
IEEE PROCEEDINGS OF INFOCOM, APRIL 2006 1

Optimal Energy and Delay Tradeoffs for
Multi-User Wireless Downlinks

Michael J. Neely
University of Southern California
http://www-rcf.usc.edu/∼mjneely

Abstract— We consider the fundamental delay tradeoffs for
minimizing energy expenditure in a multi-user wireless downlink
with randomly varying channels. First, we extend the Berry-
Gallager bound to a multi-user context, demonstrating that
any algorithm that yields average power within O(1/V ) of the
minimum power required for network stability must also have
an average queueing delay greater than or equal to Ω(

√
V ). We

then develop a class of algorithms, parameterized by V , that
come within a logarithmic factor of achieving this fundamental
tradeoff. The algorithms overcome an exponential state space
explosion, and can be implemented in real time without a-
priori knowledge of traffic rates or channel statistics. Further,
we discover a “super-fast” scheduling mode that beats the Berry-
Gallager bound in the exceptional case when power functions are
piecewise linear.

Index Terms— queueing analysis, stability, optimization,
stochastic control, asymptotic tradeoffs, satellite communication

I. INTRODUCTION

In this paper we consider the fundamental tradeoff between
energy and delay in a multi-user wireless network. We focus
on the case of a wireless downlink that transmits to N different
users over N time varying channels (Fig. 1). Transmission
rates depend on current channel conditions and current power
allocation decisions. We assume that time is slotted and that
channel conditions can be measured every timeslot. The goal is
to allocate power in reaction to current channel states and cur-
rent queue backlogs to stabilize the system while minimizing
energy expenditure and maintaining low delay. This objective
is important for satellite and wireless downlinks, as well as
for wireless nodes that transmit to neighbors within a larger
ad-hoc network. It is crucial to understand the fundamental
performance limits of such systems, as these limits must be
pushed to their maximum to support the demands that will be
placed on future networks.

The fundamental energy-delay tradeoff was characterized
by Berry and Gallager in [1] for the special case of a single
queue that stores data for transmission over a single fading
channel. Average energy for such a system can be improved
by accumulating data for more efficient future transmission,
at the expense of increasing queueing congestion and delay. It
was shown in [1] that, subject to strict convexity assumptions
on the rate-power curve of the system, any set of algorithms
that yield average power within O(1/V ) of the minimum
power required for stability (for increasingly large positive
numbers V ), must also have average queueing delay greater
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Fig. 1. A wireless downlink with multiple input streams, with an associated
energy-delay tradeoff curve.

than or equal to Ω(
√

V ).1 This demonstrates that any effort
to reduce the power expended to support incoming traffic will
necessarily increase delay. Further, an algorithm for achieving
this fundamental tradeoff was proposed, based on the concept
of buffer partitioning.

Related work on minimizing energy in a static wireless
node with known arrival times and a single transmitter is
considered in [2] [3], and a problem with a static link but
stochastic arrivals is treated using filter theory in [4]. Similar
problems of minimizing energy subject to delay constraints
or minimizing delay subject to energy constraints are treated
for single link satellite and wireless systems in [3] [5] [6]
using stochastic differential equations, dynamic programming,
and Markov decision theory. While such techniques might
improve the delay coefficient in comparison to the Berry-
Gallager algorithm, they cannot overcome the fundamental
Ω(
√

V ) tradeoff curve.
However, there has been little work to extend this theory of

energy-delay tradeoffs to multi-user networks. This is largely
due to the complexity explosion associated with increasing the
number of queues beyond one. Indeed, the number of backlog
vectors and channel state vectors both increase exponentially
with the number of queues in the system, making dynamic pro-
gramming approaches and Markov decision theory approaches
prohibitive. Indeed, even for the case of a single data link, it is
difficult to implement the proposed stochastic algorithms ([1]
[3] [5] [6]), as these algorithms require scheduling policies to
be pre-computed based on full knowledge of the input rate
and the steady state channel probabilities. While it may be
possible to estimate these statistics in the single link case
when the number of channel states is relatively small, it is
not practical to envision estimating the exponentially growing

1The notation Ω(
√

V ) denotes a function that increases at least as fast as
a square root function.
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number of parameters in the multi-user case, nor is it practical
to envision solving the corresponding optimization problems
even if all of these parameters were known exactly.

The complexity explosion problem is one of the major ob-
stacles that we overcome in this paper. We do so by combining
the concept of buffer partitioning with the recently developed
theory of performance optimal Lyapunov scheduling [7] [8]
[9]. Specifically, [7] [8] [9] develops Lyapunov techniques
for treating stability and performance optimization simulta-
neously (extending the Lyapunov stability results developed,
for example, in [12]-[16]). These results are applied in [7]
to develop simple stabilizing algorithms for general multi-hop
wireless networks that yield average power within O(1/V )
of the minimum power required for stability (for any control
parameter V > 0). However, the resulting end-to-end delay
of these algorithms was shown to grow linearly with V , even
for the special case of a single data link. Thus, the algorithms
do not yield the optimal delay tradeoff in the single link case,
suggesting that improved tradeoffs might be possible.

In this paper, we extend the theory of stochastic optimal
networking to treat optimal delay tradeoffs. First, we extend
the Berry-Gallager bound to multi-user systems, establishing
that the Ω(

√
V ) tradeoff curve also applies in these more

general scenarios. Next, we construct a simple algorithm
that achieves the fundamental energy-delay tradeoff to within
a logarithmic factor. This is the first algorithm to achieve
such performance for multi-user systems. Furthermore, the
algorithm does not require knowledge of input rates or channel
statistics, and is simple to implement in real time for systems
with any number of users. The technique introduces a novel
method of “drift steering” that maintains a set of virtual queues
with Lyapunov coefficients that turn “ON” or “OFF” based on
congestion thresholds. For simplicity of exposition, we focus
on the case of a single downlink with N channels, although
the technique readily extends to the more general scenario
of multi-node, multi-hop networks using the backpressure
techniques developed in [7]-[9], [12], [16].

Our analysis further reveals an important exceptional case
where “super-fast” convergence is possible. In particular, if
power curves have certain piecewise linear properties, such as
when power allocation is restricted to using either zero power
or full power at any server, then our algorithm can be modified
to achieve similar energy performance with delay that grows
only logarithmically in the V parameter. This demonstrates
that it is possible to outperform the Berry-Gallager bound in
systems with piecewise linearities.

Previous work in the area of capacity and stable scheduling
for multi-user networks is found in [10]-[16], and energy ef-
ficiency is considered in [17]-[21], [7]. Most work in network
optimization is closely tied to static optimization theory and
convex duality, including [22]-[26] for static networks and
[17], [27]-[29] for stochastic gradient algorithms and fluid
limit models. A Lyapunov method for performance optimiza-
tion is developed in [9] [8] [7] which yields strategies similar
to those suggested by gradient optimization approaches, and
also yields explicit performance and delay bounds. This paper
builds on the Lyapunov method to achieve optimal delay
tradeoffs, and makes a significant contribution to the field

by developing new scheduling algorithms that go beyond the
classical gradient methods of optimization theory.

An outline of this paper is as follows. In the next section, we
define the system model and prove the Ω(

√
V ) lower bound

on delay for any algorithm implemented on systems with
strict convexity properties. In Section IV we review the main
features of the original Berry-Gallager algorithm from [1] and
outline the complexity challenges associated with the multi-
dimensional problem. In Section V we introduce Lyapunov
drift theory and present the control algorithm. Performance
analysis and extensions to super-fast scheduling are treated in
Sections VI and VII.

II. PROBLEM FORMULATION

Consider a wireless downlink with N time-varying chan-
nels, each for a different wireless user. The system operates
in slotted time with slots normalized to one unit. We let
~S(t) = (S1(t), . . . , SN (t)) represent the vector of current
channel states for each link during slot t, for t ∈ {0, 1, 2, . . .}.
These states can represent current fading levels, attenuation,
and/or noise levels associated with the channel during slot t.
It is assumed that channels hold their states for the duration
of a timeslot, but potentially change on slot boundaries. For
simplicity, we assume there are a finite number of channel
states ~S, and that the channel process is i.i.d. from one timeslot
to the next.2 We define π~S as the occurrence probability for
each channel state ~S. These channel probabilities determine
the capacity region of the network [16], but are not necessarily
known to the downlink controller.

Every timeslot, the controller observes the current channel
states and chooses transmission rates by allocating power as a
vector ~P (t) = (P1(t), . . . , PN (t)) subject to an instantaneous
power constraint ~P (t) ∈ Π, where Pi(t) represents the power
allocated to link i during slot t, and Π is a compact set
that specifies the collection of admissible power vectors. For
example, a system with only a peak power constraint Ppeak

can be modeled with a power set Π consisting of all non-
negative power vectors ~P that satisfy

∑N
i=1 Pi ≤ Ppeak.

