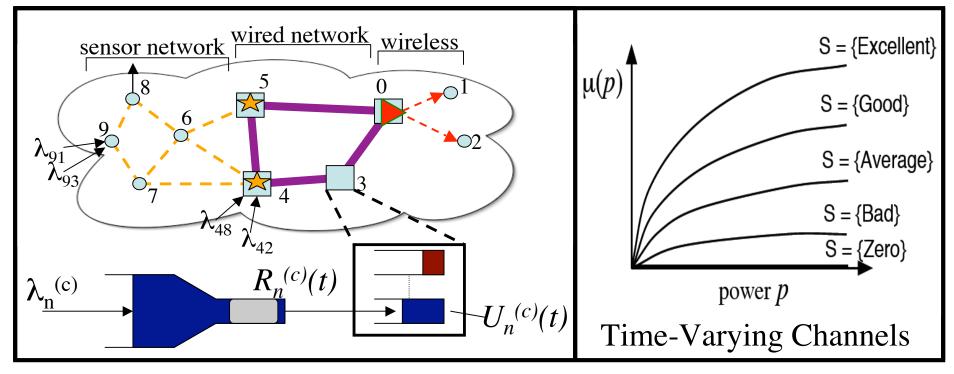
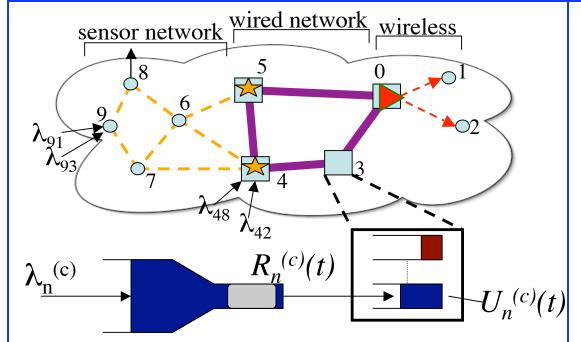


Fairness and Optimal Stochastic Control for Heterogeneous Networks



Michael J. Neely (USC) Eytan Modiano (MIT) Chih-Ping Li (USC)

A <u>heterogeneous network</u> with N nodes and L links:



 $\Gamma_{\vec{S}}$ = channel dependent set of transmission rate matrices

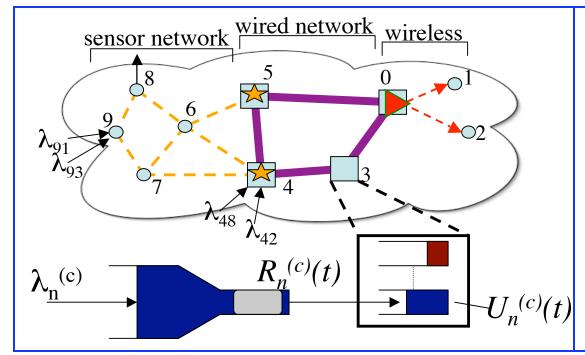
$$\Gamma_{\overrightarrow{S}} = \Gamma^A_{\overrightarrow{SA}} \times \Gamma^B \times \Gamma^C_{\overrightarrow{SC}}$$

Choose $\overrightarrow{\mu}(t) \in \Gamma_{\overrightarrow{S}(t)}$

Slotted time $t = 0, 1, 2, \dots$

Traffic $(A_{ij}(t))$ and channel states $\overrightarrow{S}(t)$ i.i.d. over timeslots...

