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Equivalent Models for Queueing Analysis of
Deterministic Service Time Tree Networks

Michael J. Neely , Charles E. Rohrs, Eytan Modiano

Abstract— In this paper we analyze feedforward tree networks
of queues serving fixed length packets. Using sample path
conservation properties and stochastic coupling techniques, we
analyze these systems without making any assumptions about
the nature of the underlying input processes. In the case when
the server rate is the same for all queues, the exact packet
occupancy distribution in any queue of a multi-stage network is
obtained in terms of a reduced 2-stage equivalent model. Simple
and exact expressions for occupancy mean and variance are
derived from this result, and the network is shown to exhibit
a natural traffic smoothing property, where preliminary stages
act to smooth or improve traffic for downstream nodes. In the
case of heterogeneous server rates, a similar type of smoothing
is demonstrated, and upper bounds on the backlog distribution
are derived. These bounds hold for general input streams and
are tighter than currently known bounds for leaky bucket and
stochastically bounded bursty traffic.

Index Terms— stochastic coupling, network calculus

I. INTRODUCTION

Many modern data networks transmit information using
fixed length packets. Often this takes place at lower network
protocol layers, where variable length packets from a source
are segmented into fixed length cells for transmission over
a sub-network. Such data segmentation facilitates network
design and control and allows for many practical advantages
in terms of pipelining gains, congestion control, and fairness
issues. Fixed length packets are also advantageous from a
queueing theory perspective, as they minimize queue backlog
among all packet length distributions with the same mean [3].
It is thus important to develop methods for understanding and
analyzing networks of deterministic service time queues.

In this paper, we consider feedforward tree networks with
arbitrary traffic streams exogenously entering each node (Fig.
1). Packets from these streams flow through the multiple stages
of the tree toward a single output port at the head node.
All packets have length L bits, and hence have deterministic
service times T; = L/p;, where p; is the service rate of
packets in node ¢ (in units of bits/second). In the first half of
this paper, we assume processing rates p; are identical for all
queues. Under this assumption, we use stochastic equivalence
and stochastic inequality relationships to show that the steady
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Fig. 1. A multi-stage tree network with multiple exogenous sources.

state occupancy distribution at the head node of a multi-
stage tree network is exactly preserved in a reduced 2-stage
equivalent model. Exact expressions for the mean and variance
of packet occupancy are derived from this result, and the
number of packets in the head node of the tree is shown to
be stochastically less than the number there would be if all
preliminary nodes were removed. We then consider networks
with heterogeneous server rates p;, and develop a simple
upper bound on the packet occupancy distribution at each of
the nodes. This analysis contributes to a stochastic network
calculus for analyzing general tree systems in terms of simpler
one-queue or two-queue equivalent models.

As queueing networks are non-linear systems driven by
stochastic events, exact analytical results are largely limited
to systems with the special structure of time reversibility [23]
[24]. Exact analysis of non-reversible queueing systems is
usually confined to small networks (see [4] [5] [6] for analysis
of a single discrete time queue with general inputs, and [7]
for a moment generating function analysis of a two-queue
tandem with i.i.d. arrivals every timeslot). An approximation
method is developed in [8] for modeling discrete time tandems
with arrivals and departures at each stage in the special case
when inputs have a specified Markovian structure. Bounding
techniques for general networks are developed in [9] [10] [11]
using a deterministic calculus of network service curves, and
bounds using stochastic calculus are developed in [13] [14].

An exact analysis of fluid tandems with a single input hav-
ing exponentially distributed ON and OFF periods is presented
in [15] using stochastic It6 calculus. An exact waiting time
analysis is developed in [16] [17] for a tandem of deterministic
service time queues with Poisson inputs. This analysis uses
a simple input-output invariance property for tandems with
non-increasing service rates. A similar property is proven in
[19] for discrete time trees with slotted service at each queue
and with independent inputs. This result is used in [18] to
compute the average delay in each node of a discrete time tree
when inputs are Poisson. Our work uses a similar input-output
invariance property, but extends the techniques to demonstrate
equivalence of packet occupancy distributions (rather than just
averages) and to treat networks with general stochastic inputs.
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Exact analysis is provided for networks with homogeneous
server rates, and bounding analysis is provided for systems
with heterogeneous server rates (without requiring the non-
increasing service rate assumption).

This paper is structured as follows: In Section II we
develop an input-output relationship for tree networks with
a single bottleneck. In Section III, we consider networks
with homogeneous server rates and show that the steady
state packet occupancy distribution of any node in a multi-
stage tree is identical to the corresponding distribution in
a simpler 2-stage equivalent model. This analysis combines
sample path queueing properties with stochastic equivalence
relations. In Sections IV and V, exact expressions for the
mean and variance of packet occupancy are derived, and a
traffic smoothing result is developed to establish upper bounds
on the backlog distribution at any node. In Section VI this
bounding analysis is extended to systems with heterogeneous
servers. The resulting bounds exploit the special structure of
deterministic service time queues as well as the probabilistic
nature of the underlying input processes, and are shown to be
tighter than the network calculus bounds derived for special
classes of traffic with variable length packets in [9]-[14].