Additional constraints on instantaneous power transmission
can be incorporated simply by modifying the power set Π.
Transmission rates for each link are determined by the current
channel state vector ~S(t) and the current power allocation
vector ~P (t) according to a general rate-power curve ~µ(~P , ~S) =
(µ1(~P , ~S), . . . , µN (~P , ~S)). We assume that ~µ(~P , ~S) is a con-
tinuous function of the power vector for each channel state
vector ~S. Let µmax represent a bound on the maximum
transmission rate of a single link, maximized over all channel
states ~S and all power vectors ~P ∈ Π.

Data arrives in packetized form according to N random
processes, and each packet is stored in one of N internal
queues according to its destination (see Fig. 1). We let ~A(t) =
(A1(t), . . . , AN (t)) represent the vector of new packet arrivals
every slot, where Ai(t) is the number of bits that arrive for
user i during slot t. We assume arrival vectors ~A(t) are i.i.d.
over slots, and define the rate vector ~λ = (λ1, . . . , λN ), where
λi = E {Ai(t)} represents the arrival rate to queue i in units

2Extensions to non-i.i.d. systems can be treated via techniques in [9] [16].
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of bits/slot. For simplicity, we assume that λi > 0 for all
i. Let Ui(t) denote the unfinished work in queue i at slot t,
representing the backlog of bits waiting to be transmitted over
channel i. Let ~r(t) = ~µ(~P (t), ~S(t)) represent the transmission
rate vector at slot t. Queue dynamics thus proceed according
to the equation:

Ui(t + 1) = max[Ui(t)− ri(t), 0] + Ai(t) (1)

where ri(t) = µi(~P (t), ~S(t)), and ~P (t) ∈ Π. The goal of
the network controller is to allocate power subject to the
power constraints so that all queues are stabilized and, ideally,
average power is minimized. It turns out that minimum power
cannot be achieved without infinite average delay, and hence
our precise objective is to stabilize the system with average
power that can be pushed arbitrarily close to the minimum
power required for stability, with an optimal delay tradeoff.

Note that the above formulation for a wireless downlink is
quite general and can equally model single-hop networks with
multiple nodes and N data links. The only difference in the
network case is that queues and transmitters are distributed
over the different nodes of the network, and so extra coordi-
nation might be required for control decisions.

A. Example Rate-Power Functions

In the special case where there is only a peak power
constraint and links are independent with no inter-channel
interference, rate-power functions have the form:

~µ(~P , ~S) = (µ1(P1, S1), . . . , µN (PN , SN )) (2)

where power is allocated so that
∑

i Pi(t) ≤ Ppeak. In cases
when there is inter-channel interference, transmission rates on
each link depend on the full vector of channel states and power
allocations. For example, under a signal-to-interference ratio
model, the rate functions are given by:

µi(~P , ~S) = fi(SINRi(~P , ~S)) (3)

where SINRi(~P , ~S) is the signal-to-interference-plus-noise
ratio on link i when power vector ~P is allocated under channel
state ~S, and fi(·) is any function of SINR. The power set
Π might specify further system constraints, such as allowing
transmissions over at most one channel during any slot and/or
restricting allocations to either full power or zero power.

B. The Minimum Energy Function

Here we describe the minimum power required to stabilize
all queues of the downlink system described above. In [9]
[16], the capacity region Λ is defined as the closure of the
set of all input rate vectors ~λ stabilizable under some power
allocation algorithm that conforms to the power constraint
~P (t) ∈ Π. Throughout this paper, we assume that the input
rate vector is strictly interior to the capacity region Λ, and
so the system is stabilizable. In [7], the minimum average
power required for stability is shown to be the solution to an
optimization problem associated with a stationary randomized
power allocation strategy. Below we present a generalized
statement that considers minimizing the time average of a

power cost function h(~P (t)). We assume that h(~P ) is non-
negative and continuous in the power vector ~P . We define the
average power cost as follows:

hav
M= lim

t→∞

1
t

t−1∑
τ=0

E
{

h(~P (τ))
}

The minimum average power problem corresponds to a cost
function:

h(~P ) =
∑N

i=1 Pi

Alternate cost metrics, such as second moments of power, can
be modeled as desired by choosing different h(~P ) functions.

Theorem 1: If the functions h(~P ) and ~µ(~P , ~S) are contin-
uous in the power vector ~P , then the minimum average power
cost h∗av is given by the solution to the following optimization
problem (defined in terms of auxiliary probabilities γ

~S
k and

power vectors ~P
~S
k for all ~S and for k ∈ {1, . . . , N + 2}):3

Minimize: hav =
∑

~S π~S

∑N+2
k=1 γ

~S
k h(~P

~S
k ) (4)

Subject to: ~µav
M=
∑

~S π~S

∑N+2
k=1 γ

~S
k ~µ(~P

~S
k , ~S) ≥ ~λ

~P
~S
k ∈ Π, γ

~S
k ≥ 0 for all k, ~S∑N+2

k=1 γ
~S
k = 1 for all ~S

Thus, the minimum power cost for stability is achieved
among the class of stationary policies that measure the current
channel state ~S(t) and then randomly allocate a power vector
~P

~S
k with probability γ

~S
k . This result is proven in [7] for the

case when h(~P ) =
∑

i Pi by showing that no stabilizing
algorithm can yield average power lower than h∗av , but that
stabilizing algorithms can be constructed with average power
that is arbitrarily close to h∗av . The fact that a probabilistic
combination of N +2 power vectors is used for every channel
state ~S follows by extending the dimensionality of the system
from N to N +1 (due to the single minimum power objective)
and using Caratheodory’s theorem, as described in [7]. The
proof for general h(~P ) functions is similar to [7] and is
omitted for brevity.

Note that the minimum power cost required for stability
depends on the traffic statistics only through the input rate
vector ~λ. We thus define the minimum energy function Φ(~λ)
as the minimum power cost required to stabilize the input
rate vector ~λ, considering all conceivable algorithms. That
is, Φ(~λ) = h∗av , where h∗av is the solution of the above
optimization problem. An equivalent but more compact way
to define Φ(~λ) is as follows.

Definition 1: The minimum energy function Φ(~λ) is de-
fined as the value h∗av that achieves the minimum over the
class of all feasible stationary randomized power allocation
algorithms yielding:

h∗av = E
{

h(~P (t))
}

E
{

~µ(~P (t), ~S(t))
}
≥ ~λ

3The same holds more generally for rate-power curves µ(~P , ~S) that are
upper semi-continuous in the power vector, and cost functions h(~P ) that are
lower semi-continuous.
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It is not difficult to show that any stationary randomized
algorithm that satisfies the above can be modified to yield
average transmission rates that are exactly equal to the input
rate vector ~λ. Thus, for any vector ~λ inside the capacity region
Λ, there is a particular power allocation policy with power
allocations ~P ∗(t) = (P ∗

1 (t), . . . , P ∗
N (t)) and transmission

rates ~r∗(t) = (r∗1(t), . . . , r∗N (t)) that are independent of queue
backlogs, and that yield:

E
{

h(~P ∗(t))
}

= Φ(~λ) (5)

E {~r∗(t)} = ~λ (6)

where the expectation is with respect to the random channel
state vector and the randomized control decisions. While such
a policy exists for all vectors ~λ, it would be difficult to
construct such a policy, as that would involve solving the
optimization problem (4) and would require full knowledge
of the rate vector ~λ and the channel probabilities π~S .

The minimum energy function Φ(~λ) has an important
convexity property for all vectors ~λ in the capacity region
Λ, as described by the following lemma.

Lemma 1: The function Φ(~λ) is convex over ~λ ∈ Λ, and is
non-decreasing in each entry λi (i ∈ {1, . . . , N}).

Proof: Omitted for brevity.
It is known that any convex multi-variable function is twice

differentiable almost everywhere [30]. Hence, throughout this
paper we shall assume that the Φ(~λ) function is twice differ-
entiable at the point ~λ of interest.

III. THE FUNDAMENTAL ENERGY-DELAY BOUND

Here we extend the Berry-Gallager bound to multi-user
systems. Specifically, we show that under a strict convex-
ity assumption on the minimum energy function Φ(~λ), any
sequence of policies (parameterized by increasing positive
numbers V ) that yield average power cost hav within O(1/V )
of the minimum average cost required for stability must also
have average delay greater than or equal to Ω(

√
V ). Our proof

closely follows the work in [1] for the single user case, and
in particular in this section we shall restrict attention to the
same class of admissible strategies:

Definition 2: A sequence of scheduling strategies, parame-
terized by increasing positive numbers V that tend to infinity,
is admissible if

1) The policies make stationary (and possibly randomized)
power allocation decisions based on the current queue
backlog and channel state vectors ~U(t) and ~S(t).

