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Energy-Optimal Scheduling with Dynamic Channel Acquisition in Wireless
Downlinks

Chih-ping Li, Michael J. Neely

Abstract— We consider a wireless base station serving L
users through L time-varying channels. It is well known
that opportunistic scheduling algorithms with full channel
state information (CSI) can stabilize the system and achieve
the full capacity region. However, opportunistic scheduling
algorithms with full CSI may not be energy efficient when
the cost of channel acquisition is high and traffic rates are
low. In particular, under the low traffic rate regime, it may
be sufficient and more energy-efficient to transmit data with
no CSI, i.e., to transmit data blindly, since no power for
channel acquisition is consumed. In general, we show that
purely channel-aware or purely channel-blind strategies are not
necessarily optimal, and we must consider mixed strategies. We
derive a unified scheduling algorithm that dynamically chooses
to transmit data with full or no CSI based on queue backlog and
channel statistics. Through Lyapunov analysis, we show that
the unified algorithm can stabilize the downlink with optimal
power consumption.

I. INTRODUCTION

To transmit data efficiently over wireless channels, it is
important to accommodate the time variations of wireless
channel states (due to changing environments, multi-path
fading, and mobility, etc.), and the limited energy in wireless
devices. In particular, the concept of opportunistic scheduling
has been shown to enable the design of efficient control
algorithms that boost supportable data rates to the limit. The
intuition is that transmitting data only when channel states
are good can increase the throughput of a wireless network
with a limited energy budget.

There has been extensive work in this field. For example,
[3][5][6][2][7] focus on throughput/utility maximization with
energy constraints in wireless networks. In particular, these
works share one assumption that, when making power/rate
allocation decisions, current channel states are always known
with negligible cost. However, acquiring channel states re-
quires exchanging control packets with neighboring wireless
nodes, which indeed consumes energy. Recent works [8][9]
relax this assumption by finding the optimal number of
channels that should be measured in order to maximize the
throughput of wireless LANs. The key idea in [8][9] is to
strike a balance between maximizing multi-user diversity
gain and the corresponding timing overhead of channel
probing. Their results imply that measuring all channels
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regularly may not be optimal. Guha et al. [10] investigate
partial channel probing and rate allocations in a wireless
server allocation problem with infinitely backlogged users.
They propose a polynomial time algorithm that comes within
a constant factor of optimizing a linear utility function when
the costs of probing different channels are different. Work
in [13] considers a similar problem and shows that a utility
that is arbitrarily close to optimal can be achieved in the
special case when probing costs are equal. Chang et al. [11]
generalize the result in [13], and investigate properties of
optimal joint partial channel probing and rate allocation
policies, as well as propose a two-step look-ahead algorithm
which is optimal in some special cases. Kar et al. [12]
study throughput-achieving scheduling algorithms under the
constraint that channels are only measured every T > 1 slots.

In [3], a dynamic control algorithm with perfect channel
state information (CSI) is proposed to achieve the capacity
region in a wireless network with power consumption arbi-
trarily close to optimal. In this paper, we extend the result
in [3] by relaxing the assumption of perfectly known CSI.
In particular, we assume there is a nonzero power cost to
acquire CSI, in which case the optimal control algorithm
in [3] may no longer be optimal. Intuitively, it is natural to
suspect that when incoming data rates are sufficiently small,
scheduling without CSI may still be able to support the data
rates, but requires no extra power for channel acquisition.
This assumption relaxation in fact enlarges the decision
space of network control policies, where now the new space
consists of purely channel-aware and purely channel-blind
scheduling (which are defined rigorously later), and the
combination of these two types. The problem discussed in [3]
can be viewed as a special case of our system model.

In the next section, we describe our mathematical model.
Then we give a motivating example showing that it is
necessary to have a unified treatment that incorporates both
channel-aware and channel-blind scheduling policies. In sec-
tion III we establish the minimum power for stability when
scheduling allows dynamic channel acquisition. In section
IV we propose a unified algorithm and show that it can
achieve the capacity region with power consumption arbitrar-
ily close to optimal. Through simulations, we demonstrate
the performance of the unified algorithm in a special case
where at most one user can transmit every slot. A low-
complexity heuristic that has near-optimal performance is
also introduced.
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II. SYSTEM MODEL, CAPACITY REGIONS, AND
MOTIVATING EXAMPLES

A. System Model
We consider a wireless base station serving L users

through L independent time-varying channels. Time is slot-
ted. Data is measured in integer units of packets. Assume
packet arrivals ak(t) for user k ∈ {1, 2, 3, . . . , L} in slot t are
i.i.d. over slots and independent of channel states. Assume
ak(t) takes values in {0, 1, 2, . . . , Amax} where Amax is a
finite integer, and define E [ak(t)] = λk for all t. Assume
channel states sk(t) for user k in slot t are i.i.d. over slots,
and sk(t) takes values in S = {0, 1, 2, . . . , µmax}, where
µmax is a finite integer. The value of sk(t) represents the
maximum number of packets that can be transmitted if we
decide to transmit data over channel k. In every slot, the base
station chooses service rate vector µ(t) = (µ1(t), . . . , µL(t))
in a feasible set Ω, where µk(t) is the service rate allocated
to user k. We assume that µk(t) ∈ S for all t and all k, and
that the set Ω defines any additional system restrictions. For
example, in systems where at most one channel can be served
per slot, all vectors in Ω have at most one non-zero entry.
A constant transmission power Pt is consumed for every
channel k that is allocated a nonzero transmission rate.