II. EQUIVALENT MODELS

Here we demonstrate an important input-output sample path
property for deterministic service time queues. We begin by
presenting two simple lemmas. Consider a single queue with
a general input stream consisting of fixed length packets
arriving at times 7y, 7o,..., with arbitrarily distributed and
correlated interarrival times. Packets are served according to
any non-preemptive service discipline, such as the First-In-
First-Out (FIFO) policy. Let A(t) represent the arrival pro-
cess, formally written as a sum of shifted impulse functions:
A(t) = 3007, 6(t — 7). We assume that 71 > 0, so that all
packets arrive after time 0. Let T' represent the service time
of each packet in the server of the queue. Assume the system
is initially empty, and let D(t) represent the corresponding
process of queue departures during the interval [0, ¢]. Suppose
the departures next pass through a delay line of duration
d, for some value d > 0. The delay line accepts incoming
packets, stores them, and releases them after exactly d seconds,
resulting in an output process D(t — d).

Lemma 1: (Delay Permutation) The resulting output pro-
cess D(t — d) is unchanged if the delay line is situated before
the queue, rather than after it.

This elementary lemma follows because queues are time
invariant systems, so that an input of A(t — d) leads to an
output of D(t—d). For the next lemma, consider the two-queue
tandem of Fig. 2. Packets arrive to the first queue according to
an input stream A;(t), and these packets are then delivered to
the second queue after passing through an intermediate delay
line of duration d > 0. Additional packets arrive directly to the
second queue according to an input stream As(t). Let D(t)
represent the resulting output process of the second queue. Let
T and 75 represent the service times of packets in the first
queue and second queue, respectively.
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Fig. 2. A two-queue system with deterministic service times 77, T» (with

Th1 < T»), and its equivalent model with queue 1 replaced by a time delay.

Lemma 2: (Queue Replacement) If both queues are initially
empty and if T3 < T5, then D(¢) is unchanged if the first
queue is replaced by a pure delay line of duration 7}.

The modified system is simpler and forms an equivalent
model of the original system. Lemma 2 was independently
proven in [16] and [1] for the case when there is no intermedi-
ate delay between the two queues. The case of an intermediate
delay line of duration d > 0 follows directly from the result
for no delay line by using Lemma 1 to switch the order of
the delay and the first queue. Intuitively, the result of Lemma
2 follows because the final node serves packets no faster than
the first node can deliver them. Hence, the busy period of the
final node of the original system cannot finish before the busy
period of the final node in the equivalent model. Note that
although the D(t) function is unchanged, it is possible for the
packet departure order to be different in the equivalent model.

A. Tree Reduction Principle

Consider a multi-stage tree network with M queues and
heterogeneous server rates pu;, so that packets have service
times T; = L/p; in each queue ¢ € {1,...,M}. The inputs
to each queue i consist of an exogenous arrival process A;(t)
together with the endogenous departure process of upstream
queues (Fig. 1). Let T, represent the service time of the
final node (corresponding to service rate ppr), and let D(t)
represent the departure process of this node.

Theorem 1: (Output Invariance) If T, > T for all prelimi-
nary nodes 4, then D(t) is unchanged if all other nodes i # M
are replaced with pure delay lines of duration 73, as in Fig. 3.

Proof: The proof follows by iteratively applying Lemma 2.
Specifically, consider the two queue system composed of the
final node together with any other node ¢ situated immediately
behind it (possibly with a delay line in between). Let the
preliminary node represent ‘queue 1’ of Lemma 2, and let all
of its arrivals collectively represent ‘A;(¢)’ from the lemma.
Likewise, let all other streams into the final node collectively
represent ‘Ao (t).” Then the departure process of the final node
is unchanged if the preliminary node is replaced by a delay line
of duration equal to T;. Recursively repeating this procedure
replaces all preliminary nodes with pure delay lines without
affecting the overall departure process of the system. |

Theorem 1 allows the departure function of the final node
in a multi-stage tree network to be modeled by the departures
of a single queue with a set of delayed input streams, provided
that the service rate of the final node is less than or equal to all
other service rates. We note that a similar reduction principle
for trees was developed in [19] for the special case of discrete
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time systems with slotted service and independent inputs. In
the next section we use this theorem to analyze tree networks
with homogeneous servers.

As an aside, we note that for heterogeneous networks, The-
orem 1 implies that routing according to a shortest-path tree
is optimal when sending fixed length packets from multiple
sources to a single bottleneck node M, where pupr <
for all nodes . Specifically, consider a network of queueing
nodes defined by an arbitrary graph (with no tree structure yet
determined), and define the path length of a route between
any two nodes as the sum of service times 7; = L/p; over all
nodes of the route. It is clear that under any routing policy,
every exogenously arriving packet is delayed from entering
the final node by at least the sum of service times over its
shortest path. Each packet is delayed by exactly this amount
in the shortest path tree model where all preliminary nodes are
replaced by pure time delays (Fig. 3). Hence, at every instant
of time the number of departures in this reduced model is
greater than or equal to the number of departures under any
routing scheme in the actual network. However, Theorem 1
implies that the departures of this reduced model are identical
to the actual departures in the network under shortest path
tree routing, and hence shortest path tree routing minimizes
the total number of packets in the system at every instant of
time.

III. TREES WITH HOMOGENEOUS SERVER RATES

Here we consider tree networks with homogeneous server
rates, so that packet service times satisfy 7; = T for all 4.
Theorem 2: If T; = T for all 4, then at every instant of
time the number of packets in the final node of the tree is the
same as the number of packets in the final node of a reduced
2-stage tree, where all nodes more than one stage beyond the
final node are replaced with delay lines of duration 7.
Proof: The endogenous inputs to the final node are the
departure processes from the previous stages. By Theorem
1, these departure processes are unchanged when their pre-
liminary queues are replaced with time delays. Because the
endogenous and exogenous inputs to the final node remain
the same in the reduced system, the number of packets in the
final node is unchanged. 0
Theorem 2 allows the occupancy dynamics in the final node
of a tree to be modeled by a reduced 2-stage system with
preliminary time delays. Intuitively, it is clear that if the inputs
A;(t) are stationary and independent of each other, then the
steady-state occupancy distribution in the final node of the
reduced system is preserved when the delay lines are removed.
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Fig. 3. Replacing all preliminary nodes of the network in Fig. 1 with
delay lines. The output process D(t) is unchanged if p; > ps for all
1e{1,...,5}

Here we use stochastic coupling to formally prove this result,
and show that steady state behavior exists in the equivalent
model if and only if it exists in the original system. We first
present the basic concepts of stochastic coupling theory.

