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Abstract -- In this paper we examine the queuing behavior of a
multi-stage multiplexer with fixed length packets flowing through
the stages. The system consists of two components: a front end
multi-input, multi-output device as a preliminary stage, and a sin-
gle-server, deterministic service time queue system (multiplexer)
as a final stage. We treat arbitrary exogenous arrival patterns and
examine sample path characteristics of packet occupancy in the
system. Under identical inputs, we compare the multi-stage sys-
tem to the corresponding single-stage system without the front
end. Treating both the infinite buffer (unlimited capacity) and
finite buffer (fixed capacity) cases, we prove a two-part Multi-
Stage Multiplexing Theorem. From the first part, we conclude
that any type of multi-staging is “sub-optimal.” However, from the
second part we find that deterministic service time queues--if they
need to be installed as front ends for a larger network--actually
improve upon or smooth the data traffic for downstream nodes.

I. INTRODUCTION

Deterministic service time queues are often used as models
for packet switch multiplexers in communication networks that
handle fixed length data packets. In particular, networks oper-
ating under ATM standards segment input data streams into
fixed bit-length packets called cells. These cells have a deter-
ministic service time T at each queuing node of the network,
where T is inversely proportional to the server processing
speed.

Often, a single server is used to provide service to many var-
iegated data streams. Packets are multiplexed together and wait
in a queue for their opportunity to be processed at the server. In
large networks, data streams may pass through a front end con-
sisting of several initial stages before being multiplexed
together at the final node. In this paper, we examine these
multi-stage systems and compare them to single-stage systems
with the same inputs. We show that any type of black box front
end device can only increase aggregate packet congestion and
hence is sub-optimal in comparison to the single stage multi-
plexer alone. However, we also demonstrate that front ends
consisting of deterministic service time queues naturally act to
smooth traffic--making it better for downstream nodes to
receive.

Much analysis of multi-stage deterministic service time sys-
tems has concentrated on tandem chains of queues and memo-
ryless inputs ([1]-[3]). A broader class of inputs were treated in
[4] for discrete time tandems. In [5], an average queue length
analysis was performed for a more general tree network using

the properties of memoryless inputs. Their approach relied on a
lemma from [6] that used combinatorical analysis. A contribu-
tion in [7, 8] was an equivalent model theory for exact analysis
of deterministic service time tree networks with arbitrary exog-
enous input patterns. The smoothing results in this paper are
based upon the equivalency relationships developed in [7, 8],
although this paper can be read independently.

The topic of traffic smoothing has been addressed in a differ-
ent context in [9, 10], where the authors analyze tandems of
queues with arbitrary input patterns and with leaky bucket traf-
fic control throttles on each input link. In [7, 8], a concavity
result for tree networks introduced the notion of traffic smooth-
ing by demonstrating that fewer queues in parallel smooth traf-
fic more than many queues in parallel. Several results in this
paper build upon these ideas and formalize the notion of traffic
improvement.

The inequality results developed here are based upon sample
path analysis of both infinite and finite buffer multiplexing sys-
tems. This analysis is important for establishing analytical
bounds on packet occupancy and overflow probabilities in
large networks in terms of results for simpler one-queue sys-
tems. It also develops in a rigorous manner a qualitative under-
standing of how queue congestion changes as an existing
network is modified or enlarged.

II. MULTI-STAGE SUB-OPTIMALITY

Consider a single-server, deterministic service time queuing
system which acts as a packet switch multiplexer by processing
incoming fixed length packets one at a time and sending them
out over a high speed communication link (Fig. 1a). Now sup-
pose that physical constraints require the packets to first pass
through a front end device (Fig. 1b). The front end processes
the packets in some manner before passing them to the multi-
plexer at the final stage. This front end could represent a por-
tion of a data network that the packets first travel through, or it
could represent preliminary queuing stages performing neces-
sary aggregation of the input streams. It could also represent
some intelligent device which senses the packet occupancy of
the final queue as well as predicts future inputs, and holds
packets back until the final queue is ready to receive them.

We wish to compare the two systems. What are the effects of
including the front end? How do the total number of buffer
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slots required in each system compare? Here we show that--
under identical sets of inputs X--adding any form of front end
device as a pre-stage is sub-optimal to the single-stage system.
We make the following definitions for the two systems--Sys-
tem 1 and System 2--of Fig. 1:

A(t) = The total number of packets that have entered
the system by time t (same for both systems).

