peak
transmission power Ppeak). Note that the µn(t) variable is
still integer valued, but there is no longer any multiple access
process χn(t) that places further restrictions on µn(t). Define
I(t)M=(µ(t);P (t)) as the collective transmission control de-
cisions of all network nodes during slot t, and define I as
the set of all possible options for I(t). We assume that I is
such that if (µ,P ) ∈ I, then setting any rate or power entry
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of (µ,P ) to zero yields another vector within I. We assume
that error probabilities are functions of I(t) and the current
topology state S(t), so that:

qn,Ωn
(t) = q̂n,Ωn

(I(t), S(t))

Note that this model allows for general inter-channel interfer-
ence characteristics, as the success probabilities depend on the
full I(t) decision variable, which includes transmission power
decisions over all network nodes. For example, the topology
state S(t) might represent a matrix of current attenuation
coefficients, and the success probability at a given receiver
might depend on the signal-to-interference ratio (SINR) at that
receiver.

If m packets are transmitted by node n on slot t, then each
of them is assumed to have the same qn,Ωn

(t) probability.
Correlations in the error events of different packets within the
batch of m are arbitrary and do not affect capacity or optimal
control decisions.

The control objective of stabilizing the network and mini-
mizing h is the same as before. Using similar reasoning, it can
again be shown that it is possible to restrict to algorithms that
do not allow redundant forwarding, without loss of optimality.
We construct an optimal policy using a similar Lyapunov drift
argument.

A. Computing the Drift

Define µ(c)
n (t) as the number of commodity c packet trans-

missions, where:

µ(c)
n (t) ∈ {0, 1, . . . , µn(t)} ,

∑
c

µ(c)
n (t) ≤ µn(t) , µ(c)

c (t) = 0

Define H(c)
nk,i(t) ∈ {0, 1} as the random variable representing

the reception outcome at receiver k for the ith commodity
c packet transmitted from node n (so that H(c)

nk,i(t) = 1 if
µ

(c)
n (t) ≥ i and this ith packet is correctly received, and 0

else). The value H(c)
nk,i(t) can be viewed as the ACK/NACK

information for this packet. Define β
(c)
nk,i(t) ∈ {0, 1} as the

packet forwarding decision, being 1 if node n plans to forward
this packet to node k, and zero else. The β

(c)
nk,i(t) decision

variables are chosen according to the following constraints:

β
(c)
nk,i(t) ≤ H

(c)
nk,i(t) ,

∑
k

β
(c)
nk,i(t) ≤ 1 , β

(c)
nn,i(t) = 0

The first inequality states that we can only transfer responsi-
bility of a packet to node k if node k has correctly received
the packet. The second inequality states that we can only
transfer responsibility of a given packet to a single receiver.
If
∑
k β

(c)
nk,i(t) = 0, then node n retains responsibility of this

packet. Note that these constraints generalize the constraints
(5)-(9) for the basic DIVBAR algorithm, and the decision
variables can similarly be chosen independently of queue

backlog. The queueing dynamics thus satisfy:

U (c)
n (t+ 1) ≤ max

U (c)
n (t)−

N∑
k=1

µout
max∑
i=1

β
(c)
nk,i(t), 0


+

N∑
a=1

µout
max∑
j=1

β
(c)
an,j(t) +A(c)

n (t) (20)

This is an inequality due to the fact that there may not be
enough commodity c packets available at node a to transfer
the full

∑µout
max
j=1 β

(c)
an,j(t) packets to node n.

Suppose the topology state process S(t) is i.i.d. over
slots, and suppose exogenous arrivals are i.i.d. over slots
with rate matrix λ = (λ(c)

n ). As before, define L(U) =
1
2

∑
n,c(U

(c)
n (t))2, and define ∆(U(t)) as the one step Lya-

punov drift. The drift can be computed from (20) and satisfies
(compare with (15)):

∆(U(t)) + V E {h(P (t)) | U(t)} ≤
NB +

∑
n,c

U (c)
n (t)λ(c)

n + E {Q(Θ(t)) | U(t)} (21)

where we define Θ(t)M=[I(t); {β(c)
nk (t)}] as the collective con-

trol decision at time t, and we define Q(Θ(t)) as the portion
of the drift bound that depends on Θ(t), given by:

Q(Θ(t))M=V h(P (t))

−
∑
n,c

U (c)
n (t)

∑
b,i

β
(c)
nb,i(t)−

∑
a,i

β
(c)
an,i(t)

 (22)

B. The Generalized DIVBAR policy
The following generalized DIVBAR algorithm observes the

topology state S(t) and the queue backlogs U(t) and makes
decisions on each slot t that minimize E {Q(Θ(t)) | U(t)}. It
uses a parameter V ≥ 0 to affect an energy-delay tradeoff.

1) Compute W (c)
nk (t) = max[U (c)

n (t)−U (c)
k (t), 0] as before.

For each node n and each commodity c, we again rank
order the receivers k ∈ Kn(t) with priority given by the
largest values of W (c)

nk (t), and define R(c)
nk(t) as the set

of receivers b ∈ Kn(t) with higher rank ordering than
receiver k. We define φ̂(c)

nk(I(t), S(t)) as the probability
that a packet transmission from node n during slot t is
correctly received by node k, but not received by any
other nodes b ∈ R(c)

nk(t) that are ranked with higher
priority than node k according to the commodity c
ordering.

