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Abstract—We consider a wireless node that randomly receives
data from different sensor units. The arriving data must be
compressed, stored, and transmitted over a wireless link, where
both the compression and transmission operations consume
power. Specifically, the controller must choose from one of
multiple compression options every timeslot. Each option requires
a different amount of power and has different compression
ratio properties. Further, the wireless link has potentially time-
varying channels, and transmission rates depend on current
channel states and transmission power allocations. We design
a dynamic algorithm for joint compression and transmission,
and prove that it comes arbitrarily close to minimizing average
power expenditure, with an explicit tradeoff in average delay. The
algorithm is simple to implement and does not require knowledge
of probability distributions for packet arrivals or channel states.

I. INTRODUCTION

We consider the problem of energy-aware data compression
and transmission for a wireless link that receives data from N
different sensor units (Fig. 1). Time is slotted with normalized
slot durations t ∈ {0, 1, 2, . . .}, and every timeslot the link
receives a packet from a random number of the sensors. We
assume that packets arriving on the same timeslot contain
correlated data, and that this data can be compressed using
one of multiple compression options. However, the signal
processing required for compression consumes a significant
amount of energy, and more sophisticated compression algo-
rithms are also more energy expensive. Further, the data must
be transmitted over a wireless channel with potentially varying
channel conditions, where the transmission rates available on
the current timeslot depend on the current channel condition
and the current transmission power allocation. The goal is to
design a joint compression and transmission scheduling policy
that minimizes time average power expenditure.

This problem is important for modern sensor networks
where correlated (and compressible) data flows over power
limited nodes. Compressing the data can save power by
reducing the amount of bits that need to be transmitted,
provided that the transmission power saved is more than the
power expended in the compression operation. It is important
to understand the optimal balance between compression power
and transmission power. Work in [1] considers this question
for a wireless link with fixed transmission costs, and describes
practical compression issues and reports communication-to-
computation energy ratios for popular algorithms. Work in
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Fig. 1. Multiple sensors sending data to a single wireless link.

[2] considers a similar static situation where the wireless
channel condition is the same for all time. There, it is shown
experimentally that compression can lead to a significant
power savings when data is transmitted over multiple hops.
The proposed algorithm of [2] uses a fixed data compres-
sion scheme, an adaptation of the Lempel-Ziv-Welch (LZW)
compression algorithm for sensor networks. Techniques for
distributed compression using Slepian-Wolf coding theory are
considered in [3] [4]. Models of spatial correlation between
data of different sensors are proposed in [5] and used to
construct and evaluate energy-efficient routing algorithms that
compress data at each stage.

The above prior work has concentrated on static environ-
ments where transmission power is directly proportional to the
number of bits transmitted and/or traffic rates are fixed and
known, so that compression and transmission strategies can
be designed in advance. Here, we focus attention on a single
link, but consider a stochastic environment where the amount
of data received every slot is random, as is the current channel
condition for wireless transmission. Further, the transmission
rate is an arbitrary (possibly non-linear) function of transmis-
sion power. Optimal policies in this stochastic context are more
complex, and more care is required to ensure transmissions are
energy-efficient.

In this paper, we design a dynamic compression and trans-
mission scheduling algorithm and prove that the algorithm
pushes total time average power arbitrarily close to optimal,
with a corresponding tradeoff in average delay. We assume
the algorithm has a table of expected compression ratios
for each compression option, and that, if channels are time-
varying, current channel state information is available. Our
algorithm bases decisions purely on this information and does
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not require a-priori knowledge of the packet arrival or channel
state probabilities. The algorithm is simple to implement and is
robust to situations where these probabilities can change. This
work is important as it demonstrates a principled method of
making on-line compression decisions in a stochastic system
with correlated data. Our solution applies the techniques of
Lyapunov optimization developed in our previous work [6]
[7], and is perhaps the first application of these techniques to
the dynamic compression problem.

In the next section we describe the system model, and in
Section III we characterize the minimum average power in
terms of an optimization problem based on channel and packet
arrival probabilities. In Section IV we develop an on-line
algorithm that makes simple decisions based only on current
information. We prove the algorithm achieves average power
that can be pushed arbitrarily close to optimum via a simple
control parameter that also affects an average delay tradeoff.