Di(t) = The total number of departures from System i
by time t (i = 1, 2).

Li(t) = The total number of packets in System i at time t.
(i = 1, 2).

Theorem 1: (Infinite Capacity Multi-Stage Multiplexing
Congestion Theorem): If the systems of Figs. 1a and 1b have
infinite buffer capacity and identical inputs, then the number
of packets in the single-stage System 1 is always less than or
equal to the number of packets in the multi-stage System 2,
i.e.,  for all t. Consequently, .

The proof of this Theorem can be found in [8]. ❑

From Theorem 1 we find that for infinite capacity systems,
both the packet occupancy and the average waiting time in the
multi-stage system is bounded below by the singe-stage char-
acteristics. Often, infinite capacity analysis is used to deter-
mine buffer requirements. However, dynamical behavior of
finite buffer (packet-dumping) systems can be quite different
from their non-packet-dumping counterparts--particularly
when buffer sizes are small. We are led to question whether
the multi-stage sub-optimality notions gained from Theorem 1
hold for systems with limited buffering. To address this issue,
we consider the two systems shown in Fig. 1 as finite buffer
systems. We make the following definition:

Gi(t) = The total number of packets that have been dropped
into the “garbage” by system i up to time t (i=1,2).

Relating all of these sample functions, we clearly have the

following packet conservation equality:

Theorem 2: (Finite Capacity Multi-Stage Multiplexing Sub-
Optimality Theorem): If the total number of buffer spaces
available in the combined multi-stage system is less than or
equal to the number available in the single-stage system, then:

(a)  for all t.
(b)  for all t.
Furthermore, if the number of buffer spaces available in the

multi-stage system is strictly less than the number in the sin-
gle-stage system, then the inequality in the loss functions is
strict after the first packet loss, i.e.: for all
times t, with equality iff no packets have been lost up to time t.

Proof: Suppose that the single-stage System 1 has a finite
capacity of B packets. Suppose now that the multi-stage Sys-
tem 2 has a total number of memory slots for less than or
equal to B packets.

Claim 1: Let t* be some fixed point in time. If
for all *, then on the same

time interval.
Pf:  If  for all * then from (1) we have:

Notice that at any time tx when System 1 looses a packet,
we know that the number of packets currently in that system
must be B (i.e., the system must be completely full). Hence, at
these times, from (2) we have:

Thus, at whatever times * that Sys-
tem 1 looses a packet. Because G1(t) can only change when a
packet is lost, and because the Gi(t) functions are non-decreas-
ing, we know that for all times *. This
proves Claim 1. ❑

Claim 2:  for all times t.
Pf: Let us define a simultaneous renewal as the event that

Systems 1 and 2 both become empty. It suffices to prove the
claim over a single renewal period (possibly infinite in dura-
tion). The first packet after a renewal event will cause D1(t) to
increase either before or as D2(t) increases. We now show that
there can be no crossings. For a crossing to occur, there must
be some time t* when D2(t) increases to become equal to
D1(t), and the next departure after time t* is from System 2
while D1(t) remains unchanged. At a candidate time t*, there
are two possible cases to consider:

A) L1(t*) > 0: In this case, since System 1 is not empty, it
is currently serving a packet that will depart within the next T
seconds. However, since System 2 just experienced a depar-

T
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Fig. 1: A single and multi-stage system with identical inputs.
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ture, the next departure can only come after a period of time
greater than or equal to T seconds. Hence, the D2(t) function
cannot increase first, and so a crossing cannot occur.

B) L1(t*) = 0:  In this case, from (1) we have:

L2(t*) + G2(t*) = L1(t*) + G1(t*) = G1(t*)

But from Claim 1 we know that , and
hence it must be that L2(t*) = 0. Thus, in this case both Sys-
tems 1 and 2 are empty, we have a simultaneous renewal, and
we are done. This proves Claim 2. ❑

Claims 1 and 2 together prove parts (a) and (b) of the Theo-
rem. Note that the final remark of Theorem 2 can be shown by
repeating the above proof using strict inequalities. ❏

Notice that in Theorems 1 and 2, the black box is any arbi-
trary device which sends inputs to outputs. The box itself
could consist of a single or multi-stage unit of queues or
switches (see Fig. 2). Furthermore, the box could have some
sensing device which looks at the state of the final stage
queue, and signals the pre-stage to hold incoming packets
back until the final queue is ready for them. In all of these
examples, Theorems 1 and 2 apply and indicate that any such
pre-stage device creates more total congestion and is hence
sub-optimal.