2) Define:

G
(c)
nk(I(t), S(t))M=µn(t)W (c)

nk (t)φ̂(c)
nk(I(t), S(t))

Choose a network-collaborative control action I∗(t) =
(µ∗(t),P ∗(t)) ∈ I and a collection of optimal com-
modities c∗n(t) ∈ {1, . . . , N} (for all nodes n) that jointly
maximizes the function M(I∗(t), c∗(t), S(t)), where:

M(I∗(t), c∗(t), S(t))M=∑
n

 ∑
k∈Kn(t)

G
(c∗n(t))
nk (I∗(t), S(t))

− V hn(P ∗n(t))
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3) If
∑
k∈Kn(t)

[
G

(c∗n(t))
nk (I∗(t), S(t))

]
> V hn(P ∗n(t)),

node n transmits µ∗n(t) commodity c∗n(t) packets (using
idle fill if there are not enough such packets).

4) After receiving ACK/NACK feedback from each receiver
about each of the µ∗n(t) transmitted packets, node n shifts
responsibility of each packet to the successful receiver
with the largest positive differential backlog W (c∗n(t))

nk (t).
If no receivers of a given packet have positive differential
backlog, node n retains responsibility of the packet.

Note that the above algorithm sends only one commodity
per node per slot. If there are not enough packets of that com-
modity to send, null packets can be transmitted. Alternatively,
one can send packets of other commodities for which there
are potential receivers with a positive differential backlog.6

Choosing the appropriate control action I(t) = (µ(t);P (t))
effectively optimizes over all multiple access decisions, but
yields an optimization problem in step 2 that can be quite
difficult to solve and may require full centralized coordination.
In particular, we emphasize that the power allocation must be
done jointly with the combinatorial commodity selection. This
is quite different than the max-weight backpressure strategies
for networks without multi-reciever diversity (see [13] [25]
[21]), where commodity selection is trivial.

However, distributed implementation is possible if all nodes
transmit with orthogonal signals. Further, for interference
networks, constant factor throughput optimality results can
be achieved if the resource allocation optimization in step
2 is achieved to within a constant factor by some lower
complexity scheme. Specifically, for a fixed constant γ such
that 0 < γ ≤ 1, define γΛ as a γ-scaled version of the capacity
region [22] [36] [25], so that λ ∈ γΛ if and only if there
exists a vector λ̂ ∈ Λ such that λ = γλ̂. Suppose now that
exogenous arrivals are i.i.d. over timeslots with arrival rate
matrix λ = (λ(c)

n ) that is interior to γΛ.
Theorem 4: (Generalized DIVBAR) Suppose that the above

generalized DIVBAR algorithm is carried out, with the ex-
ception that every timeslot a (potentially sub-optimal) control
action Ĩ(t) = (µ̃(t), P̃ (t)) ∈ I and commodities c̃(t) =
(c̃1(t), . . . , c̃n(t)) are used and satisfy for all t:

E
{
M(Ĩ(t), c̃(t), S(t)) | U(t), S(t)

}
≥ γM(I∗(t), c∗(t), S(t))− C

where γ and C are constants such that 0 < γ ≤ 1 and C ≥ 0,
and I∗(t), c∗(t) are the optimal solutions for step 2. The above
expectation is with respect to possible randomized choices of
Ĩ(t) and c̃(t). If there is a positive value εmax such that (λ(c)

n +
εmax1(c)

n ) ∈ γΛ, then:

lim sup
t→∞

1
t

t−1∑
τ=0

∑
n,c

E
{
U (c)
n (τ)

}
≤ NB + C + γV hmax

εmax

lim sup
t→∞

1
t

t−1∑
τ=0

E {h(P (τ))} ≤ γΦ(λ/γ) +
NB + C

V

6This strategy has the same analytical guarantee as the strategy of sending
null packets, but is likely to have better delay in practice.

where Φ(λ/γ) is the minimum average power required to
stabilize a rate matrix λ/γ, and B is defined:

B M=
(µinmax +Amax)2 + (µoutmax)2

2
Proof: See Appendix C.

The case γ = 1, C = 0 corresponds to a resource and
scheduling action that optimizes the metric M(·) in step 2, and
yields stability for any rate matrix in the interior to the capacity
region Λ. Below we describe two sub-optimal schemes with
reduced complexity that yield performance within a constant
factor of optimality.

C. Random Commodity Selection

Suppose there are K commodities in the network, and that
V = 0 (so that average power optimality is neglected). Rather
than carrying out the complex computations required to select
the optimal commodity to transmit, every timeslot each node
randomly chooses a commodity, independently and uniformly
over all commodities c ∈ {1, . . . ,K}. Let c̃(t) represent the
resulting random commodity selections on slot t. The topology
state S(t) is then observed, and a control action Ĩ(t) is taken,
where Ĩ(t) maximizes M(I(t), c̃(t), S(t)) over all I(t) ∈ I.
That is, it optimizes the M(·) function, but with respect to
the (possibly sub-optimal) commodities c̃(t). It is shown in
Appendix D that this algorithm yields:

E
{
M(Ĩ(t), c̃(t), S(t)) | U(t), S(t)

}
≥ 1
K
M(I∗(t), c∗(t), S(t))

It follows that this random commodity selection algorithm
satisfies the condition of Theorem 4 with γ = 1/K, C = 0.
Thus, the algorithm stabilizes the network whenever input
rates are within a K-reduced factor of capacity.

