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EE 441: Axioms and Lemmas for a Field F

I. AXIOMS FOR A FIELD

Let F be a set of objects that we call “scalars.” We assume that F has at least two distinct elements. We say that F is a field
if there are rules for addition and multiplication of the elements of F such that for any α ∈ F, β ∈ F, we have:
• α + β ∈ F

• αβ ∈ F
Further, the addition and scalar multiplication must satisfy the following properties (for any α, β, γ ∈ F):

1) α + β = β + α , αβ = βα (Commutative)

2) (α + β) + γ = α + (β + γ) , (αβ)γ = α(βγ) (Associative)

3) α(β + γ) = αβ + αγ (Distributive)

4) (Existence of 0) There is an element “0” such that α + 0 = α for any α ∈ F.

5) (Existence of 1) There is an element “1” such that α1 = α for any α ∈ F.

6) (Additive inverse) For every α ∈ F, there exists an additive inverse −α such that α +−α = 0.

7) (Multiplicative inverse) For every α ∈ F such that α 6= 0, there exists a multiplicative inverse α−1 such that αα−1 = 1.

II. LEMMAS

Suppose we have a field F. Recall that the field must contain at least two elements. We have the following arithmetic facts
for any field (the proofs are on the back page).

Note: For any values a ∈ F, b ∈ F, the following fact holds: If a = b, then for any c ∈ F we have a+ c = b+ c and ac = bc.
That is, we can add any value c to both sides of a true equation to yield another true equation, and we can multiply any value
c to both sides to yield another true equation. The proof is obvious (For addition: If a = b then a + c = b + c, done). (For
multiplication: If a = b then ac = bc, done).

Lemma 1: α0 = 0 for any α ∈ F.

Lemma 2: 0 6= 1.

Lemma 3: For any element a ∈ F, the additive inverse −a is unique.

Lemma 4: For any element a ∈ F such that a 6= 0, the multiplicative inverse a−1 is unique.

Lemma 5: For any element a ∈ F, we have that −a = (−1)a.

Lemma 6: (−1)(−1) = 1.

Lemma 7: For any elements a, b in F, we have:

a(−b) = −(ab) = (−a)b , (−a)(−b) = ab
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Definition 1: (Subtraction) If a ∈ F and b ∈ F, then the subtraction operator a− b produces another element in F, defined
as follows:

a− bM=a + (−b)
From this subtraction rule, it immediately follows that a(b− c) = ab− ac.

Definition 2: (Integer Powers) For any element a ∈ F, we define the square of a (written a2), to be aa. Similarly, for any
positive integer k, we use the notation ak to represent a multiplied by itself k times (so that a1 M=a, a2 M=aa, a3 M=aaa, etc.). For
any a 6= 0 and for any positive integer k, we define a−k to be the product of a−1 with itself k times (so that a−2 = a−1a−1).
For any a 6= 0, the power a0 is defined to be 1. The power 0−k is not defined for any integers k ≥ 0.

Lemma 8: For any two elements a, b in F, if ab = 0 then either a = 0 or b = 0 (or both).

Lemma 9: For any element a ∈ F, if a2 = 1, then a ∈ {−1, 1}.

Lemma 10: (Polynomial Factoring) Suppose a ∈ F and b1, b2, . . . , bn are n additional elements of F. Suppose the following
equation holds: Πn

i=1(a− bi) = 0. Then a ∈ {b1, b2, . . . , bn}.

The proof of Lemma 1 (that α0 = 0) is given below. The proofs of the remaining lemmas are given on the next page. For
fun, you are encouraged to prove the lemmas yourself and then check the proofs on the back if you need help or want to
compare proof methodologies.

Proof: (Lemma 1: α0 = 0.) Note that 1 + 0 = 1. Therefore, for any α ∈ F, we have:

α = α1
= α(1 + 0)
= α1 + α0
= α + α0

Thus, we have:
α = α + α0

Adding −α to both sides of the above equation yields:

−α + α = −α + α + α0

and therefore we have 0 = 0 + α0 = α0, and we are done.
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Proof: (Lemma 2: 0 6= 1.)
Let a ∈ F. If 0 = 1, then 0 = a0 = a1 = a, and hence a = 0. Thus, if 0 = 1, then all elements a of F are equal to 0,

contradicting the fact that F has at least two elements.

Proof: (Lemma 3: −a is unique.)
Suppose that a + b = 0. Then adding −a to both sides, we get a + (−a) + b = −a and hence 0 + b = −a. That is, b = −a.

In other words, the only element that can be added to a to get 0 is the element −a.

Proof: (Lemma 4: If a 6= 0, then a−1 is unique.)
Suppose a 6= 0 and there is a b ∈ F such that ab = 1. Because a 6= 0, a−1 exists. Multiplying both sides of the equation

ab = 1 by a−1 yields: a−1ab = a−11 = a−1. But a−1a = 1, and hence b = a−1.

Proof: (Lemma 5: −a = (−1)a.)
Note that 0 = a(1 + −1) = a1 + a(−1) = a + a(−1). Adding −a to both sides yields −a = 0 + a(−1), and hence

−a = (−1)a.

Proof: (Lemma 6: (−1)(−1) = 1.)

0 = (−1)(1 +−1) = (−1)1 + (−1)(−1) = −1 + (−1)(−1)

Adding 1 to both sides of the equation yields:

0 + 1 = −1 + 1 + (−1)(−1) = (−1)(−1)

Therefore, 1 = (−1)(−1).

Proof: (Lemma 7: a(−b) = −(ab) = (−a)b and (−a)(−b) = ab.)
We have by the previous lemmas and by commutativity of multiplication:

a(−b) = a(−1)b = (−1)ab = −(ab)

Similarly, (−a)b = (−1)ab = −(ab). Finally: (−a)(−b) = (−1)a(−1)b = (−1)(−1)ab = ab.

Proof: (Lemma 8: If ab = 0, then either a = 0 or b = 0.)
Suppose ab = 0, but that both a and b are nonzero. We reach a contradiction. If a 6= 0 and b 6= 0, then there exist

multiplicative inverses a−1 and b−1. Thus, multiplying the equation ab = 0 by the product a−1b−1 yields:

aba−1b−1 = 0

and hence: 0 = aa−1bb−1 = (1)(1) = 1. Thus, 0 = 1. This is a contradiction, as we know that 0 6= 1.

Proof: (Lemma 9: If a2 = 1, then a ∈ {−1, 1}.)
Suppose a2 = 1. Then we have:

(a + 1)(a− 1) = a2 − a + a− 1 = 1− 1 = 0

Therefore, either (a + 1) = 0 or (a− 1) = 0. Equivalently, either a = −1 or a = 1.

Proof: (Lemma 10: Πn
i=1(a− bi) = 0 implies a ∈ {b1, . . . , bn}.)

This fact follows by using induction together with Lemma 8.

III. EXAMPLES

Basic examples of fields are R, Q, and C (the real numbers, rational numbers, and complex numbers, respectively). Interesting
finite field examples are the binary field F2 = {0, 1}, where all arithmetic is taken mod 2, and F3 = {0, 1, 2}, where all
arithmetic is taken mod 3. Thus, in F3, we have −1 = 2, −2 = 1, and 2−1 = 2. It can be shown that Fp, consisting of all
integers from 0 to p− 1 (where p is prime) and with mod p arithmetic, is a field. There exist finite fields of size pk (where k
is an integer power, and p is a prime), but arithmetic needs to be redefined for these fields (mod pk arithmetic will not work!).
Example: Show that the 4-element set {0, 1, 2, 3} with mod 4 arithmetic is not a field.


