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1. Data Arrives as Random Processes {Ai(t)}   (rates {λi})

2. Time Varying Channels

3. Rate-Power curves µi(pi,ci)
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Link Budget Curves: (Concave, Continuous)

Curve Examples:
> log(1 + pici)  (ci ~ attenuation-to-noise coefficient)

> Any curves for codes designed to acheive a specified low
    probability of error δ.

Curves may have a finite set of feasible rate-power points
(corresponding to a finite databank of codes).

Create a Virtual Power Curve  = Piecewise Linear

Interpolation of Feasible Points.
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Goals:

-Develop Capacity region Ω = {(λ1,λ2,...,λN) rates that the

system can stably support}.
(We consider general ergodic arrival processes, and
all possible power allocation strategies)

-Develop a Dynamic Power Allocation Policy to stabilize
system and thereby achieve maximum throughput and
maintain acceptably low levels of unfinished work backlog
in all queues.

(Consider Timeslotted structure, iid assumptions
Can be generalized to Markovian inputs/Channel
states)

____________________________________________________
Example: Special Case of Server Allocation:
2 servers, 3 queues (static channel conditions)
Packet arrives to queue i every timeslot with probability λi

Serving the 2 fastest, non-empty queues does not stabilize the
system in this case...
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Definition of Capacity Region Ω:

Let λi be the bit rate of stream Xi(t)

The Capacity Region Ω is the set of all rate vec-
tors  such that:

-The network is necessarily unstable
whenever .

-The network can be stabilized if  is
strictly interior to Ω.
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A note on Stability:

  A(t) = Arrival Process (assumed  ergodic of rate λ).
  µ(t) = instantaneous processing rate (potentially non-

ergodic).
  U(t) = Unfinished work (bits) in queue at time t.

Definition:  The overflow function g(M):

g(M) represents the average fraction of time the
unfinished work is above the level M.

Definition:  A queueing system is stable if
 as .
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What can go wrong with wrong def.?

µ=1

µ=1

A network is stable if all queues are stable

The lim sup definition is essential to obtain the

The above system is stable whenever  λ1+λ2<1.

M/M/1 input
λ1

λ2

M/M/1 input

λ1

λ2

correct notion of stability.

If lim inf is used, it is stable for λ1+λ2<2.
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Suppose the inputs have rates (λ1,...,λN), and some
power allocations  stabilize the system (per-

haps designed  with full knowledge of future).

Define:

Derivation of Capacity Region Ω
of Satellite Downlink: The
Necessary Condition
(consider constant channel case)

pi t( ){ }

{pi(t)} satisfy instantaneous power constraint:
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Similarly, for time varying channels:
We can restrict ourselves to stationary power
allocation policies (allocate fixed power vector

whenever in state ).

Let:  = Steady state probability of being in

channel state .

The capacity region Ω of the satellite downlink is the
set of all rates (λ1,...,λN) such that there exist power

values :

Would like to stabilize system without knowing channel
statistics, input processes, or input rates (λ1,...,λN).
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A Stabilizing Policy that considers  and :
(consider timeslotted system under independence assumptions)

-Packets arrive to queue i with bit rate λi

(Bit arrivals ai ~ fi(ai) iid every timeslot, E[ai] = λi).

-Channel states change every timeslot
(iid with probabilities )

-Ui(t) = Unfinished work in node i at time t.

Strategy: Every timeslot, observe  and :

The policy is stabilizing whenever the input rate vector
is strictly interior to the capacity region Ω.
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Analysis technique uses Lyapunov Drift (Lyapunov techniques
well known in switching/scheduling literature [McKeown, Tassi-
ulas, Leonardi]).

Dynamic Equation:

Define Lyapunov Function:

Can show drift in Lyapunov function is negative whenever
is outside some bounded region of the unfinished work state
space:
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Delay Bound:

Suppose the rate vector  is strictly interior to Ω so that
a positive value ε can be added to each entry such that:

Note Fundamental Similarity to M/G/1 queue:

λ
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Joint Routing and Power Allocation:

Decoupled Policy:

Power Alloc.: Allocate to maximize

Routing: Route every packet arriving in a timeslot to the queue i
with the least unfinished work.
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Variation of the problem: Many input types

Routing: Route packets from stream Ai to the shortest queue in
its class Qi.

Power Allocation: Each Satellite Carries out the Dynamic Power
Allocation Policy: Maximize:
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Connectivity Constraints:

Example -- Limited to 3 Servers:

Capacity Region:

Power Allocation Policy:

Maximize:

Subject to :

To limit channel interfer-
ence, define connectivity
sets to ensure power does
not affect other channels:

Power P t( ) ∈ {P1,P2,...,PR}
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Numerical and Simulation Results:

Markovian Channel Dynamics  / Poisson inputs
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