III. TRAFFIC SMOOTHING

Here we again consider Fig. 1, and concentrate on compar-
ing the single-stage system to the final queue in the multi-
stage system. As in the previous section, we continue to work
with arbitrary input processes, although here we shall need to
assume that all exogenous input processes from the different
input lines are independent and stationary. Also, we replace
the black box front end in the setup of Fig. 1 with a collection
of tree networks of deterministic service time queues, each
with service time T (Fig. 3b).

With this tree-type front end, we demonstrate that the queue
at the last stage of the multi-stage System 2 will be less con-
gested than the single-node System 1 handling the same traffic
(Fig. 3). Thus, the preliminary stages of deterministic service
time queues act as smoothing devices on the input data traffic
and make it easier for the final node to handle.

As in Section II, we approach the problem using both infi-
nite and finite buffer analysis. We find that infinite capacity
analysis is a valuable tool even for analyzing finite buffer sys-
tems. We shall thus utilize the equivalence theory of tree net-
works with infinite capacity that was presented in [7, 8].

Equivalent Models: (From Theorem 1 in [7]) The 2-stage
deterministic service time tree system in Fig. 4a below can be
equivalently modeled as a single queue in tandem with a pure
time T1 delay or observation window. Here we assume

.

Equivalence of the two systems is in terms of the input-out-
put behavior. With identical inputs, the two systems of Figs.
4a and 4b produce identical outputs. It follows that at every
instant of time, the number of packets in the entire two-stage
System A is the same as the number of packets in the entire
System B (observation window plus the final node).

Tree Reduction Principle: (From Theorem 2 in [7]) Con-
sider multi-stage tree systems with deterministic, non-
decreasing service times, such as the example in Fig. 3b. If
arrivals from the different exogenous input lines are indepen-
dent and stationary, then analysis of the final node in the tree
is equivalent to the analysis of the final node in a 2-stage sys-
tem where the original exogenous inputs are replaced by
superpositions of these same inputs (Fig. 5b below).

≤G1(t*) G2(t*)

T

“Black Box”
pre-stage unit

1-p

p

Fig. 2: A multi-stage multiplex system where the first
stage is a “black box” with arbitrary packet processing
devices.
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Fig. 3: The single-stage System 1 compared to
the final node of a multi-stage tree network.
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Using these properties of tree networks, we compare the
two systems of Figs. 3a and 3b. We first assume all queue
buffers have infinite capacity, and we define the steady state
complementary occupancy probabilities q1[n] and q2

final[n] as
the probability of finding more than n packets in the single-
stage System 1 and in the final node of the multi-stage System
2, respectively.

Theorem 3: (Infinite Capacity Smoothing Theorem) If all
nodes of the tree networks shown in Fig. 3 have infinite capac-
ity, and if exogenous inputs are stationary and independent,
then  for all n.

Proof: We use the Tree Reduction Principle to reduce the
tree configuration of Fig. 3b to the 2-stage system of Fig. 5b.
We next use the equivalence theory to represent this system by
an equivalent model, as shown in Fig. 5a.

By equivalence, the number of packets in the two systems
of Figs. 5a and 5b is the same at every instant of time. How-
ever, it is also clear that the number of packets in the set of
first stage queues in Fig. 5b is always greater than or equal to
the number in the observation window of the equivalent model
(Fig. 5a). It follows that the number of packets in the final
stage of the system in Fig. 5b is always less than or equal to
the number in the final stage of the equivalent system in Fig.
5a.

Now notice that this final stage of our equivalent model is
exactly the same as the original single stage system of Fig. 3a
when inputs ρ1,..., ρG are delayed by T seconds. Because
inputs are independent and stationary, the stochastic nature of
the input processes are not affected by such a time shift, and
the delay is probabilistically unimportant. Hence, the single-
stage system probabilistically has at least as many packets as
the final node in the multi-stage system, i.e.,

 for all n. ❑

We now turn our attention to the finite capacity case.
Rather than showing that the number of packets in the final
node of the multi-stage system is probabilistically less than
the number in the single-stage system (which in general is not
true for the finite capacity case), we focus on the number of
packets that are dropped.

Consider again the two systems of Fig. 3, and suppose that

the single stage system and the final node in the multi-stage
system have buffer sizes B1 and B2, respectively. We assume
that the remaining pre-stage nodes of Fig. 3b have infinite
capacity1. Further, we assume that inputs from the different
lines in the single-stage system are independent and station-
ary, and that these same inputs are applied to the multi-stage
system.