II. SYSTEM MODEL

Consider the wireless link of Fig. 1 that operates in slotted
time and receives packets from N different sensor units.
If an individual sensor sends data during a timeslot, this
data is in the form of a fixed length packet of size b
bits, containing sensed information. Let A(t) represent the
number of sensors that send packets during slot t, so that
A(t) ∈ {0, 1, . . . , N}. The data from these A(t) packets may
be correlated, and hence it may be possible to compress the
information within the A(t) packets (consisting of A(t)b bits)
into a smaller data unit for transmission over the wireless link.
This is done via a compression function Ψ(a, k) defined as
follows. There are K + 1 compression options, comprising
a set K = {0, 1, . . . ,K}. Option 0 represents no attempted
compression, and options {1, 2, . . . ,K} represent various al-
ternative methods to compress the data. The function Ψ(a, k)
takes input a ∈ {0, 1, . . . , N} (representing the number of
newly arriving packets) and compression option k ∈ K, and
generates a random variable output R, representing the total
size of the data after compression.

Every timeslot the link controller observes the random
number of new packet arrivals A(t) and chooses a compression
option k(t) ∈ K, yielding the random compressed output
R(t) = Ψ(A(t), k(t)). Let Pcomp(t) represent the power
expended by this compression operation, and assume this is
also a random function of the number of packets compressed
and the compression option. The average compressed output
m(a, k) and the average power expenditure φ(a, k) associated
with A(t) = a, k(t) = k are defined:

m(a, k) = E {Ψ(A(t), k(t)) | A(t) = a, k(t) = k} (1)
φ(a, k) = E {Pcomp(t) | A(t) = a, k(t) = k} (2)

We assume the values of m(a, k) and φ(a, k) are known so that
a table such as given in Fig. 2 can be constructed. We assume
Ψ(a, 0) = ab and φ(a, 0) = 0, as the compression option k =
0 does not compress any data and also does not expend any
power. We assume that m(a, k) ≤ ab for all a ∈ {0, 1, . . . , N}
and all k ∈ K, so that compression is not expected to expand
the data.

k Ψ(a, k) E {Ψ(a, k)} E {Pcomp | a, k}
0 ab ab φ(a, 0) = 0
1 Random m(a, 1) φ(a, 1)
2 Random m(a, 2) φ(a, 2)
· · · · · · · · · · · ·
K Random m(a,K) φ(a,K)

Fig. 2. An example table of expected compression outcomes.

A. Data Transmission and Queueing

The compressed data R(t) = Ψ(A(t), k(t)) is delivered
to a queueing buffer for transmission over the wireless link
(see Fig. 1). Let U(t) represent the current number of bits (or
unfinished work) in the queue. The queue backlog evolution
is given by:

U(t + 1) = max[U(t)− µ(t), 0] + R(t) (3)

where µ(t) is the transmission rate offered by the link on slot
t. This rate is determined by the current channel condition and
the current transmission power allocation decision, as in [7].
Specifically, the channel is assumed to be constant over the
duration of a slot, but can potentially change from slot to slot.
Let S(t) represent the current channel state, which is assumed
to take values in some finite set S. We assume the channel
state S(t) is known at the beginning of each slot t, so that the
link can make an opportunistic transmission power allocation
decision Ptran(t), yielding a transmission rate µ(t) given by:

µ(t) = C(Ptran(t), S(t))

where C(P, s) is the rate-power curve associated with the
modulation and coding schemes used for transmission over
the channel. We assume C(P, s) is continuous in power P for
each channel state s ∈ S. Transmission power allocations P (t)
are restricted to some compact set P for all slots t, where P
contains a maximum transmission power Pmax. For example,
the set P can contain a discrete set of power levels, such
as the two element set P = {0, Pmax}. Alternatively, P can
be a continuous interval, such as P = {P | 0 ≤ P ≤ Pmax}.
We assume throughout that 0 ∈ P and that C(0, s) = 0
for all channel states s ∈ S, so that zero transmission
power yields a zero transmission rate. Further, we assume that
C(Pmax, s) ≥ C(P, s) for all s ∈ S and all P ∈ P , so that
allocating maximum power yields the largest transmission rate
that is possible under the given channel state.