A. Stochastic Dominance and Equivalence

Definition 1: A random variable N; is stochastically
greater than another random variable N if there exists a third
“coupling variable” Nl such that N7 > ]\71, and Nl has the
same distribution as N5. In this case, we write N; > Ns.

An equivalent definition can be stated by coupsltihg with
respect to N, so that there is an external variable ]\72 with
the same distribution as N; and such that 1\72 > Ns. It is well
known that Ny > Ny if and only if Pr[N; > o] > Pr[N; >

a] for all real rslllkimbers a (see [22]). This fact immediately
implies that stochastic inequality relations are transitive: If
Nl Z N2 and N2 Z Ng, then Nl Z Ng.

If tNl and N, have the same distiibution, we write Ny =
Ny, and say that the random variables are stochasticail)}
equivalent. It is also essential to have a notion of stochastic
equivalence for random processes:

Definition 2: A random process Aj(t) is stochastically
equivalent to another process Ao(t) if E{h(A;)} =
E {h(As2)} for all measurable operators h(-) that map a process
A(t) to a single real number.

It is clear that if stochastically equivalent input processes
A1 (t) and Az(t) are applied to identical queues at time 0, they
produce stochastically equivalent packet occupancy processes
Ni(t) and N(t), and that at any particular time instant 7, the
random variables N1 (7) and Ny(7) satisfy Ny (7) = Na(T).
Indeed, this can be seen from the definition by desﬁhing the
operator h(-) that maps an arrival process to the number of
packets N(7) at time 7 via the queueing law.

B. Removing Delays Via Stochastic Coupling

Consider now the 2-node tandem with nodes 1 and 2 and
input streams A(t), B(t), and C(t) delivering packets destined
for node 2, as shown in Fig. 4. This system represents any two
sequential nodes of a multi-stage tree, where the general inputs
consist of the combined exogenous streams and endogenous
streams from other nodes. As before, we assume all arrivals
occur after time 0, so that A(t) = B(t) = C(t) = 0 for all
t <0.
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Fig. 4. A canonical 2-queue system with input X (¢) delayed by time d.

Note that the A(t) process is explicitly shown with a time
delay of duration d. We show that if A(t), B(t), and C(t) are
independent and stationary, the delay can be removed without
affecting the steady state distribution of packets in node 1
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or node 2. We first define the notions of steady state and
stationarity.

Definition 3: Let the stochastic process N (t) represent the
number of packets in a queue as a function of time. The steady
state distribution F[n] for the queue is defined:

t
Pr[N(t) <nldr ,ne{0,1,2,...} (1)

7=0

F[n]& lim 1
t—oo
whenever the limit exists.

We now define the notion of stationarity for processes that
only have arrivals after time 0. For any arrival process A(t) and
any positive delay d, we define the partially deleted process
Ay(t) as follows:

0 ift<d

Ad(t)é{ A(t) ift>d

Thus, A,4(t) can be viewed as a version of the A(t) data stream
in which packets during the first d seconds are thrown away.

Definition 4: An arrival process A(t) is stationary if for any
positive delay d, the delayed process A(t—d) is stochastically
equivalent to Ag4(t).

Note that for two stationary arrival processes A(t) and B(t)
that are also independent, the superposition A(t — d) + B(t)
is stochastically equivalent to the superposition Ag(t)+ B(t),
and hence either superposition applied to a queue yields the
same steady state packet occupancy distribution, provided that
the distribution exists. We further note that the total number of
packets in a deterministic service time queue cannot increase
if some packets from the input stream are deleted [2].

Theorem 3: For any general inputs A(t), B(t), C(t) that
are independent and stationary, the steady state occupancy
distribution in node 1 of Fig. 4 exists if and only if the steady
state occupancy distribution exists when the time delay on the
A(t) input stream is removed. If the distributions exist, they
are identical.

Similarly, the steady state distribution in node 2 is the same
with or without the time delay on the A(t) stream, provided
the distribution exists.

Proof: It is useful to define Nps(4)(7) as the number
of packets at time 7 in a queue that is initially empty
with a general arrival process A(t) applied at time 0, where
A(t) could represent a superposition of processes. Note that
Nia)(7) is always greater than or equal to the number of
packets in a queue at time 7 with the same input process but
with some of the arriving packets deleted. Hence, the following
inequalities hold deterministically for all time instants 7:

Na, )+ 8401 < Va0 (T) < Naw+se) (1) ()

The random variable Nj4(;)1p(s)(7) on the right of the
above inequality represents the number of packets in node 1
of Fig. 4 at time 7 in the case when the A(¢) and B(¢) streams
are applied directly with no time delay, while the middle term
of the above inequality represents the corresponding number
of packets when arrivals during the first d seconds are deleted
from the A(t) stream. Likewise, the leftmost term considers
the case when packets from both the A(t) and B(t) streams
are deleted during the first d seconds.