At the beginning of each slot, the base station makes a
decision whether or not to acquire current channel states.
In this paper we assume that either states of all channels
are acquired, with power expenditure Pm (each channel
measurement consumes Pm

L units of power), or no CSI is
known. We do not consider partial channel acquisition. When
channel states are acquired, the base station chooses feasible
service rates µk(t) ≤ sk(t) for all k, and at most µk(t)
packets can be successfully delivered for each k. Otherwise,
the service rate vector µ(t) is chosen blindly (without
the knowledge of current channel states). In this case, for
each channel k, at most µk(t) packets can be successfully
delivered if µk(t) ≤ sk(t), and all packet transmissions fail
otherwise. We assume that ACK/NACK feedback is received
at the end of each timeslot via a reliable control channel
(absense of an ACK signal is regarded as a NACK). The
backlog level Uk(t+ 1) of user k at time t+ 1 can thus be
represented by the equation:

Uk(t+ 1) = max{Uk(t)− µk(t)1[µk(t)≤sk(t)], 0}+ ak(t),

subject to the feasible rate allocation constraint µ(t) ∈ Ω.
The indicator function 1[µk(t)≤sk(t)] is required because of
the possible blind scheduling mode. In this paper we assume
that channel statistics are known and remain fixed. We say
the wireless downlink is stabilized (by some scheduling
policy) if the following inequality holds [3]:

lim sup
t→∞

1
t

t−1∑
τ=0

L∑
k=1

E [Uk(τ)] <∞.

B. Motivating Examples
We compare the performance of the class of purely

channel-aware algorithms (that serve packets only if chan-
nels are measured) to the class of purely channel-blind algo-
rithms (that never measure channels and can serve packets

without CSI)1 in a simplified example. Consider the problem
of allocating a server to L queues with independent i.i.d.
Bernoulli ON/OFF channels (channel states are i.i.d. over
slots) where at most one packet is served every slot. It is
equivalent to setting µmax = 1 and that Ω consists of L-
dimensional zero-one vectors in which at most one entry is
1. Define qi for i = 1, 2, . . . , L to be the probability of an ON
channel i state. Define the blind capacity region Λblind to be
the closure of the set of data rates that can be stabilized by
purely channel-blind policies. Define the capacity region Λ to
be the closure of the set of data rates that can be stabilized by
purely channel-aware policies.2 The following two lemmas
characterize these capacity regions and the minimum power
required to stabilize rate vectors within them (Proofs are
given in Appendix).

Lemma 1: The blind capacity region Λblind consists of
data rates λ = (λ1, λ2, . . . , λL) satisfying

∑L
i=1 λi/qi ≤ 1.

Further, among the class of purely channel-blind scheduling
policies, for each rate vector λ interior to Λblind, the mini-
mum power consumption to stabilize λ is (

∑L
i=1

λi

qi
)Pt.

Note that [1] has shown that the capacity region Λ consists
of data rates λ satisfying, for each nonempty subset I
of {1, 2, . . . , L},

∑
i∈I λi ≤ 1 − Πi∈I(1 − qi). Next we

quantify the minimum power required for purely channel-
aware scheduling to stabilize data rates interior to Λ.

Lemma 2: Among the class of purely channel-aware poli-
cies, for each rate vector λ 6= 0 interior to Λ, the minimum
power consumption to stabilize λ is (

∑L
i=1 λi)Pt + θ∗Pm,

where θ∗ , inf{θ | λθ ∈ Λ, 0 < θ < 1}.
Next, consider the case L = 2. Following from Lemma 1

and 2 we observe that there is a capacity region difference
between Λ and Λblind (See Fig. 1). We observe the set
Λblind can be partitioned into areas according to whether
data rates prefer purely channel-aware to purely channel-
blind scheduling, and different power ratios Pm

Pt
may lead to

different partitions. Note that purely channel-blind schedul-
ing is impossible in the region outside Λblind (as it cannot
stabilize the system). However, regardless of whether or not
rates are within Λblind, in the next section we show that
the minimum power policy might be neither purely channel-
blind nor purely channel-aware. Rather, mixed strategies are
typically required.

III. OPTIMAL POWER CONSUMPTION FOR STABILITY

In the following we prove a theorem characterizing the
minimum power for stability when dynamic channel acquisi-
tion is allowed, using similar techniques of proving Theorem
1 in [3]. We show that the minimum average power required
for stability is obtained by minimizing the resulting average
power expenditure over the class of stationary randomized
policies that achieve a time average transmission rate exactly
equal to the rate vector λ. Each stationary randomized
policy makes decisions independently of queue backlog, and

1Note that both purely channel-aware and purely channel-blind scheduling
may take advantage of queue backlog information.