B. Stochastic Assumptions and the Control Objective

For simplicity, we assume the packet arrival process A(t) is
i.i.d. over slots with a general probability distribution pA(a) =
Pr[A(t) = a]. Likewise, the channel state process S(t) is i.i.d.
over slots with a general distribution πs = Pr[S(t) = s].1

The distributions pA(a) and πs are not necessarily known to
the link controller. Every slot the link controller observes the

1Using the T -slot Lyapunov drift techniques described in [7], our analysis
can be generalized to show that the same algorithms we derive under the i.i.d.
assumption yield similar performance for arbitrary ergodic arrival and channel
processes, with delay bounds that increase by a constant factor related to the
mixing times of the processes.
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number of new packets A(t), the current queue backlog U(t),
and the current channel state S(t), and makes a compression
decision k(t) ∈ K (expending power Pcomp(t)) and a trans-
mission power allocation Ptran(t) ∈ P . The total time average
power expenditure is given by:

lim
t→∞

1
t

t−1∑
τ=0

[Pcomp(τ) + Ptran(τ)]

The goal is to make compression and transmission decisions to
minimize time average power while ensuring the queue U(t)
is stable, so that average backlog is finite.

Define rmin and rmax as follows:

rmin
M= E

{
min
k∈K

m(A(t), k)
}

(4)

rmax
M= E {C(Pmax, S(t))} (5)

where the expectations are taken over the randomness of A(t)
and S(t) via the distributions pA(a) and πs. Thus, rmin is the
minimum average bit rate delivered to the queueing system
(in units of bits/slot), assuming the compression option that
results in the largest expected bit reduction is used every slot.
The value rmax represents the maximum possible average
transmission rate over the wireless link. We assume throughout
that rmin < rmax, so that it is possible to stabilize the system.

Thus, there are two reasons to compress data: (i) In order
to stabilize the queue, we may need to compress (particularly
if E {A(t)} b > rmax). (ii) We may actually save power if the
power used to compress is less than the extra amount of power
that would be used transmitting the extra data if it were not
compressed.

C. Discussion of the System Model

This simple model captures a wide class of systems where
data compression is important. The N sensor scenario of Fig.
1 captures the possibility of randomly arriving data that is
spatially correlated. An example is when there are multiple
sensors in an environment and only a random subset of them
detect a particular event. The data provided by these sensors
is thus correlated but not necessarily identical, as each obser-
vation can offer new information. The case of compression
because of time correlated data can also be treated in this
model by re-defining N to represent the time over which
a frame of data samples are gathered, and interpreting A(t)
as the random number of packets arriving over the N mini-
slots. This of course assumes compression is contained to data
arriving within the same frame.

Our time-varying channel model is useful for systems with
mobility, environmental changes, or restrictions that create
time-varying transmission opportunities. This allows for op-
portunistic scheduling which can help to further reduce power
expenditure. We do not consider the additional power required
to measure the channel conditions here. Extensions that treat
this issue can likely be obtained using the techniques for
optimizing measurement decisions developed in [8]. A special
case of the time-varying channel model is the static channel
assumption, where S(t) is the same for all timeslots t. This
special case is similar to the static assumption in [1] [2].

However, this static channel scenario still creates an interesting
problem that is much different from [1] [2]. Indeed, the
random packet arrivals (with raw data rate that is possibly
larger than link capacity) and the potentially non-linear rate-
power curve necessitate a dynamic compression strategy that
is not obvious, that depends on the packet arrival distribution,
and that does not necessarily use the same compression option
on every slot.

Here we assume that the compression options available
within the set K are sufficient to ensure that the resulting
data transmitted over the link has an acceptable fidelity. An
example is lossless data compression, such as Huffman or
Lempel-Ziv source coding, where all original data packets
can be reconstructed at the destination. Alternatively, we
might have some compression options k ∈ K representing
lossy compression, provided that the distortion that may be
introduced is acceptable.

III. MINIMUM AVERAGE POWER

Here we characterize the minimum time average power
required for queue stability. We first define separate functions
h∗(r) and g∗(r) that describe the minimum average power for
compression and transmission, respectively, over a restricted
class of stationary randomized algorithms. These functions
depend on the steady state arrival and channel distributions
pA(a) and πs. We then show that these functions can be
used to define system optimality over the class of all possible
decision strategies, including strategies that do not necessarily
make stationary and randomized decisions.