D. Random Transmitter Selection

Consider a network where a node cannot transmit and
receive on the same timeslot, and where all transmissions
take place with power Ptran. Furthermore, assume a sim-
ple collision model, where every timeslot each node within
reception range of a given transmitter has at most J other
nodes that can act as interferers of this transmission. The
reception probability of a node is zero during any timeslot
when it is transmitting or when it is attempting to receive while
an interferer is also transmitting. Otherwise, the reception
probability is either constant or determined by a topology
state process S(t). Similar models are used for networks
without multi-reciever diversity in [36] [37] [38]. An important
special case is when J = 0, where the only constraint is
that nodes cannot transmit and receive simultaneously, but can
simultaneously receive from multiple transmitters that send
over orthogonal channels.

For simplicity, again let V = 0 so that optimizing average
power cost is neglected. Let I∗(t) = (µ∗(t),P ∗(t)) represent
the control action that optimizes step 2 of the generalized
DIVBAR algorithm. This would require extensive coordina-
tion to compute. Consider instead the following sub-optimal
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algorithm: Every timeslot, each node independently enters
transmission mode with probability q, and enters reception
mode with probability 1 − q. Define Ĩn(t) and c̃n(t) as the
greedy control action and commodity choices at node n, which
maximize:

Mn(I(t), c, S(t))M=∑
k∈Kn(t)

µn(t)W (c)
n,k(t)φ̂(c)

n,k(I(t), S(t)) (23)

over all commodities c ∈ {1, . . . ,K} and all control actions
I(t) = (µ(t),P (t)) ∈ I that satisfy the additional restriction
that µm(t) = 0, Pm(t) = 0 for all nodes m 6= n. If a node n
is in transmission mode during slot t, it sets P̃n(t) = Ptran,
and chooses commodity c̃n(t) and rate µ̃n(t) that corresponds
to this greedy control action Ĩn(t). Thus, each transmitting
node greedily selects a commodity and rate using the local
differential backlog and link success probabilities associated
with neighboring nodes, under the assumption that these other
nodes are all in receive mode and that there are no other
interferers. In Appendix D, we show this algorithm satisfies:

E
{
M(Ĩ(t), c̃(t), S(t)) | U(t), S(t)

}
≥

q(1− q)J+1M(I∗(t), c∗(t), S(t))

Therefore, this random transmitter selection algorithm satisfies
the condition of Theorem 4 with γ = q(1−q)J+1, C = 0. The
value of q that yields the largest γ is given by q = 1/(J + 2),
resulting in:

γ =
(1− 1/(J + 2))J+1

J + 2

If J = 0, then we have q = 1/2, γ = 1/4. If J is large then
we have γ ≈ 1/((J + 2)e).

E. Delayed Feedback

Suppose that instead of using the actual queue backlog val-
ues U (c)

n (t) in the generalized DIVBAR algorithm, alternative
backlogs Ũ (c)

n (t) are used, where Ũ (c)
n (t) satisfies for all n, c

and all t: ∣∣∣Ũ (c)
n (t)− U (c)

n (t)
∣∣∣ ≤ D1 (24)

for some finite constant D1. This would occur, for example,
when the DIVBAR algorithm uses out-of-date queue backlog
information due to delayed feedback. Let Ĩ(t), c̃(t) represent
the control action and commodity choices of a modified
DIVBAR that uses these alternative backlogs, and let I∗(t) and
c∗(t) represent the choices that minimize M(I(t), c(t), S(t))
(where M(·) is defined according to the true backlogs
U

(c)
n (t)). It is not difficult to see that:

M(Ĩ , c̃(t), S(t)) ≥M(I∗(t), c∗(t), S(t))−D2

where D2 is a constant, and hence using the alternative weights
ensures that the conditions of Theorem 4 are satisfied with
γ = 1, C = D2. Therefore, these modified weights create only
a (potential) increase in network congestion and delay while
maintaining full throughput optimality and energy efficiency.

The inequality (24) also arises when DIVBAR is imple-
mented with delayed ACK/NACK feedback. Specifically, each
transmitting node can wait for T slots to receive feedback
about a packet transmission (treating the absence of feedback
within T slots as a NACK). The node buffers the packet during
this time and sends a final instruction only after all feedback
has been received or T slots have expired. This approach can
be used to achieve full throughput in cases when feedback
delay is bounded by a constant.

F. Delay Improvement via Enhanced DIVBAR (E-DIVBAR)

The DIVBAR algorithm uses backpressure to learn efficient
routes, where incoming data “pushes” old data in directions of
least resistance. However, when the network is lightly loaded,
many packets may be routed in inappropriate directions before
enough backlog builds up to suggest alternative routes. An
extreme example is the case when a single packet arrives
to an empty network. This packet could be routed randomly
back and forth and might never reach its destination. One
approach that potentially reduces delay in these situations is to
impose an additional constraint that restricts routing options to
directions that make progress toward the destination. However,
such additional constraints might reduce network capacity, and
can restrict adaptation in cases of link failures.