2Note that Λblind ⊂ Λ because purely channel-aware scheduling can
emulate purely channel-blind scheduling.
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Fig. 1. For the case L = 2, Λ consists of data rates that are within the
outer boundary (thick solid lines), while Λblind consists of data rates within
the thick dotted line λ1

q1
+ λ2
q2

= 1. Data rates in the shaded areas are those
that prefer purely channel-blind to purely channel-aware scheduling. The
shaded areas are decided under an additional assumption that q1 ≤ q2. As
Pm/Pt decreases, the shaded areas shrink in the directions given in the
figure.

has the following structure: Every timeslot, the controller
independently decides to measure channel states with some
probability γ (where 0 ≤ γ ≤ 1). If channel states are
measured and the channel state s is observed, the controller
randomly chooses one of L+ 2 pre-established rate vectors
µi(s) (for i ∈ {1, . . . , L+2}), with some probabilities αi(s)
(for i ∈ {1, . . . , L+ 2}). Otherwise, a rate vector µ ∈ Ω is
chosen for blind transmission, with a particular probability
distribution β(µ).

Theorem 1: For i.i.d. channel state processes (states inde-
pendent over slots) and i.i.d. arrival processes with rate vector
λ which is interior to Λ, the minimum power consumption to
stabilize the system is the optimal objective of the following
problem P(λ) (defined in terms of auxiliary variables γ,
{αi(s)}L+2

i=1 for each channel vector s, β(µ) for each µ ∈
Ω, and sets of feasible rate vectors {µi(s)}L+2

i=1 for each
s, where µi(s) , (µi,1(s), . . . , µi,L(s)) and µi(s) ≤ s
elementwise3):

min. γ
∑
s

πs

L+2∑
i=1

αi(s)

Pm +
L∑
j=1

1[µi,j(s)>0]Pt


+ (1− γ)

∑
µ∈Ω

β(µ)

(
L∑
i=1

1[µi>0]Pt

)

s.t. λ ≤ γ
∑
s

πs

(
L+2∑
i=1

αi(s)µi(s)

)
+ (1− γ)

∑
µ∈Ω

β(µ) (µ⊗ P {µ ≤ s}) ,

0 ≤ γ ≤ 1, β(µ) ≥ 0 ∀µ ∈ Ω,
∑
µ∈Ω

β(µ) = 1,

αi(s) ≥ 0 ∀s, i = 1, 2, . . . , L+ 2;
L+2∑
i=1

αi(s) = 1 ∀s,

µi(s) ∈ Ω, µi(s) ≤ s ∀s, i = 1, 2, . . . , L+ 2,

where πs is the steady state probability of channel states
s. For a, b ∈ Rn, we define a ⊗ b , (a1b1, . . . , anbn)

3In the rest of the paper, for two vectors a, b ∈ Rn, we use the notation
a ≤ b to denote ai ≤ bi for all i.

and P {a ≤ b} , (P {a1 ≤ b1}, . . . ,P {an ≤ bn}), where
P {A} is the probability of event A occurring.

Proof: Given in Appendix.
The following corollary of Theorem 1 will be used later in

the performance analysis of our proposed control algorithm:
Corollary 1: For i.i.d. arrival and channel state processes,

and an interior point λ of Λ, the minimum average power
consumption to stabilize λ, denoted by Popt(λ), can be
achieved by minimizing the power over the class of station-
ary randomized policies that support λ. The optimal station-
ary randomized policy allocates power (P̂1(t), . . . , P̂L(t))
(where P̂i(t) is the sum of measurement and transmission
power allocated to user i in slot t for i = 1, 2, . . . , L) and
service rates µ̂(t) that yield for every slot t,

L∑
i=1

E
[
P̂i(t)

]
= Popt(λ), E [µ̂(t)] ≥ λ.

IV. THE UNIFIED ALGORITHM AND PERFORMANCE
ANALYSIS

A. Dynamic Channel Acquisition Algorithm

In the previous section we established the minimum av-
erage power consumption required for stability. Here we
develop a unified Dynamic Channel Acquisition (DCA)
algorithm that provides stability with average power that
is arbitrarily close to the minimum, with a corresponding
tradeoff in average delay. The algorithm is stated below in
terms of a positive control parameter V , chosen as desired
to affect the tradeoff. At the beginning of each timeslot,
we observe the current queue backlog (U1(t), . . . , UL(t)).
We then decide to measure current channel states or not,
and allocate transmission rates based on this measurement
decision. The associated decision varaibles m(t), µ(m)(t),
µ(u)(t) are defined as follows: m(t) ∈ {0, 1} where m(t) =
1 if channels are measured in slot t, and m(t) = 0 otherwise.
Variables µ(m)(t) represent feasible transmission rate allo-
cations in the case when channels are measured, and µ(u)(t)
represent feasible transmission rates allocated when no chan-
nels are measured. Define χ(t) , [m(t),µ(m)(t),µ(u)(t)]
as the collection of control decision variables on slot t.
The DCA algorithm observes the current queue backlog
U(t) and chooses χ(t) every slot to maximize the function
f(U(t),χ(t)), define as follows

f(U(t),χ(t)) , −m(t)V Pm+

m(t)Es

[
L∑
i=1

(
2Ui(t)µ

(m)
i (t)− V Pt1[µ

(m)
i (t)>0]

)
| U(t)

]

+m(t)
L∑
i=1

(2Ui(t)µ
(u)
i (t)P {µ(u)

i (t) ≤ si} − V Pt1[µ
(u)
i (t)>0]