A. The Functions h∗(r) and g∗(r)
Definition 1: For any value r such that rmin ≤ r ≤

bE {A(t)}, the minimum-power compression function h∗(r)
is defined as the infimum value h for which there exist
probabilities (γa,k) for a ∈ {0, 1, . . . , N}, k ∈ K, such that
the following constraints are satisfied:

N∑
a=0

K∑
k=1

pA(a)γa,kφ(a, k) = h (6)

N∑
a=0

K∑
k=1

pA(a)γa,km(a, k) ≤ r (7)

γa,k ≥ 0 for all a, k (8)
K∑

k=1

γa,k = 1 for all a (9)

Intuitively, the (γa,k) values define a stationary randomized
policy that observes the current arrivals A(t) and uses com-
pression option k with probability γa,k whenever A(t) = a.
The expression on the left hand side of (6) is the expected
compression power E {Pcomp(t)} for this policy. Likewise,
the expression on the left hand side of (7) is the expected
number of bits E {R(t)} at the output of the compressor for
this policy. The value of h∗(r) is thus the smallest possible
average power due to compression, infimized over all such
stationary randomized policies that yield E {R(t)} ≤ r. Note
from (4) that it is possible to have a stationary randomized
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policy that yields E {R(t)} = rmin, and hence the function
h∗(r) is well defined for any r ≥ rmin. Further, the following
lemma shows that the infimum value h∗(r) can be achieved
by a particular stationary randomized algorithm.

Lemma 1: For any r such that rmin ≤ r ≤ bE {A(t)},
there exists a particular stationary randomized policy that
makes compression decisions k∗(t) as a random function of
the observed A(t) value (and independent of queue backlog),
such that:

E {φ(A(t), k∗(t))} = h∗(r) (10)
E {m(A(t), k∗(t))} = r (11)

where the above expectations are taken with respect to the
steady state packet arrival distribution pA(a) and the random-
ized compression decisions k∗(t).

Proof: Omitted for brevity.
Similar to the function h∗(r), we define g∗(r) as the

smallest possible average transmission power required for a
stationary randomized algorithm to support a transmission rate
of at least r. The precise definition is given below.

Definition 2: For any value r such that 0 ≤ r ≤ rmax,
the minimum-power transmission function g∗(r) is defined as
the infimum value g for which there is a stationary random-
ized power allocation policy that chooses transmission power
Ptran(t) as a random function of the observed channel state
S(t) (and independent of current queue backlog), such that:

E {Ptran(t)} = g (12)
E {C(Ptran(t), S(t))} ≥ r (13)

The function g∗(r) is well defined whenever r ≤ rmax

because it is possible to satisfy the constraint (13). Indeed,
note by (5) that the policy Ptran(t) = Pmax for all t yields
E {C(Ptran(t), S(t))} = rmax. Furthermore, it is easy to
show that the inequality constraint in (13) can be replaced
by an equality constraint. Because the set P is compact and
the function C(P, s) is continuous in power P for all channel
states s ∈ S, it can be shown that the infimum average power
g∗(r) can be achieved by a particular stationary randomized
policy. Specifically, for any r such that 0 ≤ r ≤ rmax,
there exists a stationary randomized algorithm that chooses
transmission power P ∗tran(t) that yields:

E {C(P ∗tran(t), S(t))} = r (14)
E {P ∗tran(t)} = g∗(r) (15)

B. Structural Properties of h∗(r) and g∗(r)
It is not difficult to show that h∗(r) is a non-increasing

function of r (because less compression power is required if
a larger compressor output rate is allowed), and that g∗(r) is
a non-decreasing function of r (because more transmission
power is required to support a larger transmission rate).
Further, both functions are convex. It is interesting to note that
in the special case when there is no channel state variation so
that C(P, s) = C(P ), and when the function C(P ) is strictly
increasing and concave, then g∗(r) = C−1(r), i.e., it is given
by the inverse of C(P ). Details on the structure of the g∗(r)
function in the general time-varying case are given in [6].

C. Minimum Average Power for Stability

The following theorem establishes the minimum time aver-
age power required for queue stability in terms of the h∗(r)
and g∗(r) functions. We consider all possible algorithms for
making compression decisions k(t) ∈ K and transmission
power decisions Ptran(t) ∈ P over time, including algorithms
that are not necessarily in the class of stationary randomized
policies.