2) For each V , the corresponding policy stabilizes the sys-
tem and forms an ergodic Markov chain with steady state
queue backlog distribution π(~U). Furthermore, the steady
state average backlog E

{∑N
i=1 Ui

}
is finite for all V and

increases to infinity as V →∞.
3) There exist positive values θ1, θ2 such that for all

timeslots t and for each i ∈ {1, . . . , N}, we have:

Pr
[
Ai(t)− µi(~P (t), ~S(t)) ≥ θ2 | ~U(t)

]
≥ θ1

The third assumption above states that there is a positive
probability that the backlog of any particular queue increases

by at least θ2 during a single timeslot, regardless of the current
backlog value. This assumption holds whenever there is a non-
zero probability of an outage on channel i during a particular
timeslot (that is, having a channel state that yields zero data
rate on channel i for every power allocation), or whenever
there is a non-zero probability that Ai(t) > µmax. The first
two assumptions on stationarity and ergodicity simplify the
proof of the fundamental bound at the expense of slightly
reducing the class of scheduling policies considered. However,
the assumptions themselves are not very restrictive, in that
algorithms that yield optimal energy-delay tradeoffs can be
formulated according to Markov decision theory, which leads
to stationary policies that base decisions on the system state
vectors ~U(t) and ~S(t).

Theorem 2: (Multi-User Berry-Gallager Bound) If the input
rate vector ~λ is strictly interior to the capacity region Λ and if
the minimum cost function Φ(~λ) has a positive definite matrix
of partial derivatives ∇2Φ(~λ) at the point ~λ, then any sequence
of admissible policies that yield average power cost within
O(1/V ) of Φ(~λ) must have average delay greater than or equal
to Ω(

√
V ).

Proof: See Appendix A.
The positive definite assumption in the above theorem en-

sures that the second order terms of the Taylor series expansion
of Φ(~λ + ~ε) are non-zero about the point ~λ. This condition
holds for a wide class of systems with nonlinear rate-power
curves, and is related to the notion of strict convexity. It is
not difficult to show that Φ(~λ) is strictly convex whenever the
feasible power set Π includes only a peak power constraint
and when h(~P ) =

∑
i Pi and rate-power curves have the

form specified in (2) with functions µi(Pi, Si) that are strictly
concave in Pi for each link i ∈ {1, . . . , N}. However, in
systems with only a discrete set of power allocation options
(such as systems that can allocate either zero power or full
power), the corresponding Φ(~λ) function is piecewise linear
and hence the energy-delay properties of such systems are not
necessarily governed by the Berry-Gallager bound.

IV. BUFFER PARTITIONING

To introduce the concept of buffer partitioning, we first
review the basic Berry-Gallager threshold algorithm developed
in [1] for the case of a single queue with a single time
varying data link (i.e., the case N = 1), and for the case
h(~P ) =

∑
i Pi. For such a system, let U(t) represent the

current unfinished work in the queue, let A(t) represent the
arrivals on slot t, and let λ = E {A(t)} represent the arrival
rate. Define Φ(γ) as the minimum average power required to
support an average transmission rate of γ. The Berry-Gallager
algorithm switches between two different transmission policies
depending on a buffer occupancy threshold. Specifically, the
buffer is partitioned into two halves according to a positive
threshold Q (where Q > µmax). When U(t) < Q, power
is allocated using the stationary policy that yields an average
transmission rate of λ−ε and an average power expenditure of
Φ(λ− ε) (for some specified value of ε such that 0 < ε < λ).
When U(t) ≥ Q, power is allocated according to the stationary
policy that yields an average transmission rate of λ + ε and
an average power expenditure of Φ(λ + ε).
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Fig. 2. (a) A partitioning of the single dimensional state space into Left
and Right regions for a single link system, with drift directions illustrated.
(b) An example partitioning of a 2-user system with the multi-dimensional
drift vectors shown. The backlog vector is currently in the upper left region.

Thus, for this algorithm the queue backlog U(t) only affects
power allocation by determining which of the two transmission
policies is used. Once a particular policy is determined, power
is allocated based only on the current channel state S(t). Now
define r̃(t) as the amount of bits transmitted by the queue
on timeslot t, and define the drift as the expected difference
between A(t) and r̃(t) given the current backlog level U(t).
Note that the drift is equal to −ε when U(t) ≥ Q, and is
equal to ε when U(t) < Q, with the exceptional case when
the queue is near empty and the drift is equal to ε̃(U) ≥ ε
(see Fig. 2a). This is an edge effect that can only occur on the
interval 0 ≤ U < µmax, where it is possible that r̃(t) may be
less than the scheduled transmission rate r(t) = µ(P (t), S(t))
due to little or no data being present in the queue. The Berry-
Gallager algorithm is designed to achieve the optimal energy-
delay tradeoff curve for the single link case (through suitable
choices of the Q and ε parameters). This performance is due
to the bi-modal transmission policy, and cannot be achieved
by policies that have uni-modal drift properties [1].

A. Multi-Dimensional Buffer Partitioning

Here we extend the buffer partitioning concept to a multi-
user context. We consider the minimum energy function Φ(~λ)
that corresponds to any continuous and non-negative power
cost metric h(~P ). The algorithm we develop in this subsection
is not meant to be a practical control strategy. Rather, it is
intended to highlight the challenges and design principles
associated with the multi-user problem. A practical control
strategy is developed in the next section based on these
principles.

Recall that all backlog vectors ~U take values within the N
dimensional state space [0,∞)N . Consider partitioning this
state space into 2N regions according to the buffer threshold
parameter Q. Specifically, we define ~H(~U) as a vector with
binary entries, where the ith entry depends on whether Ui is
to the right or left of the Q threshold:

Hi(Ui)M=

{
“L” if Ui < Q
“R” if Ui ≥ Q

~H(~U)M=(H1(U1), . . . ,HN (UN ))

In this way, the vector ~H(~U(t)) indicates which of the 2N

regions currently contains the backlog vector ~U(t) (see Fig.

2b). Consider now an algorithm that switches between 2N

different transmission policies depending on the current region
of the backlog vector. The drift of each policy is designed to
push each component of the backlog vector closer to the Q
threshold. Specifically, we consider a drift parameter ε such
that 0 < ε < mini∈{1,...,N}{λi}, and define the vector ~ε( ~H)
as follows:

εi(Hi)M=

{
−ε if Hi = “L”
+ε if Hi = “R”

~ε( ~H)M=(ε1(H1), . . . , εN (HN ))

Assume that ~λ + ~ε( ~H) ∈ Λ for all ~H . Whenever ~H(~U(t)) =
~H , the algorithm uses the stationary policy that allocates power
based only on the current channel state ~S(t) to yield an
expected transmission rate of ~λ+~ε( ~H) with an average power
expenditure of Φ(~λ + ~ε( ~H)). Such a policy is guaranteed to
exist by (5) and (6). Specifically, if ~P ∗(t) and ~r∗(t) represent
the actual power vectors and transmission vectors used by the
policy on a given timeslot t, we have (compare with (5), (6)):

E
{

h(~P ∗(t)) | ~H(~U(t)) = ~H
}

= Φ(~λ + ~ε( ~H)) (7)

E
{
~r∗(t) | ~H(~U(t)) = ~H

}
= ~λ + ~ε( ~H) (8)

Note that this algorithm requires the pre-computation of
2N different transmission policies, one for each region ~H .
Each individual policy is computed by solving the optimization
problem (4) for the corresponding rate vector ~λ + ~ε( ~H), and
each such optimization requires a-priori knowledge of the
exponential number of channel state probabilities π~S . Thus,
such a policy cannot be practically implemented in a real
network. However, it is useful to consider the performance
of this strategy as an aid to analyzing the performance of the
more practical algorithm that we develop in the next section.