However, by stationarity, the arrival process Aq(t) + By(t)
is stochastically equivalent to the process A(t —d)+ B(t —d),
which represents a delayed version of A(t) + B(t). Likewise,
by independence, the arrival process Aq(t)+ B(t) is stochas-
tically equivalent to the process A(t—d)+ B(t). We thus have
the following stochastic equalities for all time instants 7:
Niaw+n) (T —d)

Ny 48,007 =

Nia,wese)(™ 5 Nag-a+Bw)(7)

Using these stochastic inequalities in (2) yields:

Niay+se) (T —d) < Niat-ay+B()] (1) = Niawy+B)(7)

The upper and lower bounds in the above inequality are time
delayed versions of the same process, namely, the process of
packets in node 1 of Fig. 4 when A(¢) and B(t) are applied
directly. It follows that their time average distributions (defined
in (1)) are equal, and converge if and only if the middle term
converges. The middle term represents the process of packets
in node 1 when the A(t) stream first passes through the d
second delay. Thus, the steady state distribution in node 1 is
unchanged if the time delay is removed.

The proof of the corresponding property for node 2 is
similar, and follows from the fact that, because both nodes
have the same service time 7', the number of packets in node
2 is greater than or equal to the resulting number of packets
if some arrivals from A(t), B(t), or C(t) are deleted before
entering the system (see Appendix A). It follows that for all
instants 7:

Ni(7) < Na(7) < N3(7)

where N5(7) represents the packet occupancy in the second
node of Fig. 4 when the streams A(t), B(t), and C(¢) are ap-
plied with no time delays, N2 (t) represents the corresponding
occupancy in the second node in the case when all packets
arriving from A(t) during the first d seconds are deleted,
and N, (t) represents the occupancy in the case when arrivals
from all streams are deleted for the first d seconds. The result
follows by noting that Ny (7) = N3(7—d), and that No(7) is
stochastically equal to the number of packets in the final node
of Fig. 4 (with A(t) delayed by d seconds). O]

C. The 2-Stage Reduction Theorem

We can now present the main reduction theorem for homo-
geneous tree networks with general stationary and independent
arrival processes. Consider a multi-stage tree network with
exogenous arrival processes A;(t) at each node i, and define its
2-stage equivalent model as the system with the same inputs,
but with all queues more than 1 stage behind the final node
removed.

Theorem 4: (2-Stage Equivalent Models) If exogenous in-
puts A;(t) are stationary and independent of each other, a
steady-state occupancy distribution exists in the final node of
the original network if and only if a steady state occupancy
distribution exists in the 2-stage equivalent model. Further-
more, if the distributions exist, they are exactly the same.

Proof: Reduce the multi-stage tree network to a 2-stage
network in tandem with delay lines, as described in Theorem
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Fig. 5. (a) The canonical 2-stage equivalent model of a homogeneous tree
network, and (b), (c) reduced systems with the same total packets.

2. Note that this does not change the packet occupancy
process N (t) in the final node. By the delay removal theorem
(Theorem 3), we can iteratively remove each of the delay lines
without changing the steady state distribution in the final node.
The resulting system has no time delays and is exactly the 2-
stage equivalent model. O

Note that any node i of a tree can be viewed as the final
node of the smaller network consisting only of nodes with
arrival streams that pass through node i. Hence, the steady
state occupancy distribution of any node of a tree network can
be exactly analyzed according to a 2-stage equivalent model.

IV. MEAN AND VARIANCE ANALYSIS

Here we use the 2-stage reduction theorem to develop sim-
ple expressions for the mean and variance of packet occupancy
in terms of the corresponding moments in systems with only
one queue and two queues, respectively. Consider a multi-stage
tree with homogeneous service times 7' in each node, and with
stationary and independent exogenous arrival processes A;(t).
By Theorem 4, the steady state occupancy in any such network
can be analyzed by a 2-stage equivalent model. The canonical
2-stage model is shown in Fig. 5a, and has G first stage queues.
In this model, the inputs A;(t),... Ag(t) represent superpo-
sitions of the exogenous inputs of the original multi-stage
network, and Ag(t) is the exogenous input to the final node.
Assume this system exhibits steady state behavior, and let
Ny, ..., Ng represent the steady state number of packets in the
first stage queues. Let Y represent the steady state occupancy
in the final node. That is, the collection { N7, ..., Ng,Y} can
be viewed as random variables with joint distribution given by
the steady state system occupancy distribution. Alternatively,
these random variables can be viewed as samples of queue
occupancy at a time when the system is in steady state.

A. Mean Occupancy

Here we compute E {Y'}, the mean occupancy in the final
node of the canonical 2-stage tree of Fig. 5a. Assume inputs
Ao(t), A1(t),..., Ag(t) are rate ergodic with arrival rates
A0, A1, ..., Ag, and define the sum rate A = A\g + ... + Ag.

Define Qr(A; + ...+ A;) to be the expected occupancy in
a single queue with deterministic service time 7' and with
a superposition of the arrival streams A;(t) + ... + A;(¢)
entering as inputs. Thus, the mean occupancy in the first stage
queues of Fig. 5a can be written as E{N;} = Qr(4;) for
i € {1,...,G}. Now consider the system of Fig. 5b, where
the first stage queues are replaced by delay lines of duration 7.
Let W = Wi +... W represent the sum number of packets in
the delay lines (where W; represents the number of packets in
the delay line from stream A;(t)). Let Z represent the number
in the final node. We have:

E{Ni+...4+ N¢+Y}=Qr(A1)+...+Qr(4c) +E{Y}

E{W+2} = E{W}+Qr(Ado+A1+...+Ag)
= A=2)T+Qr(A+ A1 +...+ Ag)

By Theorem 1, we know that the departures of both the
system of Fig. 5a and Fig. 5b are the same for all time, and
hence the total number of packets in the two systems is always
the same. The equalities above can thus be equated, yielding
the following exact expression for E {Y'}:

G
E{Y}=A=X)T+Qr(Ado+A1+...+Ag)— Y Qr(A:)

The above equation expresses the expected occupancy in any
node of a homogeneous multi-stage tree network in terms
of the expected occupancy in single-queue systems with a
superposition of the original exogenous inputs, and can be
evaluated whenever the average occupancy in such single
queue systems can be computed.