),

(1)

where m(t) , 1−m(t). The maximization can be achieved
as follows: First, we compare the maximized multiplicands
of m(t) and m(t) in (1). We choose m(t) = 1 if its
optimal multiplicand is greater than the other, and m(t) = 0
otherwise. If m(t) = 1, we measure the channel states
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s(t) and allocate feasible rates µ(m)(t) as the maximizer of
the sum

∑L
i=1

(
2Ui(t)µ

(m)
i (t)− V Pt1[µ

(m)
i (t)>0]

)
subject

to µ(m)(t) ≤ s(t). Otherwise, we have m(t) = 0, and
we allocate feasible rates, without knowledge of current
channel states, to maximize the multpilicand of m(t). Note
that channel statistics is required in these decisions, and that
the 0/1 value of m(t) every slot is the most complicated
part of the algorithm. In particular, the multiplicand of m(t)
is a conditional expectation given U(t), and the maximized
expectation is taken over the steady state distribution πs,
under the assumption that the optimal µ(m)(t) vector is
allocated for each potential observed channel state s. In
Section IV-B, we show that this computation can be done
in real time for the special case when at most one packet
can be transmitted per slot.

For proving performance of the DCA algorithm, it is
important to note that the function f(U(t),χ(t)) can be
written as

f(U(t),χ(t))

=

(
L∑
i=1

2Ui(t)Es [µ̂i(t) | U(t)]

)
− V Es

[
L∑
i=1

P̂i(t) | U(t)

]
,

where

µ̂i(t) , m(t)µ(m)
i (t) +m(t)µ(u)

i (t)1
[µ

(u)
i (t)≤si(t)]

, (2)

P̂i(t) , m(t)
(
Pm
L

+ Pt1[µ
(m)
i (t)>0]

)
+m(t)Pt1[µ

(u)
i (t)>0]

,

(3)

where µ̂i(t) and P̂i(t) are respectively the maximum number
of packets that can be served for user i in slot t and the power
consumption of user i in slot t.

Theorem 2: For each arrival rate λ interior to the capacity
region Λ, the DCA algorithm implemented with any control
parameter V > 0 stabilizes the system with time average
queue backlog and power expenditure given as follows:

lim sup
τ→∞

1
τ

τ−1∑
t=0

L∑
i=1

E [Ui(t)] ≤
B + V (Pm + LPt)

2εmax
,

lim sup
τ→∞

1
τ

τ−1∑
t=0

L∑
i=1

E
[
P̂i(t)

]
≤ B

V
+ Popt(λ),

where B , (µ2
max +A2

max)L, εmax > 0 is the largest value
such that (λ+εmax) ∈ Λ, where εmax is an all-εmax vector.
P̂i(t) is defined in (3), and Popt(λ) is the minimum power
consumption to stabilize λ from Theorem 1.

Proof: For i = 1, 2, . . . , L, the queueing dynamics of user
i can be written as

Ui(t+ 1) = max(Ui(t)− µ̂i(t), 0) + ai(t), (4)

where Ui(t) is the backlog of user i data at time t, ai(t) is
the number of user i arrivals in slot t, and µ̂i(t) is define
in (2). By squaring (4) for each i and the facts that

(max(Ui(t)− µ̂i(t), 0))2 ≤ (Ui(t)− µ̂i(t))2,

Ui(t)− µ̂i(t) ≤ Ui(t), µ̂i(t) ≤ µmax, ai(t) ≤ Amax,

we have
L∑
i=1

(
U2
i (t+ 1)− U2

i (t)
)
≤ B − 2

L∑
i=1

Ui(t)(µ̂i(t)− ai(t)),

(5)
where B , (µ2

max+A2
max)L. Next we define the Lyapunov

function L(t) ,
∑L
i=1 U

2
i (t) and the one-step Lyapunov

drift ∆(U(t)) , E [L(t+ 1)− L(t)|U(t)]. By taking ex-
pectation of (5) conditioning on current backlog U(t) and
noting that arrival processes are i.i.d. over slots, it is easy to
show that

∆(U(t)) ≤ B + 2
L∑
i=1

Ui(t)λi −
L∑
i=1

2Ui(t)E [µ̂i(t) | U(t)]

(6)
Motivated by the performance optimal Lyapunov optimiza-
tion technique developed in [3] [4], we add the cost metric
V E

[∑L
i=1 P̂i(t) | U(t)

]
which is weighted by V to both

sides of (6), yielding

∆(U(t)) + V E

[
L∑
i=1

P̂i(t) | U(t)

]
≤ B + 2

L∑
i=1

Ui(t)λi

−

(
L∑
i=1

2Ui(t)E [µ̂i(t) | U(t)]− V E

[
L∑
i=1

P̂i(t) | U(t)

])
.

(7)

The DCA algorithm is designed to minimize the right hand
side of (7) over all possible control decisions χ(t). In other
words, the DCA algorithm minimizes the last term of (7).
This can be achieved by maximizing f(U(t),χ(t)) over all
feasible control decisions χ(t), which follows the procedures
described in Section IV-A.