Consider an implementation of the policy and let α ~H(t)
represent the probability that the backlog vector is within the
region ~H at a given timeslot t. The expected transmission rate
on link i during slot t is thus:

E {r∗i (t)} =
∑

~H

α ~H(t)E
{

r∗i (t)
∣∣∣ ~H(~U(t)) = ~H

}
=

∑
~H

α ~H(t)(λi + εi(Hi))

= λi +
∑

~H

α ~H(t)εi(Hi) (9)

Note that:∑
~H

α ~H(t)εi(Hi) = ε

 ∑α ~H(t)
{ ~H| εi(Hi)=ε}

−
∑

α ~H(t)
{ ~H| εi(Hi)=−ε}


= ε

[
αR

i (t)− αL
i (t)

]
(10)

where we define αR
i (t) and αL

i (t) as the probability that Ui(t)
is to the right and to the left of the Q threshold, respectively.
Specifically:

αR
i (t)M=Pr[Ui(t) ≥ Q] , αL

i (t)M=Pr[Ui(t) < Q]

Using (10) in (9), we have for all i ∈ {1, . . . , N}:

E {r∗i (t)} = λi + ε
[
αR

i (t)− αL
i (t)

]
(11)
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Similarly, we can use (7) to compute the expected power
expenditure on slot t:

E
{

h(~P ∗(t))
}

=
∑

~H

α ~H(t)Φ(~λ + ~ε( ~H)) (12)

Because Φ(~λ) is convex and twice differentiable at ~λ, it
follows by the multi-dimensional Taylor theorem that:

Φ(~λ + ~ε( ~H)) ≤ Φ(~λ) +
N∑

i=1

∂Φ(~λ)
∂λi

εi(Hi) + Nε2β (13)

for a fixed value β > 0. In cases when Φ(~λ) is twice
differentiable about the neighborhood (−ε, ε)N of the point
~λ, the value of β is given by:

β M= max
~δ∈(−ε,ε)N

||∇2Φ(~λ + ~δ)||
2

where ||∇2Φ(~λ + ~δ)|| represents the matrix norm of the matrix
of second partials. Using (13) in (12) yields:

E
{

h(~P ∗(t))
}
≤∑

~H α ~H(t)
[
Φ(~λ) + Nε2β +

∑N
i=1

∂Φ(~λ)
∂λi

εi(Hi)
]

= Φ(~λ) + Nε2β +
∑N

i=1
∂Φ(~λ)
∂λi

∑
~H α ~H(t)εi(Hi)

= Φ(~λ) + Nε2β +
∑N

i=1
∂Φ(~λ)
∂λi

ε
[
αR

i (t)− αL
i (t)

]
(14)

where the last equality follows from (10).
To gain intuition, assume the system is ergodic and time

averages exist. Taking time averages of (14) and (11) thus
yields the following bound on time average power cost and
the following expressions for time average transmission rates:

hav ≤ Φ(~λ) + Nε2β +
N∑

i=1

∂Φ(~λ)
∂λi

ε
[
αR

i − αL
i

]
(15)

ri = λi + ε
[
αR

i − αL
i

]
for i ∈ {1, . . . , N} (16)

where αR
i , αL

i are time average probabilities for backlog in
queue i being either right or left of the threshold. Note that
for any stable system, the time average transmission rates are
greater than or equal to the arrival rates, so that λi ≤ ri. By
(16), this implies that ε

[
αR

i − αL
i

]
≥ 0 for all i. Because the

partial derivatives ∂Φ(~λ)/∂λi are also non-negative, the final
summation term in (15) is non-negative and hence cannot be
neglected. However, note that the time average transmission
rate on any link can only exceed the arrival rate due to edge
effects. Indeed, the amount of bits delivered over any link i on
a given timeslot t is exactly equal to the offered transmission
rate ri(t) whenever Ui(t) ≥ µmax. Hence, defining αE

i as the
fraction of time that 0 ≤ Ui(t) < µmax, we have for all i:

λi ≥ time average bit output rate of queue i

≥ ri − αE
i µmax (17)

which holds because the transmission rate on any link is
always less than or equal to µmax. From (17) and (16) we
have:

ε[αR
i − αL

i ] ≤ αE
i µmax (18)

It follows from (18) and (15) that if the edge probabilities
αE

i are less than or equal to O(ε2), then hav−Φ(~λ) ≤ O(ε2).
Fortunately, the system is designed to have a postive drift
(away from the near empty edge region) whenever queue back-
logs are below the Q threshold. Hence, the edge probabilities
can be made arbitrarily small by increasing the value of Q.
This yields improved energy performance at the expense of
increasing average queue occupancy and average delay. By
setting Q greater than or equal to Ω( 1

ε log(1
ε )) and defining

V = 1/ε2, we can show that the resulting algorithm is indeed
ergodic and comes within a logarithmic factor of achieving
the optimal energy-delay tradeoff curve of Theorem 2. Rather
than proving this result, in the next section we use these ideas
to prove a similar result for a more practical control strategy.

V. THE TRADEOFF-OPTIMAL CONTROL ALGORITHM

To construct a more practical strategy, we use the concept
of Lyapunov drift. Lyapunov drift theory has been useful in
the development of stabilizing control algorithms for wireless
networks [12]-[16], and recent extensions that treat stability
and performance optimization simultaneously are developed
in [9] [8] [7]. Here we extend the theory to treat performance
optimization with near-optimal delay tradeoffs. The basic idea
is to define a Lyapunov function that measures current queue
congestion, and to make greedy decisions to minimize the
Lyapunov function every timeslot based on current queue
states and channel states. Such greedy decisions do not require
knowledge of channel statistics or arrival rates, and hence offer
a potential means of overcoming the complexity explosion
problem described in the previous section.

A. Algorithm Design Strategy

We shall consider the following Lyapunov function L(~U)
consisting of a sum of exponentials:

L(~U) =
∑

i

[
eω(Ui−Q) + eω(Q−Ui) − 2

]
(19)

where Q is a positive buffer threshold and ω is a positive value
affecting the rate of exponential increase of the Lyapunov
function. We assume that Q > µmax as before. This Lyapunov
function reaches its minimum value L(~U) = 0 when Ui = Q
for all i ∈ {1, . . . , N}, and increases exponentially when any
of the Ui components deviates from Q either to the right or to
the left. Rather than using the quadratic Lyapunov functions as
in [12]-[16], [7], this exponential Lyapunov function is chosen
to ensure a sufficiently small probability that queue backlog
is within the near-empty edge region.

Allocating power to minimize the expected change in this
Lyapunov function from one slot to the next usually creates a
positive drift in the ith queue when Ui(t) < Q and a negative
drift in the ith queue when Ui(t) ≥ Q. However, this is not
always the case, and more structure is needed to achieve the
same energy savings as the multi-modal drift algorithm of the
previous section. In particular, we will find it is crucial to
ensure that inequalities of the type (18) are satisfied.To this
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end, we define αE
i (t) = Pr[Ui(t) < µmax], and define time

average probabilities as follows:

αL
i (t)M= 1

t

∑t−1
τ=0 αL

i (τ) , αR
i (t)M= 1

t

∑t−1
τ=0 αR

i (τ) ,

αE
i (t)M= 1

t

∑t−1
τ=0 αE

i (τ) , for all i ∈ {1, . . . , N}

Note by definition that αL
i (t) + αR

i (t) = 1 (because backlog
is either to the right or to the left of the Q threshold), and
αE

i (t) ≤ αL
i (t) (because if backlog is in the “near empty”

edge region, then it must also be left of the Q threshold).
Similarly define the time average transmission rates ri(t) as
follows:

ri(t)M=
1
t

t−1∑
τ=0

E {ri(τ)}

We have the following Lemma:
Lemma 2: For any queueing system described by the up-

date equation (1), if the following conditions are satisfied for
all i ∈ {1, . . . , N}:

lim inf
t→∞

(
ri(t)− λi − ε

[
αR

i (t)− αL
i (t)

])
≥ 0 (20)

then the following inequality holds:

ε lim sup
t→∞

∑
i

[
αR

i (t)− αL
i (t)

]
≤ µmax lim sup

t→∞

∑
i

αE
i (t)

Proof: The proof is given in Appendix B.
For intuition, the reader can compare the above lemma to

inequalities (16)-(18) from the previous section. To ensure that
constraints (20) are satisfied, we use the notion of a virtual
queue developed in [7]. For each i, we define a virtual queue
Xi(t) with the following update equation:

Xi(t + 1) =
max[Xi(t)− (ri(t) + ε1L

i (t)), 0] + Ai(t) + ε1R
i (t) (21)

This update equation is identical to the equation representing
a discrete time queue with inputs and transmission rates as
shown in Fig. 3.

Definition 3: A discrete time queue with an unfinished
work process U(t) is strongly stable if:

lim sup
t→∞

1
t

t−1∑
τ=0

E {U(τ)} < ∞

Lemma 3: If the queues Xi(t) are strongly stable, then the
time average conditions of (20) are satisfied for all i.

Proof: The proof of the lemma follows directly from the
fact that if a queue with a bounded transmission rate is strongly
stable then the lim inf of the difference between the time
average transmission rate and the time average arrival rate is
greater than or equal to zero (see [31]).

Xi(t)

Yi(t)

(ri(t) + ε)1L
i (t)

Ai(t)1L
i (t)

(Ai(t) + ε)1R
i (t)

ri(t)1R
i (t)

1

Ai(t) + ε1R
i (t)

ri(t) + ε1L
i (t)

1

Ai(t) + ε1R
i (t)

ri(t) + ε1L
i (t)

1

Fig. 3. An illustration of the virtual queue Xi(t) associated with update
equation (21).