Theorem 4: (Finite Capacity Smoothing Theorem) For the
finite capacity systems described above and illustrated in Fig.
3, if B2>1 and if , then the packet drop rate in the
single-stage system is lower bounded by the drop rate in the
final node of the multi-stage system. Thus, to achieve a given
drop rate threshold, the number of buffer slots required in the
single-stage system is greater than or equal to the number
needed in the final node of the multi-stage system.

Setup: We shift the inputs ρ1,..., ρG of the single stage sys-
tem in Fig. 3a by T seconds by first passing them through an
observation window, as shown in Fig. 5a. Because the input
lines are independent and stationary, this timeshift does not
affect the statistical dynamics of the queuing system. Further-
more, we assume that the multi-stage System 2 in Fig. 3b is
first reduced to its equivalent 2-stage model (Fig. 5b) via the
tree reduction principle. In this way, we convert our compari-
sons of the systems in Fig. 3 to comparisons of the two sys-
tems in Fig. 5.

As in Theorem 2, we define the monotonically increasing
functions A1(t), D1(t), and G1(t) to be the total number of
arrivals, departures, and packet drops, respectively, into and
from the node of Fig. 5a during the time interval from 0 to t.
Note that the arrivals from the ρ1,..., ρG streams first pass
through the observation window at the first stage before they
are counted as part of the A1(t) accumulated arrivals to the
node. We also define L1(t) to be the current number of packets
in this node (excluding any packets in the observation win-
dow). Likewise, we define A2(t), D2(t), G2(t), and L2(t) to be
the corresponding values for the final node of the multi-node
system in Fig. 5b. Note that (1) holds for these sample func-
tions.

As a final definition for our setup, we say that the prelimi-
nary stages of the two systems we are comparing (the observa-
tion window of the system in Fig. 5a, and the G preliminary
queues of the system in Fig. 5b) are in the same state when
they have the same number of packets in them and the next
departures from both will occur simultaneously.

q1 n[ ] q2
final n[ ]≥

1

G

ρ1

ρG

T

(b)

ρ0

T
ρ1+...+ρG

T
observation

window(a)

ρ0

Fig. 5: The canonical 2-stage reduced tree
system (b), and its equivalent model (a).

B1 B2

q1 n[ ] q2
final n[ ]≥

1. This is the most difficult case to consider. Clearly,
if we change from an infinite capacity pre-stage to a
finite capacity pre-stage, then the accumulated
packet drops G2(t) at the final node cannot increase.

B1 B2≤
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Proof: We show simultaneously that , and
 for all t.

Claim 1: If the preliminary stages of both systems are in
the same state at time t=0, and if for *
for some t*, then  for the same time interval.

Pf: The proof of this claim is the same as the proof of
Claim 1 in Theorem 2. ❑

Claim 2:  for all time t.
Pf: We define a renewal event to be the event that the sec-

ond stage of the multi-node system empties, i.e., when the
L2(t) function decreases to 0. By default, we consider time t=0
to be the first renewal event. Furthermore, we define a new
virtual process to be a version of the single-node sys-
tem departure process that we modify in the following way:
Whenever a renewal event occurs for the multi-node system,
we immediately shift out all packets currently in the node at
the second stage of the single-node system by sending them
out as departures with zero service time. In this way, we
ensure that at renewal times, the final stages of both the multi-
node system and the modified single-node system are empty,
and that the preliminary stages are in the same state.

Clearly this modified departure process sends out
packets more rapidly than the original, and we have:

We now show that for all time by checking
that their incremental changes over every renewal period satis-
fies the same inequality. We define the incremental changes
a2(t), d2(t), g2(t), and l2(t) to be the change in value of the
arrivals, departures, packet drops, and packet occupancy in the
final stage of the multi-node system from renewal time t1 and
for all time t up to and including the next renewal time t2. For
example, for a2(t) we have: for

. Let , and be the corre-
sponding incremental values for the modified single-node sys-
tem. Notice that , , and also that
the packet conservation equation (1) holds for these incremen-
tal functions. These incremental values can also be thought of
as cumulative values of an unmodified system on the interval

, treating t1 as if it were time 0. For this reason,
Claim 1 holds true for the incremental functions, and thus we
know that if for all t such that , then

 on the same time interval.