An alternative is to apply the Enhanced Dynamic Routing
and Power Control (EDRPC) approach developed for link-
based networks in [22] [21] to this multi-receiver diversity
context. Specifically, for each actual queue backlog U

(c)
n (t),

define a modified backlog metric Ũ (c)
n (t) as follows:

Ũ (c)
n (t)M=U (c)

n (t) + Z(c)
n (t) (25)

where Z(c)
n (t) are non-negative weights that satisfy Z(c)

n (t) ≤
D for all t (for some finite constant D). Modified differential
backlogs W̃ (c)

nk (t) are then used, where:

W̃
(c)
nk (t) = max[Ũ (c)

n (t)− Ũ (c)
k (t), 0]

Clearly these modified weights satisfy (24), and hence
throughput optimality and energy efficiency is unaffected.
While the analytical congestion bound increases under these
modified weights, in practice it is possible to choose Z(c)

n (t)
to improve delay, particularly in lightly loaded situations. For
example, Z(c)

n (t) can be chosen to be proportional to the
estimated number of hops from node n to destination c along
a shortest path. The W̃ (c)

nk (t) values then include the estimated
hop count differential associated with sending from node n
to node k, so that data tends to be routed in the direction of
the shortest path, and only deviates from this when backlog
starts to build up along the path. Alternatively, one can define
Z

(c)
n (t) as an estimated geographic distance between node

n and destination c, so that routing decisions tend to move
data closer to the destination. Simulation results that illustrate
the improvements of this Enhanced DIVBAR (E-DIVBAR)
scheme are given in the next section.

VII. SIMULATIONS

We now present simulation results on the performance of
DIVBAR on two example networks.
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Example 1: A Static Network with Independent Links

We first consider a static network with independent non-
interfering links and success probabilities as shown in Fig.4.
There are two sessions in the network: Source node A desires
to send data to destination A′, and source node B desires to
send data to destination B′. We consider a time-slotted system
in which new packets arrive at the two sources every slot
according to independent Bernoulli processes, both of rate λ.
These need to be routed to their respective destinations. Each
node can broadcast at most one packet per slot to its neighbors.
Packet receptions are independent over each link, with link
success probabilities as shown in the figure. We simulate
DIVBAR and E-DIVBAR on this network, and compare to
the ExOR strategy of [8]. The ExOR algorithm labels each
node n with a “shortest path” estimate Z

(c)
n , representing a

“distance” estimate between node n and destination c based
on link distances given by the inverse of the link success
probability. The E-DIVBAR algorithm adds this Z(c)

n value to
the differential backlog metric according to (25). For DIVBAR
and E-DIVBAR, the control parameter V is set to 0.

Simulations were conducted for all algorithms for different
λ values ranging from 0 to 0.5, and each simulation was run
for 1 million timeslots. The resulting average congestion is
shown for each experiment in Fig. 5. Under ExOR, it can
be shown that packets only traverse routes involving nodes
0, 1, 3, 5, 9. The maximum rate λ that can be stably supported
by both sessions using the ExOR policy can be calculated to be
0.255 packets/slot (see vertical asymptote in Fig. 5). However,
DIVBAR and E-DIVBAR can support a higher rate (in fact,
they achieve the maximum possible rate over all diversity
algorithms that satisfy the structural properties described in
Section II). This maximum throughput can be calculated to
be 0.455 packets/slot. It should also be noted that while the
average total occupancy of DIVBAR exceeds that of ExOR
under light loadings, E-DIVBAR has the best performance
across all input rates.

We next simulate DIVBAR on this network for increasing
values of the control parameter V after fixing the input rate at
λ = 0.3 packets/slot. Note that this rate cannot be supported
by ExOR. Fig. 6(a) shows that the average power converges to
about 0.399 as V increases. Fig. 6(b) shows a linear increase
in average total occupancy as V is increased. These results
clearly exhibit the [O(1/V );O(V )] energy-delay tradeoff as
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Fig. 4. Example static network used to compare ExOR, DIVBAR and
E-DIVBAR. The number on a link is the probability of successful packet
reception on that link.
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Fig. 5. Comparison of Average Total Occupancy under ExOR, DIVBAR and
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Fig. 6. Average Power and Average Total Occupancy versus V under
DIVBAR on the example static network.

suggested by the performance bounds of Theorem 2.

Example 2: A Mobile Network with Heterogeneous Mobility

We next consider a network with cell-partitioned structure
as shown in Fig. 7. There are 9 source nodes: 3 stationary, 3
locally mobile and 3 fully mobile. The locally mobile nodes
are restricted to move in the shaded cells while the fully
mobile nodes can move anywhere in the network. There are 2
stationary sinks and packets can be delivered to either of them
(thus, this is a single commodity scenario). Time is slotted and
new packets arrive at the source nodes every slot according
to a Bernoulli process of rate λ. The mobile nodes perform
a Markovian random walk over their respective regions, with

Stationary Node

Locally Mobile Node

Fully Mobile Node

Sink

Fig. 7. A mobile network with two sinks and heterogeneous mobility.
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Fig. 8. Average Total Occupancy with increasing load under DIVBAR on
the example mobile network.
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Fig. 9. Average Power and Average Total Occupancy versus V under
DIVBAR on the example mobile network.

equal probability of moving either North, South, East, or West
(if a node decides to move in an infeasible region, it stays in
its same cell). The steady state location distribution of each
mobile node is thus uniform over its feasible cell locations.

Similar to the previous example, each node can broadcast
at most one packet per slot on its outgoing links, and a
packet transmitted on a link is successfully received by a
node with probability equal to the success probability of that
link. This value is taken to be 0.9 for links in the same
cell and 0.5 for links between adjacent cells (defined as cells
that are either horizontal, vertical, or diagonal neighbors). We
assume multi-user reception is possible. However, we impose
the additional constraint that nodes cannot simultaneously
transmit and receive (as in the case J = 0 of Section VI-D).
We consider a randomized algorithm where each node with
packets to send decides to enter transmission mode with
probability q = 1/2, which ensures capacity is achieved to
within a factor of 4 (see Section VI-D).