One of the objectives in our dynamic control algorithm
shall be to stabilize both the actual and virtual queues of
the system. We highlight the fact that this cannot be done
via traditional Lyapunov stability theory. Indeed, Lyapunov
theory is typically used by comparing a dynamic queue-length
aware control strategy to a stationary queue-length indepen-
dent control strategy (see [16] [9] for a detailed discussion of
this). However, the inputs and server processes of the virtual
queues Xi(t) are highly dependent on the queue state of the
system, as they are affected by queue backlogs Ui(t) through
the indicator functions 1L

i (t) and 1R
i (t). Our solution to this

state-dependent control problem represents another significant
contribution of the paper.

B. The Dynamic Control Algorithm

The design principles we have developed lead to the follow-
ing dynamic control algorithm. The algorithm is implemented
for any control parameter V > 0, and for given positive
parameters ω, Q, ε (to be determined later as functions of V ).

Tradeoff Optimal Control Algorithm (TOCA): The network
controller performs the following operations every timeslot t:

1) Observe the current backlog and channel state vectors
~U(t), ~S(t) and allocate a power vector ~P (t) = ~P , where
~P solves the following problem:

Minimize: V h(~P )−
∑N

i=1 Wi(t)µi(~P , ~S(t))

Subject to: ~P ∈ Π

where:

Wi(t)M=1R
i (t)

[
ωeω(Ui(t)−Q) + 2Xi(t)

]
+1L

i (t)
[
−ωeω(Q−Ui(t)) + 2Xi(t)

]
2) Data is transmitted with rates ~r(t) = ~µ(~P (t), ~S(t)).
3) Observe the current arrivals Ai(t) and update the virtual

queues Xi(t) according to (21) (using the transmission
rates ri(t) from step 2).

Note that the algorithm bases decisions only on the current
system state, and does not require knowledge of traffic rates
or channel statistics. The weights Wi(t) contain terms that
switch ON or OFF depending on whether Ui(t) is to the left
or right of the Q threshold. This abrupt change in the weight
functions effectively steers the drift so that queue backlogs
spend the appropriate amount of time in each region.

The above algorithm requires only O(1) multiply-add-
exponentiate operations per link in order to update the virtual
queue backlogs and to compute the weights Wi(t). The
power allocation optimization is the most complex part of
the algorithm, although it can be solved easily for many
systems, including for systems with concave rate-power curves
with the structure given in (2), and for systems where there
is only a finite (and small) number of power allocation
options. Further note that queues do not need to be physically
located in the same node, and hence the same algorithm and
analysis applies to single-hop networks with multiple nodes.
However, this would require distributed implementation of the
power allocation optimization, which is simple in the case of
separable cost functions h(·) and separable power curves as in
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(2), but may require more structured multiple access schemes
for systems with inter-channel interference [7] [16]. A similar
buffer partitioned strategy can be designed to treat multi-hop
networks using backpressure [7]-[9], [12], [16], although we
omit this topic for brevity.

C. Performance

To simplify performance analysis, we assume that arrivals
are bounded by a constant Amax every slot, so that Ai(t) ≤
Amax for all t. Define δmax

M=max[µmax, Amax] as the max-
imum change in the backlog of any queue during a single
timeslot. Further assume that the arrival rate matrix ~λ is strictly
interior to the capacity region Λ and has all positive entries.
Define εmax as the largest value ε such that ε ≤ λi for all
i ∈ {1, . . . , N}, and such that ~λ +~ε ∈ Λ (where ~ε is a vector
with all entries equal to ε).

Theorem 3: (TOCA Performance) Suppose that Φ(~λ) is
twice differentiable at the point ~λ. For any V > µmax and for
any ω > 0, ε > 0 chosen such that ε < εmax and satisfying:

ωδmaxeωδmax ≤ ε/δmax (22)

the TOCA algorithm implemented with these parameters stabi-
lizes all virtual and actual queues of the system. Furthermore:

(a) 1
N

∑
i Ui ≤ Q + 1

ω log
(

D+V hmax/N
ωε/2

)
(b) hav − Φ(~λ) ≤ ND

V + Nβε2

+ lim supt→∞
∑

i
∂Φ(~λ)
∂λi

ε
[
αR

i (t)− αL
i (t)

]
(c) lim supt→∞

∑
i

ε
µmax

[
αR

i (t)− αL
i (t)

]
≤

ND+V hmax

ωε/2 eω(µmax−Q)

where

D M=eω(µmax+Amax−Q) + ω(δmax + ε)
+(Amax + ε)2 + (µmax + ε)2

hmax
M=max~P∈Π h(~P )

and where the time averages are defined:

1
N

∑
i Ui

M= lim supt→∞
1
t

∑t−1
τ=0 E

{
1
N

∑N
i=1 Ui(τ)

}
(23)

hav
M= lim supt→∞

1
t

∑t−1
τ=0 E

{
h(~P (τ))

}
(24)

Theorem 3 is perhaps best interpreted through the following
corollary:

Corollary 1: Under the assumptions of Theorem 3, for any
V > 0, if we choose:

ω M=
ε

δ2
max

e−ε/δmax (25)

and εM=1/
√

V , QM= 6
ω log(1/ε), then TOCA yields:4

1
N

∑
i

Ui ≤ O(
√

V log(V ))

hav − Φ(~λ) ≤ O(1/V )
It follows that per-bit delay is also less than or equal

to O(
√

V log(V )). This holds regardless of whether or not

4Throughout this paper, the log(·) function denotes the natural logarithm.

∇2Φ(~λ) is positive definite. If it is positive definite, then per-
formance is governed by the Berry-Gallager bound of Theorem
2, and hence the TOCA algorithm yields performance within a
logarithmic factor of the optimal energy-delay tradeoff curve.
In Section VII we show that delay can be improved beyond
the Berry-Gallager bound when Φ(~λ) is piecewise linear (the
case when the positive definite assumption fails).

The proof of Corollary 1 follows by showing that the
definition of ω given in (25) satisfies the inequality in (22),
and that ω = O(1/

√
V ), e−ωQ = O(1/V 3) (proof omitted

for brevity). The proof of Theorem 3 is presented in the next
section.

D. Experimental Observations

Simulations of TOCA reveal that average queue backlog
is very close to Q, which is not surprising because the drift
is designed to push backlog towards this value. We note that
the value Q = 6

ω log(1/ε) in Corollary 1 was chosen only to
ensure a sufficiently small probability that queue backlog is
in the “near empty” edge region. However, our analysis was
conservative, and a variety of simulations revealed that average
queue backlog was in the edge region only for the first one
or two timeslots out of a total duration of 10 million slots.
In practice, a constant factor improvement in average queue
backlog can be obtained by appropriately reducing the value of
Q, without significantly affecting edge probability or average
power expenditure (results omitted for brevity).

VI. PERFORMANCE ANALYSIS

To prove Theorem 3, we first present the main results con-
cerning Lyapunov drift with performance optimization from
[9] [8] [7], presented here in a modified form. Consider any
discrete time system that evolves according to a Markov chain
with state space ~Z(t). Let Ψ(~Z) be a non-negative function
of the state space vector. We call Ψ(~Z) a Lyapunov function,
and define the conditional Lyapunov drift ∆(~Z(t)) as follows:

∆(~Z(t))M=E
{

Ψ(~Z(t + 1))−Ψ(~Z(t)) | ~Z(t)
}

Lemma 4: (Lyapunov Drift) If there exist random processes
f(t) and g(t) such that for every timeslot and for all possible
values of ~Z(t), the Lyapunov drift satisfies:

∆(~Z(t)) ≤ E
{

f(t)− g(t) | ~Z(t)
}

(26)

then:

lim sup
t→∞

1
t

t−1∑
τ=0

E {g(τ)} ≤ lim sup
t→∞

1
t

t−1∑
τ−0

E {f(τ)}

Theorem 4: (Lyapunov Optimization) Assume the ~Z(t)
state space represents a set of queue backlog values. If there
exist values ε > 0, B > 0, V > 0, non-negative and upper
bounded cost functions c∗(t) and c(t), and a non-negative
function q(~Z) such that every timeslot and for all ~Z(t) values
the Lyapunov drift sastisfies:

∆(~Z(t)) + V E
{

c(t) | ~Z(t)
}
≤

B − εq(~Z(t)) + V E
{

c∗(t) | ~Z(t)
}
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then time average performance satisfies:

q(~Z) ≤ B + V c∗

ε
c ≤ c∗ + B/V

where q(~Z), c, and c∗ are the lim sup expected time averages
of their corresponding processes. �

Lemma 4 follows by taking expectations of (26) and sum-
ming the telescoping series, and Theorem 4 follows from the
lemma (see [9] [7] for details). The main idea of the theorem
is that the difference between c and a target value c∗ can be
made arbitrarily small according to the control parameter V ,
with a corresponding increase in the time average of q(~Z(t))
that is linear in V .

