USC Viterbi
 School of Engineering

Fairness and Optimal Stochastic Control for Heterogeneous Networks

Michael J. Neely (USC)
Eytan Modiano (MIT)
Chih-Ping Li (USC)

A heterogeneous network with N nodes and L links:

$\Gamma_{\vec{S}}=$ channel dependent set of transmission rate matrices

$$
\Gamma_{\vec{S}}=\Gamma^{A} \overrightarrow{S A} \times \Gamma^{B} \times \Gamma_{\overrightarrow{S C}}^{C}
$$

Choose $\vec{\mu}(t) \in \Gamma_{\vec{S}(t)}$

Slotted time $t=0,1,2, \ldots$

Traffic $\left(A_{i j}(t)\right)$ and channel states $\left.\overrightarrow{S(t}\right)$ i.i.d. over timeslots...

A heterogeneous network with N nodes and L links:

Input rate matrix: $\quad\left(\lambda_{i j}\right) \quad\left(\right.$ where $\left.E\left[A_{i j}(t)\right]=\lambda_{i j}\right)$
Channel state vector:

$$
\vec{S}(t)=\left(S_{I}(t), S_{2}(t), \ldots, S_{L}(t)\right)
$$

Transmission rate vector: $\vec{\mu}(t)=\left(\mu_{I}(t), \mu_{2}(t), \ldots, \mu_{L}(t)\right)$
Resource allocation: choose $\vec{\mu}(t) \in \Gamma_{\overrightarrow{S(t)}}$

Goal: Develop joint flow control, routing, resource allocation

$\Lambda=$ Capacity region (considering all routing, resource alloc. policies)
$g_{n c}\left(r_{n c}\right)=$ concave utility functions

Maximize:

$$
\begin{gathered}
\sum_{n, c} g_{n c}\left(r_{n c}\right) \\
\left(r_{n c}\right) \in \Lambda \\
0 \leq\left(r_{n c}\right) \leq\left(\lambda_{n c}\right)
\end{gathered}
$$

Subject to:

Some precedents:

Static optimization: (Lagrange multipliers and convex duality)
Kelly, Maulloo, Tan, Oper Res. 1998 [pricing for net. optimization]
Xiao, Johansson, Boyd, Allerton 2001 [network resource opt.]
Julian, Chian, O’Neill, Boyd, Infocom 2002 [static wireless opt]
Lee, Mazumdar, Shroff, Infocom 2002 [static wireless downlink]
Marbach, Infocom 2002 [pricing, fairness static nets]
Krishnamachari, Ordonez, VTC 2003 [static sensor nets]
Low, TON 2003 [internet congestion control]

Dynamic control:
D. Tse, 97, 99 ["proportional fair" algorithm: max U_{i} / r_{i}]

Kushner, Whiting, Allerton 2002 ["prop. fair" alg. analysis]
S. Borst, Infocom 2003 [downlink fairness for infinite \# users]

Li, Goldsmith, IT 2001 [broadcast downlink]
Tsibonis, Georgiadis, Tassiulas, Infocom 2003 [max thruput outside of capacity region]

Stochastic Stability via Lyapunov Drift:
Tassiulas, Ephremides, AC 1992, IT 1993 [MWM, Diff. backlog] Andrews et. al., Comm. Mag, 2003 [server selection] Neely, Modiano, Rohrs, TON 2003, JSAC 2005 [satellite, wireless] McKeown, Anantharam, Walrand, Infocom 1996 [NxN switch]
Leonardi et. Al., Infocom 2001 [NxN switch]

Example: Server alloc., 2 queue downlink, ON/OFF channels

Capacity region Λ :

$$
\begin{gathered}
\lambda_{1} \leq p_{1} \quad, \quad \lambda_{2} \leq p_{2} \\
\lambda_{1}+\lambda_{2} \leq p_{1}+\left(1-p_{1}\right) p_{2}
\end{gathered}
$$

MWM algorithm (choose ON queue with largest backlog) Stabilizes whenever rates are strictly interior to Λ [Tassiulas, Ephremides IT 1993]

Comparison of previous algorithms:

(1) MWM ($\max U_{i} \mu_{i}$)
(2) Borst Alg. [Borst Infocom 2003] (max $\mu_{i} / \overline{\mu_{i}}$)
(3) Tse Alg. [Tse 97, 99, Kush 2002] (max $\left.\mu_{i} / r_{i}\right)$

Approach: Put all data in a reservoir before sending into network. Reservoir valve determines $R_{n}{ }^{(c)}(t)$ (amount delivered to network from reservoir ($n, c)$ at slot t).

Optimize dynamic decisions over all possible valve control policies, network resource allocations, routing to provide optimal fairness.

Part 1: Optimization with infinite demand

Assume all active sessions infinitely backlogged (general case of arbitrary traffic treated in part 2).