For performance analysis, note that the resulting right hand
side of (7) under the DCA algorithm is less than or equal to
corresponding right hand side if some other policy is used. In
particular, we choose the some other policy to be the optimal
stationary randomized policy, denoted by ωr, associated with
the optimal solution of the problem P(λ+ε) in Theorem 1,
where the vector ε > 0 is some all-ε vector such that λ+ ε
is interior to Λ. Let µ̂r(t) and (P̂ r1 (t), . . . , P̂ rL(t)) be the
service rates and power consumption associated with policy
ωr in slot t. Then from (7) we have

∆(U(t)) + V E

[
L∑
i=1

P̂i(t) | U(t)

]
≤ B + 2

L∑
i=1

Ui(t)λi

−

(
L∑
i=1

2Ui(t)E [µ̂ri (t) | U(t)]− V E

[
L∑
i=1

P̂ ri (t) | U(t)

])
.

(8)

By Corollary 1, the policy ωr makes control deci-
sions χr(t), independent of current queue backlog U(t),
resulting in service rates µ̂r(t) and power consumption
(P̂ r1 (t), . . . , P̂ rL(t)) that satisfy

E [µ̂r(t) | U(t)] ≥ λ+ ε, (9)

E

[
L∑
i=1

P̂ ri (t) | U(t)

]
= Popt(λ+ ε) (10)
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in every slot t. Plugging (9) and (10) into (8) results in

∆(U(t)) + V E

[
L∑
i=1

P̂i(t) | U(t)

]

≤ B − 2ε
L∑
i=1

Ui(t) + V Popt(λ+ ε).

(11)

Taking expectation of (11) over U(t), summing it from t = 0
to τ − 1, and dividing the sum by τ yield

2ε
τ

τ−1∑
t=0

L∑
i=1

E [Ui(t)] ≤ B +
E [L(U(0))]− E [L(U(τ))]

τ

+ V Popt(λ+ ε)− V

τ
E

[
τ−1∑
t=0

L∑
i=1

P̂i(t)

]
.

(12)

By taking lim sup of (12) as τ → ∞ and the fact that
Popt(λ+ ε) ≤ Pm + LPt,4 we have

lim sup
τ→∞

1
τ

τ−1∑
t=0

L∑
i=1

E [Ui(t)] ≤
B + V (Pm + LPt)

2ε
, (13)

lim sup
τ→∞

1
τ

τ−1∑
t=0

L∑
i=1

E
[
P̂i(t)

]
≤ B

V
+ Popt(λ+ ε). (14)

Note that (13) and (14) hold for any ε > 0 satisfying that
λ+ε is interior to the capacity region Λ. Thus we can tighten
the bounds by setting ε = εmax in (13) where εmax > 0 is
the largest real number satisfying λ + εmax ∈ Λ, and by
setting ε = 0 in (14). Thus we have

lim sup
τ→∞

1
τ

τ−1∑
t=0

L∑
i=1

E [Ui(t)] ≤
B + V (Pm + LPt)

2εmax
, (15)

lim sup
τ→∞

1
τ

τ−1∑
t=0

L∑
i=1

E
[
P̂i(t)

]
≤ B

V
+ Popt(λ). (16)

�
Note that the two bounds in (15) and (16) are parameter-

ized by the positive scalar V , where a larger V pushes the
average power consumption asymptotically to optimal, at the
expense of the linearly increasing average congestion bound
(which, by Little’s Theorem, yields an average delay bound).

B. Server Allocation Problem and Algorithm Implementation

Consider the simplified example of the L-queue downlink
given in Section II-B. We show that the DCA algorithm,
following the explanation in Section IV-A, can be simply
implemented as follows: In every slot if channel states are
acquired, we allocate the server to the user, among all users
with ON channel state, with the largest positive f (m)

i (t) ,
2Ui(t) − V Pt. If f (m)

i (t) is non-positive for all users with
ON state, we idle the server. Further, if channel acquisition
is not performed, we allocate the server to the user with the
largest positive f

(u)
i (t) , 2Ui(t)P {si = ON} − V Pt. If

f
(u)
i (t) is non-positve for all users, we idle the server.

4(Pm + LPt) is the maximum power that can be consumed every slot.

Next, to decide whether or not to acquire channel states,
we compare the optimal multiplicands of m(t) and m(t)
in (1). First note that choosing the largest positive f (u)

i (t)
gives us the optimal multiplicand of m(t). The optimal
multiplicand of m(t) can be computed as

− V Pm +
L∑
i=1

(2Ui(t)− V Pt)1[2Ui(t)>V Pt]P {si(t) = ON}×

P {sj(t) <
Ui(t)
Uj(t)

, ∀j < i, sk(t) ≤ Ui(t)
Uk(t)

, ∀k > i}.

(17)

It is because we assign the server to user i when si(t) = 1,
f

(m)
i (t) > 0 and Ui(t) ≥ sj(t)Uj(t) for all j 6= i (we

break ties by choosing the smallest index), which occurs with
probability

P {si(t) = ON, sj(t) <
Ui(t)
Uj(t)

, ∀j < i, sk(t) ≤ Ui(t)
Uk(t)

, ∀k > i}

Then we acquire channel states if the optimal multiplicand
of m(t) is no less than that of m(t).