We simulate DIVBAR on this network. Fig. 8 shows the
total average number of packets in the network versus the
input rate. The vertical asymptote occurs around λ = 0.045
packets/slot. Figs. 9(a) and 9(b) show results when we fix
λ = 0.03 packets/slot (yielding a total throughput of 9λ =
0.27 packets/slot delivered to the destination). The average
power and total average packet occupancy are plotted versus
V , demonstrating the [O(1/V );O(V )] energy-delay tradeoff
of Theorem 2.

APPENDIX A — PROOF OF THEOREM 1

Here we prove the Network Capacity and Minimum Cost
Theorem (Theorem 1). Consider a network with input rate
matrix (λ(c)

n ), where λ(n)
n = 0 for all n ∈ {1, . . . , N}. Suppose

there exists a stabilizing control strategy (possibly one that
uses redundant packet transfers). Let h represent the lim inf
of the average power cost of this strategy:

hM= lim inft→∞ 1
t

∑t−1
τ=0

∑N
n=1 hn(Pn(τ)) (26)

We show that there exist multi-commodity flow variables
{f (c)
ab } and probabilities α(c)

n (s), θ(c)
nk (Ωn) that satisfy (1)-(3),

and further that h is greater than or equal to the value h
∗

defined in Theorem 1. This proves that the constraints (1)-
(3) are necessary for network stability, and that no stabilizing
algorithm can achieve an average power cost less than h

∗
.

Let X(c)
n (t) represent the number of commodity c packets

that exogenously arrive to network node n during the first
t timeslots. Define a unit as a packet or a replicated copy
of a packet (replicated units are also considered to be units).
Two units are said to be distinct if they are copies of distinct
original packets. When a unit is successfully transmitted from
one node to another, we say that the original unit is retained
in the transmitting node while a copy of the unit is created
in the new node. In this case, we say that the unit in the
transmitter is the parent of the new unit in the receiver. If a
single node receives multiple successful non-distinct units on
the same slot, only a single parent is selected (arbitrarily from
the set of all successful transmitters of that unit). Thus, each
unit that is not the original packet has a distinct parent. The
commodity of a unit is defined as the commodity of its original
packet and is the same as the destination node of the unit. The
source node of a unit is the source node of its original packet.

Let Y (c)
n (t) represent the number of distinct units with

source node n and commodity c that have been successfully
delivered to their destination during the first t timeslots.
Because the algorithm is assumed to be rate stable, with
probability 1 and for all (n, c), the delivery rate is equal to
the input rate:

lim
t→∞

Y
(c)
n (t)
t

= lim
t→∞

X
(c)
n (t)
t

= λ(c)
n (27)

Let U (c)
n (t) be the set of distinct units that were the first

to reach their destination by time t (if two non-distinct units
reach their destination at the same time, we arbitrarily assign
only one of them to U (c)

n (t)). Thus, there are exactly Y (c)
n (t)

units within the set U (c)
n (t). Define the ancestors of a given

unit u to be the set consisting of the parent of u, the parent of
the parent, etc., all the way up to the original packet. For each
successfully delivered unit u, define path(u) as the sequence
of nodes {n1, n2, . . . , nk} associated with transmission of its
ancestors, where n1 is the source and nk is the destination
(for some finite integer k that depends on the number of
transmissions). The path might repeat one or more nodes
several times. However, if a unit u was successfully delivered
to its destination, then for any node n along its path, the
number of times an ancestor of u is endogenously transmitted
into node n must be exactly the same as the number of times
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an ancestor of u is transmitted out of node n (provided that
node n is not the destination). Defining F (c)

ab (t) to be the total
number of times that ancestors of distinct commodity c units
within the set ∪mU (c)

m (t) have been transmitted from node a
to node b, we thus have for each node n and commodity c:

Y (c)
n (t) +

∑
a

F (c)
an (t) =

∑
b

F
(c)
nb (t) whenever n 6= c (28)

Note that
∑
c F

(c)
ab (t) is the total number of ancestors of

delivered units within ∪m,cU (c)
m (t) that successfully traverse

link (a, b). Now define for all channel states s, all nodes a, b
and commodities c, and all subsets Ωa:
• Ts(t): the number of times the channel state is equal to
s during the first t slots.

• α
(c)
a (s, t): the number of times a commodity c unit

attempts transmission at node a while the channel state
is s (during the first t slots).

• q
(c)
a,Ωa

(s, t): the number of times a transmission of a
commodity c unit in node a is correctly received exactly
by the subset Ωa when the channel state is s (during the
first t slots).

• θ
(c)
ab (Ωa, s, t): the number of times a commodity c unit

within the set ∪mU (c)
m (t) is created at node b by a parent

at node a when the topology state is s and the set of
correctly received packets is equal to Ωa (during the first
t slots).