A <u>heterogeneous network</u> with N nodes and L links:



 $\Gamma_{\vec{S}}$ = channel dependent set of transmission rate vectors

$$\Gamma_{\overrightarrow{S}} = \Gamma^A_{\overrightarrow{SA}} \times \Gamma^B \times \Gamma^C_{\overrightarrow{SC}}$$

Choose $\overrightarrow{\mu}(t) \in \Gamma_{\overrightarrow{S}(t)}$

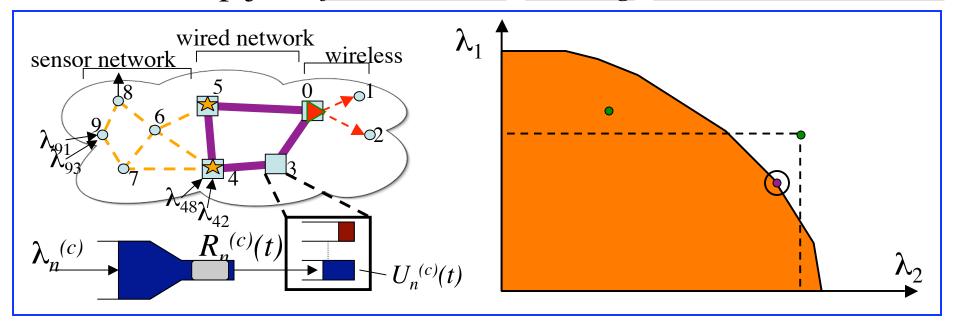
Input rate matrix: (λ_{ij}) (where $E[A_{ij}(t)] = \lambda_{ij}$)

Channel state vector: $\vec{S}(t) = (S_1(t), S_2(t), ..., S_L(t))$

Transmission rate vector: $\vec{\mu}(t) = (\mu_1(t), \mu_2(t), ..., \mu_L(t))$

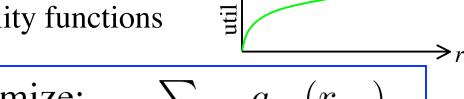
Resource allocation: choose $\vec{\mu}(t) \in \Gamma_{\vec{S(t)}}$

Goal: Develop joint *flow control*, *routing*, *resource allocation*



 Λ = Capacity region (considering all routing, resource alloc. policies)

 $g_{nc}(r_{nc})$ = concave utility functions



Maximize: $\sum_{n,c} g_{nc}(r_{nc})$

Subject to: $(r_{nc}) \in \Lambda$

$$0 \le (r_{nc}) \le (\lambda_{nc})$$

Some precedents:

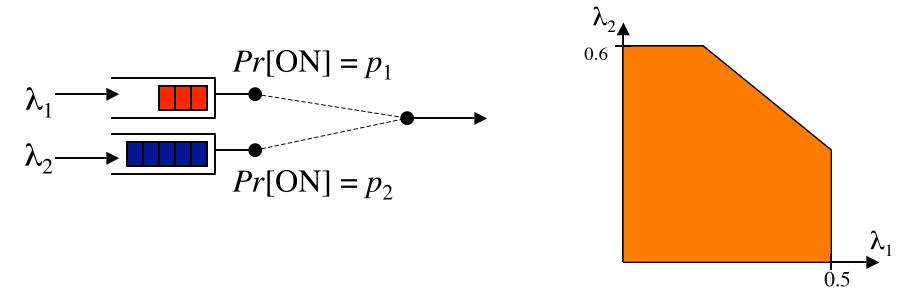
Static optimization: (Lagrange multipliers and convex duality)
Kelly, Maulloo, Tan, Oper Res. 1998 [pricing for net. optimization]
Xiao, Johansson, Boyd, Allerton 2001 [network resource opt.]
Julian, Chian, O'Neill, Boyd, Infocom 2002 [static wireless opt]
Lee, Mazumdar, Shroff, Infocom 2002 [static wireless downlink]
Marbach, Infocom 2002 [pricing, fairness static nets]
Krishnamachari, Ordonez, VTC 2003 [static sensor nets]
Low, TON 2003 [internet congestion control]

Dynamic control:

D. Tse, 97, 99 ["proportional fair" algorithm: max U_i/r_i] Kushner, Whiting, Allerton 2002 ["prop. fair" alg. analysis] S. Borst, Infocom 2003 [downlink fairness for infinite # users] Li, Goldsmith, IT 2001 [broadcast downlink] Tsibonis, Georgiadis, Tassiulas, Infocom 2003 [max thruput outside of capacity region]