We note that expected occupancy for tree networks with
Poisson inputs was derived previously in [18]. We can obtain
the result of [18] from the above formula by using the Q7 (A)
function for the special case of Poisson inputs. In this case,
Q7(A) can be written as a pure function of the arrival rate A,
and is given by the standard Pollaczek-Khinchin formula for
expected occupancy in an M/D/1 queue:

2
QT()‘)AT+2<(1>\_T))\T)

B. Occupancy Variance

To compute the variance Var(Y") for packet occupancy in
the final node, consider the following alternative modification
of the canonical 2-stage system in Fig. 5a: Replace all pre-
liminary nodes ¢ € {1,...,G} — {k} with time delays of
duration 7', but keep the preliminary node k£ unchanged. By
Theorem 1, this modification also contains the same aggregate
number of packets as the original system. Let Z; represent
the corresponding number of packets in the final node of this
modified system.

Lemma 3: The variables Y, Z, {Z;}, {Wy}, and {Ny}
satisfy:

V2= "7}~ (G-1)Z"+ > (Wi = Ni)(W; — N;) (3)
k=1 i#]
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Proof: Using the fact that all three systems in Fig. 5 have
the same total number of packets within them, we have:

Ni+...+Ng+Y = Wi+..+Wg+2Z2
= Np+2Zp+ Z W;
ie{1,...G)—{k}

The above equalities hold for all £ € {1,...,G}, and hence:

Wiy —Np=2y,— 7 forallk‘e{l,...,G} )
G G

Y=Z+Y Wi-N=2+> [Zc—2]
k=1 =

Squaring both sides of (5) (working only with the Zj and Z

variables) and then using (4) establishes the result. O

Theorem 5: (Variance) If Ag(t), A1(t),..., Ag(t) are sta-
tionary and independent of each other, then:

G
Var(Y) =Y Var(Z) — (G —1)Var(Z) (6)

Proof: Note that ga.l (3) of the preceding lemma is simply
an algebraic statement about any variables Y, Z, {Z}, {W},
and {N} that satisfy (4) and (5). Any random variables
satisfying these two linear equations will also satisfy these
equations in their expected values. Hence, we can replace Y,
Z,{Zy}, {Wy}, and {N} in (4) and (5) with their expecta-
tions E{Y}, E{Z}, {E{Zk}}, {E{Wi}}, and {E{Ny}} to
find that the lemma also implies:

G
E{Y} =Y E{Z}’ - (G- DE{z}’
k=1
+ZE{W¢—Ni}]E{Wj—Nj} (7)

i#]
Taking expectations over (3) and subtracting (7) yields:
Var(Y) = Y5 Var(Zy) — (G — 1)Var(Z)
+ 202, E{(Wi = Ny)(W; — N;)}
— Yot E{W; — N} E{W; — N;}

Because the input processes are stationary and independent,
(Wi — N;) is independent of (W; — N;) whenever i # j. The
last two terms of the above equation thus cancel, proving the
theorem. O

Expressions for the variance Var(Zy) for a tandem of 2
queues with Poisson inputs and for a discrete time tandem with
i.i.d. arrivals and general arrival distributions are presented in
[2] using a moment generating technique developed in [7].
These expressions can be used with Theorem 5 to yield exact
variance expressions for any node of a multi-stage tree with
such inputs.

V. TRAFFIC SMOOTHING

Here we show that tree networks of homogeneous, deter-
ministic service time queues naturally act to “smooth” traffic,
making the patterns better for downstream nodes to receive.
All inputs are again assumed to be independent and stationary.

Theorem 6: (Smoothing) The steady state packet occu-
pancy in the final node of a homogeneous tree is stochastically

less than its resulting occupancy when all preliminary nodes
are removed and the exogenous inputs are applied directly to
the final stage.

Proof: By Theorem 4, we can first reduce the multi-
stage tree to its canonical 2-stage equivalent model (as in
Fig. 5a), where the inputs to the equivalent model represent
superpositions of the inputs to the tree. The total number of
packets in this 2-stage system is the same as the total number
of packets in a modified system where all nodes at the first
stage are replaced by time delays of duration 7', as in Fig. 5b.
However, it is clear that the number of packets in the set of
first stage queues is always greater than or equal to the number
in the corresponding delay lines. It follows that the number of
packets Y in the final node of the 2-stage system is less than
or equal to the number of packets Z in the final node of the
modified system. Thus, Y < Z. However, from Theorem 3,
we know that Z = Z', where Z' represents the steady state
occupancy of the modified system when the preliminary delay
lines are removed. Hence, Y < Z', proving the theorem. [

This result provides a simple bound on the occupancy distri-
bution of the final node of a homogeneous tree in terms of the
occupancy in a single queue with the same exogenous inputs.

