On Taking Infimums Over Sets

Michael J. Neely
University of Southern California
http://www-rcf.usc.edu/~mjneely/

The INFIMUM

Here we compute $\inf _{\Theta} \mathbb{E}\{X \mid \Theta\}$ for a non-negative random variable X, where the infimum is taken over all events Θ such that $\operatorname{Pr}[\Theta] \geq \frac{1}{2}$. Let $P(x)=\operatorname{Pr}[X \leq x]$ represent the cumulative distribution function for X. Let ω be the unique real number such that $\operatorname{Pr}[X<\omega] \leq \frac{1}{2}$ and $\operatorname{Pr}[X \leq \omega] \geq \frac{1}{2}$. Note that if $\operatorname{P(x)}$ is continuous, then $\operatorname{Pr}[X<\omega]=\operatorname{Pr}[X \leq \omega]=\frac{1}{2}$. In general, a non-continuous distribution may have a point mass at $x=\omega$.

Lemma 1: For any non-negative random variable X, we have:

$$
\inf _{\left\{\Theta \left\lvert\, \operatorname{Pr}[\Theta] \geq \frac{1}{2}\right.\right\}} \mathbb{E}\{X \mid \Theta\}=\mathbb{E}\{X \mid X<\omega\} 2 \operatorname{Pr}[X<\omega]+\omega(1-2 \operatorname{Pr}[X<\omega])
$$

Note that the infimum depends only on the cumulative distribution function $P(x)$. In the special case when $P(x)$ is continuous at $x=\omega$, then $\operatorname{Pr}[X<\omega]=\operatorname{Pr}[X \leq \omega]=\frac{1}{2}$, and hence the lemma implies that the infimum is equal to $\mathbb{E}\{X \mid X \leq \omega\}$.

Proof: To prove the lemma, let $p(x) \triangleq \frac{d P(x)}{d x}$ represent the generalized density function of X (which may contain impulses if $P(x)$ is not continuous). Consider any event Θ such that $\operatorname{Pr}[\Theta] \geq \frac{1}{2}$. Define the conditional probability distribution $f(x) \triangleq p_{X \mid \Theta}(x \mid \Theta)$. Note that $p(x)=p_{X \mid \Theta}(x \mid \Theta) \operatorname{Pr}[\Theta]+p_{X \mid \Theta^{c}}\left(x \mid \Theta^{c}\right) \operatorname{Pr}\left[\Theta^{c}\right]$ (where Θ^{c} represents the complement of the event Θ). Hence, $p_{X \mid \Theta}(x \mid \Theta) \leq p(x) / \operatorname{Pr}[\Theta] \leq p(x) / \frac{1}{2}$. That is:

$$
\begin{equation*}
f(x) \leq 2 p(x) \text { for all } x \tag{1}
\end{equation*}
$$

Note also that $f(x)$ is a probability distribution for a non-negative variable, so that $\int_{0}^{\infty} f(x) d x=1$. We have:

$$
\begin{align*}
\mathbb{E}\{X \mid \Theta\} & =\int_{0}^{\omega^{-}} x f(x) d x+\int_{\omega^{-}}^{\infty} x f(x) d x \\
& =\int_{0}^{\omega^{-}} x 2 p(x) d x+\int_{0}^{\omega^{-}} x[f(x)-2 p(x)] d x+\int_{\omega^{-}}^{\infty} x f(x) d x \\
& \geq \int_{0}^{\omega^{-}} x 2 p(x) d x+\omega \int_{0}^{\omega^{-}}[f(x)-2 p(x)] d x+\omega \int_{\omega^{-}}^{\infty} f(x) d x \tag{2}\\
& =\mathbb{E}\{X \mid X<\omega\} 2 \operatorname{Pr}[X<\omega]+\omega-\omega \int_{0}^{\omega^{-}} 2 p(x) d x \tag{3}\\
& =\mathbb{E}\{X \mid X<\omega\} 2 \operatorname{Pr}[X<\omega]+\omega(1-2 \operatorname{Pr}[X<\omega]) \tag{4}
\end{align*}
$$

where (2) follows because (1) implies the integrand of the second integral is non-positive for all x (so that $\int_{0}^{\omega^{-}} x[f(x)-2 p(x)] d x \geq \omega \int_{0}^{\omega^{-}}[f(x)-2 p(x)] d x$, and (3) follows because $\int_{0}^{\omega^{-}} f(x) d x+\int_{\omega^{-}}^{\infty} f(x) d x=1$.