Unlike the EECA algorithm in [3] which does not require
channel statistics, we observe that the DCA algorithm indeed
requires channel statistics in the decisions of channel acqui-
sitions. Knowing the joint probability distribution is easier
for uncorrelated channels, which may not be the case for
correlated channels. As a result, for the case of a server
allocation problem with independent i.i.d. Bernoulli ON/OFF
channels, i.e., no spacial correlation among channels, (17)
can be computed in polynomial time with polynomial mem-
ory spaces. In other words, the DCA algorithm is a polyno-
mial time algorithm in this case. Further, we observe that
choosing service rates is trivial after channel acquisition
decisions are made, and the implementation complexity of
the DCA algorithm completely lies in whether or not to
acquire channel states.

C. Simulations and Low Complexity Alternatives

We simulate the DCA algorithm for the simplified down-
link with L = 2 in Section II-B. Assume every slot channel
1 and 2 are ON with probability 0.5 and 0.8, respectively.
We let Amax = 1, meaning that at most one packet
arrives for each user in every slot. The arrival rate vector
(λ1, λ2) is set to be ρ(0.2, 0.8), where ρ is a nonnegative
controlled loading factor. The value of ρ is at most 0.89
in our simulation, corresponding to an operating point very
close to the boundary of the capacity region Λ (ρ = 0.9
is right on the boundary). We set the transmission power
Pt = 10 units, channel acquisition power Pm = 4.5 units,
control variable V = 10, and the total simulation time to
be 107 slots. We note that these chosen parameters yield
that, compared to purely channel-aware scheduling, purely
channel-blind scheduling is preferred for all data rates pushed
toward the boundary of the blind capacity region Λblind along
the direction (0.2, 0.8). The simulation results are given in
Fig. 2 and 3.

In theory, the DCA algorithm stabilizes the capacity region
Λ. We show in Fig. 2 as an example that the DCA algorithm
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stabilizes the system for all data rates pushed toward the
boundary of Λ along the direction (0.2, 0.8). Further, Fig. 3
shows that the DCA algorithm yields average power con-
sumption strictly less than the theoretical minimum power
that purely channel-aware and purely channel-blind schedul-
ing can achieve.

Regarding the complexity of making channel acquisition
decisions, we also examine the performance of a simple
heuristic called Simplified algorithm. The Simplified algo-
rithm, instead of computing an optimal expectation, uses the
maximum of

max.
∑L
i=1

(
2Ui(t)µi(t)− V Pt1[µi(t)>0]

)
− V Pm

s.t. 0 ≤ µi(t) ≤ µmax, µi(t) > 0 for at most one i.

as the optimal multiplicand of m(t) in (1). In other words,
we choose m(t) without requiring the joint probability
distribution of channel states, based on the assumption that
all channels are ON. This assumption greatly reduces the
complexity of making channel acquisition decisions. Note
that the new multiplicand of m(t) is no less than the one
in the DCA algorithm. Therefore it potentially measures
the channel states more frequently and remains a stabilizing
policy (because we can emulate channel-blind transmissions
when channel states are known). Surprisingly, Fig. 2 and 3
show that the Simplified algorithm seems to approximate the
DCA algorithm very well.
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Fig. 2. The average backlog of the DCA and the Simplified algorithm,
compared to the theoretical bound.
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Fig. 3. The average power consumption of the DCA algorithm, compared
to purely channel-aware, purely channel-blind, and the Simplified algorithm.
Note that curves for the DCA and the Simplified algorithm are nearly
overlapped. The curve of purely channel-blind is drawn only to ρ = 0.71,
which corresponds to data rates very close to the blind capacity region
boundary, because purely channel-blind cannot support data rates outside
the blind capacity region.

V. CONCLUSION

In this paper, under the assumption that channel acqui-
sition is no longer for free, we propose an algorithm that

dynamically acquires channel states to stabilize a wire-
less downlink. This proposed Dynamic Channel Acquisition
(DCA) algorithm is a unified treatment of incorporating
both channel-aware and channel-blind scheduling policies to
achieve energy optimality. Through Lyapunov analysis, we
prove that the DCA algorithm can stabilize the downlink
with average power consumption arbitrarily close to optimal,
at the expense of increasing average network delays.

APPENDIX

Proof of Lemma 1: First assume rate vector λ =
(λ1, λ2, . . . , λL) can be stabilized by a scheduling policy.
Since successfully transmitting a packet through channel
i = 1, 2, . . . , L takes on average 1

qi
attempts, the fraction of

time the system is busy is equal to
∑L
i=1

λi

qi
, which must be

less than or equal to 1 for stability. The associated necessary
average power consumption is equal to (

∑L
i=1

λi

qi
)Pt. Con-

versely, for each rate vector λ 6= 0 satisfying
∑L
i=1

λi

qi
< 1,

we define ρ ,
∑L
i=1

λi

qi
, and there exists some ε > 0 such

that ρ + ε < 1. Consider the policy of every slot assigning
the server to queue i with probability (ρ + ε)αi, where
αi ,

λi

qiρ
, and being idle with probability 1 − ρ − ε. The

associated average power consumption is (ρ+ε)Pt. Then it is
easy to see that this policy yields average transmission rates
being strictly greater than λ elementwise, and thus stabilizes
the system. By passing ε → 0, the data rate vector λ is
stabilized with average power consumption arbitrarily close
to ρPt = (