VI. TREES WITH HETEROGENEOUS SERVICE RATES

Note that the results of the previous section are derived
from the output invariance properties of tree networks with
homogeneous service rates, as characterized by Theorem 1.
The theorem holds whenever the service rate of a given node of
the tree is less than or equal to the rates of all of its preliminary
nodes. Hence, all results for homogeneous trees derived in the
previous section apply equally to trees with non-increasing
service rates on every path to the destination. However, it is
common for service rates to increase at one or more stages,
so that downstream nodes have the ability to support the sum
traffic load from earlier queues. In this section, we consider
the general case of trees with arbitrary service rates p; at
each node i. Specifically, we consider a tree with M nodes
with labels ¢ € {1,..., M}, where the final node is labeled as
node M (see Fig. 6a for the case M = 5). Let A, (t) represent
a general arrival process of packets exogenously entering the
network at node ¢, and let \; represent the arrival rate. All
packets have fixed lengths L with service times L/u; in each
node 7. Let N, represent the steady state packet occupancy
in the final node. For each i € {1,..., M} let NZ.(%) represent
the steady state occupancy in a virtual queue with service
rate -y; and input process A;(t) entering it alone (we assume
throughout that a steady state exists).

Theorem 7: (Stochastic Occupancy Bound) For any virtual
service rates {~;} such that v; + ...+ vy = par, we have:

(a) If exogenous inputs {A;(t)} are stationary and indepen-
dent, then variables {Ni(%)} are independent, and:

st.

(b) If exogenous inputs are not stationary and independent,
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then there exist variables {Z\Afl-(%)} such that:

N(’Yl) +N(“/2)+ N(’YJVI) (9)
= N for all i € {1 LM} (10)

The stochastic bounds described above can be easﬂy visualized
in terms of the parallel queue system of Fig. 6d, where each
of the M exogenous inputs of the tree is given a separate
virtual queue. Notice that the rates ~; of the virtual queues
must sum to the rate of the final node, but are otherwise left
unspecified. Hence, the rates can be chosen for convenience, or
can be optimized to achieve the tightest upper bound. Before
proving the theorem, we demonstrate its implications.

Example 1 (Averages): Let Qp/,(A;) represent the aver-
age occupancy in a single queue with service rate ;, packet
length L, and input stream A;(t). From Theorem 7, we have
the following upper bound for the average occupancy in the
final node of a multi-stage tree:

Ny <
£ _

K2

E{Ny} < min

2111 Yi=

M
Z Qr/,(A)

KMoy

The Q1 /, (A;) function can be shown to be a convex function
of ~; [20], and hence the minimization above represents a
convex optimization. A simpler bound is obtained by the
assignment y; = ;LM% (where A\ = A\ +...4+ A7 is the sum
input rate). This choice of the ~; values ensures all virtual
queues are stable whenever the original network is stable.

Example 2 (Leaky Bucket Inputs): Suppose the exogenous
inputs { A;(¢t)} are leaky bucket constrained with rate and burst
parameters (\;, 0;) [9], so that with probability 1 a queue with
input A;(¢) and server rate -y; will never have more than o;
packets, provided that 7; > X\;L. If the sum arrival rate A
from all inputs to the tree satisfies AL < pujs, then using
the proportional rate allocation ; = pprA; /A guarantees each
virtual queue ¢ receives a service rate ; > A\;L. Theorem 7
thus verifies the well known result that the number of packets
in the head node is always less than or equal to Zi\il o; [10]
[12]. Furthermore, the probability of achieving this worst case
backlog can be bounded if more detailed statistical information
about the arrival processes is available.

Example 3 (Moment Generating Functions): If inputs
{A;(t)} are stationary and independent, then we have from
part (a) of Theorem 7 that for any rates {7;} that sum to ppy:

7NM} <HE{ rND }

for any value » > 0. Hence, the moment generating function
for the number of packets in the final node of a tree is less
than or equal to the product of moment generating functions
for queues with single inputs A;(t) and server rates ~;.

If inputs are not necessarily stationary or independent, then
part (b) of Theorem 7 implies there exist variables {Z\Afi(%)}
such that the occupancy NNj; in the final node of the tree
satisfies Ny < J\Afl(wl)—k. ) .+N](\]M), where N(%) N('Y’) for

each i € {1,...,M}. Let {p1,p2,...,pm} be any “collection
of non-negative numbers that sum to 1. Using the fact that

Efwlxl < maX;eqr,..amy[wi/pi] for any values {z;}, we

have:

E{eTNM} SE{ r max; [N (7‘)/;0]}

M ~
S E{erin]
=1

for any > 0. Because N i(%) = N i(ﬂ”'), the moment generating

function satisfies:

M
E{GTNM} < Z]E{erNi(’Yi)/lh}
1=1

Example 4 (Complementary Occupancy Distribution): A
bound on the complementary occupancy distribution can sim-
ilarly be derived for the general case when inputs are not nec-
essarily stationary or independent. Again let {p1,p2,...,pnm}
be a collection of non-negative numbers that sum to 1. Using
the same technique as [14], we observe the following inclusion
of events: {Nl(’“) +...4 N](\}M) >k} C {Nl(%) > prk} U

CU{NOM > puk}. Hence, because PriN) > a] =
Pr[N; RS z] for any x, we have from the union bound:

Pr [N]u >k}

min

(71)
S vi=pMm, >, pi=1 [PT[NI ~ plk] +

+Pr[N(M) > pMkﬂ (11)