Maximize:

$$
\begin{gathered}
\sum_{n, c} g_{n c}\left(r_{n c}\right) \\
\left(r_{n c}\right) \in \Lambda \\
0 \leq\left(r_{n c}\right) \leq\left(\lambda_{n c}\right)
\end{gathered}
$$

Subject to:

Cross Layer Control Algorithm (CLC1):

(1) Flow Control: At node n, observe queue backlogs $U_{n}{ }^{(c)}(t)$ for all active sessions c.

(where V is a parameter that affects network delay)
(2) Routing and Scheduling:

For all links l, find the commodity $c_{l}^{*}(t)$ such that:

$$
c_{l}^{*}(t)=\arg \max _{c}\left\{U_{\operatorname{tran}(l)}^{c}(t)-U_{r e c(l)}^{c}(t)\right\}
$$

and define:

$$
W_{l}^{*}(t)=\max \left[U_{\operatorname{tran}(l)}^{c_{l}^{*}}(t)-U_{\operatorname{rec}(l)}^{c_{l}^{*}}(t), 0\right]
$$

(similar to the original Tassiulas differential backlog routing policy [1992])
(3) Resource Allocation: Observe channel states $\vec{S}(t)$. Allocate resources to yield rates $\vec{\mu}(t)$ such that:

Maximize: $\quad \sum_{l} W_{l}^{*}(t) \mu_{l}(t) \quad$ Such that: $\vec{\mu}(t) \in \Gamma_{\vec{S}(t)}$

Theorem: If channel states are i.i.d., then for any $V>0$ and any rate vector $\vec{\lambda}$ (inside or outside of Λ),

Avg. delay:

Fairness:

$$
\sum_{n c} g_{n c}\left(\bar{r}_{n c}\right) \geq \sum_{n c} g_{n c}\left(r_{n c}^{*}\right)-\frac{B N}{V}
$$

(where $B \triangleq\left(\mu_{\max }^{i n}+\frac{1}{N} \sum_{n=1}^{N} R_{n}^{\max }\right)^{2}+\left(\mu_{\max }^{\text {out }}\right)^{2} \quad$)

Special cases:

(for simplicity, assume only 1 active session per node)

1. Maximum throughput and the threshold rule

Linear utilities: $g_{n c}(r)=\alpha_{n c} r$

$$
\begin{aligned}
& R_{n c_{n}}(t)= \begin{cases}R_{n}^{\max } & \text { if } U_{n}^{\left(c_{n}\right)}(t) \leq \frac{V \alpha_{n c_{n}}}{2} \\
0 & \text { otherwise }\end{cases} \\
& \boldsymbol{\lambda}_{n}^{(c)} \longrightarrow R_{n}^{(c)}(t) \longrightarrow
\end{aligned}
$$

(threshold structure similar to Tsibonis [Infocom 2003] for a downlink with service envelopes)
(2) Proportional Fairness and the $1 / U$ rule logarithmic utilities: $g_{n c}(r)=\log \left(1+r_{n c}\right)$

$$
R_{n c_{n}}(t)=\min \left[\max \left[\frac{V}{2 U_{n}^{\left(c_{n}\right)}(t)}-1,0\right], R_{n}^{\max }\right]
$$

Mechanism Design and Network Pricing:

greedy users...each naturally solves the following:

Maximize: $g_{n c}(r)-\operatorname{PRICE}_{n c}(t) r$

Such that : $\quad 0 \leq r \leq R_{\max }$

This is exactly the same algorithm if we use the following dynamic pricing strategy:

$$
\operatorname{PRICE}_{n c}(t)=U_{n c}(t) / V
$$

Analytical technique: Lyapunov Drift

Lyapunov function: $\quad L(\vec{U}(t))=\sum_{n} U_{n}{ }^{2}(t)$
Lyapunov drift: $\quad \Delta(t)=E[L(\vec{U}(t+1)-L(\vec{U}(t)) \mid \vec{U}(t)]$

Theorem: (Lyapunov drift with Utility Maximization)
If for all $t: \quad \Delta(t) \leq C-\varepsilon \sum_{n} U_{n}(t)-V E[g(\vec{r}(t)) \mid \vec{U}(t)]-V g\left(\vec{r}^{*}\right)$
Then: (a) $\quad \sum_{n} E\left[U_{n}\right] \leq \frac{C+V N G_{\max }}{\varepsilon} \quad$ (stability and bounded delay)
(b) $g(\overrightarrow{r a c h i e v e}) \geq g\left(\vec{r}^{*}\right)+C / V \quad$ (resulting utility)