Stochastic Stability via Lyapunov Drift:

Tassiulas, Ephremides, AC 1992, IT 1993 [MWM, Diff. backlog] Andrews et. al., Comm. Mag, 2003 [server selection] Neely, Modiano, Rohrs, TON 2003, JSAC 2005 [satellite, wireless] McKeown, Anantharam, Walrand, Infocom 1996 [NxN switch] Leonardi et. Al., Infocom 2001 [NxN switch] Example: Server alloc., 2 queue downlink, ON/OFF channels



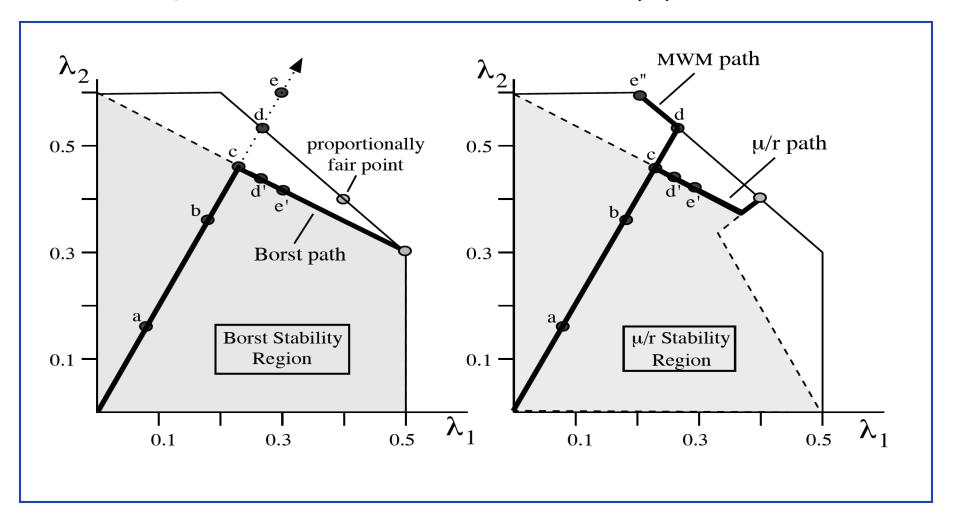
Capacity region Λ :

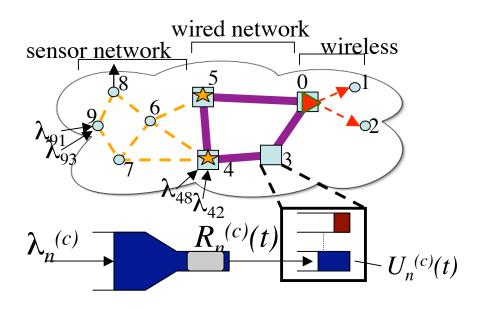
$$\lambda_1 \le p_1 \quad , \quad \lambda_2 \le p_2$$
$$\lambda_1 + \lambda_2 \le p_1 + (1 - p_1)p_2$$

MWM algorithm (choose ON queue with largest backlog) Stabilizes whenever rates are strictly interior to Λ [Tassiulas, Ephremides IT 1993]

Comparison of previous algorithms:

- (1) MWM (max $U_i \mu_i$)
- (2) Borst Alg. [Borst Infocom 2003] (max $\mu_i/\overline{\mu_i}$)
- (3) Tse Alg. [Tse 97, 99, Kush 2002] (max μ_i/r_i)