It follows that:∑
c F

(c)
ab (t)
t

=

∑
c,s,Ωa

Ts(t)
t

α
(c)
a (s, t)
Ts(t)

q
(c)
a,Ωa

(s, t)

α
(c)
a (s, t)

θ
(c)
ab (Ωa, s, t)

q
(c)
a,Ωa

(s, t)
(29)

where we formally define 0/0M=0 for terms on the right hand
side of (29).7 Note that for all t we have:

0 ≤ α
(c)
a (s, t)
Ts(t)

≤ 1 , 0 ≤
θ

(c)
ab (Ωa, s, t)

q
(c)
a,Ωa

(s, t)
≤ 1 (30)

Further, because the control strategy conforms to the system
constraints, we have:∑

c
α(c)

a (s,t)
Ts(t) ≤ 1 ,

α(c)
a (s,t)
Ts(t) = 0 if χ̂a(s) = 0 (31)

θ
(c)
ab (Ωa,s,t)

q
(c)
a,Ωa

(s,t)
= 0 if b /∈ Ωa (32)∑N

k=1
θ
(c)
ak (Ωa,t)

q
(c)
a,Ωa

(s,t)
≤ 1 (33)

Because channel states have well defined time averages:

lim
t→∞

Ts(t)
t

= πs with prob. 1

Likewise, because transmission probabilities q̂a,Ωa
(s) do not

depend on the commodity c transmitted, we have by the law
of large numbers:

lim
t→∞

q
(c)
a,Ωa

(s, t)

α
(c)
a (s, t)

= q̂a,Ωa
(s) with prob. 1

7Equivalently, in (29) we can replace terms x/y with [x/y], where [x/y]
is defined to be x/y whenever y 6= 0, and is 0 otherwise.

whenever α(c)
a (s, t)→∞ as t→∞.

Now define f (c)
ab (t)M=F

(c)
ab (t)/t, and note that:

0 ≤ f (c)
ab (t) ≤ 1 , f

(c)
cb = f (c)

aa = 0 (34)

Let ti represent a sequence of time slots over which the
time average power cost achieves its liminf h. Because the
constraints in (30)-(34) define a closed and bounded region
with finite dimension, there must exist an infinite subsequence
t̃i over which the time average power cost also achieves its
liminf, and the individual terms converge to points α(c)

a (s),
θ

(c)
ab (Ωa, s), f (c)

ab that also satisfy the inequalities (30)-(34):

lim
t̃i→∞

1
t̃i

t̃i−1∑
τ=0

N∑
n=1

hn(Pn(τ)) = h (35)

lim
t̃i→∞

α
(c)
a (s, t̃i)
Ts(t̃i)

= α(c)
a (s)

lim
t̃i→∞

θ
(c)
ab (Ωa, s, t̃i)

q
(c)
a,Ωa

(s, t̃i)
= θ

(c)
ab (Ωa, s)

lim
t̃i→∞

f
(c)
ab (t̃i) = f

(c)
ab

Furthermore, using (27) in (28) and taking t̃i →∞ yields:

λ(c)
n +

∑
a

f (c)
an =

∑
b

f
(c)
nb whenever n 6= c

Likewise, using the above limits in (29) as t̃i →∞ yields:∑
c

f
(c)
ab =

∑
c,s,Ωa

πsα
(c)
a (s)q̂a,Ωa(s)θ(c)

ab (Ωa, s) for all (a, b)

Now define:

θ
(c)
ab (Ωa)M=

∑
s πsα

(c)
a (s)q̂a,Ωa(s)θ(c)

ab (Ωa, s)∑
s πsα

(c)
a (s)q̂a,Ωa(s)

assuming the denominator is non-zero (define θ(c)
ab (Ωa, s)M=0

otherwise). Thus:∑
c

f
(c)
ab =

∑
c,s,Ωa

πsα
(c)
a (s)q̂a,Ωa

(s)θ(c)
ab (Ωa) for all (a, b)

This proves that there exist suitable multi-commodity flow
variables and probability variables for which the rate matrix
(λ(c)
n ) satisfies the constraints of Theorem 1.
Finally, note that the time average power cost satisfies:

1
t̃i

t̃i−1∑
τ=0

∑
n

hn(Pn(τ)) =
∑
s

Ts(t)
t

∑
n,c

α
(c)
n (s, t)
Ts(t)

hn(Ptran)

Using (35) in the above equality and taking t̃i →∞ yields:

h =
∑
s

πs
∑
n,c

α(c)
n (s)hn(Ptran)

Thus, the value h corresponds to particular variables f
(c)
ab ,

α
(c)
a (s), θ(c)

ab (Ωa) that satisfy the constraints of Theorem 1.
It follows that h ≥ h

∗
, where h

∗
is defined as the minimum

value of h for which such variables can be found that satisfy
the constraints. This proves the result.



AD HOC NETWORKS (ELSEVIER), VOL. 7, NO. 5, PP. 862-881, JULY 2009 16

APPENDIX B – PROOF OF LEMMA 1

Proof: (Lemma 1) To show that the DIVBAR control
actions minimize the right hand side of (15), define f(t) as
the sum of all terms on the right hand side that involve control
decision variables:

f(t)M=V E {h(P (t)) | U(t)} − g(t) (36)

where g(t) is defined as follows:

g(t)M=
∑
n,c

U (c)
n (t)E

{∑
b

β
(c)
nb (t)−

∑
a

β(c)
an (t) | U(t)

}
Switching the sums yields:

g(t) =
∑
n,k,c

E
{
β

(c)
nk (t) | U(t)

}[
U (c)
n (t)− U (c)

k (t)
]

≤
∑
n,k,c

E
{
β

(c)
nk (t) | U(t)

}
W

(c)
nk (t)

where the final inequality follows by definition of W (c)
nk (t) in

(11). Now note that the control constraints (5)-(9) imply:

β
(c)
nk (t) = β

(c)
nk (t)µ(c)

n (t)Hnk(t) for all n, k, c, t

This is because µ(c)
n (t)Hnk(t) ∈ {0, 1}, and β(c)

nk (t) can only
be non-zero when µ(c)

n (t)Hnk(t) = 1. Therefore:

g(t) ≤
∑
n,k,c

E
{
β

(c)
nk (t)µ(c)

n (t)Hnk(t) | U(t)
}
W

(c)
nk (t)

=
∑
n,c

E

{
µ(c)
n (t)

∑
k

β
(c)
nk (t)Hnk(t)W (c)

nk (t) | U(t)

}

≤
∑
n,c

E
{
µ(c)
n (t) max

k

{
Hnk(t)W (c)

nk (t)
}
| U(t)

}
(37)

where the final inequality follows because the constraints (5)-
(9) imply that β(c)

nk (t) ≥ 0 and
∑
k β

(c)
nk (t) ≤ 1. However,

because E
{
µ

(c)
n (t) | U(t)

}
= Pr[µ(c)

n (t) = 1 | U(t)], we
have:

E
{
µ

(c)
n (t) maxk

{
Hnk(t)W (c)

nk (t)
}
| U(t)

}
= E

{
maxk

{
Hnk(t)W (c)

nk (t)
}
| U(t), µ(c)

n (t) = 1
}
×

Pr[µ(c)
n (t) = 1 | U(t)]

≤W ∗n(t)E
{
µ

(c)
n (t) | U(t)

}
where the final inequality is due to (13). Plugging the above
inequality into (37) yields:

g(t) ≤
∑
n,c

W ∗n(t)E
{
µ(c)
n (t) | U(t)

}
≤

∑
n

W ∗n(t)E {µn(t) | U(t)} (38)

where the final inequality holds because
∑
c µ

(c)
n (t) ≤ µn(t).

However, the upper bound (38) can be achieved if node n
transmits commodity c∗n(t), receives ACK/NACK feedback,
and shifts forwarding responsibilities to the successful receiver
k with the largest positive value of W (c∗n(t))

nk (t) (retaining

the packet if no successful receivers have positive differential
backlog). It follows from (36) that:

f(t) ≥ V E {h(P (t)) | U(t)} −
∑
nW

∗
n(t)E {µn(t) | U(t)}

=
∑
n E {V hn(Pn(t))−W ∗n(t)µn(t) | U(t)}

Furthermore, this lower bound on f(t) is both minimized
and achieved by the DIVBAR algorithm that allocates power
Ptran for transmission from node n whenever V hn(Ptran) <
W ∗n(t), and that chooses the commodity and receiver node as
described. This proves that DIVBAR minimizes f(t) over all
possible control actions, proving the lemma.

APPENDIX C — PROOF OF THEOREM 4
Claim 1: The generalized DIVBAR algorithm in Section

VI that uses the sub-optimal control decisions specified in
Theorem 4 makes control decisions I(t) = (µ(t),P (t)) and
β

(c)
nk,i(t) that satisfy:

E {Q(Θ(t)) | U(t)} ≤ C + γE
{
Q(Θopt(t)) | U(t)

}
(39)

where Θopt(t) are the control decisions that minimize
E {Q(Θ(t)) | U(t)} over all feasible controls.

Proof: It suffices to prove that the optimal resource
allocation decisions of the generalized DIVBAR algorithm
minimize Q(Θ(t)) over all alternative controls. The proof of
this fact is similar to the proof of Lemma 1 in Section V-A,
and is omitted for brevity.

Define Λ as the closure of all stabilizable rate matrices, and
suppose the exogenous input rate matrix λ is within Λ.

Claim 2: If λ ∈ Λ, then there exists a stationary ran-
domized control algorithm that makes decisions Θ∗(t) =
[I∗(t); {β∗(c)nk,i(t)}] according to the system constraints and that
satisfies for all slots t:∑

a,i

E
{
β
∗(c)
an,i(t)

}
+ λ(c)

n ≤
∑
b,i

E
{
β
∗(c)
nb,i (t)

}
∀n 6= c

E {h(P ∗(t))} = Φ(λ)

The proof of Claim 2 is similar to that of Theorem 1 and
Corollary 1 (compare with (16) and (17)), and is omitted for
brevity. Suppose now that there is a positive value εmax such
that (λ(c)

n + εmax1(c)
n ) ∈ γΛ, where γ is the constant in (39)

and satisfies 0 < γ ≤ 1. Below we prove Theorem 4.
Proof: (Theorem 4) From Claim 1, we know that the drift

bound in (21) satisfies:

∆(U(t)) + V E {h(P (t)) | U(t)}
≤ NB +

∑
n,c

U (c)
n (t)λ(c)

n + C + γE
{
Q(Θopt(t)) | U(t)

}
(40)

Define εM=(ε1(c)
n ) (for a given ε > 0). We know that λ+ε ∈ γΛ

whenever ε ≤ εmax, and hence (1/γ)(λ+ ε) ∈ Λ. Therefore,
we know by Claim 2 that there exists a stationary randomized
control action Θ∗(t) that makes decisions independent of
queue backlog, and that yields (using (22)):

E {Q(Θ∗(t)) | U(t)} ≤ V Φ(
1
γ

(λ+ ε))

−
∑
n,c

U (c)
n (t)

(λ(c)
n + ε)
γ

(41)
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(note that U (c)
n (t) = 0 whenever 1(c)

n = 0). Because Θopt(t)
minimizes E {Q(Θ(t)) | U(t)} over all alternative controls,
we have that:

E
{
Q(Θopt(t)) | U(t)

}
≤ E {Q(Θ∗(t)) | U(t)}

Using this fact in (40) and (41) yields:

∆(U(t)) + V E {h(P (t)) | U(t)}
≤ NB +

∑
n,c

U (c)
n (t)λ(c)

n + C

+γV Φ(
1
γ

(λ+ ε))−
∑
n,c

U (c)
n (t)(λ(c)

n + ε)

= NB + C + γV Φ(
1
γ

(λ+ ε))− ε
∑
n,c

U (c)
n (t)

The above drift expression is in the exact form for application
of the Lyapunov drift theorem (Theorem 3), and hence:

lim sup
t→∞

1
t

t−1∑
τ=0

E {h(P (τ))} ≤ γΦ(
1
γ

(λ+ ε)) +
NB + C

V

lim sup
t→∞

1
t

t−1∑
τ=0

∑
n,c

E
{
U (c)
n (t)

}
≤ NB + C + γV hmax

ε

The above inequalities hold for any ε such that 0 < ε ≤ εmax.
Taking a limit as ε → 0 and using continuity of Φ(·) yields
the power cost bound of Theorem 4, and setting ε = εmax
yields the congestion bound.

APPENDIX D – PROOFS FOR RANDOMIZED COMMODITY
AND TRANSMITTER SELECTION

A. Randomized Commodity Selection

To analyze the randomized commodity selection algorithm,
define functions Mn(·):

Mn(I(t), cn(t), S(t))M=
∑

k∈Kn(t)

G
(cn(t))
nk (I(t), S(t))

and note that, because V = 0, for any I(t), c(t), S(t) we have:

M(I(t), c(t), S(t)) =
∑
n

Mn(I(t), cn(t), S(t))

Let I∗(t) represent the optimal control action corresponding
to the optimal commodities c∗(t). Because I∗(t) ∈ I, by
definition of Ĩ(t) we have for all t:

M(Ĩ(t), c̃(t), S(t)) ≥M(I∗(t), c̃(t), S(t)) (42)

Taking expectations of (42) with respect to the distribution of
the random commodities c̃(t) yields:

E
{
M(Ĩ(t), c̃(t), S(t)) | U(t), S(t)

}
≥ E {M(I∗(t), c̃(t), S(t)) | U(t), S(t)}
=
∑
n E {Mn(I∗(t), c̃n(t), S(t)) | U(t), S(t)}

=
∑
n

1
K

∑K
k=1Mn(I∗(t), k, S(t)) (43)

≥
∑
n

1
KMn(I∗(t), c∗n(t), S(t)) (44)

= 1
KM(I∗(t), c∗(t), S(t))

where (43) follows because each commodity c̃n(t) is chosen
independently and uniformly over k ∈ {1, . . . ,K}, and (44)
holds because Mn(·) ≥ 0 and hence the sum over all com-
modities is greater than or equal to the single term associated
with commodity c∗n(t).

B. Randomized Transmitter Selection

To analyze the randomized transmitter selection algorithm,
note that by definition of Ĩn(t) and c̃n(t) we have for all t:

Mn(Ĩn(t), c̃n(t), S(t)) ≥Mn(I∗(t), c∗n(t), S(t)) (45)

Define c̃(t)M=(c̃1(t), . . . , c̃N (t)), and define Ĩ(t) as the collec-
tive greedy control actions of all nodes:

Ĩ(t)M=[(µ̃1(t), . . . , µ̃N (t)); (P̃1(t), . . . , P̃n(t))]

Note that Ĩ(t) includes the randomized transmitter actions and
is different from Ĩn(t) (where Ĩn(t) transmits at node n with
µ̃n(t), P̃n(t), and does not transmit at any other node). The
random transmitter selection ensures:

E
{
Mn(Ĩ(t), c̃n(t), S(t)) | U(t), S(t)

}
≥ q(1− q)J+1Mn(Ĩn(t), c̃n(t), S(t)) (46)

This inequality can be understood as follows: The value
Mn(Ĩn(t), c̃n(t), S(t)) is achieved exactly in the case when
only node n transmits, all other nodes are in receive mode, and
the reception events and corresponding ACK/NACK feedback
takes place according to the reception probabilities associated
with the network channels (not including collision effects).
Let k be the node that would be selected in this no-collision
scenario (possibly being node n itself). Then conditional on
these same channel events in the actual experiment, this node k
would be chosen with probability at least q(1− q)J+1, where
q is the probability that node n indeed enters transmission
mode, and (1− q)J+1 bounds the probability that node k and
all of the (at most J) nodes that can interfere with the n-to-k
channel are in receiver mode. Therefore, the lower bound in
(46) holds.

Note by definition that for any I(t), c(t), S(t):

M(I(t), c(t), S(t)) =
∑
n

Mn(I(t), cn(t), S(t))

Therefore:

E
{
M(Ĩ(t), c̃(t), S(t)) | U(t), S(t)

}
=

∑
n

E
{
Mn(Ĩ(t), c̃n(t), S(t)) | U(t), S(t)

}
≥

∑
n

q(1− q)J+1Mn(Ĩn(t), c̃n(t), S(t)) (47)

≥ q(1− q)J+1
∑
n

Mn(I∗(t), c∗n(t), S(t)) (48)

= q(1− q)J+1M(I∗(t), c∗(t), S(t))

where (47) follows by (46) and (48) follows by (45).
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