Notice now that whether or not any packets are dropped in
the final node of the finite buffer multi-node system during the
renewal interval in question, the incremental departures d2(t)
on this interval will be the identical to what the departures
would be if the system had infinite capacity and started out in
the same state at time t1. This is true because a finite buffer

only alters a departure process at the time when a system emp-
ties after a packet has been dropped.

Because of the equivalence theory, this departure process
d2(t) is also identical to what the departures would be in the
single-node system if it were an infinite capacity system.
However, these departures are lower bounded by the actual
departures for (because of the finite
capacity B1 in the single-node system). Hence:

where (7) follows from (6) by Claim 1.

It remains only to check the departure process inequality for
time t2. Here we check that inequality (6) also holds at time t2
when the remaining packets in the node of the system of Fig.
5a are shifted out. At this time, we have:

Equations (8) and (9) follow from the definitions of the
incremental sample functions and of the virtual departure pro-
cess . (Note that no arrival can occur at time t2 because
otherwise the multi-node system would not be empty then).
Equation (10) follows because at any time
t2 when the final node of the multi-node system empties, since
no packets arrived within the past T seconds and the arrival
patterns are “re-synchronized” at this time. Equation (12) fol-
lows because at time t2, when the final node of the multi-node
system empties, the value in (11) increases by 1 while
the value decreases by 1. Inequality (13) is obtained
from (12) and (7).

Thus, the incremental departure process d2(t) is greater than
or equal to the modified incremental departure process
at every time within an arbitrary renewal period. It follows
that the total accumulated departures obey the same inequal-
ity, and we have:

This proves Claim 2. ❑

D1 t( ) D2 t( )≤
G1 t( ) G2 t( )≥

D1 t( ) D2 t( )≤ 0 t t≤ ≤
G1 t( ) G2 t( )≥

D1 t( ) D2 t( )≤

D̃1 t( )

D̃1 t( )

D1 t( ) D̃1 t( )≤ for all time t. (5)

D̃1 t( ) D2 t( )≤

a2 t( ) A2 t( ) A2 t1( )–=
t1 t t2≤ ≤ ã1 t( ) d̃1 t( ) g̃1 t( ), , l̃1 t( )

l̃1 t( ) L̃1 t( )= l2 t( ) L2 t( )=

t1 t t2<≤

d̃1 t( ) d2 t( )≤ t1 t t2<≤
g̃1 t( ) g2 t( )≥

d̃1 t( ) t1 t t2<≤

d2 t( ) d̃1 t( )≥

g̃1 t( ) g2 t( )≥

t1 t t2<≤

t1 t t2<≤

for (6)

(7)for

d̃1 t2( ) d̃1 t2
–( ) l̃1 t2

–( )+=

ã1 t2
–( ) g̃1 t2

–( )–=

a2 t2
–( ) g̃1 t2

–( )–=

d2 t2
–( ) l2 t2

–( ) g2 t2
–( ) g̃1 t2

–( )–+ +=

d2 t2( ) g2 t2
–( ) g̃1 t2

–( )–+=

d2 t2( )≤

(8)

(9)

(10)

(11)

(12)

(13)

d̃1 t( )

ã1 t2
–( ) a2 t2

–( )=

d2 t( )
l2 t( )

d̃1 t( )

D2 t( ) D̃1 t( ) D1 t( )≥ ≥ (14)
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Claims 1 and 2 together prove both that and
 for all time t. ❑

Theorem 4 above proves that in order to ensure a certain
low packet drop rate, more buffer slots are needed in a node
whose traffic has not been smoothed than in a node whose
traffic has been smoothed by deterministic service time tree
networks.

IV. CONCLUSIONS

In this paper we have developed several ways of bounding
the performance of large networks in terms of simple one-
queue systems. We have used finite and infinite capacity anal-
ysis to prove a general, two-part Multi-Stage Multiplexing
statement involving comparisons between single and multi-
stage systems with identical inputs. The first part dealt with
sub-optimality of multi-staging, and we showed that attaching
any type of front end device to a deterministic service time
queue cannot decrease aggregate waiting times or packet con-
gestion. Rather, the aggregate congestion and the requisite
number of buffer slots in the multi-stage system upper bounds
those corresponding quantities in the single-stage system.

The second part of the Multi-Stage Multiplexing statement
dealt with traffic smoothing. We demonstrated that if the front
end of the multi-stage system is composed of a collection of
deterministic service time tree networks of queues with identi-
cal service times, then the queues smooth or improve traffic
for downstream nodes. In particular, the complementary occu-
pancy probabilities of nodes with smoothed inputs lower
bound those of nodes without the smoothing.