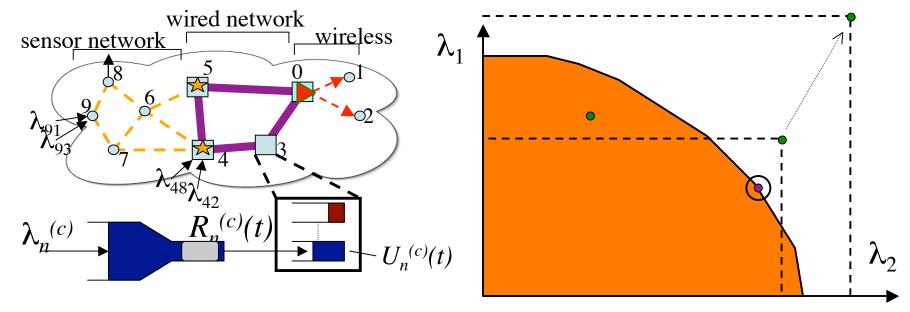




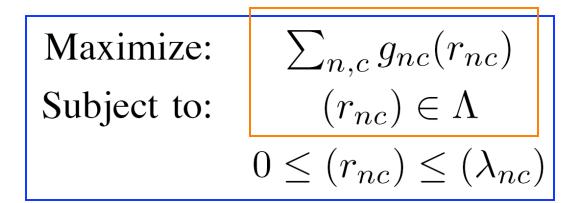
Approach: Put all data in a reservoir before sending into network. Reservoir valve determines $R_n^{(c)}(t)$ (amount delivered to network from reservoir (n,c) at slot t).

Optimize dynamic decisions over all possible <u>valve</u> <u>control policies</u>, <u>network resource allocations</u>, <u>routing</u> to provide optimal fairness.

Part 1: Optimization with infinite demand

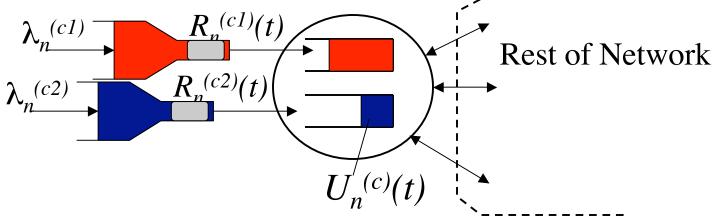


Assume all active sessions infinitely backlogged (general case of arbitrary traffic treated in part 2).



Cross Layer Control Algorithm (CLC1):

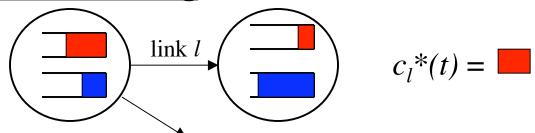
(1) Flow Control: At node n, observe queue backlogs $U_n^{(c)}(t)$ for all active sessions c.



Maximize:
$$\sum_{c=1}^{N} \left[Vg_{nc}(r_{nc}) - 2r_{nc}U_{n}^{(c)}(t) \right]$$
 Subject to:
$$\sum_{c=1}^{N} r_{nc} \leq R_{n}^{max}$$

(where *V* is a parameter that affects network delay)

(2) Routing and Scheduling:



For all links l, find the commodity $c_l^*(t)$ such that:

$$c_l^*(t) = \arg\max_{c} \left\{ U_{tran(l)}^c(t) - U_{rec(l)}^c(t) \right\}$$

and define:

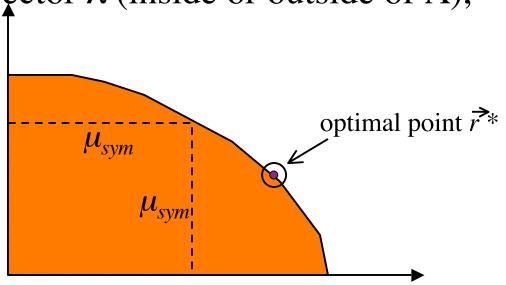
$$W_l^*(t) = \max[U_{tran(l)}^{c_l^*}(t) - U_{rec(l)}^{c_l^*}(t), 0]$$

(similar to the original Tassiulas <u>differential backlog</u> routing policy [1992])

(3) Resource Allocation: Observe channel states $\overline{S}(t)$. Allocate resources to yield rates $\overline{\mu}(t)$ such that:

Maximize: $\sum_{l} W_{l}^{*}(t)\mu_{l}(t)$ Such that: $\overrightarrow{\mu}(t) \in \Gamma_{\overrightarrow{S}(t)}$

Theorem: If channel states are i.i.d., then for any V>0 and any rate vector λ (inside or outside of Λ),



Avg. delay:

$$\overline{\sum_{nc} U_n^{(c)}} \le \frac{N(B + VG_{max})}{2\mu_{sym}}$$

Fairness:

$$\sum_{nc} g_{nc}(\overline{r}_{nc}) \ge \sum_{nc} g_{nc}(r_{nc}^*) - \frac{BN}{V}$$

(where
$$B \stackrel{\triangle}{=} \left(\mu_{max}^{in} + \frac{1}{N} \sum_{n=1}^{N} R_n^{max} \right)^2 + (\mu_{max}^{out})^2$$

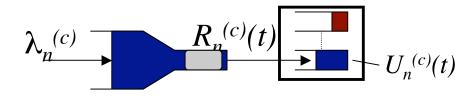
Special cases:

(for simplicity, assume only 1 active session per node)

1. Maximum throughput and the threshold rule

Linear utilities: $g_{nc}(r) = \alpha_{nc} r$

$$R_{nc_n}(t) = \begin{cases} R_n^{max} & \text{if } U_n^{(c_n)}(t) \le \frac{V\alpha_{nc_n}}{2} \\ 0 & \text{otherwise} \end{cases}$$

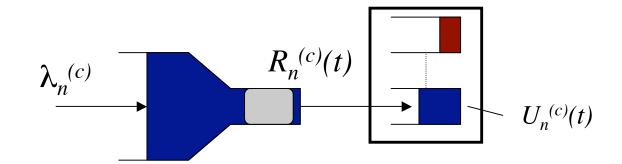


(threshold structure similar to Tsibonis [Infocom 2003] for a downlink with service envelopes)

(2) Proportional Fairness and the 1/U rule

logarithmic utilities: $g_{nc}(r) = \log(1 + r_{nc})$

$$R_{nc_n}(t) = \min \left[\max \left[\frac{V}{2U_n^{(c_n)}(t)} - 1, 0 \right], R_n^{max} \right]$$

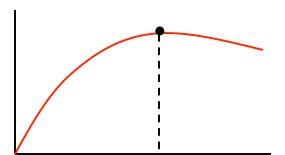


Mechanism Design and Network Pricing:

greedy users...each naturally solves the following:

Maximize:
$$g_{nc}(r) - PRICE_{nc}(t)r$$

Such that:
$$0 \le r \le R_{max}$$



This is exactly the same algorithm if we use the following *dynamic pricing strategy*:

$$PRICE_{nc}(t) = U_{nc}(t)/V$$

Analytical technique: Lyapunov Drift

Lyapunov function:
$$L(\overrightarrow{U}(t)) = \sum_{n} U_n^2(t)$$

Lyapunov drift:
$$\Delta(t) = E[L(\overrightarrow{U}(t+1) - L(\overrightarrow{U}(t)) \mid \overrightarrow{U}(t)]$$

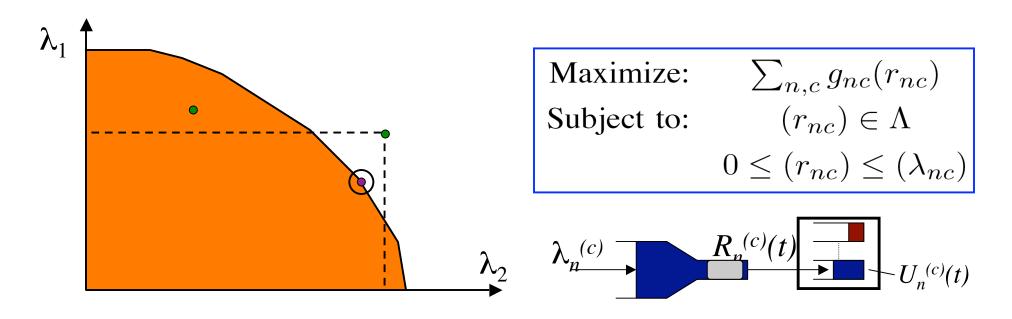
Theorem: (Lyapunov drift with Utility Maximization)