The above bound is simpler and tighter than the bounds
derived for variable length packet systems in [13] [14] with in-
puts that are characterized by a class of exponentially bounded
bursty arrivals (EBB) or stochastically bounded bursty arrivals
(SBB). Indeed, in the special case when inputs are EBB or
SBB, then neglecting the optimization over v; and simply
choosing the proportional rate assignment ~v; = pas\;/A, the
bound of (11) becomes identical to the bound offered in [13]
[14] for the occupancy distribution of a single queue with
a superposition of EBB or SBB sources. When this queue is
situated within a multi-stage network, the bounding techniques
of [13] [14] can be used recursively to compute updated
bounds by considering the effects of each stage. However,
these updated bounds require more computation and have the
disadvantage of getting progressively larger and larger at each
stage—suggesting that congestion may increase with the size
of the network in systems with variable length packets. The
bound in (11) holds equally well for any node at any stage of
the network. Hence, it is always tighter and is immune to any
pejorative effects when the size of the network is scaled. This
independence to scaling is due to the intrinsic traffic smoothing
properties of deterministic service time queues. Furthermore,
the bound of (11) holds for any general input processes, and
incorporates the particular statistical properties of each process
by relating performance to the resulting backlog in a system of
single queues with each of these inputs applied individually.

A. Derivation of Theorem 7

To prove Theorem 7, we use two preliminary lemmas that
hold for one queue and two queue systems with fixed length
packets. Consider a queue with server rate ;1 and with a
superposition of M input processes Aj(t) + ... + An(t).
Let N(t) represent the number of packets in this queue as
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a function of time (assuming the system is initially empty).
For a given rate v; < u, let N;(t) represent the corresponding
number of packets in a queue with server rate y; and with
input stream A;(t) alone.

Lemma 4: (Multiplexing Inequality) For arbitrary input
streams {A;(t)} and for any rates {7} such that vy + ...+
Ym = M, we have at every instant of time:

N(t) < Ni(t) + ...+ Na(t)

The lemma is an immediate consequence of the multiplex-
ing results proven in [21]. Intuitively, Lemma 4 follows by
observing that the single queue system is either empty or is
processing data at a rate that is greater than or equal to the
sum processing rate of the combined system of M queues.

Next consider two tandem queues with a single input.
Packets of length L bits arrive to the first queue according
to an arrival process A(t) with rate A, and these packets enter
the second queue after service at the first. Service rates of the
first and second queues are pq and po, respectively. Assume
the system exhibits a steady state, and let random variable No
represent the steady state number of packets in queue 2. Let
N, represent the corresponding steady state occupancy in the
case when the first queue is removed and all packets directly
enter queue 2.

Lemma 5: (Smoothing in Single-Input Tandems) For arbi-
trary service rates pq and po, we have: Np < NQ. That is,

removing the first queue creates a stochasticall;tgreater packet
occupancy at the second queue.

Proof: If pq > e, then the proof is the same as the proof
of Theorem 6, as the total number of packets in the tandem
is unchanged if the first queue is replaced by a pure delay
line. In the case p1 < p2, there is never more than 1 packet
in the second queue. Thus, Pr[Ny > k] = 0 < Pr[Ny > k]
for all integers k£ > 1. Furthermore, by Little’s Theorem we
have that Pr[Ny > 0] = Pr[Ny > 0] = AL/ . Thus, Ny is
stochastically less than Ny. 0

These two lemmas can be used iteratively to bound packet
occupancy in any node of a heterogeneous tree. Consider the
final node in the network of Fig. 6a, which has rate us. Let
N5 represent the random number of packets in this final node
when the system is in steady state. We see from the figure that
there are three separate streams flowing into this node. Thus,
in the first iteration of our reduction technique we split this
node 1nt0 three virtual sub-nodes with rates 7[” 1], 'ygitzl],
and *y[” that individually service the three streams (where

[lt if [ie=1] _ = us, see Fig. 6b). From Lemma
4 the resulting number of packets N [it=1] , N3 lit=1] , N =1
the sub-nodes satisfy N5 < N[” 1]—f—N[” ”—i—N it=1f (Here
the “it=1" superscript de51gnates values obtained on the first
iteration of the reduction, and the subscript index represents
the highest-numbered exogenous input corresponding to the
particular sub-node).

Now notice that several 2-queue tandem situations have
been created (Fig. 6b). Consider for instance the queue with
rate ;3 in tandem with the N3[Zt:1] queue. From Lemma
5, removing this front queue creates a stochastically greater
occupancy Ng[ft:”. Likewise, the queue with rate ;4 can be

+ 3t 1]+7

it=1
. ]

40| " > —
W\ 7\?{":1]—“{3[“:1] ’A2(f)_> NEYZ)_!YZ
S 1
450, b =7 : :
. it=1 :
ENUmng %‘H]_’M[[ : Ayl— NIy
© d —
Fig. 6. An illustration of the iterative reduction technique to stochastically

bound the occupancy in the final node. Note that >, v; = po.

removed to generate a new variable N, iit:l] that is stochas-
tically greater than N, iit:l], creating the simplified system in
Fig. 6¢. The number of stages in this simplified system is one
less than the original.

For a second iteration, the same procedure can be

applied to split queue N =11 into queues with rates

][[zt 2]7 gtt 2]’ 7;[31t 2] such that 7 [zt 2] + ")’%” 2] + PY:[}'Lt 2]
73”:1]. Proceeding this way, we remove nodes and split nodes

until we are left with a parallel collection of 5 queues of rates
Y1,--.,7s such that v + ...+ 75 = us, and each new node
i has its own exogenous input stream A;(t). At each step
of the iteration the component variables /NV; are stochastically
increasing. Thus, we are left with variables V. 1(%), . ,Ns(%)’
where each Ni(%) is distributed as a packet occupancy in a
single queue with input stream A;(¢) and processing rate ;
(Fig. 6d).