We found that the theory of infinite capacity systems was a
valuable tool for understanding and analyzing systems with
finite capacity. Our proof of the smoothing result for finite
capacity systems relies heavily upon these tools. We showed
using sample path arguments that a single-stage node with a
finite amount of buffer space and a time shifted version of the
original input stream deterministically drops more total pack-
ets than the same node with the tree network as a first stage.
This shows that the drop rate and buffer requirement in a sin-
gle-stage node upper bound the drop rate and buffer require-
ment in the same node within a multi-stage tree.

The proof techniques in this paper--those of defining
renewal periods over sample path inputs--are very powerful
for attacking queuing problems of a very general nature. The
statements as well as the proofs provide insights into the
dynamics of queuing networks.

Our smoothing results applied to multi-stage systems with
fixed length packets. The processing speeds at each queuing
node were assumed to be identical, and hence identical service
times T were often assumed. All of our results are the same for
the case of monotonically increasing service times

. However, decreasing service times compli-
cate analysis and have not been addressed. We conjecture that
deterministic service times do much to smooth traffic even in
these cases. It would be interesting to discover the manner in
which this smoothing takes place in decreasing service time
systems, and the type of assumptions needed on the exoge-
nous input processes in order for it to occur.
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	Abstract -- In this paper we examine the queuing behavior of a multi-stage multiplexer with fixed length packets flowing through the stages. The system consists of two components: a front end multi-input, multi-output device as a preliminary ...
	I. Introduction

	Deterministic service time queues are often used as models for packet switch multiplexers in communication networks that handle fixed length data packets. In particular, networks oper ating under ATM standards segment input data streams into ...
	Often, a single server is used to provide service to many var iegated data streams. Packets are multiplexed together and wait in a queue for their opportunity to be processed at the server. In large networks, data streams may pass through a f...
	Much analysis of multi-stage deterministic service time sys tems has concentrated on tandem chains of queues and memo ryless inputs ([1]-[3]). A broader class of inputs were treated in [4] for discrete time tandems. In [5], an average queue l...
	The topic of traffic smoothing has been addressed in a differ ent context in [9, 10], where the authors analyze tandems of queues with arbitrary input patterns and with leaky bucket traf fic control throttles on each input link. In [7, 8], a ...
	The inequality results developed here are based upon sample path analysis of both infinite and finite buffer multiplexing sys tems. This analysis is important for establishing analytical bounds on packet occupancy and overflow probabilities i...
	II. Multi-Stage Sub-Optimality