If for all
$$t$$
: $\Delta(t) \leq C - \varepsilon \sum_{n} U_n(t) - VE[g(\vec{r}(t))|\vec{U}(t)] - Vg(\vec{r}^*)$

Then: (a)
$$\sum_{n} E[U_n] \leq \frac{C + VNG_{max}}{\varepsilon}$$
 (stability and bounded delay)

(b)
$$g(\vec{r}_{achieve}) \ge g(\vec{r}*) + C/V$$
 (resulting utility)

Part 2: Scheduling with <u>arbitrary input rates</u>



Novel technique of creating flow state variables $Z_{nc}(t)$

$$Y_{nc}(t) = R_{max} - R_{nc}(t)$$

$$Z_{nc}(t) = max[Z_{nc}(t) - g_{nc}(t), 0] + Y_{nc}(t)$$

(Reservoir buffer size arbitrary, possibly zero)

Cross Layer Control Alg. 2 (CLC2) Every timeslot and for each node n, choose $R_{nc}(t) = r_{nc}$ to solve:

Maximize:
$$\sum_{c} \left[\frac{Z_{nc}(t)}{N} - U_{n}^{(c)}(t) \right] r_{nc}$$
 Subject to:
$$\sum_{c} r_{nc} \leq R_{n}^{max}$$

$$r_{nc} \leq L_{nc}(t) + A_{nc}(t)$$

Additionally, the flow controllers at each node n choose $\gamma_{nc}(t)$ for each session (n, c) to solve:

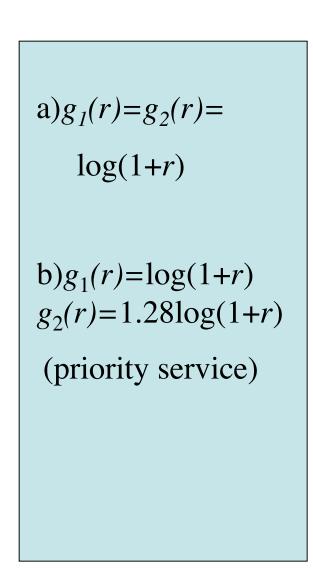
Maximize:
$$Vg_{nc}(R_n^{max} - \gamma_{nc}) + \frac{2Z_{nc}(t)}{N}\gamma_{nc}$$

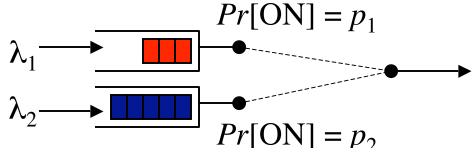
Subject to: $0 \le \gamma_{nc} \le R_n^{max}$

The flow states $Z_{nc}(t)$ are then updated according to the $Z_{nc}(t+1)$ iteration of the previous slide.

Simulation Results for CLC2:

(i) 2 queue downlink





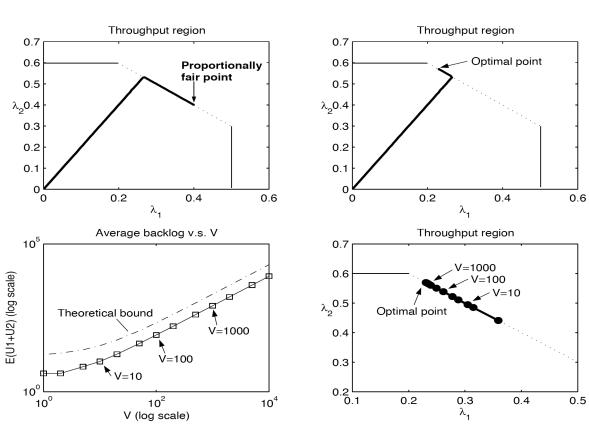


Fig. 3. Simulation of CLC2: (a) Linearly increasing (λ_1, λ_2) to (0.5, 1.0) for V = 10000 and $g_1(r) = g_2(r) = \log(1+r)$. (b) Modifying utility 2 to: $g_2(r) = 1.28 \log(1+r)$. (c)-(d) Fixing $(\lambda_1, \lambda_2) = (0.5, 1.0)$ and illustrating delay and throughput versus V.

(ii) 3 x 3 packet switch under the crossbar constraint:

Rates (λ_{ij})		
.45	.1	.4
.1	.7	.15
.4	.15	.4

Throughput (r_{ij})		
.450	.100	.399
.100	.695	.148
.399	.149	.400

Backlog (\overline{U}_{ij})		
3.3	2.4	3.6
2.4	2.9	2.7
3.6	2.7	3.4

(a) Simulation of a switch with feasible traffic

.6	.1	.3
0	.4	.2
0	.5	0

proportionally fair

Rates (λ_{ij})		
.9	.2	.3
0	.4	.2
0	.5	0

Throughput (r_{ij})		
.598	.100	.298
0	.399	.200
0	.500	0

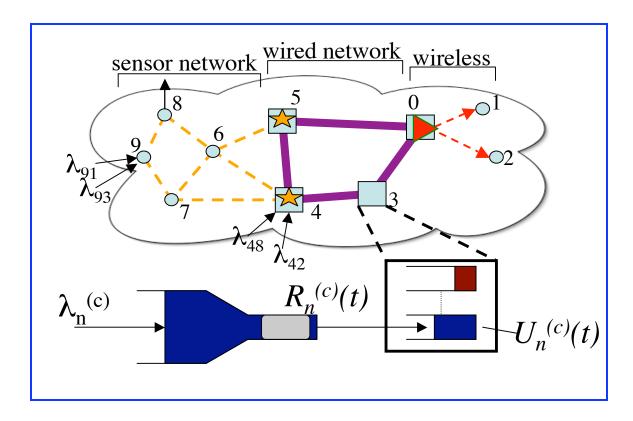
Backlog (U_{ij})		
31.6	45.3	32.1
0	14.1	.29
0	14.2	0

(b) Simulation of an overloaded switch

Fig. 4. Simulation results for the CLC2 algorithm with V=100 and zero reservoir buffers. Simulations were run over four million timeslots.

Concluding Slide:

(iii) Multi-hop Heterogeneous Network



$$\lambda_{91} = \lambda_{93} = \lambda_{48} = \lambda_{42} = 0.7$$
 packets/slot (not supportable)

The optimally fair point of this example can be solved in closed form: $r_{91}^* = r_{93}^* = r_{48}^* = 1/6 = 0.1667$, $r_{42} = 0.5$

Use CLC2,
$$V=1000$$
 ----> \overline{U}_{tot} =858.9 packets $r_{91} = 0.1658, r_{93} = 0.1662, r_{48} = 0.1678, r_{42} = 0.5000$

The end http://www-rcf.usc.edu/~mjneely/

³Strictly speaking, the proportionally fair allocation seeks to maximize $\sum_{nc} \log(r_{nc})$, leading to $\sum_{nc} \frac{\overline{r}_{nc}^{opt} - r_{nc}}{\overline{r}_{nc}^{opt}} \geq 0$ for any other operating point $(r_{nc}) \in \Lambda$. We use non-negative utilities $\log(1+r)$, and thereby obtain a proportionally fair allocation with respect to the quantity $\overline{r}_{nc}^{opt} + 1$, leading to $\sum_{nc} \frac{\overline{r}_{nc}^{opt} - r_{nc}}{\overline{r}_{nc}^{opt} + 1} \geq 0$.