Theorem 1: Let A(t) and S(t) be ergodic with steady state
distributions pA(a) and πs, respectively (such as processes
that are i.i.d. over slots, or more general Markov modulated
processes). Assume that rmin < rmax (defined in (4), (5)).
Then any joint compression and transmission rate scheduling
algorithm that stabilizes the queue U(t) yields a time average
power expenditure that satisfies:

lim sup
t→∞

1
t

t−1∑
τ=0

E {Pcomp(τ) + Ptran(τ)} ≥ P ∗av

where P ∗av is defined as the optimal solution to the following
problem:

Minimize: h∗(r) + g∗(r) (16)
Subject to: rmin ≤ r ≤ min[rmax, bE {A(t)}] (17)

Proof: Omitted for brevity.
The above theorem shows that time average power must

be greater than or equal to P ∗av for queue stability. The
result can be understood intuitively by observing that if r is
the rate of bits arriving to the queue from the compressor,
then average transmission power can be minimized while
maintaining stability by pushing the time average transmission
rate down closer and closer to r. The optimization problem
corresponding to this definition of P ∗av may be difficult to
solve in practice, as it would require exact knowledge of
the h∗(r) and g∗(r) functions, which in turn requires full a-
priori knowledge of the distributions pA(a) and πs. In the next
section, we design a simple class of dynamic algorithms that
stabilize the queue without this knowledge, and that push time
average power arbitrarily close to P ∗av .

IV. THE DYNAMIC COMPRESSION ALGORITHM

Our dynamic algorithm is decoupled into separate policies
for data compression and transmission rate scheduling. It is
defined in terms of a control parameter V > 0 that affects an
energy-delay tradeoff.

The Dynamic Compression and Transmission Algorithm:
Compression: Every slot t, observe the number of new

packet arrivals A(t) and the current queue backlog U(t), and
choose compression option k(t) ∈ K as follows:

k(t) = arg min
k∈K

[U(t)m(A(t), k) + V φ(A(t), k)]

If there are multiple compression options k ∈ K that minimize
U(t)m(A(t), k) + V φ(A(t), k), break ties arbitrarily.

Transmission: Every slot t, observe the current channel
state S(t) and the current queue backlog U(t), and choose
a transmission power Ptran(t) ∈ P as follows:

Ptran(t) = arg max
P∈P

[U(t)C(P, S(t))− V P ]
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The compression policy involves a simple comparison of
K + 1 values found by evaluating the m(a, k) and φ(a, k)
functions for all k ∈ K, and can easily be accomplished in
real time. The transmission policy is a special case of the
Energy Efficient Control Algorithm (EECA) developed in [6],
and typically can also be solved very simply in real time.

Theorem 2: (Algorithm Performance) Suppose packet ar-
rivals A(t) are i.i.d. over slots with distribution pA(a), and
channel states S(t) and are i.i.d. over slots with distribution πs.
For any control parameter V > 0, the dynamic compression
and transmission scheduling algorithm yields power expendi-
ture and queue backlog that satisfy the following:

P tot ≤ P ∗av + B/V (18)

U ≤ B + V (Pmax + φmax)
(rmax − rmin)

(19)

where P tot and U are the time averages for power expenditure
and queue backlog, defined:

P tot
M= lim sup

t→∞

1
t

t−1∑
τ=0

E {Pcomp(τ) + Ptran(τ)}

U M= lim sup
t→∞

1
t

t−1∑
τ=0

E {U(τ)}

and where B and φmax are constants given by:

B M=
1
2

[
σ2 + E

{
C(Pmax, S(t))2

}]
(20)

φmax
M= E

{
max
k∈K

[φ(A(t), k)]
}

(21)

where σ2 is an upper bound on E
{
R(t)2

}
for all slots t. For

example, if no compression operation expands the data, then
R(t) = Ψ(A(t), k) ≤ bA(t) for all t, and hence σ2 is defined:

σ2 M=b2E
{
A(t)2

}
We prove Theorem 2 in the next subsection. Note that the

parameter V > 0 can be chosen to make B/V arbitrarily
small, ensuring by (18) that time average power is arbitrarily
close to the optimal value P ∗av . However, the resulting average
queue backlog bound grows linearly with V . By Little’s
Theorem, the average queue backlog is proportional to average
delay [9]. This establishes an explicit tradeoff between average
power expenditure and average delay.

