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Network Optimization:
 Kelly, Maulloo, Tan  -- Journ. of Op Res. 1998

 Marbach -- INFOCOM 2002

 Xiao, Johansson, Boyd -- Allerton 2001

Network Control:
 Elbatt, Ephremides -- INFOCOM 2002

 Cruz, Santhanam -- Allerton 2002

 Tassiulas and Ephremides -- Trans. Auto. Contr. ‘92

Network Capacity:
 Gupta, Kumar -- Trans. Inf. Th. 2000

 Grossglauser and Tse -- TON 2002
2



IEEE INFOCOM Proceedings, April 2003
General Problem Formulation:
Joint Routing, Power Allocation, and Scheduling

Assumptions:
  -Random Traffic (Markov Modulated, bursty, etc.)

  -Slotted Time with slot length T.

  -Time Varying Channel States

       Steady State Channel Probability

  -Rate Function:   (perhaps discontinuous)

  -Power Constraint:
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The rate function µ():

Can model a wired link with fixed capacity:

Or a broken link:

Or Server Allocation:
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The Dynamic Control Problem:

Every Timeslot, Observe:

U(t) = (Uij(t))   (Unfinished work Matrix)
C(t) = (Cij(t))    (Channel State Matrix)

Network Controller Decides:
-Power Allocation P(t)   ---->

-Routing directions for next hop

Goal: Achieve Network Capacity with low delay

(Decentralized version: View from a single
node)
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What is an optimal, capacity achieving strategy?

Example Problem: Data sources X1i, X2j, X3k.

   Destinations i, j, k.   Two Intermediate stations.

Information known at slot t:

   Channel states  and the queue backlogs :

Routing:  In which station do we put packets from source 2?

Power Allocation:  For all time, we are constrained so that:

        What is the Capacity region of the system?
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Definition of the Capacity Region Λ:
Let λij be the bit rate of stream Xij.

The Capacity region Λ is the set of all rate
matrices such that:

-The network is necessarily unstable
whenever  (even if future

known).

-The network can be stabilized if  is
strictly interior to Λ.
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A note on Stability: Consider a queue with input

process X(t) and processing rate µ(t)

X(t) = amount of bits that arrived in [0, t].
µ(t) = instantaneous processing rate.
U(t) = Uninished work in queue at time t.

(Need to consider general--potentially non-ergodic case).
Definition:  The overflow function g(M):

Definition:  A queueing system is stable if
 as .
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A network is stable if all queues are stable.

The lim sup definition is essential to obtain the correct
notion of stability.  The above system is stable whenever
λ<µ.  If lim inf is used, it is stable for all λ< ∞.

M/M/1 input

choose a queue
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The simplest possible network:
A single queue with slotted time, timeslot size = T

Capacity and Delay:

Well Known P-K Formula for M/G/1 Queue:

New Result for Bursty Data and/or Time Varying µ(t):
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Theorem 1: Wireless Network Capacity Region Λ is

the set of all (λij) rates s.t. there are flows fab
(c) with:

where graph family Γ is the set of all feasible 1-hop
link rates achievable by some power alloc. strategy:
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Note:  Capacity region depends only on steady state

channel probability distribution .

Thus, any channel state evolution with the same steady
state probabilities yields the same capacity region.

(altho the exact dynamics can significantly effect
delay)

Corollary:  The capacity region is preserved if we
consider channel states  which are chosen iid each
timeslot.
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Capacity Achieving Strategy:
A generalization of the Tassiulas Backpressure strategy
[Tassiulas,Ephremides 92]

Joint Routing and Power Allocation:  Every timeslot, and
for each link (i,j), find the commodity d(i,j)  that has the
largest differential backlog Ui

d(i,j)(t) - Uj
d(i,j)(t).  Route this

commodity from i to j, using the power allocation
determined by:
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Theorem: The Differential Backlog Policy stabilizes the
system whenever possible, without requiring knowledge
of the arrival processes or channel state processes, and
ensures the following delay guarantee:

Average Delay:

Note Fundamental Similarity to M/G/1 queue:

Can prove the result using the theory of Lyapunov
Drift.

ε
ε Capacity region Λ

ε can be viewed as the “distance” to the boundary of the
capacity region Ω.
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When viewed from above...

A Dual Formulation:  Consider just testing if a rate
matrix (λij) is inside of the capacity region:

Dual:

Maximize: fun( , Uij)  (to find a subgradient)

Update  :

A relationship between static method for computing
a multi-commodity flow and a dynamic backpressure
scheme that achieves capacity...thru the unifying
framework of convex duality.
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Application To Ad-Hoc Networks

The DRPC algorithm achieves this capacity with the
optimal coefficient in mobile or non-mobile case.

Can we achieve full capacity in a distributed way?
Conjecture: No  (unless channels independent)

Can we achieve asymptotic capacity?
Answer: Yes, with distributed approximations...

Capacity:
Gupta, Kumar -- O 1 N⁄( )Static Networks:

Mobile Networks: Grossglauser, Tse -- O(1)
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Implementation for Mobile Ad-Hoc Networks:

Attenuation Model (i.e., a 1/r4 loss characteristic)

Discretize Location
Space of Network
to a simple 5 x 5 grid

10 Users randomly
moving (prob. 1/2 they
stay in same cell, prob.
1/2 they move to an
adjacent cell).
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Distributed Implementation:
Use side channel to exchange backlog info with neighbors,
and learn local link attenuations αij. Then:

1. At beginning of each timeslot, each node randomly
decides to transmit (at full power Ptot) or remain idle,with
prob 1/2.  A control signal of power γPtot is transmitted.

2. Define Ω as the set of all transmitting nodes.
  Each node b measures its total interference

  and sends this scalar quantity to all neighbors.

3. Using knowledge of the interference, attenuation, and
queue backlogs of neighbors, user a transmits with full
power to user b who maximizes the function
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Concluding Summary:

General Power Allocation Formulation for a
Wireless Network

Learned:  There are some principles that can be
applied to all networks, but every type of net-
work has distinct structure which must be under-
stood for development of control algorithms.

Dynamic Power Allocation Algorithm:

-Issues of implementation complexity

-How much control information is needed?
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