A. Computing the Drift

For the dynamic system under the TOCA algorithm, con-
sider the Lyapunov function Ψ(~U, ~X) = L(~U) + J( ~X),
where L(~U) is the exponential Lyapunov function of (19)
associated with the actual system queues, and J( ~X)M=

∑
i X2

i

is a quadratic Lyapunov function associated with the vir-
tual queues. For ease of notation, we define the state vari-
able ~Z(t)M=[~U(t), ~X(t)] and define ∆(~Z(t)) = ∆L(~Z(t)) +
∆J(~Z(t)) to be the drift of the Lyapunov function Ψ(·), where
∆L(~Z(t)) and ∆J(~Z(t)) are drift components associated with
the actual queues and virtual queues, respectively.

Lemma 5: If ωδmaxeωδmax ≤ ε/δmax, then:

(a) ∆L(~Z(t)) ≤ Neω(µmax+Amax−Q) + Nω(δmax + ε
2 )

−ω
∑

i 1R
i (t)eω(Ui(t)−Q)E

{
ri(t)−Ai(t)− ε

2 | ~Z(t)
}

−ω
∑

i 1L
i (t)eω(Q−Ui(t))E

{
Ai(t)− ri(t)− ε

2 | ~Z(t)
}

(b) ∆J(~Z(t)) ≤ N(Amax + ε)2 + N(µmax + ε)2

−2
∑

i 1L
i (t)Xi(t)E

{
ri(t)−Ai(t) + ε | ~Z(t)

}
−2
∑

i 1R
i (t)Xi(t)E

{
ri(t)−Ai(t)− ε | ~Z(t)

}
Proof: Part (b) of the lemma follows by squaring the virtual

queue equations (21) and using a standard quadratic Lyapunov
drift argument [9] (calculation omitted for brevity). Part (a) is
proven in Appendix C by using the dynamic equation (1).

By defining D̃ = eω(µmax+Amax−Q) + ω(δmax + ε
2 ) +

(Amax + ε)2 + (µmax + ε)2 and using Lemma 5, we have:

∆(~Z(t)) + V E
{

h(~P (t)) | ~Z(t)
}
≤ D̃N

−ω
∑

i 1R
i (t)eω(Ui(t)−Q)E

{
ri(t)−Ai(t)− ε

2 | ~Z(t)
}

−ω
∑

i 1L
i (t)eω(Q−Ui(t))E

{
Ai(t)− ri(t)− ε

2 | ~Z(t)
}

−2
∑

i 1L
i (t)Xi(t)E

{
ri(t)−Ai(t) + ε | ~Z(t)

}
−2
∑

i 1R
i (t)Xi(t)E

{
ri(t)−Ai(t)− ε | ~Z(t)

}
+V E

{
h(~P (t)) | ~Z(t)

}
The right hand side of the above drift expression depends

on the allocation decision ~P (t) made by the controller at time
t (recall that ri(t) = µi(~P (t), ~S(t))). The construction of the
TOCA algorithm from the previous section is now apparent:

Allocating power according to the TOCA algorithm at timeslot
t minimizes the right hand side of the above drift expression
over all possible power allocations ~P (t) ∈ Π. Indeed, it
is clear from above that each weight Wi(t) is simply the
sum of coefficients multiplying the ri(t) variables. It follows
that ∆(~Z(t)) is less than or equal to the resulting expression
when the power and rate decision variables Pi(t) and ri(t)
on the right hand side are replaced by the values P ∗

i (t), r∗i (t)
corresponding to power and rates of the multi-modal stationary
drift algorithm of Section IV with drift parameter ε. The P ∗

i (t)
and r∗i (t) values depend only on the current region of the ~U(t)
vector within the set of 2N regions of the backlog space, and
satisfy (7) and (8). In particular, we have the identities:

E {r∗i (t)−Ai(t) | Ui ≥ Q} = (λi + ε)− λi = ε

E {Ai(t)− r∗i (t) | Ui < Q} = λi − (λi − ε) = ε

Using decision variables r∗i (t) and P ∗
i (t) together with these

identities in the right hand side of the above drift expression
makes the Xi(t) terms vanish, and furthermore we have:

∆(~Z(t)) + V E
{

h(~P (t)) | ~Z(t)
}
≤ ND̃

−ω
∑

i 1R
i (t)eω(Ui(t)−Q) ε

2

−ω
∑

i 1L
i (t)eω(Q−Ui(t)) ε

2

+V E
{

h(~P ∗(t)) | ~Z(t)
}

(27)

Now note that ωε
2

∑N
i=1 1L

i (t)
[
1− eω(Ui(t)−Q)

]
≥ 0 be-

cause Ui(t) < Q whenever 1L
i (t) = 1. Similarly,

ωε
2

∑
i 1R

i (t)
[
1− eω(Q−Ui(t))

]
≥ 0. Adding these non-

negative terms to the right hand side of (27) and using the
fact that 1L

i (t) + 1R
i (t) = 1 yields:

∆(~Z(t)) + V E
{

h(~P (t)) | ~Z(t)
}
≤ ND

−ωε
2

∑
i

[
eω(Ui(t)−Q) + eω(Q−Ui(t))

]
+V E

{
h(~P ∗(t)) | ~Z(t)

}
(28)

where D M=D̃ + εω/2. The Lyapunov drift condition (28) is in
the exact form for application of Theorem 4, and hence:∑

i

eω(Ui−Q) ≤ ND + V hmax

ωε/2
(29)

∑
i

eω(Q−Ui) ≤ ND + V hmax

ωε/2
(30)

h ≤ h∗ + ND/V (31)

where the overbar notation denotes the lim sup expected time
average, as in Theorem 4. We now prove Theorem 3 directly
from these inequalities.

Proof: (Theorem 3 part (a)): By Jensen’s inequality and
convexity of the function ex, we have:

e
ω

“
1
N

PN
i=1(Ui−Q)

”
≤ 1

N

∑N
i=1 eω(Ui−Q)

Taking the log of both sides and using (29) yields:

ω 1
N

∑N
i=1(Ui −Q) ≤ log

(
D+V hmax/N

ωε/2

)
proving part (a) of Theorem 3.
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Proof: (Theorem 3 part (b)): Recall that ~P ∗(t) is the
power allocation vector that would be chosen by the stationary
randomized policy of Section IV-A if ~U(t) is the observed
backlog vector. By (14), we thus have for all t:

E
{

h(~P ∗(t))
}
≤ Φ(~λ) + Nε2β +

N∑
i=1

∂Φ(~λ)
∂λi

ε
[
αR

i (t)− αL
i (t)

]
Summing over τ ∈ {0, . . . , t−1} and taking a lim sup yields:

h∗ M= lim sup
t→∞

1
t

t−1∑
τ=1

E {h∗(t)}

≤ Φ(~λ) + Nε2β

+ lim sup
t→∞

N∑
i=1

∂Φ(~λ)
∂λi

ε
[
αR

i (t)− αL
i (t)

]
Using this inequality together with (31) proves part (b) of
Theorem 3.

Lemma 6: All actual and virtual queues are strongly stable.
Proof: The time average bound in part (a) of the Theo-

rem demonstrates strong stability of all actual queues ~U(t).
Similarly, it can be shown that all virtual queues ~X(t) are
strongly stable. As an outline of this, note that instead of
substituting the power allocation policy P ∗

i (t) (which yields
E {r∗i (t) | Ui(t) < Q} = λi − ε and E {r∗i (t) | Ui(t) ≥ Q} =
λi + ε), one can consider the policy P̂i(t) that yields
E {r̂i(t) | Ui(t) < Q} = λi−ε/2 and E {r̂i(t) | Ui(t) ≥ Q} =
λi + ε + δ, where δ > 0 and satisfies ~λ + ~ε + ~δ ∈ Λ. Such
a policy yields drift coefficients of −ε and −2δ, respectively,
multiplying the 1L

i (t)Xi(t) and 1R
i (t)Xi(t) terms.

Proof: (Theorem 3 part (c)): Recall that αE
i (t) =

Pr[Ui(t) < µmax]. Clearly we have:

E
{

eω(Q−Ui(t))
}

≥ E
{

eω(Q−Ui(t)) | Ui(t) < µmax

}
αE

i (t)

≥ eω(Q−µmax)αE
i (t)

Summing over τ ∈ {0, . . . , t− 1} and i ∈ {1, . . . , N} yields:

1
t

t−1∑
τ=0

N∑
i=1

E
{

eω(Q−Ui(τ))
}
≥

N∑
i=1

αE
i (t)eω(Q−µmax)

Taking the lim sup of both sides and using (30) yields:

lim sup
t→∞

N∑
i=1

αE
i (t) ≤ ND + V hmax

ωε/2
eω(µmax−Q) (32)

From Lemma 6 we know that all actual and virtual queues
of the system are stable. It follows from Lemma 3 in Section
V that conditions (20) are satisfied, and hence the result of
Lemma 2 holds, placing a lower bound on the left hand side
of (32) and proving part (c) of Theorem 3.