	Consider a single-server, deterministic service time queuing system which acts as a packet switch multiplexer by processing incoming fixed length packets one at a time and sending them out over a high speed communication link (Fig. 1a). Now s...
	We wish to compare the two systems. What are the effects of including the front end? How do the total number of buffer slots required in each system compare? Here we show that-- under identical sets of inputs X--adding any form of front end d...
	A(t) = The total number of packets that have entered
	the system by time t (same for both systems).
	Di(t) = The total number of departures from System i
	by time t (i = 1, 2).
	Li(t) = The total number of packets in System i at time t.
	(i = 1, 2).
	Fig. 1: A single and multi-stage system with identical inputs.
	Theorem 1: (Infinite Capacity Multi-Stage Multiplexing Congestion Theorem): If the systems of Figs. 1a and 1b have infinite buffer capacity and identical inputs, then the number of packets in the single-stage System 1 is always less than or e...
	The proof of this Theorem can be found in [8]. q
	From Theorem 1 we find that for infinite capacity systems, both the packet occupancy and the average waiting time in the multi-stage system is bounded below by the singe-stage char acteristics. Often, infinite capacity analysis is used to det...
	Gi(t) = The total number of packets that have been dropped into the “garbage” by system i up to time t (i=1,2).
	Relating all of these sample functions, we clearly have the following packet conservation equality:
	Theorem 2: (Finite Capacity Multi-Stage Multiplexing Sub- Optimality Theorem): If the total number of buffer spaces available in the combined multi-stage system is less than or equal to the number available in the single-stage system, then:
	(a) for all t.
	(b) for all t.
	Furthermore, if the number of buffer spaces available in the multi-stage system is strictly less than the number in the sin gle-stage system, then the inequality in the loss functions is strict after the first packet loss, i.e.: for all times...
	Proof: Suppose that the single-stage System 1 has a finite capacity of B packets. Suppose now that the multi-stage Sys tem 2 has a total number of memory slots for less than or equal to B packets.
	Claim 1: Let t* be some fixed point in time. If for all *, then on the same time interval.
	Pf: If for all * then from (1) we have:
	Notice that at any time tx when System 1 looses a packet, we know that the number of packets currently in that system must be B (i.e., the system must be completely full). Hence, at these times, from (2) we have:
	Thus, at whatever times * that Sys tem 1 looses a packet. Because G1(t) can only change when a packet is lost, and because the Gi(t) functions are non-decreas ing, we know that for all times *. This proves Claim 1. q
	Claim 2: for all times t.
	Pf: Let us define a simultaneous renewal as the event that Systems 1 and 2 both become empty. It suffices to prove the claim over a single renewal period (possibly infinite in dura tion). The first packet after a renewal event will cause D1(t...
	A) L1(t*) > 0: In this case, since System 1 is not empty, it is currently serving a packet that will depart within the next T seconds. However, since System 2 just experienced a depar ture, the next departure can only come after a period of t...
	B) L1(t*) = 0: In this case, from (1) we have:
	L2(t*) + G2(t*) = L1(t*) + G1(t*) = G1(t*)
	But from Claim 1 we know that , and hence it must be that L2(t*) = 0. Thus, in this case both Sys tems 1 and 2 are empty, we have a simultaneous renewal, and we are done. This proves Claim 2. q
	Claims 1 and 2 together prove parts (a) and (b) of the Theo rem. Note that the final remark of Theorem 2 can be shown by repeating the above proof using strict inequalities. o
	Notice that in Theorems 1 and 2, the black box is any arbi trary device which sends inputs to outputs. The box itself could consist of a single or multi-stage unit of queues or switches (see Fig. 2). Furthermore, the box could have some sensi...
	Fig. 2: A multi-stage multiplex system where the first stage is a “black box” with arbitrary packet processing devices.
	III. Traffic Smoothing