∑L
i=1

λi

qi
)Pt. �

Proof of Lemma 2: Suppose the rate vector λ can be
stabilized by a purely channel-aware policy ω. For simplicity,
we assume the policy ω is ergodic with well-defined time
averages (the general case can be proven similarly, as in [3]).
Define θ as the fraction of time that policy ω acquires channel
states to stabilize λ. Then the average power consumption to
stabilize λ is equal to (

∑L
i=1 λi)Pt + θPm. Suppose that θ

satisfies 0 < θ < θ∗. Using the same proving technique
in Appendix A of [3], we can show that there exists a
rate vector λ̃ ∈ θΛ such that λ ≤ λ̃. In other words,
λ ∈ θΛ. It contradicts the definition of θ∗, and finishes the
proof of necessity. Conversely, since λ ∈ θ∗Λ (equivalent
to λ

θ∗ ∈ Λ), λ is an interior point of the set (θ∗ + ε)Λ for
some ε > 0, θ∗+ ε < 1. Then measuring channels every slot
with probability (θ∗ + ε) and serving the longest ON queue
whenever channels are measured is a λ-stabilizing policy [1]
with power consumption (

∑L
i=1 λi)Pt+(θ∗+ε)Pm. Letting

ε→ 0 finishes the proof of sufficiency. �
Proof of Theorem 1: Assume rate vector λ is stabilizable.

Then there exists a λ-stabilizing policy ω which decides in
which slots channel measurement is performed, and allocates
transmission rates µ(t) = (µ1(t), . . . , µL(t)) accordingly in
every slot t. Using the stability definition and Lemma 1
in [2], the following necessary condition holds with prob-
ability 1:

λ ≤ lim inf
t→∞

1
t

t−1∑
τ=0

µ̂(τ), (18)



PROC. OF 46TH IEEE CONFERENCE ON DECISION AND CONTROL, INVITED PAPER, DECEMBER 2007 7

where µ̂(τ) denotes the effective transmission rates allocated
in slot τ . When channels are measured in slot t, we have
µ̂(t) = µ(t).5 Otherwise, µ̂(t) = µ(t) ⊗ 1[µ(t)≤s(t)],
where 1[µ(t)≤s(t)] , (1[µ1(t)≤s1(t)], . . . , 1[µL(t)≤sL(t)]). De-
fine P (t) = (P1(t), . . . , PL(t)) to be the power vector where
Pi(t) is the power consumed by channel i in slot t, including
both measurement and transmission power. When channels
are measured, we have Pi(t) = Pm

L + 1[µi(t,s(t))>0]Pt, and
Pi(t) = 1[µi(t)>0]Pt otherwise.

For some time horizon M > 0, let T (m)
M and T (u)

M be the
sets of slots in [0,M ] in which channel states are acquired
and unknown, respectively. Without loss of generality assume
T

(m)
M and T (u)

M are nonempty. Define

µ̂(m)
av (M) ,

1
M

∑
τ∈T (m)

M

µ̂(τ) =
1
M

∑
τ∈T (m)

M

µ(τ, s(τ)),

µ̂(u)
av (M) ,

1
M

∑
τ∈T (u)

M

µ̂(τ) =
1
M

∑
τ∈T (u)

M

µ(τ)⊗ 1[µ(τ)≤s(τ)].

The empirical service rate µ̂av(M) , 1
M

∑M−1
τ=0 µ̂(τ) over

[0,M ] is equal to µ̂(m)
av (M) + µ̂(u)

av (M). Define

P (m)
av (M) ,

1
M

∑
τ∈T (m)

M

L∑
i=1

Pi(τ),

P (u)
av (M) ,

1
M

∑
τ∈T (u)

M

L∑
i=1

Pi(τ).

The empirical average power consumption Pav(M) ,
1
M

∑M−1
τ=0

∑L
i=1 Pi(τ) is equal to P (m)

av (M)+P (u)
av (M). It is

easy to show the (L+ 1)-dim vector (µ̂(m)
av (M);P (m)

av (M))
satisfies:

(µ̂(m)
av (M);P (m)

av (M)) =
1
M

∑
τ∈T (m)

M

(µ(τ, s(τ));
L∑
i=1

Pi(τ))

= γM
∑
s

σM (s) xM (s),

where γM ,
|T (m)

M |
M , σM (s) , |T

(m)
M (s)|
|T (m)

M |
, where T (m)

M (s) ⊂

T
(m)
M consists of slots in which channel states are s,

and xM (s) , 1

|T (m)
M (s)|

∑
τ∈T (m)

M (s)
(µ(τ, s);

∑L
i=1 Pi(τ)).

Since xM (s) is a convex combination of vectors
of the form (µ(τ, s);

∑L
i=1 Pi(τ)), by Caratheodory

Theorem, there exist L + 2 feasible rate vectors
µMi (s) = (µMi,1(s), . . . , µMi,L(s)) satisfying µMi (s) ≤
s for i = 1, 2, . . . , L + 2, and an associated prob-
ability distribution {αMi (s)}L+2

i=1 , such that xM (s) =∑L+2
i=1 αMi (s)(µMi (s);

∑L
j=1 P

j
i (s)), where P ji (s) , Pm

L +

5Without loss of generality, we only consider the class of policies that,
when channels are measured in slot t, always allocate transmission rates
µ(t) satisfying µ(t) ≤ s(t). It is because allocating transmission rates
that cannot be supported by current known channel states is equivalent to
assigning zero rates. In the rest of the paper we use the notation µ(t, s(t))
to emphasize that the allocated rates are supported by current known channel
states.