A. Lyapunov Performance Analysis for Theorem 2

Our proof relies on the performance optimal Lyapunov
scheduling techniques from [7] [6]. First define the following
quadratic Lyapunov function of queue backlog U(t):

L(U(t))M=
1
2
U(t)2

Define the one-step conditional Lyapunov drift ∆(U(t)) as
follows:

∆(U(t))M=E {L(U(t + 1))− L(U(t)) | U(t)} (22)

The following simple lemma from [7] shall be useful.

Lemma 2: (Lyapunov drift [7]) Let L(U(t)) be a non-
negative function of U(t) with Lyapunov drift ∆(U(t)) de-
fined in (22). If there are stochastic processes α(t) and β(t)
such that every slot t and for all possible values of U(t), the
conditional Lyapunov drift satisfies:

∆(U(t)) ≤ E {β(t)− α(t) | U(t)} (23)

then:

lim sup
t→∞

1
t

t−1∑
τ=0

E {α(τ)} ≤ lim sup
t→∞

1
t

t−1∑
τ=0

E {β(τ)}

The proof involves taking expectations of (23), using it-
erated expectations, and summing the resulting telescoping
series (see [7] for details).

The queue backlog U(t) for our system satisfies the queue
evolution equation (3). The Lyapunov drift is given by the
following lemma.

Lemma 3: (Computing ∆(U(t))) Under the queue evolu-
tion equation (3) and using the quadratic Lyapunov function
L(U(t)) = 1

2U(t)2, the Lyapunov drift ∆(U(t)) satisfies the
following for all t and all U(t):

∆(U(t)) ≤ B − U(t)E {µ(t)−m(A(t), k(t)) | U(t)} (24)

where µ(t) = C(Ptran(t), S(t)), and B is given in (20). The
expectation above is taken with respect to the random channels
and arrivals S(t) and A(t), and the potentially random control
actions k(t) and Ptran(t).

Proof: From (3) we have:
1
2
U(t + 1)2 =

1
2

(max[U(t)− µ(t), 0] + R(t))2

≤ 1
2

[
U(t)2 + µ(t)2 + R(t)2

]
−U(t)(µ(t)−R(t))

and hence (taking conditional expectations given U(t)):

∆(U(t)) ≤ 1
2

E
{
µ(t)2 + R(t)2 | U(t)

}
−U(t)E {µ(t)−R(t) | U(t)}

It is clear that the value 1
2E

{
µ(t)2 + R(t)2 | U(t)

}
is less

than or equal to the constant B defined in (20), and hence:

∆(U(t)) ≤ B − U(t)E {µ(t)−R(t) | U(t)} (25)

Noting that R(t) = Ψ(A(t), k(t)) and using iterated expecta-
tions, we have:

E {R(t) | U(t)}
= E {Ψ(A(t), k(t)) | U(t)}
= E {E {Ψ(A(t), k(t)) | U(t), A(t), k(t)} | U(t)}
= E {m(A(t), k(t)) | U(t)}

where we have used the definition of m(a, k) given in (1).
Using this equality in (25) yields the result.

Following the Lyapunov optimization framework of [7]
[6], we add a weighted cost term to the drift expression.
Specifically, from (24) we have:

∆(U(t)) + V E {Pcomp(t) + Ptran(t) | U(t)} ≤
B − U(t)E {C(Ptran(t), S(t))−m(A(t), k(t)) | U(t)}
+V E {Pcomp(t) + Ptran(t) | U(t)} (26)
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where we have just added an additional term to both sides
of (24). Note that E {Pcomp(t) | U(t)} can be expressed as
follows (using iterated expectations):

E {Pcomp(t) | U(t)}
= E {E {Pcomp(t) | U(t), A(t), k(t)} | U(t)}
= E {φ(A(t), k(t)) | U(t)}

Using this equality in the right hand side of (26) and re-
arranging terms yields:

∆(U(t)) + V E {Pcomp(t) + Ptran(t) | U(t)} ≤
B − E {U(t)C(Ptran(t), S(t))− V Ptran(t) | U(t)}
+E {U(t)m(A(t), k(t)) + V φ(A(t), k(t)) | U(t)} (27)