VII. BEYOND THE BERRY-GALLAGER BOUND

Here we demonstrate a mode of “super-fast” convergence in
the case when the minimum energy function Φ(~λ) is piecewise
linear about the rate vector ~λ. Such cases are important and
occur when there are only a finite number of power or rate
options, such as when we can add either full power to a single
queue or no power to any queue, or when practical coding

schemes restrict to a finite set of transmission rates. In such
cases, the Φ(~λ) function has a polyhedral structure with a finite
number of vertices. We assume the ~λ point is not a vertex.

In this case, the Taylor expansion of Φ(~λ+~ε( ~H)) in (13) has
a second order coefficient β that is equal to zero whenever ε is
within some range 0 ≤ ε ≤ εmax (for some value εmax). Using
the fact that β = 0 and combining the performance bounds in
parts (b) and (c) of Theorem 3 yields the following bound on
average power for any algorithm satisfying the conditions of
Theorem 3:

h− Φ(~λ) ≤ ND
V +

maxi

{
∂Φ(~λ)
∂λi

}(
ND+V hmax

ωε/(2µmax)

)
eωµmaxe−ωQ (33)

This leads to the following corollary:
Corollary 2: For the case β = 0, implementing the TOCA

algorithm with parameters V, ε such that V > µmax, 0 < ε <
εmax, and choosing ω = ε

δ2
max

e−ε/δmax , Q = 2
ω log(V ) yields:

1
N

∑
i Ui ≤ O(log(V ))

h− Φ(~λ) ≤ O(1/V )
Proof: The proof of the average power bound follows

immediately from (33), and the proof of the backlog bound
follows from part (a) of Theorem 3.

One might expect that the logarithmic delay bound is an
artifact of the exponential Lyapunov function that we have
chosen, and that another Lyapunov function (perhaps doubly
exponential) might yield sub-logarithmic delay. However, this
is not the case. Indeed, below we present a simple example of
a system with a piecewise linear Φ(~λ) function for which it
is impossible to design an algorithm that achieves an energy-
delay tradeoff curve better than the one we have proven in
the above corollary. Hence, our analysis captures the tightest
possible tradeoff.

A. A Simple Example

Consider a single queue with a single input stream of rate λ
(in units of packets/slot). Every timeslot the controller decides
to either transmit or remain idle, expending one Watt of power
when transmitting and 0 Watts when idle. The channel state
varies in an i.i.d. fashion between “Good” and “Bad” states,
each equally likely. Two packets can be transmitted in a single
slot during a “Good” channel state, while only one packet can
be transmitted during a “Bad” channel state. It is not difficult
to show that the capacity region for this system is the set of all
rates λ such that 0 ≤ λ ≤ 1.5, and for the objective function
h(P ) = P the minimum energy function Φ(λ) is given by the
following piecewise linear curve:

Φ(λ) =
{

λ/2 if 0 ≤ λ ≤ 1
0.5 + (λ− 1) if 1 < λ ≤ 1.5

Intuitively, the minimum energy policy is to use as many of
the “Good” channel states as possible, and transmit in “Bad”
channel states only when absolutely necessary. Suppose the
input to the system is i.i.d. and such that 2 packets arrive
during a timeslot with probability p, and no packets arrive
otherwise. The input rate is thus λ = 2p (in units of packets
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per slot), and we assume that p = 1.25/2 so that λ = 1.25 in
this example. Thus, Φ(λ) = 0.75 Watts.

Consider any control algorithm that stabilizes the system,
and for simplicity assume the algorithm is ergodic and yields
a well defined steady state. Using standard interchange argu-
ments, it is not difficult to show that any algorithm that does
not transmit during a “Good” channel state when the queue
has at least two packets can be improved in both energy and
delay by transmitting the packets. Hence, we assume the policy
always transmits in such a scenario. Define λg as the rate that
the algorithm delivers packets to the destination, considering
only packets transmitted in the “Good” state when there are
two or more packets in the queue. It follows that (1.25−λg) is
the rate of all other packets, which includes packets transmitted
in “Bad” channel states and packets transmitted in “Good”
channel states that are “under-utilized.” We thus have:

P = λg
1
2

+ (1.25− λg) = 1.25− λg/2

and hence P − Φ(λ) = 0.5− λg/2.
Let U(t) represent the number of packets in the system

at time t, and let U represent the steady state average.
Note that, in steady state, Pr[U(t) ≤ 2U ] ≥ 1/2 (by
the Markov inequality for non-negative random variables U ).
Every timeslot in which the system has at least two packets, the
queue independently decreases by two packets with probability
(1− p)/2 (the probability that no new packet arrives, and the
channel state is “Good” so that two packets are transmitted).
Define T as the smallest integer larger than U . The probability
that the system has fewer than two packets at a particular
time t is thus greater than or equal to the probability that
U(t−T ) ≤ 2U , and then having T successive timeslots when
no packets arrive but channel states are “Good.” Thus:

Pr[fewer than two packets] ≥ 1
2

(
1− p

2

)U+1
M=δ (34)

where we have defined δ as the lower bound on the probability
the system has fewer than two packets. Because a “Good”
channel state arises every timeslot with probability 1/2, and
this is independent of whether or not the queue has two or
more packets at the beginning of that slot, it follows that the
fraction of unused or under-utilized “Good” channel states is
at least δ. Hence, λg ≤ 2( 1

2 −
δ
2 ) = 1− δ, and so:

P − Φ(λ) = 0.5− λg/2
≥ 0.5− (1− δ)/2
= δ/2

Defining V M=2/δ, we have P − Φ(λ) ≥ 1/V . However, by
definition of δ in (34), we have:

(U + 1) log((1− p)/2) = log(2δ) = log(4/V ) (35)

and hence:
U =

log(V/4)
log(2/(1− p))

− 1

This proves that average delay increases logarithmically in the
V parameter while the distance to the minimum energy level
Φ(λ) is necessarily greater than or equal to 1/V .

VIII. CONCLUSIONS

We have established a fundamental tradeoff between energy
and delay for multi-user wireless networks. This work extends
the tradeoff results developed for a single link by Berry and
Gallager, and demonstrates for the first time that the square-
root delay tradeoff is both necessary and achievable (to within
a logarithmic factor) for general systems with multiple queues,
multiple users, and non-linear power curves. Furthermore, we
discovered an important class of piecewise linear systems that
beat the tradeoff to achieve “super-fast” logarithmic delay.
Our algorithms make use of a novel technique of “Lyapunov
drift steering” that switches discontinuously between different
weights to drive average delay toward the optimal tradeoff
curve. This approach overcomes an inherent state space explo-
sion associated with delay optimization in multi-user systems.
The resulting control algorithms are simple and do not require
knowledge of traffic rates or channel statistics. While our
analysis focused on the case of a multi-user downlink, we
note that these same techniques can be used to solve multi-
node, multi-hop networking problems, and are likely to yield
fundamental improvements in other networking, control, and
optimization contexts.

APPENDIX A — MULTI-USER BERRY-GALLAGER BOUND

Here we prove Theorem 2. Without loss of generality, we
can assume that λi > 0 for all i. Consider any policy within a
sequence of admissible policies of the type specified in Section
III. Recall that such a policy makes stationary (potentially ran-
domized) power allocation decisions based only on the current
backlog and channel state vectors ~U(t) and ~S(t). Let ~P (~U, ~S)
be the random vector representing the power allocated under
state ~U, ~S. Define ~γ(~U)M=E

{
~µ(~P (~U, ~S), ~S) | ~U(t) = ~U

}
as

the average transmission rate vector when the queue backlog
is ~U . Let π(~U) represent the steady state distribution of the
~U vector, and let E {Ui} be the steady state average backlog
in queue i for i ∈ {1, . . . , N}. Further, define the expected
queue drift ~δ(~U) as follows:

~δ(~U)M=~γ(~U)− ~λ (36)

The value of ~δ(~U) represents the expected difference between
transmission rates and arrivals when the queue state is ~U . The
following lemma, which is a modified version of a similar
lemma given in [1], bounds the tail behavior of ~δ(~U):

Lemma 7: For any policy within an admissible sequence of
policies with constants θ1, θ2 as defined in Section III, and for
any i ∈ {1, . . . , N}, there exists a value ui such that:∫

. . .

∫
{~U |Ui>ui}

δi(~U)dπ(~U) ≥ θ1θ
2
2

16E {Ui}
(37)

The proof of the lemma is almost identical to the proof of
a similar statement given in [1], and is omitted for brevity.
Now let hav represent the average power cost of the given
admissible policy.

Lemma 8: For any admissible policy with average power
cost hav and total average congestion U tot

M=
∑N

i=1 E {Ui}, we
have:

hav − Φ(~λ) ≥ Ω
(
(1/U tot)2

)
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Proof: Our proof closely follows the original proof by Berry
and Gallager in [1], and generalizes the result to the case of
multiple dimensions. Note that hav can be written in terms of
the random ~P (~U, ~S) vectors as follows:

hav =
∫

. . .