Part 2: Scheduling with arbitrary input rates

$$
\begin{array}{lc}
\text { Maximize: } & \sum_{n, c} g_{n c}\left(r_{n c}\right) \\
\text { Subject to: } & \left(r_{n c}\right) \in \Lambda
\end{array}
$$

$$
0 \leq\left(r_{n c}\right) \leq\left(\lambda_{n c}\right)
$$

Novel technique of creating flow state variables $Z_{n c}(t)$

$$
\begin{aligned}
Y_{n c}(t) & =R_{\max }-R_{n c}(t) \\
Z_{n c}(t) & =\max \left[Z_{n c}(t)-g_{n c}(t), 0\right]+Y_{n c}(t)
\end{aligned}
$$

(Reservoir buffer size arbitrary, possibly zero)

Cross Layer Control Alg. 2 (CLC2) Every timeslot and

 for each node n, choose $R_{n c}(t)=r_{n c}$ to solve:$$
\begin{array}{lc}
\text { Maximize: } & \sum_{c}\left[\frac{Z_{n c}(t)}{N}-U_{n}^{(c)}(t)\right] r_{n c} \\
\text { Subject to: } & \sum_{c} r_{n c} \leq R_{n}^{\max } \\
& r_{n c} \leq L_{n c}(t)+A_{n c}(t)
\end{array}
$$

Additionally, the flow controllers at each node n choose $\gamma_{n c}(t)$ for each session (n, c) to solve:

Maximize: $\quad V g_{n c}\left(R_{n}^{\max }-\gamma_{n c}\right)+\frac{2 Z_{n c}(t)}{N} \gamma_{n c}$
Subject to: $\quad 0 \leq \gamma_{n c} \leq R_{n}^{\max }$
The flow states $Z_{n c}(t)$ are then updated according to the $Z_{n c}(t+1)$ iteration of the previous slide.

Simulation Results for CLC2:

(i) 2 queue downlink

a) $g_{1}(r)=g_{2}(r)=$
$\log (1+r)$
b) $g_{1}(r)=\log (1+r)$ $g_{2}(r)=1.28 \log (1+r)$

(priority service)

Fig. 3. Simulation of CLC2: (a) Linearly increasing $\left(\lambda_{1}, \lambda_{2}\right)$ to $(0.5,1.0)$ for $V=10000$ and $g_{1}(r)=g_{2}(r)=\log (1+r)$. (b) Modifying utility 2 to: $g_{2}(r)=1.28 \log (1+r)$. (c)-(d) Fixing $\left(\lambda_{1}, \lambda_{2}\right)=(0.5,1.0)$ and illustrating delay and throughput versus V.
(ii) 3×3 packet switch under the crossbar constraint:

Rates $\left(\lambda_{i j}\right)$	
.45 .1 .4 .1 .7 .15 .4 .15 .4.450 .100 .399 .100 .695 .148 .399 .149 .4003.3 2.4 3.6 2.4 2.9 2.7 3.6 2.7 3.4	

(a) Simulation of a switch with feasible traffic

Rates $\left(\lambda_{i j}\right)$

.9	.2	.3
0	.4	.2
0	.5	0

Throughput $\left(r_{i j}\right)$

.598	.100	.298
0	.399	.200
0	.500	0

Backlog $\left(\bar{U}_{i j}\right)$

31.6	45.3	32.1
0	14.1	.29
0	14.2	0

(b) Simulation of an overloaded switch

Fig. 4. Simulation results for the CLC 2 algorithm with $V=100$ and zero reservoir buffers. Simulations were run over four million timeslots.

Concluding Slide:

(iii) Multi-hop

Heterogeneous Network

$\lambda_{91}=\lambda_{93}=\lambda_{48}=\lambda_{42}=0.7$ packets/slot (not supportable)
The optimally fair point of this example can be solved in closed form: $r_{91} *=r_{93} *=r_{48} *=1 / 6=0.1667, r_{42}=0.5$

Use CLC2, $V=1000 \quad----->\bar{U}_{\text {tot }}=858.9$ packets $r_{91}=0.1658, r_{93}=0.1662, r_{48}=0.1678, r_{42}=0.5000$

The end
http://www-rcf.usc.edu/~mjneely/

${ }^{3}$ Strictly speaking, the proportionally fair allocation seeks to maximize $\sum_{n c} \log \left(r_{n c}\right)$, leading to $\sum_{n c} \frac{\bar{r}_{n c}^{o p t}-r_{n c}}{\bar{r}_{n c}^{o p}} \geq 0$ for any other operating point $\left(r_{n c}\right) \in \Lambda$. We use non-negative utilities $\log (1+r)$, and thereby obtain a proportionally fair allocation with respect to the quantity $\bar{r}_{n c}^{o p t}+1$, leading to $\sum_{n c} \frac{\bar{r}_{n c}^{o p t}-r_{n c}}{\bar{r}_{n c}^{o p t}+1} \geq 0$.