	Here we again consider Fig. 1, and concentrate on compar ing the single-stage system to the final queue in the multi- stage system. As in the previous section, we continue to work with arbitrary input processes, although here we shall need to...
	With this tree-type front end, we demonstrate that the queue at the last stage of the multi-stage System 2 will be less con gested than the single-node System 1 handling the same traffic (Fig. 3). Thus, the preliminary stages of deterministic...
	Fig. 3: The single-stage System 1 compared to
	the final node of a multi-stage tree network.
	As in Section II, we approach the problem using both infi nite and finite buffer analysis. We find that infinite capacity analysis is a valuable tool even for analyzing finite buffer sys tems. We shall thus utilize the equivalence theory of t...
	Equivalent Models: (From Theorem 1 in [7]) The 2-stage deterministic service time tree system in Fig. 4a below can be equivalently modeled as a single queue in tandem with a pure time T1 delay or observation window. Here we assume .
	Fig. 4: Equivalent models for 2-stage deterministic
	service time systems with service times .
	Equivalence of the two systems is in terms of the input-out put behavior. With identical inputs, the two systems of Figs. 4a and 4b produce identical outputs. It follows that at every instant of time, the number of packets in the entire two-s...
	Tree Reduction Principle: (From Theorem 2 in [7]) Con sider multi-stage tree systems with deterministic, non- decreasing service times, such as the example in Fig. 3b. If arrivals from the different exogenous input lines are indepen dent and ...
	Using these properties of tree networks, we compare the two systems of Figs. 3a and 3b. We first assume all queue buffers have infinite capacity, and we define the steady state complementary occupancy probabilities q1[n] and q2final[n] as the...
	Theorem 3: (Infinite Capacity Smoothing Theorem) If all nodes of the tree networks shown in Fig. 3 have infinite capac ity, and if exogenous inputs are stationary and independent, then for all n.
	Proof: We use the Tree Reduction Principle to reduce the tree configuration of Fig. 3b to the 2-stage system of Fig. 5b. We next use the equivalence theory to represent this system by an equivalent model, as shown in Fig. 5a.
	By equivalence, the number of packets in the two systems of Figs. 5a and 5b is the same at every instant of time. How ever, it is also clear that the number of packets in the set of first stage queues in Fig. 5b is always greater than or equa...
	Fig. 5: The canonical 2-stage reduced tree
	system (b), and its equivalent model (a).
	Now notice that this final stage of our equivalent model is exactly the same as the original single stage system of Fig. 3a when inputs r1,..., rG are delayed by T seconds. Because inputs are independent and stationary, the stochastic nature ...
	We now turn our attention to the finite capacity case. Rather than showing that the number of packets in the final node of the multi-stage system is probabilistically less than the number in the single-stage system (which in general is not tr...
	Consider again the two systems of Fig. 3, and suppose that the single stage system and the final node in the multi-stage system have buffer sizes B1 and B2, respectively. We assume that the remaining pre-stage nodes of Fig. 3b have infinite c...
	Theorem 4: (Finite Capacity Smoothing Theorem) For the finite capacity systems described above and illustrated in Fig. 3, if B2>1 and if , then the packet drop rate in the single-stage system is lower bounded by the drop rate in the final nod...
	Setup: We shift the inputs r1,..., rG of the single stage sys tem in Fig. 3a by T seconds by first passing them through an observation window, as shown in Fig. 5a. Because the input lines are independent and stationary, this timeshift does no...
	As in Theorem 2, we define the monotonically increasing functions A1(t), D1(t), and G1(t) to be the total number of arrivals, departures, and packet drops, respectively, into and from the node of Fig. 5a during the time interval from 0 to t. ...
	As a final definition for our setup, we say that the prelimi nary stages of the two systems we are comparing (the observa tion window of the system in Fig. 5a, and the G preliminary queues of the system in Fig. 5b) are in the same state when ...
	Proof: We show simultaneously that , and for all t.
	Claim 1: If the preliminary stages of both systems are in the same state at time t=0, and if for * for some t*, then for the same time interval.
	Pf: The proof of this claim is the same as the proof of Claim 1 in Theorem 2. q
	Claim 2: for all time t.
	Pf: We define a renewal event to be the event that the sec ond stage of the multi-node system empties, i.e., when the L2(t) function decreases to 0. By default, we consider time t=0 to be the first renewal event. Furthermore, we define a new ...
	Clearly this modified departure process sends out packets more rapidly than the original, and we have:
	for all time t.
	We now show that for all time by checking that their incremental changes over every renewal period satis fies the same inequality. We define the incremental changes a2(t), d2(t), g2(t), and l2(t) to be the change in value of the arrivals, dep...
	Notice now that whether or not any packets are dropped in the final node of the finite buffer multi-node system during the renewal interval in question, the incremental departures d2(t) on this interval will be the identical to what the depar...
	Because of the equivalence theory, this departure process d2(t) is also identical to what the departures would be in the single-node system if it were an infinite capacity system. However, these departures are lower bounded by the actual depa...
	where (7) follows from (6) by Claim 1.
	It remains only to check the departure process inequality for time t2. Here we check that inequality (6) also holds at time t2 when the remaining packets in the node of the system of Fig. 5a are shifted out. At this time, we have:
	Equations (8) and (9) follow from the definitions of the incremental sample functions and of the virtual departure pro cess . (Note that no arrival can occur at time t2 because otherwise the multi-node system would not be empty then). Equatio...
	Thus, the incremental departure process d2(t) is greater than or equal to the modified incremental departure process at every time within an arbitrary renewal period. It follows that the total accumulated departures obey the same inequal ity,...
	This proves Claim 2. q
	Claims 1 and 2 together prove both that and for all time t. q
	Theorem 4 above proves that in order to ensure a certain low packet drop rate, more buffer slots are needed in a node whose traffic has not been smoothed than in a node whose traffic has been smoothed by deterministic service time tree networks.
	IV. Conclusions

	In this paper we have developed several ways of bounding the performance of large networks in terms of simple one- queue systems. We have used finite and infinite capacity anal ysis to prove a general, two-part Multi-Stage Multiplexing statem...
	The second part of the Multi-Stage Multiplexing statement dealt with traffic smoothing. We demonstrated that if the front end of the multi-stage system is composed of a collection of deterministic service time tree networks of queues with ide...
	We found that the theory of infinite capacity systems was a valuable tool for understanding and analyzing systems with finite capacity. Our proof of the smoothing result for finite capacity systems relies heavily upon these tools. We showed u...
	The proof techniques in this paper--those of defining renewal periods over sample path inputs--are very powerful for attacking queuing problems of a very general nature. The statements as well as the proofs provide insights into the dynamics ...
	Our smoothing results applied to multi-stage systems with fixed length packets. The processing speeds at each queuing node were assumed to be identical, and hence identical service times T were often assumed. All of our results are the same f...
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