In this way, we can bound packet occupancy in the head
node of a multi-stage heterogeneous tree with arbitrary ex-
ogenous inputs A; (t), ..., Aps(t) by simply using the parallel
queue picture of Fig. 6d. However, there is a subtlety in
the above iteration procedure: While it is true that N5 <
N: =11y Ny =11y N; =11 \when the network is changed

from Fig. 6a to Fig. 6b, and it is true that N~ < Ni=

Nt < NN < NI when the network is

st.
changed from Fig. 6b to Fig. 6c, it is not necessarily the case
that Ny < NJ'=1 4 M= NF=Y This issue is formally
st.
treated by using stochastic coupling to introduce the auxiliary
variables Ni(%) of Theorem 7. We first require two lemmas.

Lemma 6: If N, A, and B are random yariableAs such that
N < A + B, then there exist variables A and B such that
st

N §.A—|—B, and A = A, B = B. Furthermore, if A and B are

independent, then A and B can be chosen to be independent.
Proof: By definition of stochastic inequality, there exists a
random variable Z such that N < Z and Z A + B. Given

this Z variable, form the pair of random Varlables (A B) by
choosing them according to the joint conditional distribution
pa,B|z(a,b| A+ B = Z). Thus, the vector (A, B) is coupled
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to the Z variable through the joint distribution function for
the pair (4, B). It follows that A+ 5 = Z > N, and that
A=A, B=B.If Aand B are independent, then A and B

w111 ‘also be 1ndependent 0
Lemma 7: If N, A, and B are rand0r~n Yariables such tha~t
N < A+ B, and if there exist variables A, B such that A < A
st. _ A st.
and B < B, then there exist variables A, B such that N <
st.
A+B,and A=A, B = B.

Proof: By deﬁn1t10n of stochastic inequality, because A <
st.

A and B < B, there must exist variables A’ and B’ such
t

that A < A" B < B,and A = A, B = B. It follows that
N < A’+ B’. By the previous lemma there must be variables

A and B such that N < A + B and A A’ B = B'. By

st.
transitivity, we have A = Aand B = B, provmg the lemma.
0

We can now prove Theorem 7.

Proof: (Theorem 7) We proceed by induction on the itera-
tive procedure outlined above. At the beginning of iteration k,
assume we have a set of sub-nodes I with steady state occu-
=kl (i € I,) and corresponding variables Ni[it:k]

pancies Ni : .
such that Ny < Zzelk N[zt k] and Ni[zt:k] = Ni[zt:k] for

all ¢ € Ij. After splitting each node with occupancy Nl-[it:k]
into a set of S(¢) parallel sub-nodes with new occupancies

it=k-+1] . . Slit=k it=k+1
N][ lge S(7)) such that Ni[ I < > jes Nj[ L
it follows that:

¢rlit=Fk] lit=k+1]
NTR< YN,
JES(1)

, Viely (12)

Next, the inputs to the parallel sub-nodes are “un-smoothed”
by removing any preliminary queues, and new variables
NU=F1 are formed that are stochastically greater than

Nj[it:kﬂ], that is, for each ¢ € I;, and each j € S(3):

Nj[it:k+1] < pylit=h+1] 13)

Applying Lemma 7 to (12) and (13), for all ¢ we can find

auxiliary variables N =k for each j € S(i) such that
o [it=k] & lit=k41] S it=k+1] < lit=k+1]
NS Yese N » and N; =N

for all j € S(i). Defining the set I} 12 U;er, S(i) establishes
the induction hypothesis for the next iteration, proving the
theorem. 0

VII. CONCLUSIONS

We have used sample path observations and stochastic
coupling techniques to analyze deterministic service time tree
networks with arbitrary input streams. The analysis yields
quantitative probabilistic expressions for network congestion
in terms of simpler systems. For homogeneous tree networks
with multiple stages, a reduced 2-stage equivalent model was
developed and shown to exactly preserve the steady state
occupancy distribution. Exact expressions for occupancy mean
and variance in any node were obtained using this analysis, and
a smoothing result was proven, showing that packet occupancy

at any node is stochastically increased if its preliminary nodes
are removed. For tree networks with heterogeneous server
rates {u;}, a simple upper bound on the packet occupancy
of any node was developed in terms of the occupancy in a
set of virtual queues that individually serve the exogenous
input streams A;(¢). The bound is independent of the location
of the node within the tree, and is tighter than previous
bounds derived for variable length packet systems with traffic
envelope constraints. This work contributes to a theory of
stochastic network calculus, and provides powerful techniques
for analyzing complex queueing systems.

APPENDIX A

Here we show that the number of packets in the second node
of the 2-queue tandem in Fig. 4 is greater than or equal to the
number there would be if some arrivals from any of the inputs
are deleted before entering the system. To see this, first note
by Theorem 1 that the total number of packets in the tandem
is unchanged if the first node is replaced by a pure delay line
of duration 7. The total number of packets in this equivalent
model (delay line plus queue) cannot increase if some arrivals
are deleted, and hence the total number in the 2-queue tandem
cannot increase with deleted arrivals. Thus, if the first node of
the 2-queue tandem is empty, then the total number of packets
in node 2 is greater than or equal to the corresponding amount
if some arrivals were deleted. It is not difficult to show that
this property is preserved during times when the first stage
node is busy. Indeed, during such busy periods the first node
delivers at the maximum rate of 1 packet per T' seconds, and
the number of packets in the second node cannot decrease
below the corresponding number in the deleted system.
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