Now note that we have not yet used the properties of
the dynamic compression and transmission policy. Indeed,
the above expression (27) is a bound that holds for any
compression and transmission scheduling decisions k(t) ∈ K,
Ptran(t) ∈ P that are made on slot t, including randomized
decisions. However, note that the dynamic compression and
transmission strategy is designed specifically to minimize the
right hand side of (27) over all alternative decisions that
can be made on slot t. Indeed, the compression algorithm
observes A(t) and U(t) and chooses k(t) ∈ K to minimize
U(t)m(A(t), k(t)) + V φ(A(t), k(t)), which thus minimizes
the following term over all alternative decisions that can be
made on slot t:

E {U(t)m(A(t), k(t)) + V φ(A(t), k(t)) | U(t)}

Similarly, the algorithm chooses Ptran(t) ∈ P to minimize the
right hand side of (27) over all transmission power decisions
that can be made on slot t. It follows that the right hand side
of (27) is less than or equal to the corresponding expression
with Ptran(t) and k(t) replaced by P ∗tran(t) and k∗(t), where
P ∗tran(t) and k∗(t) are any other (possibly randomized) poli-
cies that satisfy P ∗tran(t) ∈ P and k∗(t) ∈ K:

∆(U(t)) + V E {Pcomp(t) + Ptran(t) | U(t)} ≤
B − E {U(t)C(P ∗tran(t), S(t))− V P ∗tran(t) | U(t)}
+E {U(t)m(A(t), k∗(t)) + V φ(A(t), k∗(t)) | U(t)} (28)

Now let r1 be any particular value that satisfies rmin ≤ r1 ≤
bE {A(t)}, and let k∗(t) be the stationary randomized policy
that yields:

E {φ(A(t), k∗(t))} = h∗(r1) (29)
E {m(A(t), k∗(t))} = r1 (30)

Such a policy exists by (10) and (11) of Lemma 1. Similarly,
let r2 be any value that satisfies 0 ≤ r2 ≤ rmax, and let
P ∗tran(t) be the stationary randomized power allocation policy
that yields:

E {C(P ∗tran(t), S(t))} = r2 (31)
E {P ∗tran(t)} = g∗(r2) (32)

Such a policy exists by (14) and (15). Further, the stationary
randomized policies of (29)-(32) base decisions only on the
current A(t) and S(t) states, which are i.i.d. over slots (and are

hence independent of the current queue backlog U(t)). Thus,
the expectations of (29)-(32) are the same when conditioned
on U(t). Plugging (29)-(32) into the right hand side of (28)
thus yields:

∆(U(t)) + V E {Pcomp(t) + Ptran(t) | U(t)} ≤
B − U(t)(r2 − r1) + V (h∗(r1) + g∗(r2)) (33)

The above inequality holds for all r1 and r2 that satisfy
rmin ≤ r1 ≤ bE {A(t)} and 0 ≤ r2 ≤ rmax. Let r1 = r2 =
r∗, where r∗ is the value of r that optimizes the problem in
(16) and (17) of Theorem 1, so that P ∗av = h∗(r∗) + g∗(r∗).
Plugging into (33), we have:

∆(U(t)) + V E {Pcomp(t) + Ptran(t) | U(t)} ≤ B + V P ∗av

Using the above drift inequality in the Lyapunov Drift Lemma
(Lemma 2) and defining α(t) = V Pcomp(t) + V Ptran(t) and
β(t) = B+V P ∗av yields P tot ≤ P ∗av +B/V , proving equation
(18) of Theorem 2.

Now choose r1 = rmin and r2 = rmax. Plugging into (33)
and noting that Pcomp(t) ≥ 0 and Ptran(t) ≥ 0 gives:

∆(U(t)) ≤ B − U(t)(rmax − rmin)
+V (h∗(rmin) + g∗(rmax))

Using the above drift inequality in the Lyapunov Drift Lemma
(Lemma 2) and defining α(t) = U(t)(rmax − rmin) and
β(t) = B + V (h∗(rmin) + g∗(rmax)), we have:

lim sup
t→∞

1
t

t−1∑
τ=0

E {U(τ)} ≤ B + V (h∗(rmin) + g∗(rmax))
(rmax − rmin)

The result of (19) follows because g∗(rmax) ≤ Pmax and
h∗(rmin) ≤ φmax. This completes the proof of Theorem 2.
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