The lower bound (4) holds for all events Θ such that $\operatorname{Pr}[\Theta] \geq 1 / 2$, and hence:

$$
\inf _{\left\{\Theta \left\lvert\, \operatorname{Pr}[\Theta] \geq \frac{1}{2}\right.\right\}} \mathbb{E}\{X \mid \Theta\} \geq \mathbb{E}\{X \mid X<\omega\} 2 \operatorname{Pr}[X<\omega]+\omega(1-2 \operatorname{Pr}[X<\omega])
$$

We now show that the reverse inequality is also true. Let A be the outcome of a biased coin flip that is independent of X. Specifically, let $\operatorname{Pr}[A=1]=q, \operatorname{Pr}[A=0]=1-q$, where q is the value such that $q \operatorname{Pr}[X=$ $\omega]=\left(\frac{1}{2}-\operatorname{Pr}[X<\omega]\right)$. Note that $0 \leq q \leq 1$ because $\operatorname{Pr}[X=\omega]+\operatorname{Pr}[X<\omega] \geq \frac{1}{2}$ but $\operatorname{Pr}[X<\omega] \leq \frac{1}{2}$.

Consider the particular event Θ^{*} defined as follows:

$$
\begin{equation*}
\Theta^{*} \triangleq\{\{X<\omega\} \quad \cup\{\{X=\omega\} \cap\{A=1\}\}\} \tag{5}
\end{equation*}
$$

That is, Θ^{*} represents the event that either $X<\omega$, or both $X=\omega$ and $A=1$. Note that $\operatorname{Pr}\left[\Theta^{*}\right]=1 / 2$, because $\operatorname{Pr}\left[\Theta^{*}\right]=\operatorname{Pr}[X<\omega]+q \operatorname{Pr}[X=\omega]$. We then have:

$$
\begin{aligned}
\mathbb{E}\left\{X \mid \Theta^{*}\right\} & =\mathbb{E}\{X \mid X<\omega\} \frac{\operatorname{Pr}[X<\omega]}{\operatorname{Pr}\left[\Theta^{*}\right]}+\omega \frac{q \operatorname{Pr}[X=\omega]}{\operatorname{Pr}\left[\Theta^{*}\right]} \\
& =\mathbb{E}\{X \mid X<\omega\} 2 \operatorname{Pr}[X<\omega]+\omega(1-2 \operatorname{Pr}[X<\omega])
\end{aligned}
$$

Thus, the particular event Θ^{*} allows the conditional expectation to meet the lower bound of (4). Thus, Θ^{*} is the minimizing event, and its resulting expectation is equal to the infimum, proving the lemma.

We note that there is nothing special about the number $1 / 2$. Indeed, a similar statement can be proven for sets Θ such that $\operatorname{Pr}[\Theta] \geq p$, where p is any nonzero probability. However, it is important that $p>0$. As an example of the crazy things that can happen when conditioning on a probability zero event, consider a random variable X that is distributed uniformly between 0 and 1 . Define a new random variable Y such that $Y=X$ if $X>0$, and $Y=-10$ if $X=0$. Because X and Y are the same variable with probability 1, we have $\operatorname{Pr}[X>x]=\operatorname{Pr}[Y>x]$ for all x, and hence X is stochastically greater than Y, and likewise Y is stochastically greater than X. Note that $\inf _{\Theta} \mathbb{E}\{X \mid \Theta\}=0$, where the infimum is taken over all possible events. The minimizing event is equal to the event $\Theta^{*} \triangleq\{X=0\}$, which is an event of zero probability. However, $\mathbb{E}\{Y \mid X=0\}=-10<0$.

