Power and Server Allocation in a Multi-Beam Satellite with Time Varying Channels

Michael Neely
MIT -- LIDS
mjneely@mit.edu

Eytan Modiano -- LIDS Charlie Rohrs -- LIDS

Conference: INFOCOM 2002

Journal: M.J. Neely, E. Modiano, and C. E. Rohrs, "Power Allocation and Routing in Multi-Beam Satellites with Time Varying Channels," IEEE Transactions on Networking, Feb. 2003.

- 1. Data Arrives as Random Processes $\{A_i(t)\}\$ (rates $\{\lambda_i\}$)
- 2. Time Varying Channels $\vec{C}(t) = (c_1(t), c_2(t), ..., c_N(t))$
- 3. Rate-Power curves $\mu_i(p_i, c_i)$

Link Budget Curves: (Concave, Continuous)

Curve Examples:

- $> log(1 + p_ic_i)$ ($c_i \sim$ attenuation-to-noise coefficient)
- > Any curves for codes designed to acheive a specified low probability of error δ .

Curves may have a finite set of feasible rate-power points (corresponding to a finite databank of codes).

Create a *Virtual Power Curve* $\mu_i(p_i, c_i)$ = Piecewise Linear Interpolation of Feasible Points.

Goals:

-Develop <u>Capacity region</u> $\Omega = \{(\lambda_1, \lambda_2, ..., \lambda_N) \text{ rates that the system can stably support}\}.$

(We consider general ergodic arrival processes, and all possible power allocation strategies)

-Develop a <u>Dynamic Power Allocation Policy</u> to stabilize system and thereby achieve maximum throughput and maintain acceptably low levels of unfinished work backlog in all queues.

(Consider Timeslotted structure, *iid* assumptions Can be generalized to Markovian inputs/Channel states)

Example: Special Case of *Server Allocation*:

2 servers, 3 queues (static channel conditions)

Packet arrives to queue *i* every timeslot with probability λ_i

Serving the 2 fastest, non-empty queues does not stabilize the system in this case...

$$(\lambda_1 = \lambda_2 = p, \quad \lambda_3 = \frac{1}{2}(1 - p^2) + \varepsilon)$$

Definition of Capacity Region Ω :

Let λ_i be the bit rate of stream $X_i(t)$

The <u>Capacity Region</u> Ω is the set of all rate vectors $\vec{\lambda} = (\lambda_1, ..., \lambda_N)$ such that:

- -The network is necessarily unstable whenever $\hat{\lambda} \notin \Omega$.
- -The network can be stabilized if $\hat{\lambda}$ is *strictly interior* to Ω .

A note on Stability:

A(t) = Arrival Process (assumed ergodic of rate λ).

 $\mu(t)$ = instantaneous processing rate (potentially non-ergodic).

U(t) = Unfinished work (bits) in queue at time t.

Definition: The overflow function g(M):

$$g(M) = \lim_{t \to \infty} \sup \left[\frac{1}{t} \int_{0}^{t} \{U(\tau) > M\}^{d\tau} \right]$$

g(M) represents the average fraction of time the unfinished work is above the level M.

<u>Definition</u>: A queueing system is <u>stable</u> if $g(M) \rightarrow 0$ as $M \rightarrow \infty$.

What can go wrong with wrong def.?

The *lim sup* definition is essential to obtain the correct notion of stability.

The above system is stable whenever $\lambda_1 + \lambda_2 < 1$. If *lim inf* is used, it is stable for $\lambda_1 + \lambda_2 < 2$.

Necessary Condition (Single Queue):

$$\begin{array}{c|c}
\hline
X(t) & \mu(t) \\
\hline
Define: & \mu = \lim_{t \to \infty} \inf \frac{1}{t} \int_{0}^{t} \mu(\tau) d\tau \\
\underline{Lemma--Necessary Cond. for Stability:} \\
\lambda \leq \underline{\mu} \quad \square
\end{array}$$

Derivation of Capacity Region Ω of Satellite Downlink: The

Necessary Condition

(consider constant channel case)

Suppose the inputs have rates $(\lambda_1,...,\lambda_N)$, and <u>some</u> power allocations $\{p_i(t)\}$ stabilize the system (perhaps designed with full knowledge of future).

 $\{p_i(t)\}\$ satisfy instantaneous power constraint:

$$\sum_{i=1}^{N} p_{i}(t) \le P_{tot} \quad \forall t$$

Define:

$$\underline{\mu}_{i} = \lim_{t \to \infty} \sup_{t \to \infty} \frac{1}{t} \int_{0}^{t} \mu_{i}(p_{i}(\tau)) d\tau$$

By stability:
$$\lambda_{i} \leq \underline{\mu}_{i} \quad \leq \frac{1}{t^{*}} \int_{0}^{t} \mu_{i}(p_{i}(\tau)) d\tau$$

$$\leq \mu_{i} \left(\frac{1}{t^{*}} \int_{0}^{t} p_{i}(\tau) d\tau\right) \quad \text{(by concavity)}$$

$$= \mu(p_{i}^{*}) \quad \text{(and } p_{i}^{*} \text{ satisfies power constraints)} \quad \Box$$

Similarly, for time varying channels: We can restrict ourselves to <u>stationary power</u> <u>allocation policies</u> (allocate fixed power vector $(P_1^{\vec{C}}(t), ..., P_N^{\vec{C}}(t))$ whenever in state $\vec{C}(t)$).

Let: $\pi_{\overrightarrow{C}}$ = Steady state probability of being in channel state \overrightarrow{C} .