∫
~U

E
{

h(~P (~U, ~S)) | ~U
}

dπ(~U)

The value of E
{

h(~P (~U, ~S)) | ~U
}

is the power cost expended

to achieve an average transmission rate vector ~γ(~U). By def-
inition, Φ(~γ(~U)) is the minimum cost required to achieve an
average rate vector ~γ(~U), and hence E

{
h(~P (~U, ~S)) | ~U

}
≥

Φ(~γ(~U)). We thus have:

hav ≥
∫

. . .

∫
~U

Φ(~γ(~U))dπ(~U)

=
∫

. . .

∫
~U

Φ(~λ + ~δ(~U))dπ(~U)

=
∫

. . .

∫
~U

[
Φ(~λ) +∇Φ(~λ) · ~δ(~U)

+ G(~δ(~U))
]
dπ(~U) (38)

where ∇Φ(~λ) represents the vector of partial derivatives of
Φ(~λ) at the point ~λ, and G(~δ) is the error term in the first
order Taylor expansion of Φ(~λ) about the point ~λ. Note that
G(~0) = 0 and ∇G(~0) = ~0. Because Φ(~λ) is convex, it follows
that G(~δ) is non-negative and convex for all ~δ ∈ RN . Further,
because Φ(~λ) is twice differentiable at ~λ with a positive
definite matrix of partial derivatives ∇2Φ(~λ), it follows by
the multi-dimensional Taylor theorem that:

G(~δ) ≥ Ω(||~δ||2) (39)

Now note that because all queues of the system are stable, it
must be the case that the average transmission rate on each link
i is greater than or equal to λi, and so we have the following
entrywise inequality: ~λ ≤

∫
. . .
∫

~U
~γ(~U)dπ(~U). Hence, by the

definition ~δ(~U)M=~γ(~U)− ~λ we have:∫
. . .

∫
~U

~δ(~U)dπ(~U) ≥ ~0 (40)

Using (40) in (38) together with the fact that all entries of
∇Φ(~λ) are non-negative, we have:

hav ≥ Φ(~λ) +
∫

. . .

∫
~U

G(~δ(~U))dπ(~U) (41)

Now let i∗ = arg mini∈{1,...,N} E {Ui}, and note that
E {Ui∗} ≤ U tot/N . Let u∗i represent the corresponding value
satisfying (37) of Lemma 7 for i = i∗. By non-negativity of
G(~δ) for all ~δ, from (41) we have:

hav ≥ Φ(~λ) +
∫

. . .

∫
{~U |Ui∗>u∗i }

G(~δ(~U))dπ(~U)

= Φ(~λ) +
∫

. . .

∫
{~U |Ui∗>u∗i }

G(~δ(~U))dπ(~U)

+
∫

. . .

∫
{~U |Ui∗≤u∗i }

G(~0)dπ(~U)

where the the final equality holds because G(~0) = 0. From
Jensen’s inequality and the fact that G(~δ) is convex, we have:

hav ≥ Φ(~λ) + G

(∫
. . .

∫
{~U |Ui∗>u∗i }

~δ(~U)dπ(~U) +~0

)
From (39) it follows that:

hav ≥ Φ(~λ) + Ω

∣∣∣∣∣
∣∣∣∣∣
∫

. . .

∫
{~U |Ui∗>u∗i }

~δ(~U)dπ(~U)

∣∣∣∣∣
∣∣∣∣∣
2


≥ Φ(~λ) + Ω

∣∣∣∣∣
∫

. . .

∫
{~U |Ui∗>u∗i }

δi∗(~U)dπ(~U)

∣∣∣∣∣
2


≥ Φ(~λ) + Ω
(

θ2
1θ

4
2

162(E {Ui∗})2

)
(42)

≥ Φ(~λ) + Ω
(

N2θ2
1θ

4
2

162(U tot)2

)
where (42) follows by Lemma 7. This proves the result.

Theorem 2 follows directly from Lemma 8. Indeed, if hav−
Φ(~λ) ≤ O(1/V ), then from Lemma 8 we have: O(1/V ) ≥
Ω((1/U tot)2), and so U tot ≥ Ω(

√
V ). By Little’s Theorem

for average delay: W = U tot/
∑

i λi, and so W ≥ Ω(
√

V ).

APPENDIX B — PROOF OF LEMMA 2

Proof: Suppose that the lim inf conditions (20) are satisfied.
Because the lim inf of a sum is greater than or equal to the
sum of the lim infs, we have:

lim inf
t→∞

N∑
i=1

(
ri(t)− λi − ε[αR

i (t)− αL
i (t)]

)
≥ 0 (43)

Consider a particular queue i and recall that ri(t) represents
the transmission rate offered to the queue during slot t, and
that ri(t) ≤ µmax for all t. Note that ri(t) is exactly equal to
the bits that depart during slot t whenever Ui(t) ≥ µmax. For
simplicity, assume that all queues are initially empty. Because
the bits that arrive during the first t slots must be greater than
or equal to the total departures, we have:∑t−1

τ=0 Ai(τ) ≥
∑t−1

τ=0 ri(τ)−
∑t−1

τ=0 ri(τ)1E
i (τ)

≥
∑t−1

τ=0 ri(τ)−
∑t−1

τ=0 µmax1E
i (τ)

where 1E
i (t) is an indicator function that takes the value 1 if

Ui(t) < µmax, and takes the value 0 else. Dividing both sides
by t and taking expectations yields:

λi ≥ ri(t)− µmaxαE
i (t) (44)

Using (44) in (43) yields:

lim inf
t→∞

N∑
i=1

(
µmaxαE

i (t)− ε[αR
i (t)− αL

i (t)]
)
≥ 0

Now note that for any functions f(t), g(t) that satisfy
lim inft→∞[f(t) − g(t)] ≥ 0, we have lim supt→∞ f(t) ≥
lim supt→∞ g(t). Applying this fact to the above inequality
proves the lemma.
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APPENDIX C — PROOF OF LEMMA 5A

Proof: Recall that ri(t) ≤ µmax for all t. Define
r̃i(t)M=min[ri(t), Ui(t)], which is the actual amount of bits
that depart from queue i during slot t. Equation (1) thus
becomes:

Ui(t + 1) = Ui(t)− r̃i(t) + Ai(t) (45)

From (45) we have:

eωUi(t+1) = eωUi(t)e−ω(r̃i(t)−Ai(t))

≤ eω(µmax+Amax) + eωUi(t)e−ω(ri(t)−Ai(t))

which follows because if Ui(t) ≥ µmax then r̃i(t) = ri(t) and
so the second term acts as a bound, while if Ui(t) < µmax then
the first term acts as a bound. Defining δi(t) = ri(t)− Ai(t)
and multiplying by e−ωQ yields:

eω(Ui(t+1)−Q) ≤ eω(µmax+Amax−Q) + eω(Ui(t)−Q)e−ωδi(t)

However, for any function δi(t) such that |δi(t)| ≤ δmax, we
have by Taylor’s theorem:

e−ωδi(t) ≤ 1− ωδi(t) + (ωδmax)2

2 eωδmax

≤ 1− ωδi(t) + ωε
2

where the last inequality follows from the assumption that
ωδmaxeωδmax ≤ ε/δmax. Thus:

Gi(~U(t))M=eω(Ui(t+1)−Q) − eω(Ui(t)−Q) ≤
eω(µmax+Amax−Q) − ωeω(Ui(t)−Q)(δi(t)− ε/2) (46)

where we have defined Gi(~U(t)) above for notational conve-
nience. It can similarly be shown that:

Ki(~U(t))M=eω(Q−Ui(t+1)) − eω(Q−Ui(t))

≤ −ωeω(Q−Ui(t))(−δi(t)− ε/2) (47)

Combining (46) and (47), we have:

Gi(~U(t)) + Ki(~U(t)) ≤ eω(µmax+Amax−Q)

−ωeω(Ui(t)−Q)(δi(t)− ε
2 )− ωeω(Q−Ui(t))(−δi(t)− ε

2 )

≤ eω(µmax+Amax−Q) + ω(δmax + ε/2)
−1R

i (t)ωeω(Ui(t)−Q)(δi(t)− ε
2 )

−1L
i (t)ωeω(Q−Ui(t))(−δi(t)− ε

2 )

where the final inequality follows because if 1R
i (t) = 1 then

1L
i (t) = 0, Ui(t) ≥ Q, and −ωeω(Q−Ui(t))(−δi(t) − ε

2 ) ≤
ω(δmax + ε/2) (a similar inequality holds if 1L

i (t) = 1).
Summing the final inequality over all i and taking conditional
expectations proves the lemma.
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