1[µM
i,j(s)>0]Pt. Also, it is easy to show that the vector

(µ̂(u)
av (M);P (u)

av (M)) satisfies:

(µ̂(u)
av (M);P (u)

av (M))

=
1
M

∑
τ∈T (u)

M

(µ(τ)⊗ 1[µ(τ)≤s(τ)];
L∑
i=1

Pi(τ))

= (1− γM )
∑
µ∈Ω

βM (µ) yM (µ),

where 1 − γM = |T (u)
M |
M because |T (m)

M | + |T (u)
M | = M ,

βM (µ) , |T (u)
M (µ)|
|T (u)

M |
, where T

(u)
M (µ) ⊂ T

(u)
M consists

of slots in which transmission rate vector µ is channel-
blindly allocated, and yM (µ) , 1

|T (u)
M (µ)|

∑
τ∈T (u)

M (µ)
(µ ⊗

1[µ≤s(τ)];
∑L
i=1 Pi(τ)). Note that

∑
µ βM (µ) = 1. Then we

observe that the sequence {(µ̂av(M);Pav(M))}} indexed
by M is a bounded sequence. By Weierstrass Theorem, there
exists a converging subsequence {Mn}. Since subsequences
{γMn}, {σMn(s)}, {αMn

i (s)}, {µMn
i (s)}, {βMn(µ)}, and

{yMn
(µ)} are all bounded, by iteratively applying Weier-

strass Theorem, there exists a subsequence {Mk} of {Mn}
such that as k → ∞, there exist some γ satisfying 0 ≤
γ ≤ 1, probability distributions {αi(s)}L+2

i=1 for each s,
feasible transmission rates µi(s) ≤ s for each i and s,
and a probability distribution {β(µ)}µ, such that γMk

→ γ,
αMk
i (s)→ αi(s), µMk

i (s)→ µi(s), and βMk
(µ)→ β(µ).

Define πs to be the steady state probability of channel state
s. Then σMk

(s) converges to πs as k →∞ by Law of Large
Numbers. It is because the channel acquisition decision in a
slot is independent of the channel states in that slot. Further,
we observe that, for each µ, the vectors µ⊗1[µ≤s(τ)] are i.i.d.
for τ ∈ T (u)

Mk
(µ). Thus by Law of Large Numbers yMk

(µ)
converges to (µ ⊗ P {µ ≤ s};

∑L
i=1 1[µi>0]Pt) as k → ∞.

In sum, as k →∞, {(µ̂av(Mk);Pav(Mk))} converges to

γ
∑
s

πs

L+2∑
i=1

αi(s)

µi(s);Pm +
L∑
j=1

1[µi,j(s)>0]Pt


+ (1− γ)

∑
µ∈Ω

β(µ)

(
µ⊗ P {µ ≤ s};

L∑
i=1

1[µi>0]Pt

)
.

Equation (18) then yields

λ ≤ lim
k→∞

1
Mk

Mk−1∑
τ=0

µ̂(τ)

= lim
k→∞

(µ̂(m)
av (Mk) + µ̂(u)

av (Mk))

= γ
∑
s

πs

(
L+2∑
i=1

αi(s)µi(s)

)
+ (1− γ)

∑
µ∈Ω

β(µ) (µ⊗ P {µ ≤ s}) .

(19)
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The corresponding average power consumption is

γ
∑
s

πs

L+2∑
i=1

αi(s)

Pm +
L∑
j=1

1[µi,j(s)>0]Pt


+ (1− γ)

∑
µ∈Ω

β(µ)

(
L∑
i=1

1[µi>0]Pt

)
.

(20)

The first inequality of (19) is due to the fact that lim inf of a
sequence is a lower bound of a limit point of the sequence.

Equation (19) (20) show that, for any λ-stabilizing policy
ω, there exists a stationary randomized policy ω̂ which
yields average service rates greater than or equal to λ. The
parameter γ, probability distributions {β(µ)}µ and {αi(s)}i
for all s, and transmission rates {µi(s)}i for all s associated
with ω̂ constitute a feasible solution to P(λ). Thus the power
consumption (20) of ω̂, or the necessary power to stabilize
λ, is no less than the optimal objective of P(λ).

Conversely, for each rate vector λ interior to Λ, there
exists a positive scalar ε such that λ + ε is interior to Λ,
where ε is the vector of which each entry is ε. By definition
of Λ, rate vector λ + ε is supportable. Then the optimal
solution to P(λ + ε) yields a stationary randomized policy
ω whose average service rates are greater than or equal to
λ + ε. Thus policy ω stabilizes λ by Lemma 3.6 of [4],
with average power consumption being equal to the optimal
objective of P(λ + ε). By pushing ε to zero, there exists a
stationary randomized policy which stabilizes λ with average
power consumption arbitrarily close to the optimal objective
of P(λ). �
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