The <u>capacity region Ω </u> of the satellite downlink is the set of all rates $(\lambda_1,...,\lambda_N)$ such that there exist power values $p_i^{\stackrel{\sim}{C}}$:

$$\sum_{i=1}^{N} p_{i}^{\overrightarrow{C}}(t) \le P_{tot} \qquad \text{(Power Constraint)}$$

$$\lambda_i \leq \sum_{\overrightarrow{C}} \pi_{\overrightarrow{C}} \mu_i \left(p_i^{\overrightarrow{C}}, c_i \right)$$
 (Rate inequality)

Would like to stabilize system without knowing channel statistics, input processes, or input rates $(\lambda_1,...,\lambda_N)$.

A Stabilizing Policy that considers $\vec{C}(t)$ and $\vec{U}(t)$:

(consider timeslotted system under independence assumptions)

- -Packets arrive to queue i with bit rate λ_i (Bit arrivals $a_i \sim f_i(a_i)$ iid every timeslot, $E[a_i] = \lambda_i$).
- -Channel states $\overrightarrow{C}(t)$ change every timeslot (*iid* with probabilities $\pi_{\overrightarrow{C}}$)
- $-U_i(t)$ = Unfinished work in node i at time t.

Strategy: Every timeslot, observe $\overrightarrow{U}(t)$ and $\overrightarrow{C}(t)$:

Allocate
$$\{p_i\}$$
 to Maximize:
$$\sum_{i=1}^{N} \theta_i U_i(t) \mu_i(p_i, c_i(t))$$
Subject to:
$$\sum_{i=1}^{N} p_i \leq P_{tot}$$

(the θ_i 's are arbitrary postive weights for priority service)

The policy is stabilizing whenever the input rate vector $\hat{\lambda}$ is <u>strictly interior</u> to the capacity region Ω .

Analysis technique uses Lyapunov Drift (Lyapunov techniques well known in switching/scheduling literature [McKeown, Tassiulas, Leonardi]).

Dynamic Equation:

$$U_{i}(t+T) = max[U_{i}(t) - \mu_{i}(p_{i}(t), c_{i}(t)), 0] + A_{i}(t)$$

Define Lyapunov Function:

$$L(\vec{U}) = \sum_{i=1}^{N} U_i^2$$

Can show drift in Lyapunov function is negative whenever $\overrightarrow{U}(t)$ is outside some bounded region of the unfinished work state space:

$$E[L(\overrightarrow{U}(t+T)) - L(\overrightarrow{U}(t)) | \overrightarrow{U}(t) \in \Lambda] \leq -\delta$$

Delay Bound:

Suppose the rate vector $\vec{\lambda}$ is strictly interior to Ω so that a positive value ϵ can be added to each entry such that:

$$(\lambda_1 + \varepsilon, ..., \lambda_N + \varepsilon) \in \Omega$$

 ϵ can be viewed as the "distance" to the boundary of the capacity region Ω .

Average Delay
$$\leq \frac{T\sum_{i}(E[A_{i}^{2}] + E[\mu_{i}^{2}])/\lambda_{tot}}{2\varepsilon}$$

Note Fundamental Similarity to M/G/1 queue:

Average Delay
$$(M/G/1) = \frac{\lambda E(L^2)/\mu}{2(\mu - \lambda)}$$
 2^{nd} moment of packet length

Joint Routing and Power Allocation:

$$\lambda_1 + \dots + \lambda_J \leq \bar{\mu}_{out}$$

$$\bar{\mu}_{out} = \sum_{\vec{C}} \pi_{\vec{C}} \sum_{s=1}^{S} \max_{\substack{j \in Sat(s) \\ j \in Sat(s)}} [\sum_{j \in Sat(s)} \mu_j(p_j, c_j)]$$

Decoupled Policy:

Power Alloc.: Allocate to maximize
$$\sum_{j \in Sat(s)} \mu_j(p_j, c_j(t))$$

Routing: Route every packet arriving in a timeslot to the queue *i* with the least unfinished work.

Variation of the problem: Many input types

<u>Routing</u>: Route packets from stream A_i to the shortest queue in its class Q_i .

Power Allocation: Each Satellite Carries out the Dynamic Power Allocation Policy: Maximize:

$$\sum_{j \in Sat(s)} U_i(t) \mu(p_j, c_j(t))$$

Connectivity Constraints:

To limit channel interference, define *connectivity* sets to ensure power does not affect other channels:

Power
$$\vec{P}(t) \in \{\mathcal{P}_1, \mathcal{P}_2, ..., \mathcal{P}_R\}$$

Example -- Limited to 3 Servers:

$$\mathcal{P}_{r} = \left\{ (p_{1}, p_{2}, p_{3}, 0, ..., 0) \in \Re^{N} \middle| p_{j} \ge 0, \sum_{j=1}^{3} p_{j} \le P_{tot} \right\}$$

Capacity Region:

$$\vec{\lambda} \in \Omega \stackrel{\triangle}{=} \sum_{\vec{C}} \pi_{\vec{C}} Convex Hull \Big(\{ \vec{\mu}(\vec{P}, \vec{C}) | (\vec{P} \in \mathcal{P}_r) \} \Big|_{r=1}^{R} \Big)$$

Power Allocation Policy:

Maximize:
$$\sum_{j=1}^{N} U_{j}(t) \mu_{j}(p_{j}, c_{j}(t))$$

Subject to:
$$\vec{P} \in \mathcal{P} = \{\mathcal{P}_1, ..., \mathcal{P}_R\}$$

Numerical and Simulation Results:

Markovian Channel Dynamics / Poisson inputs

Log-normal distribution of α_i for each of the three channel conditions:

_	mean	variance
Good	15 db	.264 db-squared
Medium	10 db	.868 db-squared
Bad	0 db	.145 db-squared

Concluding Slide:

Stability Regions for Three Power Allocation Algorithms

